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Nonlinear collisional absorption in dense laser plasmas
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Collisional absorption of dense, fully ionized plasmas in strong laser fields is investigated starting from a
guantum kinetic equation with non-Markovian and field-dependent collision integrals in dynamically screened
Born approximation. This allows to find rather general balance equations for the energy and the current. For
high-frequency laser fields, quantum statistical expressions for the electrical current density and the cycle-
averaged electron-ion collision frequency in terms of the Lindhard dielectric function are derived. The expres-
sions are valid for arbitrary field strength assuming the nonrelativistic case. Numerical results are presented to
discuss these quantities as a function of the applied laser field and for different plasma parameters. In particu-
lar, nonlinear phenomena such as higher harmonics generation and multiphoton emission and absorption in
electron-ion collisions are considered. The significance to include quantum effects is demonstrated comparing
our results for the collision frequency with previous results obtained from classical theories.

DOI: 10.1103/PhysRevE.64.026414 PACS nuni)er05.30—-d, 52.25.Dg

[. INTRODUCTION electron-ion collision frequency in laser plasmas. The effect
of non-Maxwellian distribution functions during the absorp-
In recent years the laser-matter interaction has become t@on process was predicted by Langdai, and it was inves-
field of increasing interest. This is due to the impressivetigated more in detail by several authors in subsequent pa-
progress in laser technology that makes short-pulse lasers pérs(see, e.g.,8—10,3). Inverse Bremsstrahlung absorption
high intensity available in laboratory experimefid. Dur-  calculations for classical strongly coupled plasmas applying
ing the interaction of such laser pulses with solid targetsa tree code simulation were performed by Pfalzner and Gib-
dense plasmas can be created relevant for astrophysical rieen[11].
search and for inertial confinement fusion. Especially, at high The theories mentioned so far consider classical plasmas.
intensities the quiver velocity y=eEy/m.w can be large Consequently, they cannot be applied to situations where
compared to the thermal velocity,= VkgTe/M,, and inter-  quantum effects become important. Quantum effects in dense
esting nonlinear effects have to be expected. plasmas can be expected) if the Landau lengthl
Of special importance for modeling intense laser-matter=e?/4we kg T, is comparable with the thermal wavelength
interaction is to understand the transfer processes of energy=(274%/mkgTe) Y2 ie., IIN<1, (ii) for Zw/kgTe>1
from the laser field to matter. They determine the createdvith w being the laser frequency, artili) if the electrons
nonequilibrium plasma state and the various high-field phewith number densityn, have to be described by Fermi sta-
nomena such as multiphoton ionization, higher harmonicsistics in degenerate plasmas, i.8A3>1. Quantum me-
generation, and x-ray emission. One of the important mechaehanical treatments were first given by Ra®] and by
nisms of energy deposition is inverse bremsstrahlung thaschlessinger and Wright 3] determining the nonlinear ab-
considers laser light absorption via collisional processes besorption rate by averaging the Born cross section of photon
tween the plasma particles. In strongly ionized plasmas, thiemission and absorption. A quantum approach to calculate
absorption process is essentially governed by the electronhe electron-ion collision frequency in strong fields was also
ion interaction usually described in terms of the electron-iondeveloped by Silin and Uryupifil4]. Cauble and Rozmus
collision frequency. [15] investigated the inverse bremsstrahlung absorption co-
In several papers, various approaches were used to calcefficient in the linear regime using a semiclassical memory
late the electron-ion collision frequency and the dynamicfunction kinetic formalism including lowest order quantum
conductivity, respectively, for laser plasmas under differeneffects by a quantum pair potential. Here, the correlations
conditions. Dawson and Obermdf] evaluated the high- between the particles were treated by applying classical
frequency conductivity for fully ionized plasmas in lowest integral-equation methods. In papers ofgReet al.[16] and
order of vg/vy, in the frame of classical dielectric theory Reinholzet al. [17], a quantum statistical approach to the
based on the Vlasov-Poisson set of equations. Recently, thadynamical conductivity was presented using linear-response
model was extended to the strong field case in a paper aheory. A quantum mechanical dielectric model to calculate
Deckeret al. [3]. Expressions for the electron-ion collision the electron-ion collision frequency for arbitrary field
frequency for arbitrary ratios, /vy, were already derived by strength was recently presented by Kull and Plajgi&.
Silin in 1964[4] and by Klimontovich in 19795] starting Arigorous kinetic approach to the inverse bremsstrahlung
from kinetic equations for classical plasmas with non-absorption in dense plasmas including all the quantum ef-
Markovian Landau and Lenard-Balescu collision terms, refects mentioned above was still missing until recently.
spectively. A ballistic model was recently considered byKremp et al. [19] derived a quantum kinetic equation for
Mulser et al. [6] in order to study the time-dependent dense plasmas in strong laser fields using nonequilibrium
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Green’s function techniques. In this approach, the differenhomogeneous electric fields and using the vector potential
interaction processes, e.g., electron-electron, electron-iomgauge

and electron-atom scattering, can be taken into account by

appropriate approximations of the generalized field- v

dependent scattering rates. In the paper mentioned above, the A(t)=— f dtE(t); Ag=¢=0, (D)
theory was applied to fully ionized nonrelativistic plasmas. ‘“C

