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Invariants for time-dependent Hamiltonian systems
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An exact invariant is derived fon-degree-of-freedom Hamiltonian systems with general time-dependent
potentials. The invariant is worked out in two equivalent ways. In the first approach, we define a Apsaial
for the invariant and determine its time-dependent coefficients. In the second approach, we perform a two-step
canonical transformation of the initially time-dependent Hamiltonian to a time-independent one. The invariant
is found to contain a function of timg,(t), defined as a solution of a linear third-order differential equation
whose coefficients depend in general on the explicitly known configuration space trajectory that follows from
the system’s time evolution. It is shown that the invariant can be interpreted as the time integral of an energy
balance equation. Our result is applied to a one-dimensional, time-dependent, damped non-linear oscillator, and
to a three-dimensional system of Coulomb-interacting particles that are confined in a time-dependent quadratic
external potential. We finally show that our results can be used to assess the accuracy of numerical simulations
of time-dependent Hamiltonian systems.
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I. INTRODUCTION given as a solution of a linear third-order differential equa-
tion, referred to as the auxiliary equation. In general, this
Analytical approaches to isolate conserved quantities for @quation depends on the system’s spatial degrees of freedom.
given physical system is a key objective in the realm ofAs a consequence, the auxiliary equation can only be inte-
Hamiltonian theory. In the special case of an autonomougrated in conjunction with the equations of motion.
system, where the Hamiltonian does not depend on time ex- From the energy balance equation for time-dependent
plicitly, one conserved quantity is immediately found: the Hamiltonian systems, it is shown that the invariant can be
Hamiltonian itself that then represents the system’s total eninterpreted as the sum of the system’s time-varying energy
ergy as a constant of motion. Unfortunately, the Hamilto-content and the energy fed into or detracted from it.
nians of most real physical systems are explicitly time de- e will present two applications of our findings in Sec.
pendent, hence do not provide directly a conserved quantityy, |n the first example, the invariant and the associated aux-
_ One of the first approaches to identify conserved quantijiiary equation is worked out for the one-dimensional system
ties _for explicitly time-dependent systems h.as been workeds the damped asymmetric spring. It is shown that for the
out in the context of the Lagrangian formalism by Noetherg, oo case of a vanishing nonlinearity, the invariant agrees

[1]. Lutzky [2.] dem_onstra_ted that the well-known_ Invaniant \ iun the harmonic oscillator result. For the case of autono-
for the one-dimensional time-dependent harmonic oscillator

; ) mous systems we will furthermore demonstrate that a solu-
[3,4] follows straightforwardly from Noether's theorem. i £ 1h i i it (1) = ¢ leads t
Subsequently, Chattopadhygy] extended this work to de- lon ot the auxiliary equation wi 2( ).. const ‘eads 1o a
rive invariants from this theorem for certain one-dimensionaln_omr'vIal mvarlan_t tha_\t exists in addition to the invariant
non-linear systems. given by the Hamiltonian. _ _

Another approach to work out conserved quantities for " the second example, we will examine the more chal-
explicitly ime-dependent Hamiltonian systems has been pur€nging case of a three-dimensional ensembld Goulomb-
sued by Leachi6]. Performing a finite time-dependent ca- interacting particles of the same species that are confined
nonical transformation, he mapped the Hamiltonian of thewithin a time-dependent quadratic external potential. From
time-dependent damped harmonic oscillator onto a timethe form of the related auxiliary equation, it will become
independent one. Expressing this new Hamiltonian in term@bvious that the functiof,(t) represents a kind of generali-
of the old coordinates, one immediately obtains an invariangation of a beam envelope function. It is shown that the
in the original system. function f,(t) may become unstable, depending on the

A third way to find exact invariants for time-dependent strength of the external focusing forces — similar to the
classical Hamiltonians has been worked out systematicallpehavior of envelope functior§].
by Lewis and Leach7] using directAnsdze with different In Sec. V we will point out that the existence of an invari-
powers in the canonical momentum. ant for explicitly time-dependent Hamiltonian systems can

In this paper, we will show in Sec. Il and Il that both, the be used to assess the accuracy of numerical simulations of
direct approach with am\nsatzquadratic in the canonical such systems. In analogy to autonomous systems, where the
momenta, as well as the canonical transformation approachictual conservation of the Hamiltonian can be used as an
can straightforwardly be generalizednalegree-of-freedom accuracy criterion, we may check in a simulation of an ex-
Hamiltonian systems with general time-dependent potentialslicitly time-dependent system to what extent the numeri-
In either case, the same invariant is obtained. The invariant isally obtained invariant differs from the exact invariant of
found to contain an unknown function of tinfig(t), which is  the ideal case.
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II. ANSATZ APPROACH . af1(x;,1)

$fo(t) +c(t
We consider am-degree-of-freedom system of particles 2fa(t) +c(t) X

of the same species moving in an explicitly time-dependent _ o
potentialV that may be described by a Hamiltonieinof the It follows that f;(x; ,t) must be a linear function ix;
form .
fa

" o(t) fi(x,t)=— 5K (6)

H=2 —-pf+V({xh). (1)
- omitting an integration constant that does not depend on the
configuration space variables.

