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Invariants for time-dependent Hamiltonian systems
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An exact invariant is derived forn-degree-of-freedom Hamiltonian systems with general time-dependent
potentials. The invariant is worked out in two equivalent ways. In the first approach, we define a specialAnsatz
for the invariant and determine its time-dependent coefficients. In the second approach, we perform a two-step
canonical transformation of the initially time-dependent Hamiltonian to a time-independent one. The invariant
is found to contain a function of timef 2(t), defined as a solution of a linear third-order differential equation
whose coefficients depend in general on the explicitly known configuration space trajectory that follows from
the system’s time evolution. It is shown that the invariant can be interpreted as the time integral of an energy
balance equation. Our result is applied to a one-dimensional, time-dependent, damped non-linear oscillator, and
to a three-dimensional system of Coulomb-interacting particles that are confined in a time-dependent quadratic
external potential. We finally show that our results can be used to assess the accuracy of numerical simulations
of time-dependent Hamiltonian systems.
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I. INTRODUCTION

Analytical approaches to isolate conserved quantities f
given physical system is a key objective in the realm
Hamiltonian theory. In the special case of an autonom
system, where the Hamiltonian does not depend on time
plicitly, one conserved quantity is immediately found: t
Hamiltonian itself that then represents the system’s total
ergy as a constant of motion. Unfortunately, the Hamil
nians of most real physical systems are explicitly time
pendent, hence do not provide directly a conserved quan

One of the first approaches to identify conserved qua
ties for explicitly time-dependent systems has been wor
out in the context of the Lagrangian formalism by Noeth
@1#. Lutzky @2# demonstrated that the well-known invaria
for the one-dimensional time-dependent harmonic oscilla
@3,4# follows straightforwardly from Noether’s theorem
Subsequently, Chattopadhyay@5# extended this work to de
rive invariants from this theorem for certain one-dimensio
non-linear systems.

Another approach to work out conserved quantities
explicitly time-dependent Hamiltonian systems has been p
sued by Leach@6#. Performing a finite time-dependent c
nonical transformation, he mapped the Hamiltonian of
time-dependent damped harmonic oscillator onto a tim
independent one. Expressing this new Hamiltonian in te
of the old coordinates, one immediately obtains an invari
in the original system.

A third way to find exact invariants for time-depende
classical Hamiltonians has been worked out systematic
by Lewis and Leach@7# using directAnsätze with different
powers in the canonical momentum.

In this paper, we will show in Sec. II and III that both, th
direct approach with anAnsatzquadratic in the canonica
momenta, as well as the canonical transformation appro
can straightforwardly be generalized ton-degree-of-freedom
Hamiltonian systems with general time-dependent potent
In either case, the same invariant is obtained. The invaria
found to contain an unknown function of timef 2(t), which is
1063-651X/2001/64~2!/026503~9!/$20.00 64 0265
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given as a solution of a linear third-order differential equ
tion, referred to as the auxiliary equation. In general, t
equation depends on the system’s spatial degrees of free
As a consequence, the auxiliary equation can only be in
grated in conjunction with the equations of motion.

From the energy balance equation for time-depend
Hamiltonian systems, it is shown that the invariant can
interpreted as the sum of the system’s time-varying ene
content and the energy fed into or detracted from it.

We will present two applications of our findings in Se
IV. In the first example, the invariant and the associated a
iliary equation is worked out for the one-dimensional syst
of the damped asymmetric spring. It is shown that for t
special case of a vanishing nonlinearity, the invariant agr
with the harmonic oscillator result. For the case of auton
mous systems we will furthermore demonstrate that a s
tion of the auxiliary equation withf 2(t)Þconst leads to a
nontrivial invariant that exists in addition to the invaria
given by the Hamiltonian.

In the second example, we will examine the more ch
lenging case of a three-dimensional ensemble ofN Coulomb-
interacting particles of the same species that are confi
within a time-dependent quadratic external potential. Fr
the form of the related auxiliary equation, it will becom
obvious that the functionf 2(t) represents a kind of general
zation of a beam envelope function. It is shown that t
function f 2(t) may become unstable, depending on t
strength of the external focusing forces — similar to t
behavior of envelope functions@8#.

In Sec. V we will point out that the existence of an inva
ant for explicitly time-dependent Hamiltonian systems c
be used to assess the accuracy of numerical simulation
such systems. In analogy to autonomous systems, where
actual conservation of the Hamiltonian can be used as
accuracy criterion, we may check in a simulation of an e
plicitly time-dependent system to what extent the nume
cally obtained invariant differs from the exact invariant
the ideal case.
©2001 The American Physical Society03-1
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II. ANSATZ APPROACH

We consider ann-degree-of-freedom system of particle
of the same species moving in an explicitly time-depend
potentialV that may be described by a HamiltonianH of the
form

H5(
i 51

n
c~ t !

2
pi

21V~$x%,t !. ~1!

Herein, c(t) is defined as an arbitrary twice differentiab
function of time that combines the particles’ kinetic ener
and a velocity-dependent potential leading to isotropic fr
tion forces with linear velocity dependence. Forc(t)[1, the
Hamiltonian~1! thus describes systems without friction@9#.
The curly braces denote the set ofn configuration space vari
ables$x%5x1 , . . . ,xn .