The non-Markovian collision term was evaluated in statically

screened Born approximation including nonlinear field ef-the following kinetic equation for the gauge invariant Wigner
fects such as multiphoton processes and higher harmoniekstribution function was derived recenfl§9]

generation. Subsequently, quantum statistical expressions for

the electron-ion collision frequency were derived, and time- t_

dependent phenomena were studied by numerical solution c{fﬁ +e,E(t)- Vka] fa(Ka,t)=— 2Ref dt{3 05 —2594}

this equatiorf20—27. It turns out that the quantum treatment to

avoids automatically the well-known divergencies occurring =1,(Kqa,t), 2

in the classical weak coupling theories. Generalized quantum

expressions for the collision term and the electron-ion colli-

sion frequency including dynamic screening were given forWherea labels the particle species. The collision integral is

the first time in[23] and[24]. gi\>/en in terms of the self-energ_y functio.(s;:aitering rates
The aim of the present paper is to continue our investiga=a » @nd the two-time correlation functiors, . Here, the

tion on inverse bremsstrahlung absorption in dense fully ion&rguments are

ized laser plasma based on quantum kinetic theBspe-

cially, the influence of quantum effects on the electron-ion 3 =g==3=[k,+KA(t,t);t,t]gZ[Ka+ KA(t,1);t,t],

collision frequency is studied in more detail for arbitrary (3)

values ofvy/vy,. For this purpose a kinetic equation with a

new appropriate form of the quantum collision term in dy- _ o _ —

namically screened Born approximation is derived and ap‘—Nherf K3 is the field-induced momentum shif;(t, )

plied to high-frequency laser fields. =e,J{dt'[A(t) —A(t")]/(t—t). The gauge-invariant modi-
The paper is organized as follows. In Sec. I, a brief deri-fied Fourier transform is given by25,26|

vation of the quantum kinetic equation for the Wigner distri-

bution function is presented. Here, the non-Markovian and

field-dependent scattering rates are given in terms of the ga(k;t,t’)=f d3rga(r;t,t’)

screened potential and the two-time polarization functions

that are used imandom phase approximatiofRPA). The i t A
resulting balance equations for the energy and the electrical X ex 7 r-|k+ eaf/dt? . 4
current density are given in Sec. lIl. In particular, a general v ( )

non-Markovian equation determining the current density in

terms of the field-dependent dielectric function is derived. In The kinetic equation(2) is still very general, and two
Sec. IV, the theory is applied to high-frequency laser fieldssteps are necessary to find a closed form with an explicit
using a perturbation ansatz for the electron distribution funcexpression for the collision ternii) The self-energy func-
tion. In the case of harmonic fields, the current density andions have to be specified in a certain approximation, @nd

the electron-ion collision frequency can be expressed then bthe two-time correlation functions have to be expressed in
Fourier expansion in terms of Bessel functions and the fieldterms of the Wigner distribution function. The latter point is
free quantum(Lindhard dielectric function. Numerical re- known as the reconstruction probldi7].

sults for the current density and the cycle-averaged electron- Powerful schemes are available to determine appropriate
ion collision frequency for dense, fully ionized plasmas as aapproximations for the self-energy functioE§ taking into
function of vy /vy, and for different plasma parameters areaccount nonlinear field dependence as well as many-body
discussed in Sec. V. Nonlinear field phenomena such asnd quantum effects relevant for high-density plasmas. We
higher harmonics generation and multiphoton processes iwill use here the so-called/S-approximation that corre-
electron-ion collisions are considered, and the influence o§ponds to a dynamically screened Born approximation appli-
quantum effects is demonstrated comparing the results witbable to weakly coupled plasmas. It reads for the gauge-

those obtained from classical theories. invariant Fourier transform
Il. QUANTUM KINETIC EQUATION FOR DENSE - d® - sz
PLASMAS IN ELECTROMAGNETIC FIELDS 2a(ktt)=ih (Zwﬁ)3ga(k—q,t,t Waa (GLLY).

We consider a dense plasma under the influence of intense 5
laser radiation. The plasma is assumed to be fully ionized
consisting of electrons with number density and ions of  After insertion of this expression into ER) the collision
chargee; = Ze with number density); . Focusing on spatially integral can be written as
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¢ d%q . whereK £ is a short hand notation for the field-induced mo-
> . . . o
la(ka,t)=2 Reft dtf (zwﬁ)g,{V;a (a;t,t) mentum shift(3) with K4=KA(t,t,). Here we want to men-
0 tion, that Eq.(7) could be transformed into another form,
KT kot KA T, Q G = VES(at D V=2 VAL V', which is often usedcf. Eq. (56) in
[23]]. However, this form is unfavorable to derive non-
Xﬁga[kﬁ Kﬁ(t,t_),q;t_,t]}. (6) Markovian source terms in the balance equations.

So far the collision integrall0) is given as a functional of
~_ — _ti i iana=(t t/
Here, we introduced the auxiliary functidh_,(k,,q;t,t) = the two time correlatlon functlonga (tt ) I.n order to get
an expression in terms of one-time distribution functions,

—i7 95 (Ka— i1, 1)05 (K 1,1). The key quantities in the  5ne has to solve the reconstruction problem mentioned

collision term(6) are the correlation functions of the dynami- ahove. Due to the non—Markovian character of the collision
H S S 1 . . . . . . .

cally screened potentiay>~ andV>~, which are related {0 integral(10), we introduce the Wigner distribution functions

the correlation functions of the longitudinal field fluctuations by the generalized Kadanoff-Baym ansé&BKBA). It reads

[28]. Within the RPA we have in gauge-invariant forni19]
Vab (Git1,t2) = 2 ft dtVad @ IIR(at , DVET (G5t tp) =gz (kit,t) =gi(kit,t ) FTk—KJ(t',),t']
0 =
o —flk—KR(LE) ga(kit,t), (1)
+IS(g;ty, D) Vep (a; t,to)], (7
wherefZ (t)=—ifg; (t,t)="f,(t) defines the Wigner func-
and tion f,(t). Furthermore, we havef. (t)=i%g; (t,t)=1
" —f4(t). The gauge-invariant retarded and advanced propa-
VZBWA(WM,tz)ZVab(Q)5(t1—t2)+g ft dtV,.(q) gators for free particles in an external field are given by
0
X IRA(G;ty  DVERA(Qi Tt 8 RIA(Kot 1) = + : LSO
cc (At OV (gt ), (8 gAMLt ) =+ O (= (t—t"))exg —5{ =—(t—t)
if h|2m,
where V,,(q) =e,ep%%/(£09%) is the Coulomb potential, 21
and V3, are the retarded and advanced screened poten- 42 dtA2(t)
tials. The polarization functiond 5,(q;t;,t,) are given by 2mg| Jy
1 t_ _\2
= Ay ~ +—U dt’A(t)) }) (12)
Haa(q;tl,tz)zfmﬂaa(ka,q;tlytz)y 9 t—t t’
and for the retarded and advanced polarization functions we !N fact, the quantities given in the collision integfa0)
have can now be expressed in terms of the Wigner distribution
functions. We get, e.g., the following field-dependent expres-
HR/A(q.tl )= O[ = (t;—to) ] [T124(qity L) sion for the retarded polarization function in RPA
aa ! ' - - aa 1 1
— 5,0ty t)] i . d’k
aa Hga(q;t,t/):_%G)(t_t!)e(l/ﬁ)Q'Ra(t,t/)f 3
The collision integral6) contains the dependence on the (2mh)

species in an implicit form. However, for our further consid- SRR, — et S
erations, especially the discussion of balance equations, it is xe Kra Tk {falk+Qq(t,t");t']
necessary to ide'ntify the parti.cular integr_als for collisions — K+ q+Qut,t )it/ T}, (13)
between the different species according tq(k,,t)