Herein, c(t) is defined as an arbitrary twice differentiable ) ; . )
For the terms linear ip; , the condition derived from Eq.

function of time that combines the particles’ kinetic energy
and a velocity-dependent potential leading to isotropic fric-() réads
tion forces with linear velocity dependence. Fgt)=1, the

Hamiltonian(1) thus describes systems without frictig®y. ak! _fz( )——c(t)— )
The curly braces denote the setrotonfiguration space vari- X X
ables{x}=xq, ... X,.
From the canonical equations, we derive for each degre®n the other handif, /4t is given as the partial time deriva-
of freedomi the equations of motion tive of Eq. (6)
. . AV({x},1) of, [f.c 1,
Xi=c(t)p;, Pi== 2 T\ a2 2¢) (8)
With {p}=p1, ... .pn the set of canonical momenta, a quan-Inserting Eq.(8) into Eq.(7), and solving for the terms con-
tity taining the partial derivatives of the yet unknown but arbi-
trary ancillary functionfy({x},t), one obtains the following
I=1({x}.{p}.) (3 partial differential equation fof,
constitutes an invariant of the particle motion if its total time o f,  f,c f, oV
derivative vanishes along the phase-space path representing 52 535t 9
the system’s time evolution Xi \2¢® 2c C X

dI &I n &I A function fy({x},t) with partial derivative(9) is obviously
. = iven b
Z ﬁX. W opP } o ’ ’
folw 1 f
We examine the existence of a conserved quai@hyfor a fo({x},t)= (—— %) > 7 X2+ fV({x},t). (10
system described by E¢l) with a specialAnsatzfor | being e/

at most quadratic in the momenta o
The remaining terms of Eq5) do not depend on the

5 momentap; . The third condition fol to embody an invari-
1= [3f2(0)p2+ Fa(x; t)pil+ fo({x}1). (4)  ant of the particle motion thus writes, making use of Ej.
|

The set of functiond»(t), f1(x;,t), andfy({x},t) that ren- afo Z X;
der| invariant are to be determined. With the equations of ot <9X
motion (2), dlI/dt=0 means explicitly

11)

In order to eliminate thénsatzfunction f 5 contained in Eq.

1 df2 oty , dfy ot N (11), we calculate the partial time derivative of E§0), i.e.,
2 > SPF gt TR TR C(9_Xi+ PiCox —(pifa+ 1)(9—)(i the time derivative at fixed;
of ofg [ f 3'f'<':fc 3f,c?)\ o 1 f,c
+2% 0. (5 o2z _Z 2 > X+ __L
We now eliminate step by step the functiohsand f, con- +2 ﬂ 12
tained in Eq.(4). To this end, one may arrange the terms of c at° (12)

Eq. (5) with regard to their powers in the momemta Equa-

tion (5) is fulfilled if the coefficients pertaining to the powers Inserting Eq.(12) into Eq. (11), we finally get a homoge-
of the momenta vanish separately for each inddxom the  neous linear third-order differential equation fby(t) that
terms proportional tqoiz, we thus get the condition only depends on the configuration space variables
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fc—fC)V+f &V+1'f > N
(f,c—f,c) T 20i Xia_xi

. 3fc+fe 3fc?| 1
+ fz_ 2 2 + 2

C c i
(13

The invariantl is finally obtained if we insert Eq$6), (10),
and the Hamiltoniaril) into the Ansatz(4)
:fzc_ sz

4¢3 2

f f
2y 2

I:c 2C 45

Xipi+ (14

Reviewing our approach to work out the invarida), we
recollect that equations of motid@) have been plugged into
the expression fodl/dt=0 in Eq. (5). This means that the
subsequent Eq13) — in conjunction with the side condi-
tion I =const from Eq.(14) — may be conceived as a con-
ditional equation for a potentia ({x},t) that is consistent
with a solution of the equations of motidg).
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for each indexi, thereby establishing the first equation of
motion (2). For the remaining terms afl/dt=0, we find

=0.