From the canonical equations, we derive for each deg
of freedomi the equations of motion

ẋi5c~ t !pi , ṗi52
]V~$x%,t !

]xi
. ~2!

With $p%5p1 , . . . ,pn the set of canonical momenta, a qua
tity

I 5I ~$x%,$p%,t ! ~3!

constitutes an invariant of the particle motion if its total tim
derivative vanishes along the phase-space path represe
the system’s time evolution

dI

dt
5

]I

]t
1(

i 51

n F ]I

]xi
ẋi1

]I

]pi
ṗi G50.

We examine the existence of a conserved quantity~3! for a
system described by Eq.~1! with a specialAnsatzfor I being
at most quadratic in the momenta

I 5(
i

@ 1
2 f 2~ t !pi

21 f 1~xi ,t !pi #1 f 0~$x%,t !. ~4!

The set of functionsf 2(t), f 1(xi ,t), and f 0($x%,t) that ren-
der I invariant are to be determined. With the equations
motion ~2!, dI/dt50 means explicitly

(
i

F1

2
pi

2 d f2

dt
1pi

] f 1

]t
1pi

2c
] f 1

]xi
1pic

] f 0

]xi
2~pi f 21 f 1!

]V

]xi
G

1
] f 0

]t
50. ~5!

We now eliminate step by step the functionsf 1 and f 0 con-
tained in Eq.~4!. To this end, one may arrange the terms
Eq. ~5! with regard to their powers in the momentapi . Equa-
tion ~5! is fulfilled if the coefficients pertaining to the powe
of the momenta vanish separately for each indexi. From the
terms proportional topi

2 , we thus get the condition
02650
t
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f

f

1
2 ḟ 2~ t !1c~ t !

] f 1~xi ,t !

]xi
50.

It follows that f 1(xi ,t) must be a linear function inxi

f 1~xi ,t !52
ḟ 2

2c
xi , ~6!

omitting an integration constant that does not depend on
configuration space variables.

For the terms linear inpi , the condition derived from Eq
~5! reads

] f 1

]t
5 f 2~ t !

]V

]xi
2c~ t !

] f 0

]xi
. ~7!

On the other hand,] f 1 /]t is given as the partial time deriva
tive of Eq. ~6!

] f 1

]t
5S ḟ 2ċ

2c2
2

f̈ 2

2cD xi . ~8!

Inserting Eq.~8! into Eq. ~7!, and solving for the terms con
taining the partial derivatives of the yet unknown but ar
trary ancillary functionf 0($x%,t), one obtains the following
partial differential equation forf 0

] f 0

]xi
5S f̈ 2

2c2
2

ḟ 2ċ

2c3D xi1
f 2

c

]V

]xi
. ~9!

A function f 0($x%,t) with partial derivative~9! is obviously
given by

f 0~$x%,t !5S f̈ 2

c2
2

ḟ 2ċ

c3 D(
i

1

4
xi

21
f 2

c
V~$x%,t !. ~10!

The remaining terms of Eq.~5! do not depend on the
momentapi . The third condition forI to embody an invari-
ant of the particle motion thus writes, making use of Eq.~6!

] f 0

]t
1

ḟ 2

2c (
i

xi

]V

]xi
50. ~11!

In order to eliminate theAnsatzfunction f 0 contained in Eq.
~11!, we calculate the partial time derivative of Eq.~10!, i.e.,
the time derivative at fixedxi

] f 0

]t
5S f̂ 2

c2
2

3 f̈ 2ċ

c3
2

ḟ 2c̈

c3
1

3 ḟ 2ċ2

c4 D(
i

1

4
xi

21S ḟ 2

c
2

f 2ċ

c2 D V

1
f 2

c

]V

]t
. ~12!

Inserting Eq.~12! into Eq. ~11!, we finally get a homoge-
neous linear third-order differential equation forf 2(t) that
only depends on the configuration space variables
3-2
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~ ḟ 2c2 f 2ċ!V1 f 2c
]V

]t
1

1

2
ḟ 2c(

i
xi

]V

]xi

1S f̂ 22
3 f̈ 2ċ1 ḟ 2c̈

c
1

3 ḟ 2ċ2

c2 D(
i

1

4
xi

250.

~13!

The invariantI is finally obtained if we insert Eqs.~6!, ~10!,
and the Hamiltonian~1! into theAnsatz~4!

I 5
f 2

c
H2

ḟ 2

2c (
i

xipi1
f̈ 2c2 ḟ 2ċ

4c3 (
i

xi
2 . ~14!

Reviewing our approach to work out the invariant~14!, we
recollect that equations of motion~2! have been plugged into
the expression fordI/dt50 in Eq. ~5!. This means that the
subsequent Eq.~13! — in conjunction with the side condi
tion I 5const from Eq.~14! — may be conceived as a con
ditional equation for a potentialV($x%,t) that is consistent
with a solution of the equations of motion~2!.

