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Discrete vortex solitons
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Localized states in the discrete two-dimensiof@D) nonlinear Schrdinger equation is found: vortex
solitons with an integer vorticitys. While Hamiltonian lattices do not conserve angular momentum or the
topological invariant related to it, we demonstrate that the soliton’s vorticity may be conserved as a dynamical
invariant. Linear stability analysis and direct simulations concur in showing that fundamental vortex solitons,
with S=1, are stable if the intersite coupling is smaller than some critical valug@’). At C>C', an
instability sets in through a quartet of complex eigenvalues appearing in the linearized equations. Direct
simulations reveal that an unstable vortex soliton v8th1 first splits into two usual solitons wit8=0 (in
accordance with the prediction of the linear analydisit then an instability-induced spontaneous symmetry
breaking takes place: one of the secondary solitons ®itt0 decays into radiation, while the other one
survives. We demonstrate that the usu&k=Q) 2D solitons in the model become unstable,Gat C(®)
~2.463£}), in a different way, via a pair of imaginary eigenvaluesvhich bifurcate into instability through
o =0. Except for the lower-energ$=1 solitons that are centered on a site, we also construct ones which are
centered between lattice sites which, however, have higher energy than the former. Vortex solitoSs with
=2 are found too, but they are always unstable. Solitons ®ittl andS=0 can form stable bound states.
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Nonlinear lattice equations naturally arise as models ofixing A to a constant value; unless indicated otherwise,
various physical systems, being also an object of interest ig=0.32 for the numerical results given below. An advantage
their own right, as an important class of nonlinear dynamicabf this choice is that it allows us to investigate the crossover
systems. A fundamental lattice model is represented by thg the continuous limit, taking — .
discrete nonlinear Schdinger (DNLS) equation with cubic In many respects, the 2D lattice solitons found in Refs.
on-site nonlinearity, which finds its most straightforward ap-[3,4] are similar to their earlier studied 1D counterparts
plications, both theoretic4ll] and experimentd], to trans- 1 2 5] This similarity is in drastic contrast with what is
verse dynamics in arrays of optical waveguidiisers with  known about the continuous NLS equation: in that case, the
Kerr nonlinearity. In this work, we are dealing with the two- ¢commonly known 1D solitons are stable, while axisymmetric
dimensional2D) self-focusing DNLS equation for complex 2p solitons are not, as the 2D self-focusing NLS equation

variablesup, , : with cubic nonlinearity is subject to wave collag$d. How-
i ever, the continuous 2D NLS equation can be easily modi-
Umnt CUmt1ntUnn+1tUnn-1TUn-10~4Up ) fied, by adding a quintic self-defocusing nonlinear term,

which makes the axisymmetric solitons in the corresponding
cubic-quintic(CQ) model stablg 7].

C being a real coupling constant. As has been recently dem- An obJect|ye of _th|s work is to produ.ce anc_>ther type of
onstrated(see Refs[3,4] and references therginthis and sta_ble 2D sohtqns n the DNLS quel, viz., a d'SCW‘eX .
similar models support stable solitofi®calized stationary 50'”0’? (VS), which is an e>_<po_nenf[|ally Iocahzed_brlg_ht soli-
states of the formu,, (t) =exp(AU,,., with U, , deter- ton with a vortex nested inside it. We stress its difference
mined by a stationar'y version of qu)' * from discrete analogs of the well-known optical vorti¢8%

' which exist on a finite background, i.e., are solitons of the

+|um,n|2um,n:01 (1)