=Zplan(ka ). Using Eqs(7) and(8), we get the result with ef=k?/2m, being the single particle energy. The ad-

. . vanced polarization function follows from the relation
Vab(q)f dle dt, Hga(q;t,t’)=[H§a(q;t’,t)]*. The quantitie®, andR, are
to to given by

d3q
(27Tﬁ)3

lan(Ka ) =2 Ref

XATIR( Ot 1) VER(a; to, 1) _ ' _
- _ _ Qa(t,t)=—e, |_dt' E(t')=e[A(D)—A(D], (14
XM gy(Kat+ K&, a1y O +[TIR(a3t, 1) t

XV (qity, t) + o (ait, t) VA th, — ey [t t e, [t
ba(q 2 l) bb(q 2) ba(q 2 l)] Ra(t,t)zm_af_dt/f dt”E(t”):m_af_dt,[A(t/)_A(t)].
aJt t aJt

X MMa(kat KE 05t 0T}, (10 15
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The physical meaning of the two latter quantities becomes obvious from the equation of motion of charged particles in an
electric fieldE. Q,(t,t") is just the momentum gain of a particle in tRdield during the timg —t' that is of the order of the
duration of the collisionR,(t,t") is the field-induced replacement of the particle during this time.

Finally, the collision integral can be written as

kt)——RfdtftJ o O|3kbv yexp(—i{[€d _.— e |(t—ty)—q-Ry(t,t1)}A)
ab( ar € t 1 t 2 (27Tﬁ (27Tﬁ)3 ab(q EXF( |{[Eka—q Eka]( )= q a( , 1)}

xexp(—i{l € g~ ek, J(t= 1) + - Ry(t, t) AN fio(to) — Fo(t2) IVER(a; ta, 1) fa(t)[ 1 Fa(ty)]

[ F(t2) = Fp(t) IVEa (a5 to, t)[ Falty) = Fa(t) 1+ Fo(t)[ 1= Fu(t) IVEA(G; to, t) [ Fa(ty) — Fa(ty) 1}
(16)

For a shorter notation, the momentum arguments of the dis- In the Appendix, we show that the right hand side of Eq.
tribution functions were dropped, i.e., one Hagt)=fo(k, (17 is just— (d/dt) WP with the mean potential energy den-
+Qc(t, t) t) with c=a,b. For the funct|0ns‘ andfb one Sty given by
has to replacé, by k,—q andk,+q, respectlvely 1 e
The above quantum collision term is valid for arbitrary WP = (i) S t dtlf dtzf R (@)
0

field strengths. The comparison with the field-free case 2 ab

shows that the applied time-dependent field modifies the col- . o .

lision integral in several waysi) The momentum arguments ><[HbRb(q;t,tz)Vﬁf(q;t2,t1)H§a(q;t1,t)

of the distribution functions are shifted b@Q., i.e., they _ — _

contain an additional retardation. This is called intracolli- +HIIRL(Ot, 1) Via (O, t) T1A4(5 by t)
sional field effect.(ii) A further modification occurs in the _ — A — — A —
exponential functions that essentially govern the energy bal- +pp(a;t,t2) Vpa (A to, ) Tlga(a; g, )], (20)

ance. There appear additional terms leading to a field-
dependent broadening determined by the funcfnthat ~ Thus the energy balan¢&?) reads now
describes the field-induced displacement of a free particle )
(iii ) The collision integral is dependent on the field in a non- dw + dwee!
linear way. This will lead to typical nonlinear effects like the dt dt
occurrence of higher harmonics and multiphoton absorption
that will be, together with quantum effects, considered below.e., the change of the total energy of the system of particles
in detail. is equal toj - E that is in turn the energy loss of the electro-
magnetic field due to Poynting’s theorem. Both the mean
kinetic energy and the potential energy are functionals of the
actual distribution functions that follow from the kinetic

As we are interested here in the collisional absorption byequation. It is an important feature of E@1) that there
the dense plasma, it is obvious to start from the balanc@ccurs the total energy on the left hand side. This means that
equation for the energy resulting from the second moment of nonideal system is described by the underlying non-
the kinetic equatiort2) with (10) Markovian kinetic equation.

The balance equation for the electrical current reads

=j-E, (21

Ill. BALANCE EQUATIONS, COLLISIONAL ABSORPTION

dwkin J dk, K2 3
—i.E= Ky). (17) d°k, ezk,

at ! (2mh)3 2m, lan(Ka dt_g ma J(Z P r; lap(Ka). (22
Here W< andj are the mean kinetic energy and the total|f collision could be neglected completely, we would find

electrical current density, respectively, according to jO=3,(e2/my)n,St dt'E(t"). Now, definingj=j®+j®

0 1 L

, we have
_ d%k, Kk
wnn =3 [ S, a9 @ :
(2mh)3 2m, & A _ f Iha Caka) . 23)
dt % J 27a)3 my *°

fa(Ka,t). (19) With the collision integral10), the equation for the cur-
rentj() is therefore given by