Vice versa, we may also assume the equations of mo
~2! to be previouslysolved. Then, the trajectory$x(t)%, the
potential V($x(t)%,t), and its partial derivatives constitut
known coefficients of Eq.~13! that depend on time only. In
this understanding, Eq.~13! embodies an ordinary differen
tial equation forf 2(t). The invariant~14! then follows from
the solution path ($x(t)%,$p(t)%) of Eqs.~2!, and fromf 2(t)
as a solution function of Eq.~13!. According to the existence
and uniqueness theorem for linear ordinary differential eq
tions, a unique solutionf 2(t) of Eq. ~13! exists — and con-
sequently the invariantI — if V and its partial derivatives ar
continuous along$x(t)%.

With f 2(t) a solution of Eq.~13!, we may directly show
that dI/dt50 holds along solutions of the equations of m
tion ~2!. Substituting Eqs.~2! into the total time derivative of
Eq. ~14!, we find that the resulting equation agrees with E
~13!. Hence, Eq.~14! provides a conserved quantity as a tim
integral of Eq.~13! if and only if the system’s evolution is
governed by the equations of motion~2!. We will use this
relationship in Sec. V to estimate the numerical error of co
puter simulations of dynamical systems described by Eq.~2!.

Conversely, the invariantI 5const from Eq.~14! in con-
junction with the third-order equation~13! can easily be
shown to imply the equations of motion~2! by inserting Eq.
~13! into the total time derivative of Eq.~14!. SincedI/dt
[0 must hold for all solutionsf 2(t) of Eq. ~13!, the respec-
tive sums of terms proportional tof̈ 2(t), ḟ 2(t), and f 2(t)
must vanish separately. For the terms proportional tof̈ 2(t),
this means

f̈ 2

2c2 (
i

xi~ ẋi2c~ t !pi ![0. ~15!

The identity ~15! must be fulfilled forall initial conditions
($x(0)%,$p(0)%) and resulting phase-space trajector
($x(t)%,$p(t)%) of the underlying dynamical system. Cons
quently, the expression in parentheses must vanish separ
02650
n

-

.

-

s

tely

for each indexi, thereby establishing the first equation
motion ~2!. For the remaining terms ofdI/dt[0, we find

(
i

S f 2pi2
1

2c~ t !
ḟ 2xi D S ṗi1

]V

]xi
D[0.

Similar to the previous case, we may only fulfill this equ
tion in general for any solutionf 2(t) of Eq. ~13! and each
index i if the second equation of motion~2! holds.

Summarizing, we may state that the triple made up by
equations of motion~2!, the third-order equation~13!, and
the invariantI 5const of Eq.~14! forms a logical triangle: if
two sides are given at a time, the third can be deduced.

The physical interpretation of the invariant~14! can be
worked out considering the total time derivative of th
Hamiltonian~1!. Making use of the canonical equations~2!,
we find

d

dt F(i 51

n
1

2
c~ t !pi

21VG2(
i 51

n
1

2
ċ~ t !pi

22
]V

]t
50, ~16!

which represents just the explicit form of the general the
rem dH/dt5]H/]t for the Hamiltonian~1!. Equation~16!
can be interpreted as an energy balance relation, stating
the system’s total energy changedH/dt is quantified by the
dissipation and the explicit time dependence of the exte
potential. Multiplying Eq.~16! by the dimensionless quantit
f 2 /c, and inserting]V/]t according to the auxiliary equatio
~13!, the resulting terms sum up to the total time derivati

d

dt F f 2

c
H2

ḟ 2

2c (
i

xipi1
f̈ 2c2 ḟ 2ċ

4c3 (
i

xi
2G50.

The expression in brackets coincides with the invariant~14!.
With the initial conditions f 2(0)/c(0)51, ḟ 2(0)5 f̈ 2(0)
50 for the auxiliary equation~13!, the invariantI can now
be interpreted as the conservedinitial energyH0 for a non-
autonomous system described by the Hamiltonian~1!, com-
prising both the system’s time-varying energy contentH and
the energy fed into or detracted from the system.

The meaning off 2(t) follows directly from the represen
tation ~14! of the invariant if the HamiltonianH is treated
formally as an independent variable:I 5I ($x%,$p%,t,H). A
vanishing total time derivative of the invariantI then writes

dI

dt
5

]I

]t U
$x%,$p%,H

1
]H

]t

]I

]HU
$x%,$p%,t

1(
i

S ẋi

]I

]xi
U
$p%,t,H

1 ṗi

]I

]pi
U
$x%,t,H

D 50.

Inserting xi and pi from the canonical equations~2!, and
making again use of the auxiliary equation~13! to eliminate
the third-order derivativef̈ 2(t), we find the expected result

]I

]H U
$x%,$p%,t

5
f 2~ t !

c~ t !
.

3-3
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f 2 /c thus provides the slope of the total energyI with respect
to the actual system energyH.