.
Pt o

1 .
Ei (fzpi—mfzxi

Similar to the previous case, we may only fulfill this equa-
tion in general for any solutiori,(t) of Eqg. (13) and each
indexi if the second equation of motiat2) holds.

Summarizing, we may state that the triple made up by the
equations of motior(2), the third-order equatiof13), and
the invariantl = const of Eq.(14) forms a logical triangle: if
two sides are given at a time, the third can be deduced.

The physical interpretation of the invariafit4) can be
worked out considering the total time derivative of the
Hamiltonian(1). Making use of the canonical equatiofs,
we find

n

-2

=1

(16)

1.,
Ec(t)pi___O,

L 24y
> c(t)p; o

|2

=1

Vice versa, we may also assume the equations of motiowhich represents just the explicit form of the general theo-

(2) to be previouslysolved. Then, the trajectodx(t)}, the
potential V({x(t)},t), and its partial derivatives constitute
known coefficients of Eq(13) that depend on time only. In
this understanding, Eqd13) embodies an ordinary differen-
tial equation forf,(t). The invariant(14) then follows from
the solution path{x(t)},{p(t)}) of Egs.(2), and fromf,(t)
as a solution function of Eq13). According to the existence

rem dH/dt=gH/gt for the Hamiltonian(1). Equation(16)
can be interpreted as an energy balance relation, stating that
the system’s total energy chandél/dt is quantified by the
dissipation and the explicit time dependence of the external
potential. Multiplying Eq.(16) by the dimensionless quantity
f,/c, and inserting?V/dt according to the auxiliary equation
(13), the resulting terms sum up to the total time derivative

and uniqueness theorem for linear ordinary differential equa-

tions, a unique solutiof,(t) of Eq. (13) exists — and con-
sequently the invariait— if V and its partial derivatives are
continuous alongx(t)}.

With f,(t) a solution of Eq(13), we may directly show

thatdl/dt=0 holds along solutions of the equations of mo-

tion (2). Substituting Eqs(2) into the total time derivative of

Eq. (14), we find that the resulting equation agrees with Eq.
(13). Hence, Eq(14) provides a conserved quantity as a time

integral of Eq.(13) if and only if the system’s evolution is
governed by the equations of moti@R®). We will use this

relationship in Sec. V to estimate the numerical error of com

puter simulations of dynamical systems described by(Eq.
Conversely, the invariart=const from Eq.(14) in con-
junction with the third-order equatioil3) can easily be
shown to imply the equations of motid@) by inserting Eq.
(13) into the total time derivative of Eq.14). Sincedl/dt
=0 must hold for all solution$,(t) of Eq. (13), the respec-

tive sums of terms proportional th,(t), f,(t), and f,(t)

must vanish separately. For the terms proportiond,{a),
this means

f .
2—; EI X;(X;—c(t)p;)=0. (15

The identity (15) must be fulfilled forall initial conditions

({x(0)}.{p(0)}) and

resulting phase-space trajectories
(x()}.{p(t)}) of the underlying dynamical system. Conse-
quently, the expression in parentheses must vanish separately

sz_:fz(.:

f
2 xip+ 3 > x¢|=0.

dlf,
2c g 4c i

dt| ¢

The expression in brackets coincides with the invar{a#j.
With the initial conditions f,(0)/c(0)=1, f,(0)=7f,(0)
=0 for the auxiliary equatiori13), the invariantl can now
be interpreted as the conserviadtial energyH, for a non-
autonomous system described by the Hamiltor{iBn com-
prising both the system’s time-varying energy conterand

the energy fed into or detracted from the system.

The meaning of ,(t) follows directly from the represen-
tation (14) of the invariant if the HamiltoniarH is treated
formally as an independent variable=1({x},{p},t,H). A
vanishing total time derivative of the invariahthen writes

dl B dl N dH al
dt ot xh{phH Jt JH {xhipht
. dl .l
+Z Xiﬁ_ +p|&_ ):O
I Xi {phtH Pi {X},tH

Inserting x; and p; from the canonical equation®), and
making again use of the auxiliary equati@tB) to eliminate

the third-order derivativé,(t), we find the expected result

_ (1)
paprt €

|
oH
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f,/c thus provides the slope of the total enetgyith respect
to the actual system energy.