C(U +U +Uo 14U . —4U dark type. Bright VS'qalias vortex ringsare known in vari-
(Um+10®UmasatUmn-atUm-1n m) ous continuum models. In the 2D cubic NLS equation they
+|Um,n|2Um,n=AUm,n. (2 are definitely unstable, as well as the usgmanvortex soli-

tons, due to collapse. In the 2D NLS equation of the CQ
In the soliton solution, U, , vanish as [(m® type, avortex ring may bénumerically stable, provided that
+n?) ¥ exd —(A/C)(m?+n?)] as|m|,|n|—o, which is its outer radius is very largg9]. Vortex rings in the 3D
suggested by analogy with the continuum limithe version of the CQ mode(spinning light bullets have also
asymptotic expression for the far tail of the soliton mustbeen studied in detajiL0,11].
always have a quasicontinuous forn®bviously, the cou- While the stability of VS’s in 2D(and 3D continuum
pling constanC may be set equal to 1 by means of a rescal-models is an issue, the possibility of thexistencds obvi-
ing. However, we prefer to kee@ as a control parameter, ous, as a 2D complex solution can always be sought for in
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-0.2 (S=1) in the 2D discrete NLS
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the form u=U(r)exp(At+iS6), wherer and @ are polar VS’s which is obvious in continuous models: separating the
coordinatesU(r) is a real amplitude, and the integer vortic- real and imaginary parts of the solution, &Re cos&6) and
ity (“spin”) S is a topological invariant. The isotropy of Im u~sin(S6), one concludes that they are odd functions of
continuous models gives rise to conservation of angular mothe Cartesian coordinates, respectivedyand y. This sug-
mentum, the value of which for VS's is proportional ® gests that, in the discrete system, Beand Im u must be,
[11]. On the contrary, the very existence of vortex solitons inrespectively, odd functions of the lattice coordinateandn.
discrete models, with their broken rotational invariance, is dn this connection, it is necessary to mention that the DNLS
nontrivial issue. Of course, dynamical stability of discreteequation in 1D indeed gives rise wdd soliton solutions
VS's, if any, will be a nontrivial problem too. The results (with u_,=—u,), which have no counterpart in the con-
presented below show that VS’s with different values of vor-tinuum limit. Those solutions were investigated in detail in
ticity do exist in the 2D DNLS equation, thizindamental  Refs.[5,15] under the name of “twisted localized modes.” In
one, with S=1, being stable in a finite parameter range,fact, they may be regarded as bound states of two strongly
while higher-order VS’s witl5=2 are always unstable. No- overlapping fundamentaéven solitons with a phase differ-
tice that this result is reminiscent of the stability of 2D finite- ence = between them. As has recently been demonstrated
background(*dark” ) vortices in the 2D continuous NLS [16], only bound states of this type may be stable in 1D
[12] and complex Ginzburg-Landau equatidd$]. Thus, a lattices(while bound states with the phase difference 0 are
qualitative conclusion is that, while vorticity is no longer a always unstable
topological invariant in 2D lattice models, it may be, instead, We were able to find fundamentab€ 1) stationary vor-
a dynamical invariant By this term, we mean that the time tex solitons in the 2D lattice governed by E®), starting
evolution of the lattice dynamics preserves the vorticitywith a “dual-twisted” Ansatzthat was a superposition of
present in the configuration. localizedAnsazefor Reuy, , and Imuy, ,, “twisted” so that
Numerical solution of the stationary equati(®), aimed Reu_p,=—Reuy, and Imuy, _,=—Imup, . For the nu-
at a search for a soliton of a given type by means of Newtommerical solution of Eq(2), the Newton methods and iterative
iterations, requires an appropriate initidhsatz If one is  ones based on treating the equation as a nonlinear eigenvalue
looking for a soliton without vorticity, an appropriafensatz ~ problem[4] were implemented. Note, however, an essential
that can be used in discrefas well as in continuogsnodels  difference between the cas€s=0 considered if4] and S
is often provided for by the variational approximation; see,=1: in the former casel, , are real, while the vorticity
e.g., Refs[14] and[3]. However, it is not obvious how to necessarily makes the solution complex.
select an appropriate vorticity-carryimgnsatzin the 2D lat- Irrespective of other details, the iteration procedure which
tice. Rather than trying to emulate the continuous functiorstarted from the “dual-twisted” initialAnsatzreadily con-
exp(S6) which accounts for the vorticity, we used a simpler verged to a soliton which clearly kept the initial vorticity,
and more(computationally robust initial Ansatzin the case =1. A typical example of the thus obtained fundamental VS
of odd S. This choice preserves a fundamental property ofis shown in Fig. 1. Starting from a more sophisticateut
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FIG. 2. An example of a sta-
tionary vortex soliton withS=2
for C=0.025. The four panels