J()EJ

(2 h32m
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dj(l) w o d3q IV. HIGH-FREQUENCY FIELDS
dt =Reﬁodtlftodt2f (27h)3 So far the calculation of the inverse dielectric function
includes all the memory. Now we consider the collision fre-
1 2 €, € quency as low compared to the oscillation frequency of the
XE < lm, my 9 Vap(9) field, i.e., the collisions can be treated as a small perturba-
tion. This enables us to use a perturbation ansatz for the
X ARyt t) Vs aita, t) T4t 1) electron distribution function introduced by Sili#], f,
- - - =f9+fL, in which the distribution functiorf obeys the
HTIR(ait, 1) Vs (Q;to, t)TIS(Q; 1) collisionless equation
+ (Gt ) ViR Ot t) 1135t D)}, (24) o 0A .
E—eeﬁﬂke fa(ke, t)=0. (28)
where the upper limits of the time integration are determined
by the heaV|3|_de functlons_contaln_ed in the advanced ang), have[23]
retarded functions, respectively. It is easy to see that only
collision termsl ,, with a#b contribute to the current bal- fg(k,t)zfeo[kJreeA(t)], (29)

ance.
In the following, we will consider a two-component
plasma consisting of electrons and ioms;$¥ m,). The ions
will be treated in adiabatic approximation that leads to
YA(qg;t,t')~0 andiZIl (q;t,t’)~n; with n; being the
ion density. FurtherV/,,(q) =e,e,V(q) is the Coulomb po-

with f being an arbitrary function depending on the initial
conditions. In this section we will adopt equilibrium distri-
butions.

For the dielectric function follows

tential withV(q) = 1/(g9q?/%2). With these assumptions, ex- ieq [t — —
pression(24) is simplified considerably 8R1(q;t,t’):ex;{ﬁ mif dtA(t) s§§A
e Jt'
di® t _(t _ d3g ef’ X (g;t—t"), 30
J—=niRef dtlf_dtzj—q g N ) 30
dt tO tl (277;1)3 melh

whereegpa is the RPA(Lindhard dielectric function being a
<\ )e2HR ;t,t_)Vs R ;t_ ,t_), (25) functional off, .
(@eelled it tz) VA G2, 1y This simplified expression for the dielectric function can

where only the electrons contribute to the dynamicallyP€ inserted in Eq(27) for the current that reads now

screened potential® R=V+V I1%, Vs R |f, finally, the fol-

; e djV emne 1t _ dd
lowing quantity is introduced 17 €eNi€ Re.—f dtlf q qV(Q)
dt meh i Ji, (2mh)3
t
“Liqet +1) — _r+f _ZHR ._VS P i e t o
spi(aitt)=d(t—t")+ | dtecIledait,hHVe Nait,t), < ex giq‘ " A | erd(qt-T0), (3D
(26) Me Jt,
we have and which will serve as the basis for the investigation of
higher harmonics in the current, and for the calculation of the
dj® e.n;e? ¢ d%q inverse Bremsstrahlung absorption in a dense quantum
: _
2 - Rej dtf V plasma.
1 L _ _ A. Higher harmonics in the electrical current
x+ler (Git t) — S(t—ty)]. (27

For a harmonic field,E=Eycoswt, one can expand
Eq. (31 into a Fourier series usinge 'z¢ost
This expression for the current is a very important result. The==" _.(—i)'J,(29€"'“', whereJ, is the Bessel function dith
quantity ¢ 1 represents a generalization of the dielectricorder. This leads to
function. It is a functional of the electron Green'’s functions,
and it includes the full memory. The Wigner distribution  dj™ e.nief d3q
functions can be introduced in an approximation by the “q¢ mefi .\ef (zﬂﬁ)sqv
GKBA in its gauge-invariant form, c.f. S(el<):. Il. 0 0

If one is able to solve equatigq@7?) for j'*, it is simple to xS (—i)m“Jn(q Ve>~]n—m(q Ve)(aimwt

m n

(q)

calculatej - E and the respective energy absorption rate. The how ho
derivation of analytical expressions will, of course, require -

further approximations that will be considered in the next xf Odre‘(“ﬁ)”‘”[sgplA(q'r)—5(7-)] (32
section. 0 ’ '
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with vi=e.Eq/m.w. For timest>t,, which will be consid- B. Collisional absorption rate
ered in the following, the expression in the second line of the  The energy dissipation in an electrical fieid= E,coswt
above equation is just the Fourier transform of the inversgs then given by
dielectric function.

After integration in time one has

o

j(t)-E(t)=Eq- Rejl<w)+|§1[Re{12|+1<w>

2

_ een;€; d3q
jO(t)== 'mf $aV(a)

mefi (27h) +i2-1(w)}cog 2l wt) +Im{jy 1 1(w)
0 0
. q-v q-v . .
DD <—|>m*zan( hw‘“‘)Jnm(ﬁ—;) +Jz._1(w>}sm(2|wt)]], (37)
imwt
€ ! _1}, (33 containing beside the constant term even harmonics only.
Mo | erpa(q; —Nw) Now the dissipation of energy is calculated averaged over

one oscillation cycle
with the Lindhard dielectric function 4

1t
erpa(q) <j.E>E?LTdt'j(t')-E(t')on.Rejl(w). (39)
2 d°p feo(P+a) — feo(P) _ o
=1+eV(q) (2mh)? o= e P+ Q)+ ee(p)+10° The curren{(® gives no contribution here. We want to men-
m ¢ ¢ tion that with the Silin ansatZ29), there holds(j-E)
(349  =(dWK"/dt). That means that the potential energy averaged

. . ) _over an oscillation cycle is constant in this approximation.
Eq (33) IS Clearly_ a Fourier ex-pan5|0n-0-f the current in In the expression for Rq one can use the recursion for-
terms of all harmonics. The Fourier coefficients of the cur-myla for the Bessel functions

rent,j(t)=20___jm(w)e” ™t with j,=j*,,, can be iden-

tified easily from Eq.(33). One can show that only the odd 2n
harmonics are allowed due to the symmetry of the interaction In-1(2) +In+12(2) = — In(2), (39
that is characterized by Rg'(q,0)=Resy*(—q,— o)
and Imey(q,w)=—Imey(—q,—w). In particular, we  which leads to
get for the real partsl&0,1,2 .. .)
d%q - q-Ve
~1) cq e (- E>=n-e—2f v(a) X, anZ(
Rejg 1+ 1(w)= 1) niein' a - q - (27h)3 n=1 "o
(21+1) (27h)% Mo
*© q- VO q- VO X |m—1 (40)
e e T .
XV(Q)nzO Jn(m> {Jn—(ZHl)(m) erpa(0; —Nw)