We finally note that for the special case=9V/at=0, i.e.,
for autonomous systems$,(t)=c=1 is always solution of
Eqg. (13). For this case, the invariarii4) reduces td =H,
hence provides the system’s total energy, which is a know
invariant for Hamiltonian systems with no explicit time de-
pendence. Nevertheless, E@L3) also admits solutions

PHYSICAL REVIEW B4 026503

1, f
2, 3RV,
)

1:Zic2
C3

f2.]&2
k2

:

The new potentiav consists of two components, nhamely a

V({Y},t)=(

%erm related to the original potentid, and an additional

quadratic potential that describes the linear forces of inertia
occurring due to the time-dependent linear transformation

f5(t) # const for these systems. We thereby obtain anothe(rlg) to a new frame of reference.

nontrivial invariant that exists in addition to the invariant
representing the energy conservation law. This will be dem
onstrated in an example at the end of Sec. IV A.

Ill. CANONICAL TRANSFORMATION APPROACH

This approach aims to transform the Hamilton{dhto a
new HamiltonianH that no longer depends on time explic-

itly, hence embodies the total energy of the transformed sys-

tem as a constant of motion. It happens that this procedure

Up to now, the functiorf,=f,(t) contained in the gener-
ating function(17) has been defined as an arbitrary regular

function of time. We now require the potentid({x},t) —
as defined by Eq(21) — to be independent of time explic-

itly:

NG !

at (22

is

most clearly performed in two steps. In the first step, weThis means that,(t) is now tailored to eliminate the explicit

canonically transfgrm the Himiltonia(rl) to a new set of
coordinates{x}—{x}, {p}—{p} to obtain an intermediate
Hamiltonian H. The explicitly time-dependent generating

function of this transformation may be expressed in terms of

the new locations and the old momenta as

:fZ(t)—z
ae()

Fa({xh{ph)=2, —Vf(Oxipi|. @7

i=1
The coordinate transformation rules derived fréh) are

dF3

Xj= (9—pi=\/f2xi
— 9F; fo
i__a_;i_\/gpi_zxi-

In matrix notation, this phase-space preserving linear transéquation(ls) for f

formation writes
Vis 0 Y)

( ):(fz/(zcw—z) 1/\/f_2> (5:

Expressed in the nevibarred coordinates, the partial time
derivative of the generating functidd?) follows as

Xj

18
D (18

JF 1
oy %

ot 4

(19

f,
_Z_fZXipi .

Writing finally the old HamiltonianH in terms of the new

coordinates, the transformed Hamiltonidn= H + 9F 3/t is
obtained as

with the potential\7in the transformed system given by

n 1.
>, SPEHV({xL

i=1

Tl
H= ) (20

time dependence of E€R1) exactly at{;}. The explicit time
dependence that is introduced if the original potential
V({x},t) is expressed in the new spatial coordinates yields
oV
)

In detail, Eq.(22) with (23) means in terms of the old spatial
coordinates

atx) f, v
2, ax

(23

oV [f, 3f,c+f,c 3f,c? 1 f, f,c

N B A R D L

ot ('_;2 C3 C4 T 4 ! Cc (_;2
f,ov f, aV 0 04
ot tac 4 Xigg O (24)

We observe that Eq24) agrees with the linear differential
,(t), as obtained in Sec. II. Provided that
f, is a solution of Eq(24), the explicit time dependence of
transformed Hamiltoniakl is imposed by the preceding fac-
tor c/f, only

n

>

=1

c(t)

"Tro

. (25

1 —
P V(X))

This explicit time dependence of the Hamiltoni@%) can be
eliminated in the second step with the help of a time-scale
transformationt — 7 defined by

ft c(t’)
to fo(t")

With 7 the independent variable, the canonical equations

(1) dt’. (26)

dp;

aH
EEs

dx

aH
dr IX;
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follow from Eq. (25). The new Hamiltoniaii =Hf,/c con- The third-order equatiort32) may be converted into a
tained herein no longer depends on time explicitly coupled set of first- and second-order equations. The second-
order equation
L1,
H=2, 5 pf+ V(). 27 fz
= 2 " 2 gX( ) *2Ft
f,— +f Lf(t)+2f,0%(t)= ——e 2FO (33

Expressing27) in terms of the original coordinates accord-

ing to Eq.(18), we get an invarianit of the original systenkd is equivalent to Eq(32) if the time derivative ofg,(t), in-

troduced in Eq(33), is given by

f
TS Z XiPj

~ f c
=§{E Epi2+V({X},t) _ _ _
' gu(t)=—2x(t)f,e? W (2f,,a+4f,af+5f,a). (34)