0.2 show the same quantities as in
Fig. 1.

satz it was also possible to produce stationary double vortihecomes unstable &t=C{’~0.13, and it remains unstable
ces, i.e., solitons witls=2, a typical example of which can for > In terms of the eigenvalues, a destabilizing bi-

be seen in Fig. 2. An appropriate initiéinsatzfor the S = ¢rcation happens when a pair of purely real isolated eigen-
=2 VS's could be guessed, taking into account the even angy s which bifurcated at a smaller value @ffrom the

odd patf"‘els (t)r: theSh:TZ v(;)rt}(;e?r\]/vit: restpeﬁt_ tr(])_r(_)tt_aiiogs, edge of the phonon eigenvalue band, collides with another
rtespf[a_c Ively, throug ta?h Wd'. te \gm; d'lm ;aed isolated pair of real eigenvalues which originally existed
lerations converging 1o the discrete , diSpiaye close to the origin but was gradually approaching the band.

in Fig. 2, had nonzero values of Rg , solely along them L . .
. ' The collision results in the appearance of a complex eigen-
andn axes, and Inu,, , was different from zero along the S o i
: value quartet, i.e., instability. An example of the spectrum in

diagonalsn= = m. th lex plane of the eigenval taining th
The next issue is the stability of VS’s. Our stability inves- € complex plane of the eigenvajues, containing the un-

tigation is based on linear stability analysis around the staStaPle quartet, is shown in Fig. 3. It should be noted that

tionary solution, complemented by direct simulations of thecollisions inducing the generation of quartets of eigenvalues

evolution of perturbed solitons. For the linear stability analy-2r€ expected, since even for 1D “twisted" solitons, collisions
sis, a perturbed solution was taken &g, =expiAt)[Up, of isolated elge_nvalugs Wlth the band elgenvglues ofagA
+am, exp(—iot)+by,,explw*t)], » being an eigenvalue. parently opposite Krein sign lead to sudtopf-like bifurca-
The substitution of this into E¢(1) and linearization in the tions[15].

infinitesimal perturbation amplitudes, , andby, , leads to a The usual §=0) soliton must also become unstable with
system of linear homogeneous equations, the computation ¢fie increase ofC, as its counterpart is unstable too in the
the eigenvalues amounting to numerical diagonalization ofontinuum limit[4]. It is natural to compare the instabilities
the corresponding matrix. of the vortex and usual solitons on the lattice. We have found

Instability is accounted for by eigenvalues with a nonzerothat, atC~0.15, a pair of isolated redstable eigenvalues
imaginary part. Because of the Hamiltonian nature of DNLS,*|w| splits off from the phonon band in the spectrum of the
complex eigenvalues may appear in conjugate pairs or quab=0 soliton. A destabilizing bifurcation takes place @t
tets,|Im w| being the instability gain. It has been found that = C{®)~0.32: the pair hits the origin and reappears in a
the stability of theS=1 VS depends on the value of the purely imaginary form:i|w|. As concerns th&=2 soliton,
coupling constan€, while theS=2 solitons arealwayslin- its eigenvalue spectrum always contains at least one purely
early unstable. imaginary pair.

It is obvious that all VS’s, including the fundamental ones  The shape of eigenmodes related to unstable eigenvalues
with S=1, must be unstable & sufficiently large, as<C is important too, as it determines the actual type of a pertur-
— oo implies a transition to the continuous 2D NLS equation,bation that is going to destroy the soliton. Computations
in which any soliton is unstable. In accordance with this, ourshow that the unstable eigenmode of 81 soliton, if any,
computations show that, with the increaséptheS=1 VS  has a shape breaking tligiscret¢ symmetry of the unper-
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lations of the full nonlinear equatiol), which used a
fourth-order Runge-Kutta integrator. In the former case, the
solitons always remain unscathed for very long integration
times. In the latter case, the growing instability at first splits
the VS into two usual $=0) solitons(see Fig. 4, which
strongly resembles the development of the above-mentioned
instability in the continuous CQ model. However, further
g of © 000 o0 ] development is quite different. As is seen in Fig. 4, in the
course of long evolution one of the second&sy 0 solitons
eventually dies, decaying into lattice phonons, while the
other one survives, which may be regarded as an instability-
induced spontaneous symmetry breaking. Thus, instead of
two separatings= 0 solitons, which is a generic outcome of
the instability in the 2D continuous CQ modgdll], in the
discrete model we end up with a single quiescg&st0 soli-