This result has a similar form as that of the nonlinear
IM &pex(d; —Nw), Dawson-Oberman mod¢B]. We want to stress, however,
that in the present paper, the dielectric function is given by
(39  the quantum Lindhard form, whereas the dielectric theory of
Deckeret al.leads to the classical Vlasov dielectric function.
Finally, using Ime 1= —Ime/|e|?, we get

0
q-v
+Jn+(2|+1)(ﬁ—we>

whereas for the imaginary parts follows

. nee” Eo (-1 2f d*q e 3
=53 — —+—neZ| ——— —— . q
Im12|+1(w) 5I,0 Me 2 (2|+1)nle| (th)3 mehwq <J'E>:niei2J (277%)3
*® 0 0
q-Ve q- Ve o 0 i
XV(q)nZO Jn( ho )|:‘]I"I(2|+l)( ho ) XV(q)E no Jﬁ g-Ve Im eRpA(q,na)) . (41)
n=1 ho | egpa(ginw)|?

Ve

q-ve
—Jnt2141) Ta

1. _
[Resren(d;—Nw)—1]. The Lindhard dielectric function has to be calculated nu-

(36) merically, that can be done for arbitrary degeneracy. For a
transparent discussion of the different quantum effects, how-
Evaluation of these expressions allows to investigate thever, it is advantageous to consider especially the nondegen-
spectrum of the time-dependent electrical current as a funcerate case, in which some necessary integrations can be done
tion of the electrical field strength, of the frequency, and ofanalytically. For this case of a Maxwellian electron distribu-
the plasma temperature and density, respectively. tion function, we gef24]
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(J . E>= 8\/ﬂzze4neni\/ﬁew2 szﬂ( 1 101 | static & dynamic TN Vo >V
(4meg)?(kgT)¥2 — i=1 Jo k® |egpa(k,nw)|?
« @ (N"Pmeo?/2kgT K?) o = (h?k?/BmekgT) 107
i 1 K
><smk(nﬁw/ZkBT) z;ﬁ eEokZ . 42 £ 10°F
(nhw/2kgT)  Jo Mew? ?’
10* F
In the classical limitjz—0, this expression is well known.
Within the classical kinetic theory it was derived first by sl
Klimontovich[5]. Later Deckeet al.[3] got such an expres- 10
sion in the framework of the nonlinear Dawson-Oberman \
model. The classical formulas have the well-known problem 10'?0.2 1(;.1 1(')0 1(')1 e
of a divergency at largk that is solved by some cutoff pro-
cedures. In contrast, in our quantum approach no divergen- VolVi
cies exist.

- . FIG. 1. Electron-ion collision frequency as a function of the
Quantum effects, indicated by, occur here at different . quiver velocityv o=eE/ wm, for a hydrogen plasma in a laser field

places. The first place is one of the exponential functions NZ=1:n,=10% cm %T=3-1(° K: w/w,=5). For comparison,
Eq. (42 descrl.blng the qugntum Q|ﬁractlon effect at large results of Deckeret al. (dash-dotted Ii‘r)uaand of the asymptotic
momentak. This exponential function ensures the CONVer-formulas(44) and (45) of Silin (dashed lingare given.

gence of the integral. The second place is the term with the

sinh function that is connected with the Bose statistics of .

multiple photon emission and absorption. Finally, quantum ©" e upper cutoff we take here for the comparison of the

effects enter also the calculation |ef(q,nw)|? itself. These classical onekyg,=4megksT/(Z€).
effects will be discussed in detail in the next section. Further, the classical expression of Decgea_l' [unfortu-
Often the energy absorption rate is discussed that is Nately, in their Eq(22) in [3], a factor 2/Q:Ap) is missing
defined by ve=(j-E)/{&,E2), or the electron-ion collision is evalyatec{dash-dotted ling Our_quantum expression, Eq.
frequency v that is introduced according to a high- (43 with (41), was evaluated with the quantum Lindhard
frequency Drude model with dl_electrlc_ function _fully dynamical al_"nd, for_comparlson, also
with static screening in the denominator in E4l). These
2 (i.E results are given in Fig. 1 with solid lines. In the given loga-
Vei:“’_ (i-E) _ (43) rithmic scale, there is almost no difference between these
wﬁ, (g0E?) two cases to be observed. The qualitative behavior of the
results from the classical dielectric theory of Decletral.
and from our quantum approach is very similar. The collision
frequency is nearly constant for small field strengths up to

In this section we will present numerical results for thevo/vn=1 and then decreases rapidly for higher fields. This
collision frequency and the higher harmonics in the currentS in agreement with the asymptotic formulas of Silin, too.
density based on the formulas of the foregoing chapter. Oufhere are, however, quantitative differences. These can be
emphasis will be to show the importance of a quantum apattrlbuted to the use of Coulomb quanthms in the_ cIaSS|_caI
proach. In the following a hydrogen plasma is consideredPproaches that correspond to cutting procedures in the inte-

that is assumed to be fully ionized. gral over momentum. _ _
In Fig. 1 the collision frequency in such a plasma is [N order to make the differences between the different

shown as a function of the quiver velocity. For comparison@PProximations in the range of weak and moderate values of
there are given curvegdashed ling following from the Vo More prominent, in Fig. 2 the collision frequency is given
asymptotic formulas of Silin for the cases of small and of bigin & linear scale for the same parameters as in the foregoing

quiver velocities, respectively. These formulas ré4d figure, and in Fig. 3 for a higher temperature.
In this linear scale, the small differences between the

4 Zme'z?n, K cases of dynamical screening and statical screening are to be
Vo= — 7 ! max . <v (44)  seen. The static approximation for|d/? slightly overesti-
ei 3 2 2 3 'k o 0 ths . . .
(4meg) Mgvy, Kmin mates the effect of screening. The difference to the classical
results of Deckeet al.is much bigger in Fig. 2 whereas for
the case of a higher temperatitewer coupling parameter