20 foc
e > x2=1, (28 With the help of the auxiliary equatiof83), the invariant
! (31) may be expressed in the alternative form

which has been derived previously in Ed@4) on the basis of

the Ansatz(4). 2

e2F(H) .
+2x3f5(t)a(t) |+ 9t )

21, (fzx_ifzx 4f,
IV. NUMERICAL EXAMPLES (35

A. Time-dependent damped asymmetric spring In contrast to Eq(32), the equivalent coupled set of equa-

As a simple example, we investigate the one-dimensionaions (33) and (34) does not contain the time derivatives of
nonlinear system of a time-dependent “damped asymmetrithe external function$(t) and w(t). The invariant(35) re-
spring.” With c(t) = exd —F(t)], its Hamiltonian is defined duces to the well-known invariaf§] for the time-dependent

by damped harmonic oscillator #(t)=0, which means that
g«(t) =go=const. For this particular linear system, Eg§3)
H=3e FOp2+ (Jw2(t)x*+a(t)x®)e"™™. (299  no longer depends on the specific particle trajectary
) =x(t). The solution functiong,(t) andf,(t) then apply to
Writing f(t)=F(t), the equation of motion follows as all trajectories emerging as integrals of the equation of mo-

tion (30) with a(t)=0. With regard to the general form of
x=pe FO,  X+f(t)x+ 0?(t)x+3a(t)x?=0. (30) the differential equation fof,(t), as given by Eq(13), we
conclude that a decoupling from the equations of mot@®n
The invariantl is immediately found writing the general in- may occur for isotropic linear systems only.
variant(14) for one degree of freedom with the Hamiltonian ~ Another property of the linear systepa(t)=0] follows

H given by Eq.(29) directly from Eq.(35). For a positive integration constant
04(t)=go>0, one finds that,(t)| =0. Consequentlyf,(t)
| = 1e?FO[ f,x2— foxx+x3{ 1 f,+ L f,f(t) can never change sign, thus remains non-negative for the
initial condition f,(0)>0, which means thdt>0. The gen-
+f02(t) +2xfa(t)}]. (3D erating function(17) then remains real at all times and

accordingly the Hamiltoniail of the transformed system.

On the other hand,(t) may change sign for the general
nonlinear systenG30), depending on the strength of the non-
. . : : linear forces. Then, the time-dependent canonical transfor-
fot3f5f (1) + of (1) +2f,F%(1) + 4F,0%(1) +4f, (D) mation (18) becomes imaginary, which means that the au-

- - : tonomous system ceases to exist as a physical system. Under
+afroo(t)+2x(D[2f2a(t) +4a(D) (1) +5fza(t)] these circumstances, the particle motion within the time-
=0, (32 dependent nonlinear system can no longer be expressed as

the linearly transformed motion within seal autonomous

which follows from Eq.(13) or, equivalently, from Eq(24).  System.

The functionf,(t) for this particular case is given as a solu-
tion of the linear third-order ordinary differential equation

Since the particle trajectony=x(t) is explicitly contained in Figure 1 shows a special case of a numerical integration
Eq. (32), the solutionf,(t) can only be obtained integrating Of the equation of motio30). Included in this figure, we see

We may easily convince ourselves thds indeed a con- (33 and (34). The coefficientg of Eq(30) are defined as
served quantity. Calculating the total time derivative of Eq.«(t)= cost/2), a(t)=5X10"sin@3), and f(t)=1.76
(31), and inserting the equation of motidB0), we end up ><10*.3co§(t/77). The initial conditions were set ta(0)
with Eq. (32), which is fulfilled by definition off,(t) forthe =1, x(0)=0, f,(0)=1, f,(0)=0, andf,(0)=0. Accord-
given trajectoryx=x(t). ing to Eq.(35), we hereby define an invariant b&0.5 for
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2 T For the harmonic oscillator, i.e., fa,=0, we may substi-
x(t) as solution of Eq. (30) —— .
20 | £,(t) as solution of Eqgs. (33), (34) -~ ] tute the Integral of EC](36)

15| fo(t)+4wif,(1)=0 (39

o7 into Eq. (37) to derive the invariant in the form

I =3[ f2(x>— wgx?) — fxX].

St With f,(t) a solution of Eq(38), this expression agrees with

the invariant presented earlier by LutzKi0].