" ' ' ton (which is corroborated by many other runs of the direct
simulationg. This outcome is possible because the discrete
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FIG. 3. Eigenvalue® of infinitesimal perturbations around the

unstable fundamental vortex soliton wiB=1 at C~0.13, just sys_;t;ms dto not C(f)?r?er.vetagﬁj.?ladr molmentunsémz VS’
above the onset of the instability. Shown is the spectral plane of the € outcome ol the Instability developmen S

complex (;) versus the reald,) part of the eigenvalue. was also found by means of simulations. Eigenmodes related
to the above-mentioned pair of imaginary eigenvalues, which

turbed soliton so as to split it into two parts. This is quiteare amenable to the instability of tf&=2 soliton, have a
similar to the unstable eigenmode of tRe 1 VS’sinthe 2D  shape(not shown here suggesting that they will initiate
continuous NLS equation with CQ nonlinearit¥l]. How-  cleaving the soliton in two. Direct simulations comply with
ever, a drastic difference is that all VS’s, including the fun-this expectation, demonstrating that the unsta®ie2 VS
damental ones witls=1, are unstable in the latter model splits into two S=1 solitons. However, the thus-generated
(although the instability may be very weak if the VS is very nonstationary S 1 vortices, unlike their stationary counter-
broad, while in the discrete modéhich contains no quin- parts, may be subject to a weak instability. Our simulations
tic nonlinearity there is a well-defined stability region for demonstrate that they eventually break up into complexes of
the VS’s withS=1. S=0 solitons. In this connection, it is relevant to recall that,

The stability of the VS’s witt5=1 atC< Cé}’%O.lS, and in the 2D continuous CQ mode§=2 VS’s split into four
their instability atC>C(" was also verified by direct simu- S=0 solitons which fly out in tangential directiofi$1].
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1 05 FIG. 4. Time evolution of the
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panels show snapshots of the evo-
lution in terms of gray-scale con-
tour plots of Uy, ,|. The initial
configuration is not shown, as it is
very similar to that of Fig. 1. The
first snapshot is taken dt=420
[time is measured in time units of
Eq. (1)], and the time interval be-
tween the snapshots ist=100.
The initial breakup of the th&
=1 vector soliton into twoS=0
solitons, and subsequent breaking
of the symmetry between them,
ending up with the survival of a
single S=0 soliton, can be ob-
served. The initial condition con-
sisted of a small random perturba-
tion on top of the exact
S=1 soliton.
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An additional important difference between t8e 0 and
S=1 discrete solitons should be highlighted here. As is well
known [17-19, when bistability is present for th&=0
modes, unstablébroad”) solitary waves coexist with stable
(“narrow” ) ones. On the contrary, the dynamics of vortex-
like discrete solitons resemble those of their one-dimensiona .
counterpart, namely “twisted localized modes.” In particular, =1 .
it is well known[15,16 that the component pulses in the real =°*{" |
and imaginary parts of such twisted modes repel each othe o2y~

054..-"

[see, e.g., Fig. 3 in Ref15] and Fig. 1b) in Ref. [16]]. O N " ’

Therefore, a discrete vortex with maxima of ttebsolute ol = ==

value of the real_ part at the lattice pointsm(—1,n),(m 207 ”M:"::’ o
+1,n) and of the imaginary part an{,n+1),(m,n—1) has NS %

§
’o}.
0.0
o
0
i

y

larger energy than the vortex with maxima of ttabsolute s
values of th¢ real and imaginary parts, respectively, at the @) 0o
points (m—2,n),(m+2,n) and (m,n+2),(m,n—2). Hence,