V. NUMERICAL RESULTS

. 3
E:£L<@) m(& Pl I'= (eX/4msg)/dksT with d=(4mn,/3)~ 3] the agreement
wp 72 g\ vo 20 Kimin is much better, cf. Fig. 3.
(45 The dependence of the collision frequency on the cou-

pling parameter will be considered now more in detail. First,
with \p being the Debye length. In the high-frequency fieldin Fig. 4, the collision frequency is shown as a function of
under consideratiork,;, is given as usual b¥qi,=wg /vy, - coupling parametelr for a small quiver velocity, i.e., a small
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0.05 dynamic \\
static \ 10t F
0.04 + \
o (=1
0.03 -2
3 \ 310
X N
0.0z p__ Deckeretal
‘ 102 F o Pfalzner, Gibbon
oolE XN — ¢ Cauble, Rozmus
- Vo <<Vth
Decker et al.
0.0 L > -4 L
10° 10" 1¢° 10' 10° 10,407 10" 10°
T

FIG. 4. Electron-ion collision frequency as a function of the
coupling parametef” for a hydrogen plasma in a laser field (
=1,00/v1h=0.2;ne= 107 cm 3w/ w,=3). Comparison is given
with the theory of Deckeet al. and with the asymptotic formula
field strength. Results of the evaluation of E¢ES) and(40) (44 of Silin (dashed ling.
are given by the upper solid line. The static screening results
are the lower solid curve. Again the asymptotic formula ofing I this asymptotic formula as well as the dielectric ap-
Silin for small quiver velocities is given, and the classical prgach reach a maximum aroudd~0.2 and sharply drop
expression of Deckeet al. was evaluatedFig. 5. Further-  qown afterwards. This behavior is governed by the Coulomb
more, numerical results of Cauble and Rozifili§| are plot-  |ogarithm used in these approaches. It results from a cutoff
ted. They considered small field strengths and used Brocedure at large momenta Such a cutoff, inherent in
memory function kinetic approach that_alloyvs t_o considermany classical approaches, is avoided in our approach be-
plasmas up to strong coupling. The points in Fig. 4 corretayse thek integration is automatically convergent, cf. the
spond to their so-called Debye-Ekel mean field approxi-  second exponential function in EGi2). Therefore the range

mation, cf. Ref[15]. Finally, we compare in Fig. 4 also with f applicability of our approach is extended to higher values
numerical simulation results of Pfalzner and GibHdd]. of T.

They applied a tree code method to classical molecular dy- The agreement with the results of Caulgleal. and of

namics simulations using a soft Coulomb potential. __Pfalzneret al. is rather good with the values of the present
~ According to Fig. 4 the collision frequency increases withheory being slightly smaller. One has to take into account,
increasing couplind’. For smalll’, the dielectric theory and however, that our approximation is a weak coupling theory

our theory give almost the same results. The values of th§ereas the approaches we compare with include the corre-
asymptotic formula of Silin are slightly bigger. With increas- |ations in higher approximations. We want to mention that

FIG. 2. Electron-ion collision frequency vs quiver velocity for
the same parameters as in Fig. 1.

0,015 —Synamic | YoV ] 10" F
107}
3 0.01
= § 10°F
; e
';5
0.005 10
10° F
0. (} : . Decker et al.
0 10- - I- 1
107 10" 10°

T

FIG. 3. Electron-ion collision frequency as a function of the  FIG. 5. Electron-ion collision frequency as a function of the
quiver velocityv,=eE/ wm, for a hydrogen plasma in a laser field coupling parametef” for a hydrogen plasma in a laser field (

(Z=1;n.=10°7 cm 3, T=10° K; o/ w,=5). For comparison, re- =1;00/vy=10;n.=107 cm 3w/w,=5). Comparison is given
sults of Deckeret al. (dash-dotted lineand of the asymptotic for- with the theory of Deckeet al. and with the asymptotic formula
mulas(44) and (45) of Silin (dashed lingare given. (45) of Silin (dashed ling.
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TABLE I. Electron-ion collision frequencyy;/w,, calculated T ? T
from Eg. (41) for different values ofI" and vq/vy, with ng 2 T'=0.10 vyivg=1 -
=102 cm ? and o/ w,=5.

|
IS

U()/U[h
r 0.1 1.0 5.0 10

0.01 1.876%10 ° 1.5766x10 3 1.9410<10 4 3.5183x 10 °
0.10 2.647610 2 2.3191x 102 3.6981x 10 ° 7.2497x 10 *
0.50 8.701& 102 8.1765<10 2 2.2703x10 2 4.8870<10 °
1.00 1.05510° ! 1.0221x10° % 4.3577x10 2 1.0254x 10 ?