-10

0 5 10 15 20 25 30 35 40 45 50

t B. System of Coulomb-interacting particles
FIG. 1. Example of a numerical integration of E§0) and the We now analyze a three-dimensional example, namely an
simultaneous numerical integration of E433) and(34). The ver-  ensemble ofN Coulomb-interacting particles of the same
tical line marks the instant of time=5.2, referred to in Fig. 2. species moving in a time-dependent quadratic external po-

tential, as typically given in the co-moving frame for charged

the sample particle. With both results, we are able to calcuparticle beams that propagate through linear focusing lat-
late the phase-space curve of constant invarigmtx,t)  tices. The particle coordinates in the three spatial directions
=0.5, as defined by Eq35). are distinguished by;, y;, andz, the canonical momenta

Figure 2 displays both a snapshot of this curvé=a6.2,  correspondingly byp,;, pyi, andp,;. Settingc(t)=1 in
and the instantaneous location of the sample particle. As exEd- (1), the HamiltoniarH of this system may now be writ-
pected, the particle lies exactly on the line of constgnt t€n as
thereby providing a numerical verification of E@®5). N

For the special case of an autonomous system, we define _ 1,02 2 2
c(t) = exp(—F)=1, w(t) = wy=const, anda(t) =ay= const. H_; 2 (P Py P2) TV ALY (39)
It follows that F=f=f=w=a=0, which means that Eq.

(32) reduces to The effective potential contained herein is given by
N1 1
fo+ fa(4w+10x(1)ap) =0, (36 VI {yhzhD = 2 | S exOx 5 0j(0y]
=
Obviously, this equation has the special solutigft)=1. In 1 1 c,
that case, the invariari81) is given by +§w§(t)2i2+§ ; r_} (40)
171 Tij
| =3x%+ s wix2+agx®=H, with — r3=(x—x)2+(yi—y)?+(z—2)? and ¢

=q%/4meym, g and m denoting the particles’ charge and
thus coincides with the system’s Hamiltonian that representmass, respectively. The equations of motion that follow from
the conserved total energy. A further nontrivial invariant iSEq. (2) with Eqg. (40) are
obtained for solutions of Eq36) with f,(t)# const as
Xj—

. . - . ..: . ". 2 . —
| =3[ fx2— Foxx+x2{ 31,4 fL05+ 2xfra0}].  (37) Xi=Pxis Xitox(D)X Cle;&i ri3j

S0 ()

and likewise for they and z directions. We note that the
factor 1/2 in front of the Coulomb interaction term in Eq.
(40) disappears in Eq41) since each term occurs twice in
the symmetric form of the double sum.

For the effective potentia(40) and c(t)=1, the third-

H OF % 1 order differential equatioil3) for f, specializes to
2t : . C1 = - . - -
DRI — i+ af 0+ 4w, +YE(To+ 4f 0]
4l i j#iLij
-0 8 6 4 2 0 2 4 +4f2wy&)y)+zi2(f'2+4i‘2w§+4f2wzc'uz) =0. (42

FIG. 2. Lines of constant invariait=0.5 in the &,x) phase- With f,(t) a solution of Eq.(42) and H the Hamiltonian
space plane and location of the sample particle=e5.2, f,=6.1. (39), the invariant follows directly from Eq.14) as
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|—f2(t __fZE (leX|+y|py|+Z|pZ|)

+%sz (XF+yP+2). (43)

£(t/1)

Equation(42) may be cast into a compact form if the sums
over the particle coordinates are written in terms of “second
beam moments,” denoted &%) for thex coordinates. Like-
wise, the double sum over the Coulomb interaction terms
may be expressed as electric field enewygt) of all par-
ticles

0 1 2 3 4 5 6 7 8 9 10
Cells (t/1)

1 c FIG. 3. f,(t) as stable solution of Eq42) for 0¢g=45°, o
2 _ 2 1 . . . .
(X9 (t)= N EI Xi(t), W)=+ EI —. =9°. 7 denotes the focusing period common to all three directions.

i=i T
2 1. 2
> +< ( fopy— Efzy) >

1L \2\ ., 2w 1 5
fop.— 22) (0 - T 79

A similar notation will be used for all quadratic terms of the 2f,I/N= < ( fopx— =fox
particle coordinates. Corresponding to the previous example,

the third-order equatiofd2) may be split into a coupled set

of first- and second-order differential equations. Similar to <
Eq. (33), we define the functiog=g(t) by