“broader” discrete-vortex solutions are more energetically

favorable in this case. 0s

The mode created here is by constructior., by virtue
of the selection of the initial conditigrone that is centered
on a lattice site. However as can be seen in Réf20], an
additional type of a mode that is feasible ®+#0 solitonsis  ~
a so-called Page mode, namely, the one centered betwet gj °
lattice sites in both directions. A similar configuration can =-°2
also be constructed in the case of a vortex. In particular, we -
have constructed such vortex solitons by centering maxime
(of the absolute valug¢of the “dual-twisted” initial Ansatz
at the points n,n),(m+1,n+1) for the real part and at
(m+1,n),(m,n+1) for the imaginary part of the solution
[as opposed to centering them ah<1,n),(m+1,n) and
(m,n+1),(m,n—1), respectively, in the solutions consid-
ered abovg In agreement with the arguments mentioned (b)
above, we have found that this Page-like mode has a highe
energy; hence, it is a less stable configuration. For example
for C=0.0125, the mode with absolute maxima of the dual-
twisted Ansatzat (m—1,n),(m+1,n) for Re(un,,) and at
(mn+1),(mn—-1) for Im(u,, had energy E=
—0.20169, while the one with absolute maxima ah ( o _
—-2,n),(m+2n) for Re(uy,) and at (m,n+2),(m,n—2) =
for Im(up,,) had E=—0.20232 and the one with absolute ~ .|
maxima at (n,n),(m+1n+1) for Reu,,) and at (m,n i
+1),(m+1n) for Im(uy,, had E=-0.20106. Three- 08
dimensional plots of the absolute value of the Page mode a
well as of its real and imaginary part are given in Fig. 5. It
should also be noted that, as the “broader” configurations
are of lower(equilibrium) energy, the narrow ones, if appro-
priately perturbed, can rearrange themselves into broas
states, shedding the energy difference into kinetic energy, a
can be seen in Fig. 6 of Rdf16].

Las;[, since theS=1 and S=0 solitons may coexist, at ()
C<C£‘f)’ as stable Sc_)lutlons_ of the 2D DNLS equation, it is FIG. 5. Three-dimensional profile of the absolute valale real
natural to cor!3|der interactions between. thésms wgll a5  hart (b), and imaginary partc), of a Page-like mode foiC
between two like solitons Detailed analysis of the interac- _ g g105.
tions between solitons and their possible bound states in the
present model will be presented elsewhere. Here, we just In conclusion, we have found localized states in two-
mention an essential finding: a usual soliton Wtk 0 and a  dimensional nonlinear dynamical lattices, in the form of vor-
fundamental VS withS=1 can readily form a stable tex solitons with an integer vorticitg. While Hamiltonian
bound state. lattices do not conserve angular momentum the topological
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0.2
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charge related to it, our results show that vorticity may bethe lower energy centered on site-discrete vortex solitons,
conserved as a dynamical, rather than topological, invariantlso higher-energy, Page-like ones centered between sites
The fundamental vortex solitons with=1 are completely were constructed. Vortex solitons wig= 2 were found too,
stable if the intersite coupling consta@tis smaller than a put they are always unstable.

critical value C{’. At C>C{), an instability appears  The most realistic possibility to observe the vortex soliton
through a quartet of complex eigenvalues in the linearizegredicted in this work is provided by a bunch of optical
equations. Direct simulations demonstrate that, if the vorteXibers forming a rectangular lattice in the plane normal to the
soliton is unstable, it first splits into two usual solitons with fipers. In principle, the vortex soliton in the latter system
S=0 in accordance with the prediction of the linear analysisimay also have a potential for the optical storage of data. In

then, one of them decays into radiation, while the other ongna; context, it may be quite important that there be a stable

survives. We have also( gempnstr(%}ed(f?at?"hw solitons  |calized configuration principally different from the ordi-
become _unstat_)l_e a>Ce’, with C¢,’/C'~2.46, and their nary (zero-vorticity soliton.
route to instability is different from that fos=1, being ac-

counted for by a pair of imaginary eigenvalues. Except for We thank T. Kapitula for useful discussions.
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