logyoy/ wp)
&

|
[ee]
T

N
o
T

our results do not depend solely &h but depend on tem-

perature and on densitias well as the results of Cauble 0.0 0.5 1.0 15

et al. do because of the usage of a modified potential taking
into account short-range quantum effects
Before we are going to elucidate the quantum effects, we FIG. 6. Contributionsy,, vs photon numben in a hydrogen
want to present in Fig. 5 the behavior of the collision fre-plasma (,=10%cm 3 w/w,=5; I'=0.1) for vy/vy=1.0.
qguency vd for a higher value of the electrical field strength Present approactsolid line), sinh term neglecteddashed ling
(vo/viw=10). As the theory of Cauble and Rozmus is limited classical dielectric theor{dotted ling.
to small field strengths, and because there are no results for
this high fields from molecular dynamics calculations avail- The other quantum effect is connected with the siiféic-
able up to now, we can compare our results only with thoséor that behaves for larggn) ase*/2x. Therefore this factor
of the classical dielectric theory and with the asymptotic for-becomes more important for largethe processes involving
mula of Silin for big quiver velocities. The qualitative behav- large numbers of photons are enhanced. This can be seen in
ior is similar to that forw 5 /v,=0.2. Numerical values of the Fig. 7 that considers the casg/vy,=10. The solid curve
collision frequency for different’ and various ratios, /vy,  corresponding to the full solution extends to much higher
are given in Table I. values than that curve that results from a neglection of the
Now the consequences of the quantum approach in corsinh term. An interesting feature is the plateau like behavior
trast to the classical dielectric theory will be investigated. Weup to n~ 350 with the subsequent sharp drop down. We can
consider such parameters that the plasma can be assumedctinclude at this point, that especially in the strong field case
be nondegenerate, i.e., E@2) can be used. In this case a where multiphoton processes play an increasing role, it is
direct comparison with the classical dielectric theory ofimportant to treat the problem on the basis of quantum me-
Decker et al. is possible. Quantum effects indicated By chanics. This problem was also discussefll8] based on an
occur in Eq.(42) at two places. One is the quantum diffrac- asymptotic solution of expressiqd?2) for strong fields.
tion effect ensuring the convergence of the integral atkbig In order to complete the discussion of the collision fre-
(cf. the second exponential functioMhe other is the factor quency, the dependence on the laser frequency is considered.
sinhx/x with x=n7% w/(2kgT). The classical theory uses, in- This is shown in Fig. 8 for two different field strengths. The
stead, a cutofkmaxzrmtzh47-rso/2e2, and the sinh factor is
missing. 2 T y - T
An important feature of the expressio®0)—(42) is the T'=0.10 vg/vy=10
sum ovem that can be interpreted as a sum over the different
multiphoton processes, i.e., the emission and absorption of
energiesnziw. The different contributions,, in the sum
Vei= 2V, are dependent on the field strength. It is obvious
that with increasing field the number of terms contributing
essentially to the sum is also increasing. The following two
figures, Fig. 6 and Fig. 7, showing, vs n (full solution of
Eq. (42—solid line) for two different field strengths illus-
trate this issue. Moreover, we compare with the classical -0}
dielectric theory(dotted ling and the case in which the factor
sinhx/x in EqQ. (42) is set to unity(dashed ling One observes . i \ .
that the differences between these three cases grow with in- '120‘0 05 1.0 15 20 25
creasing photon number The reason for the faster decreas- log,o(n)
ing contributions in the classical approach is the hard cutoff
in the k integration while the maximum of the integrand is  FIG. 7. Contributionsy, vs photon numben in a hydrogen
shifted to higher k due to the exponential factor plasma @.=10??cm 3 w/w,=5; I'=0.1) for vy/vy=10.
exf — (NPw’m)/(2ksTK?)]. Thus the relative error of the, Present approactsolid line), sinh term neglecteddashed ling
increases with. classical dielectric theorydotted line.

logp(n)

logyo(w,/ wp)
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-2 T T T
0.15 |
(0)
3 J
0.1F
3&-
ey
3
0.05 | \
Vo/vy=0.01
— — = Vo/vy,=2.00
0.0 L
10° 10! 9 : : ’
y 0 1 2
wiw
P logo(Vo/Vin)

FIG. 8. Electron-ion collision frequency as a function of the FIG. 9. Amplitudes /(RS )2+ (Imj )2 of the m=(2/

1 —3.
Iisli)rs }ge%lﬁ\r,:,%y dh]:fc!reit f:]e);gr;%gg tElsas'I[EZ]ef 122r ccunr]ve,ofzach +1)th harmonics of the current vs field strength denoted by
gins. bp volvy. The parametes ame,=4x 10 cm 2 andT=1.2x10° K.

pair corresponds to the full dynamical screening, the lower one to

the static screening approximation. . . . L .
g.app lier papers using classical kinetic theory and the classical

full d . lution i d with the stat . dielectric theory, respectively. An important feature of the

u yn_amltg: sofu 'O”E'i cltzamplare va' € sta 'fhsctje_gnmgquantum approaches is that no cutting procedures for large
approximation for 1|°. For arge irequencies the dilier o menta have to be introduced in the respective integrals.
ences between the two approximation decrease. COIIeCt"’I@Ioreover, it turned out that quantum effects become espe-

effects in the dielectric function play a role only in the vicin- cially important for strong fields when the energy absorbed
ity of the plasma frequency. This behavior is to be seen als the collisions is much greater thaaT and multiphoton

for the higher field strength. In the high-field case, the stati rocesses play an essential role. This was found also recently
screening approximation deviates from the dynamical on the framework of the quantum Vlasov theory of Kull and
also for the lower frequencies. This is caused by COHeCtivePlagne[ls] who could reproduce our equatie#2). It should
effects in the terms with hig_herrin t_he respective sum in Eq. be mentioned that the Green’s functions method allows to
(42) for arguments of the dielectric functiano~w,. generalize the approach rather straightforwardly, e.g., to in-

Thg discussion of the behavior of;(w) for laser fre- clude strong coupling effects as ion correlations and bound
guencies around and below the plasma frequency has to fates

treated, of course, with some care because the underlying
theory is a high-frequency approximation.
A further issue that is very interesting is the possibility of ACKNOWLEDGMENTS

higher harmonicq29] in a strong laser field. The higher  valuable discussions with V.P. Silin, P. Mulser, M. Bonitz,
harmonics in the current density can be calculated accordingnd H.-J. Kull are gratefully acknowledged. Further we want
to Egs.(35) and(36). In Fig. 9, the amplitudes of the differ- g thank S. Pfalzner and P. Gibbon for providing us with their
ent harmonics, 2(Rej,))°+ (Imj,)?, are given as a function numerical data. This work was supported by the Deutsche
of the field strength. The harmonics have amplitudes increas=orschungsgemeinschaftSchwerpunkt “Wechselwirkung
ing with the field strength up to maxima at certain values andntensiver Laserfelder mit Materi¢”

decreasing afterwards. For high fields the differences be-

tween the higher harmonics decrease. The ratid®%o how- APPENDIX: MEAN POTENTIAL ENERGY

ever, becomes very small.