+(y?)+(z%)). (46)

fof,—2f3+2f3w2(t)=g(t). 44
2z 22 205 =9(1) 44 Similar to the previous example, the functig(it) accounts

for an eventual change of sign Bf(t), owing to the fact that

H 2 H H H y “
The functionw=(t) contained herein is defined as the “aver- 5| gther terms on the right-hand side of Bd6) may not

age focusing function” according to turn negative.
The canonical transformatiaii8) becomes undefined for
, w2(x?)+ wﬁ(y2)+ w(Z?) instants of time with f,(t)=0. Furthermore, for time inter-
o (t)= P 2 > . vals with a negative value df(t), the elements of the trans-
(X)+(y)+(z) formation matrix (18) turn imaginary. For these cases, the

equivalent autonomous system of E¢39) and (40) that is
Comparing the time derivative of E44) with Eq.(42), one  defined by the canonical transformation ru(@$) and (26)
finds that the time derivative @f(t) must satisfy ceases to exist in a physical sense. This indicates that the
beam evolves within the nonautonomous system in a way
that can no longer be correlated to the beam evolution within

git)=—— _2f2f2ﬂ+4f§{<xpx> an autonomous system by the linear canonical transformation
(x®)+(y?)+(z?) mN (18). In contrast, the invarian®?3) itself exists forall f,(t)
that are solutions of the auxiliary equati¢fd).
X(wf—w2)+(ypy>(w§—w2)+<zpz)(w§—w2)} _ Figures 3 and 4 show the functidn(t) as the result of

numerical integrations of the coupled $é4) and(45). The
(45) second-order moments—denoted by the angle brackets—and
the field energy functioW(t) were taken from simulations
. . , , of a fictitious three-dimensional anisotropic focusing lattice
Unlike the third-order equatiot#2), the equivalent coupled hat is described by the HamiltonidB9) with the potential
set of equationg44) and (45) no longer contains the time 40 The simulation leading to Fig. 3 was performed at the
derivatives of the external focusing functioag(t), w,(t), zero-current tune of,=45°, and a space charge depressed
and w,(t). We observe thag(t) is determined by two quan- tune ofo=9° in each direction.
tities of different physical nature: the field energy constituted As a result of various simulations, we found tha(t)
by all particles as a measure for the strength of the Coulombecomes unstable for,=60°. Furthermore, it turned out
interaction, and the system’s anisotropy. In contragy{d)  that this limit value for an unstable evolution 6§(t) de-
of the one-dimensional example of Sec. IV A, the funCtioncreases as the field enerdfy(t) increases. A case with a
g(t) is generallynot constant in the linear case, which is growing amplitude off ,(t) is displayed in Fig. 4 for a beam
given here for a vanishing Coulomb interactioi<-0). propagating under the conditions of a zero-current tune of
With the help of Eq(44), we may substituté,(t) and the ~ o,=60° and the depressed tune @f=15°. In agreement
external focusing functions in E¢43) to express the invari- with earlier studies on high current beam transpat], the
ant in the alternative form simulation results show that the beam moments remain
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60 8 r 7 500 simulation particles
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FIG. 4. f,(t) as unstable solution of Eq42) for oo=60°, o FIG. 5. Relative invariant erroAl/l, for three-dimensional
=15°. 7 denotes the focusing period common to all three direc-simulations of a charged particle beam with different numbers of
tions. macropatrticles.

bounded under these conditions. This means that an instabiions of a charged particle beam. The functigiit) and its

ity of f,(t) is notnecessarily associated with an instability of derivatives that were used to calculaterere obtained from
the beam moments. Nevertheless, the phase-space planesaofiumerical integration of Eq42) — or equivalently from
constantl become more and more distortedfaét) and its  the coupled set44) and (45). The time-dependent coeffi-
derivatives diverge. This may indicate a transition from acients of Eq(42), namely the second beam moments and the

regular to a chaotic motion of the beam particles. field energyW(t), had been determined before from three-
dimensional simulations of charged particle beams propagat-

V. CHECKING THE ACCURACY OF NUMERICAL ing through a linear focusing lattice with non-negligible
SIMULATIONS OF HAMILTONIAN SYSTEMS Coulomb interaction, as described by the potential function

(40). As expected, the residual deviatidr/I, depends on

The conserved quantitythat has been shown to exist for the number of macroparticles used in the simulation.
explicitly time-dependent Hamiltonian systems can be used For a comparison, the corresponding deviation is plotted
to test the results of numerical simulations of such systemsn Fig. 6 for a simulation with a systematic 5% error in the
As already stated in Sec. Il, E¢l4) embodies a time inte- space charge force calculations. We now find a relative de-
gral of eq.(13) if the system’s time evolution istrictly con-  viation Al/l, in the order of 10%, hence three orders of
sistent with the equations of motid2). In the ideal case, magnitude larger than the previous case with no artificial
i.e., if no numerical inaccuracies were included in a com-space charge force error.
puter simulation of a system governed by Efj), and no By comparing simulation runs with different parameters,
numerical errors were added performing the subsequent isuch as the number of macroparticles, the time step size, and
tegration of Eq(13), we would not see any deviatiahl/l,  details of the numerical algorithm used to integrate the equa-
calculating the invariantl4) as a function of time. tions of motion, we may straightforwardly check whether the