We finally note that for the special caseċ[]V/]t[0, i.e.,
for autonomous systems,f 2(t)[c[1 is always solution of
Eq. ~13!. For this case, the invariant~14! reduces toI 5H,
hence provides the system’s total energy, which is a kno
invariant for Hamiltonian systems with no explicit time d
pendence. Nevertheless, Eq.~13! also admits solutions
f 2(t)Þconst for these systems. We thereby obtain ano
nontrivial invariant that exists in addition to the invaria
representing the energy conservation law. This will be de
onstrated in an example at the end of Sec. IV A.

III. CANONICAL TRANSFORMATION APPROACH

This approach aims to transform the Hamiltonian~1! to a
new HamiltonianH̃ that no longer depends on time expli
itly, hence embodies the total energy of the transformed s
tem as a constant of motion. It happens that this procedu
most clearly performed in two steps. In the first step,
canonically transform the Hamiltonian~1! to a new set of
coordinates$x%→$x̄%, $p%→$ p̄% to obtain an intermediate
Hamiltonian H̄. The explicitly time-dependent generatin
function of this transformation may be expressed in terms
the new locations and the old momenta as

F3~$x̄%,$p%,t !5(
i 51

n F ḟ 2~ t !

4c~ t !
x̄i

22Af 2~ t !x̄i pi G . ~17!

The coordinate transformation rules derived from~17! are

xi52
]F3

]pi
5Af 2x̄i

p̄i52
]F3

] x̄i

5Af 2pi2
ḟ 2

2c
x̄i .

In matrix notation, this phase-space preserving linear tra
formation writes

S xi

pi
D 5S Af 2 0

ḟ 2 /~2cAf 2! 1/Af 2
D S x̄i

p̄i
D . ~18!

Expressed in the new~barred! coordinates, the partial time
derivative of the generating function~17! follows as

]F3

]t
5(

i
F S f̈ 2

c
2

ḟ 2
2

c f2
2

ḟ 2ċ

c2 D 1

4
x̄i

22
ḟ 2

2 f 2
x̄i p̄i G . ~19!

Writing finally the old HamiltonianH in terms of the new
coordinates, the transformed HamiltonianH̄5H1]F3 /]t is
obtained as

H̄5
c~ t !

f 2~ t ! F(i 51

n
1

2
p̄i

21V̄~$x̄%,t !G ~20!

with the potentialV̄ in the transformed system given by
02650
n

er

-

s-
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e

f

s-

V̄~$x̄%,t !5S f 2 f̈ 2

c2
2

ḟ 2
2

2c2
2

f 2 ḟ 2ċ

c3 D (
i 51

n
1

4
x̄i

21
f 2

c
V~$Af 2x̄%,t !.

~21!

The new potentialV̄ consists of two components, namely
term related to the original potentialV, and an additional
quadratic potential that describes the linear forces of ine
occurring due to the time-dependent linear transformat
~18! to a new frame of reference.

Up to now, the functionf 25 f 2(t) contained in the gener
ating function~17! has been defined as an arbitrary regu
function of time. We now require the potentialV̄($x̄%,t) —
as defined by Eq.~21! — to be independent of time explic
itly:

]V̄~$x̄%,t !

]t
5
!

0. ~22!

This means thatf 2(t) is now tailored to eliminate the explici
time dependence of Eq.~21! exactly at$x̄%. The explicit time
dependence that is introduced if the original poten
V($x%,t) is expressed in the new spatial coordinates yield

]V

]~Af 2x̄i !

]~Af 2x̄i !

]t
5

ḟ 2

2 f 2
xi

]V

]xi
. ~23!

In detail, Eq.~22! with ~23! means in terms of the old spatia
coordinates

]V̄

]t
5S f 2̂

c2
2

3 f̈ 2ċ1 ḟ 2c̈

c3
1

3 ḟ 2ċ2

c4 D(
i

1

4
xi

21S ḟ 2

c
2

f 2ċ

c2 D V

1
f 2

c

]V

]t
1

ḟ 2

2c (
i

xi

]V

]xi
50. ~24!

We observe that Eq.~24! agrees with the linear differentia
equation~13! for f 2(t), as obtained in Sec. II. Provided tha
f 2 is a solution of Eq.~24!, the explicit time dependence o
transformed HamiltonianH̄ is imposed by the preceding fac
tor c/ f 2 only

H̄5
c~ t !

f 2~ t ! F(i 51

n
1

2
p̄i

21V̄~$x̄%!G . ~25!

This explicit time dependence of the Hamiltonian~25! can be
eliminated in the second step with the help of a time-sc
transformationt→t defined by

t~ t !5E
t0

t c~ t8!

f 2~ t8!
dt8. ~26!

With t the independent variable, the canonical equations

dx̄i

dt
5

]H̃

] p̄i

,
dp̄i

dt
52

]H̃

] x̄i
3-4
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follow from Eq. ~25!. The new HamiltonianH̃5H̄ f 2 /c con-
tained herein no longer depends on time explicitly

H̃5(
i 51

n
1

2
p̄i

21V̄~$x̄%!. ~27!

Expressing~27! in terms of the original coordinates accor
ing to Eq.~18!, we get an invariantI of the original systemH

H̃5
f 2

c F(
i

c

2
pi

21V~$x%,t !G2
ḟ 2

2c (
i

xipi

1
f̈ 2c2 ḟ 2ċ

4c3 (
i

xi
25I , ~28!

which has been derived previously in Eq.~14! on the basis of
the Ansatz~4!.

IV. NUMERICAL EXAMPLES

A. Time-dependent damped asymmetric spring

As a simple example, we investigate the one-dimensio
nonlinear system of a time-dependent ‘‘damped asymme
spring.’’ With c(t)5 exp@2F(t)#, its Hamiltonian is defined
by

H5 1
2 e2F(t)p21~ 1

2 v2~ t !x21a~ t !x3!eF(t). ~29!

Writing f (t)[Ḟ(t), the equation of motion follows as

ẋ5pe2F(t), ẍ1 f ~ t !ẋ1v2~ t !x13a~ t !x250. ~30!

The invariantI is immediately found writing the general in
variant~14! for one degree of freedom with the Hamiltonia
H given by Eq.~29!

I 5 1
2 e2F(t)@ f 2ẋ22 ḟ 2xẋ1x2$ 1

2 f̈ 21 1
2 ḟ 2f ~ t !

1 f 2v2~ t !12x f2a~ t !%#. ~31!

The functionf 2(t) for this particular case is given as a sol
tion of the linear third-order ordinary differential equation

f̂ 213 f̈ 2f ~ t !1 ḟ 2 ḟ ~ t !12 ḟ 2f 2~ t !14 ḟ 2v2~ t !14 f 2 f ~ t !v2~ t !

14 f 2vv̇~ t !12x~ t !@2 f 2ȧ~ t !14 f 2a~ t ! f ~ t !15 ḟ 2a~ t !#

50, ~32!

which follows from Eq.~13! or, equivalently, from Eq.~24!.
Since the particle trajectoryx5x(t) is explicitly contained in
Eq. ~32!, the solutionf 2(t) can only be obtained integratin
Eq. ~32! simultaneously with the equation of motion~30!.

We may easily convince ourselves thatI is indeed a con-
served quantity. Calculating the total time derivative of E
~31!, and inserting the equation of motion~30!, we end up
with Eq. ~32!, which is fulfilled by definition off 2(t) for the
given trajectoryx5x(t).
02650
al
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The third-order equation~32! may be converted into a
coupled set of first- and second-order equations. The sec
order equation

f̈ 22
ḟ 2

2

2 f 2
1 ḟ 2f ~ t !12 f 2v2~ t !5

gx~ t !

f 2
e22F(t) ~33!

is equivalent to Eq.~32! if the time derivative ofgx(t), in-
troduced in Eq.~33!, is given by

ġx~ t !522x~ t ! f 2e2F(t)~2 f 2ȧ14 f 2a f15 ḟ 2a!. ~34!

With the help of the auxiliary equation~33!, the invariant
~31! may be expressed in the alternative form

I 5
e2F(t)

2 f 2
F S f 2ẋ2

1

2
ḟ 2xD 2

12x3f 2
2~ t !a~ t !G1

gx~ t !

4 f 2
x2.

~35!

In contrast to Eq.~32!, the equivalent coupled set of equ
tions ~33! and ~34! does not contain the time derivatives
the external functionsf (t) and v(t). The invariant~35! re-
duces to the well-known invariant@6# for the time-dependen
damped harmonic oscillator ifa(t)[0, which means that
gx(t)5g05const. For this particular linear system, Eq.~33!
no longer depends on the specific particle trajectoryx

5x(t). The solution functionsf 2(t) and ḟ 2(t) then apply to
all trajectories emerging as integrals of the equation of m
tion ~30! with a(t)[0. With regard to the general form o
the differential equation forf 2(t), as given by Eq.~13!, we
conclude that a decoupling from the equations of motion~2!
may occur for isotropic linear systems only.

Another property of the linear system@a(t)[0# follows
directly from Eq. ~35!. For a positive integration constan
gx(t)5g0.0, one finds thatf 2(t)I>0. Consequently,f 2(t)
can never change sign, thus remains non-negative for
initial condition f 2(0).0, which means thatI .0. The gen-
erating function~17! then remains real at all timest, and
accordingly the HamiltonianH̃ of the transformed system.

On the other hand,f 2(t) may change sign for the gener
nonlinear system~30!, depending on the strength of the no
linear forces. Then, the time-dependent canonical trans
mation ~18! becomes imaginary, which means that the a
tonomous system ceases to exist as a physical system. U
these circumstances, the particle motion within the tim
dependent nonlinear system can no longer be expresse
the linearly transformed motion within areal autonomous
system.

Figure 1 shows a special case of a numerical integra
of the equation of motion~30!. Included in this figure, we see
the result of a simultaneous numerical integration of E
~33! and ~34!. The coefficients of Eq.~30! are defined as
v(t)5 cos(t/2), a(t)5531023 sin(t/3), and f (t)51.76
31023 cos2(t/p). The initial conditions were set tox(0)
51, ẋ(0)50, f 2(0)51, ḟ 2(0)50, and f̈ 2(0)50. Accord-
ing to Eq.~35!, we hereby define an invariant ofI 50.5 for
3-5
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the sample particle. With both results, we are able to ca
late the phase-space curve of constant invariantI (x,ẋ,t)
50.5, as defined by Eq.~35!.