Of course, we can never avoid numerical errors in comoverall accuracy of our particular simulation has been im-
puter simulations of dynamical systems because of the gerproved.
erally limited accuracy of numerical methods. For the same
reason, the numerical integration of H33) is also associ-
ated with a specific finite error tolerance. Under these cir-
cumstances, the quantity as given by Eq.(14) — with
f,(t), fo(t), andf,(t) following from Eq.(13) — can no
longer be expected to bexactly constant. Both numerical
tasks — the numerical integration of the equations of motion
(2), and the subsequent numerical integration of E)
contribute to a nonvanishinyl /1, along the integration time
span. Nevertheless, since both tasks do not depend on each
other with respect to their specific error tolerances, we can
regard the obtained1/1, curve as a cross check of both
numerical methods. Since the error tolerance for the numeri-
cal integration of Eq(13) is a known property of the under-
lying algorithm, we can estimate fromI(t)/l, the error
tolerance integrating the equations of moti@. FIG. 6. Relative invariant erroAl/1, for a three-dimensional

Figure 5 displays two examples of curves of relative de-simulation of a charged particle beam with 5% error in the space
viationsAl/ly from the invariant(43) for numerical simula- charge force calculations.
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Cells (t/7)
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VI. CONCLUSIONS time-dependent Hamiltonian systems. Having numerically

A fairly general result has been found: a conserved quani_ntegrated the equations of motion, the system’s third-order

tity can straightforwardly be deduced for explicitly time- auxilliary differential elguatiqn c?n be integrated, and the nu-
dependent Hamiltonian systems. The invariant contains afterical value of the “invariant’l can be calculated subse-
unknown functionf ,(t) and its first and second time deriva- duéntly. The relative deviatiodl/l, of I from the exact
tives, which is determined by a linear homogeneous thirginvariantlo can then be used as a measure for the accuracy
order auxiliary differential equation. In general, this auxiliary Of the respective simulation.
equation depends on the system’s spatial degrees of freedom. The physical implications that are associated with an un-
Under these circumstances, the solutioiit) can only be  stable behavior of ,(t) of the auxiliary differential equation
determined integrating the auxiliary equatisimultaneously ~remain to be investigated. Furthermore, the physical meaning
with the equations of motion. The invariant can be regardedf solutions of the auxiliary equation witlfi,(t) turning
as the conserved global energy for nonautonomous systemsegative must be clarified. In that case, the elements of co-
which is obtained if we add to the time-varying energy rep-ordinate transformation matriX18) become imaginary,
resented by the HamiltoniaH the energies fed into or de- which means that the equivalent autonomous system ceases
tracted from the system. to exist as a physical system. This indicates that the explic-
The invariant has been found to agree with the knownitly time-dependent Hamiltonian system evolves in a way
conserved quantity of the one-dimensional time-dependerthat can no longer be correlated to the evolution of a time-
harmonic oscillatof4,6]. For this particular one-dimensional independent system by a linear mapping. Nevertheless, the
linear case, the dependence of the auxiliary equation on thiavariantl of the explicitly time-dependent system exists in-
particle position cancels. Then the third-order auxiliary equadependently of the sign df,(t).
tion can directly be integrated to yield a nonlinear second- We finally note that the invariantl4) together with the
order equation forf,(t) that applies to all particle trajecto- related auxiliary equatioil3) can be derived equivalently
ries. Furthermore, the second invariant for the time-performing an infinitesimal canonical transformation in the
independent harmonic oscillator could straightforwardly beextended phase-space. Furthermore, the invariant and the
reproduced10]. All these invariants follow as special cases auxiliary equation may be worked out as well on the basis of
from the general expressions of our invariant and the assocNoether’s theorenil]. Our invariant thus embodies exactly
ated auxiliary equation. the conserved quantity that emerges as the result of Noet-
The existence of an invariant has been shown to be usefliler’s symmetry transformation. We will report these results
to check the accuracy of numerical simulations of explicitlyin a forthcoming papef12].
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