Figure 2 displays both a snapshot of this curve att55.2,
and the instantaneous location of the sample particle. As
pected, the particle lies exactly on the line of constanI,
thereby providing a numerical verification of Eq.~35!.

For the special case of an autonomous system, we de
c(t)5 exp(2F)51, v(t)5v05const, anda(t)5a05const.
It follows that Ḟ5 f 5 ḟ 5v̇5ȧ50, which means that Eq
~32! reduces to

f̂ 21 ḟ 2~4v0
2110x~ t !a0!50. ~36!

Obviously, this equation has the special solutionf 2(t)[1. In
that case, the invariant~31! is given by

I 5 1
2 ẋ21 1

2 v0
2x21a0x35H,

thus coincides with the system’s Hamiltonian that represe
the conserved total energy. A further nontrivial invariant
obtained for solutions of Eq.~36! with f 2(t)Þconst as

I 5 1
2 @ f 2ẋ22 ḟ 2xẋ1x2$ 1

2 f̈ 21 f 2v0
212x f2a0%#. ~37!

FIG. 1. Example of a numerical integration of Eq.~30! and the
simultaneous numerical integration of Eqs.~33! and ~34!. The ver-
tical line marks the instant of timet55.2, referred to in Fig. 2.

FIG. 2. Lines of constant invariantI 50.5 in the (x,ẋ) phase-
space plane and location of the sample particle att55.2, f 256.1.
02650
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For the harmonic oscillator, i.e., fora050, we may substi-
tute the integral of Eq.~36!

f̈ 2~ t !14v0
2f 2~ t !50 ~38!

into Eq. ~37! to derive the invariant in the form

I 5 1
2 @ f 2~ ẋ22v0

2x2!2 ḟ 2xẋ#.

With f 2(t) a solution of Eq.~38!, this expression agrees wit
the invariant presented earlier by Lutzky@10#.

B. System of Coulomb-interacting particles

We now analyze a three-dimensional example, namely
ensemble ofN Coulomb-interacting particles of the sam
species moving in a time-dependent quadratic external
tential, as typically given in the co-moving frame for charg
particle beams that propagate through linear focusing
tices. The particle coordinates in the three spatial directi
are distinguished byxi , yi , andzi , the canonical momenta
correspondingly bypx,i , py,i , and pz,i . Settingc(t)[1 in
Eq. ~1!, the HamiltonianH of this system may now be writ
ten as

H5(
i 51

N
1
2 ~px,i

2 1py,i
2 1pz,i

2 !1V~$x%,$y%,$z%,t !. ~39!

The effective potential contained herein is given by

V~$x%,$y%,$z%,t !5(
i 51

N F1

2
vx

2~ t !xi
21

1

2
vy

2~ t !yi
2

1
1

2
vz

2~ t !zi
21

1

2 (
j Þ i

c1

r i j
G , ~40!

with r i j
2 5(xi2xj )

21(yi2yj )
21(zi2zj )

2 and c1

5q2/4pe0m, q and m denoting the particles’ charge an
mass, respectively. The equations of motion that follow fro
Eq. ~2! with Eq. ~40! are

ẋi5px,i , ẍi1vx
2~ t !xi2c1(

j Þ i

xi2xj

r i j
3

50, ~41!

and likewise for they and z directions. We note that the
factor 1/2 in front of the Coulomb interaction term in E
~40! disappears in Eq.~41! since each term occurs twice i
the symmetric form of the double sum.

For the effective potential~40! and c(t)[1, the third-
order differential equation~13! for f 2 specializes to

(
i

F ḟ 2(
j Þ i

c1

r i j
1xi

2~ f̂ 214 ḟ 2vx
214 f 2vxv̇x!1yi

2~ f̂ 214 ḟ 2vy
2

14 f 2vyv̇y!1zi
2~ f̂ 214 ḟ 2vz

214 f 2vzv̇z!G50. ~42!

With f 2(t) a solution of Eq.~42! and H the Hamiltonian
~39!, the invariant follows directly from Eq.~14! as
3-6
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I 5 f 2~ t !H2 1
2 ḟ 2(

i
~xipx,i1yipy,i1zipz,i !

1 1
4 f̈ 2(

i
~xi

21yi
21zi

2!. ~43!

Equation~42! may be cast into a compact form if the sum
over the particle coordinates are written in terms of ‘‘seco
beam moments,’’ denoted as^x2& for thex coordinates. Like-
wise, the double sum over the Coulomb interaction ter
may be expressed as electric field energyW(t) of all par-
ticles

^x2&~ t !5
1

N (
i

xi
2~ t !, W~ t !5

m

2 (
i

(
j Þ i

c1

r i j
.

A similar notation will be used for all quadratic terms of th
particle coordinates. Corresponding to the previous exam
the third-order equation~42! may be split into a coupled se
of first- and second-order differential equations. Similar
Eq. ~33!, we define the functiong5g(t) by

f 2 f̈ 22 1
2 ḟ 2

212 f 2
2v2~ t !5g~ t !. ~44!

The functionv2(t) contained herein is defined as the ‘‘ave
age focusing function’’ according to

v2~ t !5
vx

2^x2&1vy
2^y2&1vz

2^z2&

^x2&1^y2&1^z2&
.

Comparing the time derivative of Eq.~44! with Eq. ~42!, one
finds that the time derivative ofg(t) must satisfy

ġ~ t !5
1

^x2&1^y2&1^z2&
F22 f 2 ḟ 2

W

mN
14 f 2

2$^xpx&

3~vx
22v2!1^ypy&~vy

22v2!1^zpz&~vz
22v2!%G .

~45!

Unlike the third-order equation~42!, the equivalent coupled
set of equations~44! and ~45! no longer contains the time
derivatives of the external focusing functionsvx(t), vy(t),
andvz(t). We observe thatġ(t) is determined by two quan
tities of different physical nature: the field energy constitu
by all particles as a measure for the strength of the Coulo
interaction, and the system’s anisotropy. In contrast togx(t)
of the one-dimensional example of Sec. IV A, the functi
g(t) is generallynot constant in the linear case, which
given here for a vanishing Coulomb interaction (W→0).

With the help of Eq.~44!, we may substitutef̈ 2(t) and the
external focusing functions in Eq.~43! to express the invari-
ant in the alternative form
02650
d

s

le,

d
b

2 f 2I /N5 K S f 2px2
1

2
ḟ 2xD 2L 1 K S f 2py2

1

2
ḟ 2yD 2L

1 K S f 2pz2
1

2
ḟ 2zD 2L 1 f 2

2~ t !
2W

mN
1

1

2
g~ t !~^x2&

1^y2&1^z2&!. ~46!

Similar to the previous example, the functiong(t) accounts
for an eventual change of sign off 2(t), owing to the fact that
all other terms on the right-hand side of Eq.~46! may not
turn negative.

The canonical transformation~18! becomes undefined fo
instants of timet with f 2(t)50. Furthermore, for time inter-
vals with a negative value off 2(t), the elements of the trans
formation matrix ~18! turn imaginary. For these cases, th
equivalent autonomous system of Eqs.~39! and ~40! that is
defined by the canonical transformation rules~18! and ~26!
ceases to exist in a physical sense. This indicates that
beam evolves within the nonautonomous system in a w
that can no longer be correlated to the beam evolution wit
an autonomous system by the linear canonical transforma
~18!. In contrast, the invariant~43! itself exists forall f 2(t)
that are solutions of the auxiliary equation~42!.

Figures 3 and 4 show the functionf 2(t) as the result of
numerical integrations of the coupled set~44! and ~45!. The
second-order moments—denoted by the angle brackets—
the field energy functionW(t) were taken from simulations
of a fictitious three-dimensional anisotropic focusing latti
that is described by the Hamiltonian~39! with the potential
~40!. The simulation leading to Fig. 3 was performed at t
zero-current tune ofs0545°, and a space charge depress
tune ofs59° in each direction.

As a result of various simulations, we found thatf 2(t)
becomes unstable fors0>60°. Furthermore, it turned ou
that this limit value for an unstable evolution off 2(t) de-
creases as the field energyW(t) increases. A case with a
growing amplitude off 2(t) is displayed in Fig. 4 for a beam
propagating under the conditions of a zero-current tune
s0560° and the depressed tune ofs515°. In agreement
with earlier studies on high current beam transport@11#, the
simulation results show that the beam moments rem

FIG. 3. f 2(t) as stable solution of Eq.~42! for s0545°, s
59°. t denotes the focusing period common to all three directio
3-7
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JÜRGEN STRUCKMEIER AND CLAUS RIEDEL PHYSICAL REVIEW E64 026503
bounded under these conditions. This means that an inst
ity of f 2(t) is not necessarily associated with an instability
the beam moments. Nevertheless, the phase-space plan
constantI become more and more distorted asf 2(t) and its
derivatives diverge. This may indicate a transition from
regular to a chaotic motion of the beam particles.

V. CHECKING THE ACCURACY OF NUMERICAL
SIMULATIONS OF HAMILTONIAN SYSTEMS

The conserved quantityI that has been shown to exist fo
explicitly time-dependent Hamiltonian systems can be u
to test the results of numerical simulations of such syste
As already stated in Sec. II, Eq.~14! embodies a time inte
gral of eq.~13! if the system’s time evolution isstrictly con-
sistent with the equations of motion~2!. In the ideal case
i.e., if no numerical inaccuracies were included in a co
puter simulation of a system governed by Eq.~1!, and no
numerical errors were added performing the subsequen
tegration of Eq.~13!, we would not see any deviationDI /I 0
calculating the invariant~14! as a function of time.

Of course, we can never avoid numerical errors in co
puter simulations of dynamical systems because of the g
erally limited accuracy of numerical methods. For the sa
reason, the numerical integration of Eq.~13! is also associ-
ated with a specific finite error tolerance. Under these
cumstances, the quantityI as given by Eq.~14! — with
f 2(t), ḟ 2(t), and f̈ 2(t) following from Eq. ~13! — can no
longer be expected to beexactly constant. Both numerica
tasks — the numerical integration of the equations of mot
~2!, and the subsequent numerical integration of Eq.~13!
contribute to a nonvanishingDI /I 0 along the integration time
span. Nevertheless, since both tasks do not depend on
other with respect to their specific error tolerances, we
regard the obtainedDI /I 0 curve as a cross check of bo
numerical methods. Since the error tolerance for the num
cal integration of Eq.~13! is a known property of the under
lying algorithm, we can estimate fromDI (t)/I 0 the error
tolerance integrating the equations of motion~2!.

Figure 5 displays two examples of curves of relative d
viationsDI /I 0 from the invariant~43! for numerical simula-

FIG. 4. f 2(t) as unstable solution of Eq.~42! for s0560°, s
515°. t denotes the focusing period common to all three dir
tions.
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tions of a charged particle beam. The functionf 2(t) and its
derivatives that were used to calculateI were obtained from
a numerical integration of Eq.~42! — or equivalently from
the coupled set~44! and ~45!. The time-dependent coeffi
cients of Eq.~42!, namely the second beam moments and
field energyW(t), had been determined before from thre
dimensional simulations of charged particle beams propa
ing through a linear focusing lattice with non-negligib
Coulomb interaction, as described by the potential funct
~40!. As expected, the residual deviationDI /I 0 depends on
the number of macroparticles used in the simulation.

For a comparison, the corresponding deviation is plot
in Fig. 6 for a simulation with a systematic 5% error in th
space charge force calculations. We now find a relative
viation DI /I 0 in the order of 1023, hence three orders o
magnitude larger than the previous case with no artific
space charge force error.

By comparing simulation runs with different paramete
such as the number of macroparticles, the time step size,
details of the numerical algorithm used to integrate the eq
tions of motion, we may straightforwardly check whether t
overall accuracy of our particular simulation has been i
proved.

-

FIG. 5. Relative invariant errorDI /I 0 for three-dimensional
simulations of a charged particle beam with different numbers
macroparticles.

FIG. 6. Relative invariant errorDI /I 0 for a three-dimensiona
simulation of a charged particle beam with 5% error in the sp
charge force calculations.
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VI. CONCLUSIONS

A fairly general result has been found: a conserved qu
tity can straightforwardly be deduced for explicitly time
dependent Hamiltonian systems. The invariant contains
unknown functionf 2(t) and its first and second time deriva
tives, which is determined by a linear homogeneous th
order auxiliary differential equation. In general, this auxilia
equation depends on the system’s spatial degrees of free
Under these circumstances, the solutionf 2(t) can only be
determined integrating the auxiliary equationsimultaneously
with the equations of motion. The invariant can be regard
as the conserved global energy for nonautonomous syst
which is obtained if we add to the time-varying energy re
resented by the HamiltonianH the energies fed into or de
tracted from the system.

The invariant has been found to agree with the kno
conserved quantity of the one-dimensional time-depend
harmonic oscillator@4,6#. For this particular one-dimensiona
linear case, the dependence of the auxiliary equation on
particle position cancels. Then the third-order auxiliary eq
tion can directly be integrated to yield a nonlinear seco
order equation forf 2(t) that applies to all particle trajecto
ries. Furthermore, the second invariant for the tim
independent harmonic oscillator could straightforwardly
reproduced@10#. All these invariants follow as special cas
from the general expressions of our invariant and the ass
ated auxiliary equation.

The existence of an invariant has been shown to be us
to check the accuracy of numerical simulations of explici
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time-dependent Hamiltonian systems. Having numerica
integrated the equations of motion, the system’s third-or
auxiliary differential equation can be integrated, and the
merical value of the ‘‘invariant’’I can be calculated subse
quently. The relative deviationDI /I 0 of I from the exact
invariant I 0 can then be used as a measure for the accu
of the respective simulation.

The physical implications that are associated with an
stable behavior off 2(t) of the auxiliary differential equation
remain to be investigated. Furthermore, the physical mean
of solutions of the auxiliary equation withf 2(t) turning
negative must be clarified. In that case, the elements of
ordinate transformation matrix~18! become imaginary,
which means that the equivalent autonomous system ce
to exist as a physical system. This indicates that the exp
itly time-dependent Hamiltonian system evolves in a w
that can no longer be correlated to the evolution of a tim
independent system by a linear mapping. Nevertheless,
invariant I of the explicitly time-dependent system exists i
dependently of the sign off 2(t).

We finally note that the invariant~14! together with the
related auxiliary equation~13! can be derived equivalently
performing an infinitesimal canonical transformation in t
extended phase-space. Furthermore, the invariant and
auxiliary equation may be worked out as well on the basis
Noether’s theorem@1#. Our invariant thus embodies exact
the conserved quantity that emerges as the result of N
her’s symmetry transformation. We will report these resu
in a forthcoming paper@12#.
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