In general the mean potential energy is given by
VI. CONCLUSION

— 1 3 3 FEN2N<

Starting from a generalized quantum kinetic equation for<V> 2 ;) J AT ad7rVan(f1=12) (17) Gap(rarat farat),
dense, laser plasmas in the framework of gauge-invariant (A1)
Green’s functions, we derived balance equations for the en- _ ) ) ) _
ergy and the electrical current of a plasma in strong laseWith gap(t,t") being the two-time two-particle correlation
fields. The non-Markovian collision integral was consideredfunction
in dynamically screened Born approximatidRPA). In the
case of high frequencies the so-called Silin ansatz could be

< P tery Trorgr Trprer
used leading to explicit expressions for the current and the ap(ralatrafaot’) = (iﬁ)z<\Pa(r1t )Wp(rat’)
electron-ion collision frequency in terms of the quantum
Lindhard dielectric function. This generalizes results of ear- XWy(rot)Wa(rqt)). (A2)
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We will consider here the dynamically screened ladder ap- d3k
proximation[30] up to first order r,tt’)=
01 t)= ] s
Jab=9aOpt 7 GaGpVardadot - - - (A3) _)
X ex %r k+eaf dt- v ga(k,tt"),
which has to be evaluated on the Keldysh time contour. t')

When this expression is inserted into E&1) the zeroth- (A5)
order term(Hartree termgives no contribution for a neutral

plasma, and therefore we geieglecting exchange terms and which leads to

initial correlation terms

1 * (% —( d
1 Ty R <V>(t)=§(lﬁ);) Qf dtlft dtzf mVab(Q)
<V>(t)=§(|h)2 dt, | dt,| d3,d%, | d?r,d%, ' 0 0 ™
ab Jty to — N —
X [TIE,(;t, t2) VR (gt t) T S(ds ty t)

+ IR G5t 1) VES (G5 T2, t) TTAL(a; g 1)

HI (it t) VB (i to, t) TTA(Gity )] (AB)

X Vap(|r1 = 1o ) IEp(rat, ot ) VE(rots,raty)
XTL5(roty, rqt) + IR (rot, roto) Vs (raty,raty)

XTT45(r1t,Fot) + TIpy(rot, T ot ) VR A(roto, ity)

with Q) being the volume. The potential energy density is
thereforeWP(t) =(V)/Q.

The dependence on the tihean be made explicit using
Now we use the gauge-invariant Fouri@ack transforma- the GKBA. Using expressiofl3) for IIR and similar ones
tion (in the following a homogeneous system is assumed for I1= andII?, we get the following expression

XITA,(raty,r10)]. (A4)

. d%k, d%k, diq i ey [t
WPoit) = MZ] f f i 2 (M)svab(mexp(—g(ekb+q—éﬁ’b)<t—t2>—ﬂq- _dvAG )D

xex;{ -

X Fa(Ka, t)[1—Fa(ka— 0, ty) 1+ [Fp(Kp,t2) = Fo(kp+a,t2) IVEZ (G5 to,ty) [Fa(Ka,t1) —Fa(ka—0,t1)]

+Fp(Kot+0,to) [1—Fp(Kp, t) IVEA(G; T2, 1) [Fa(Ka,ty) — Fa(ka—a,ty)1}, (A7)

{[Fu(kp,t2) —Fo(kota,12) IVER(G; 1o, th)

I ea t ! !
7 (Gka—q_fka)(t—t1)+w—‘aq J%dt A(t)

where we have defineEa(k,t_)Efa(k—(ea/c)A(t_) t_) Now it is easy to calculate also the temporal derivation of this
expression

d 1 d’k, d3k, dq e, € }
___\\/PO —_ a__ b _ 4.
ALY fto jto J(Zwﬁ 3 (amh)? (2 VD] R A T WAL
€o ! i a a e
Xexﬁ( 7 (Ekb+q_6kb)(t_ 2)_m—bQ' Tdt'A(t') )exl{_g (€k,—q— €k )(t— 1)
€a t — — e — _

+§q~ftdt'A<t'>} {[Fp(Kp t2) = Fo(kota,t2) IVER(Q; to, t1)Fa(Ka, t)[ 1= Fa(ka— 0, t1)]

+[Fp(Kp,to) = Fp(kp+ 1) IVEs (0 t2, t1)[Fa(Ka,t1) — Fa(ka—a,t1)]

+Fp(Kot+0,to) [1—Fu(Kp, ) IVEA(G; T2, 1) [Fa(Ka,ty) = Fa(ka—a,t1) 1} (A8)
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This expression can be compared with that resulting from

the right hand side of the energy balance equatiah. First,

we summarize important symmetry relations of the non-

Markovian collision integral

d%k,dk, 0%k, _
Iab(kaat)::J.___(5255;;__1ab(kaykbyka:kb)

X 8(Kg+ Ky —Ka—Kp). (A9)

Using that V55 (aity,t)=Ves (—a;to,ty) and

VER(g;t,t) = Vo2~ q;taty), it is easy to show that the
quantity T, has the following properties

Tab( Ka,Kp ;?a i?b) = _Tab(k_a ,k_b TKa Kp),
(A10)

Tab( Ka. Ky ;Fa ,E;) :Tba(kb Ka ;k—b ,k—a)-

Therefore, for any functioh,(k,), we have

PHYSICAL REVIEW B4 026414

d3k,
;} f(zﬂ_—ﬁ)?,ha(ka)lab(ka)
d3k,d3k ,d3k, d3k, .
-3 f a(zihﬁb D (Kot ko —Ka— Kp)

1 — —
X 7L ha(ka) + hp(ky) —ha(ka) = hu(kp) ]

XTap(KaKp,Ka,Kp). (A12)

Inserting the explicit form of the collision integral,, that
follows from a comparison with Eq16) and performing the
necessary substitution of integration variables, there follows

2

d®k; ki d
_ — _ ___\p\/pot
2 f(m)g o ek == EWPL - (A12)
Thus the energy baland&7) reads now
dvvkin dvvpot
T T =j-E, (A13)

i.e., the change of the total energy of the system of particles
is equal tgj - E. In the case of a vanishing external field, the
total energy is conserved.

[1] M.D. Perry and G. Mourou, Scien@64, 917 (1994).

[2] C. Oberman, A. Ron, and J. Dawson, Phys. Fluidsl514
(1962; J.M. Dawson and C. Obermaifjd. 6, 394 (1963.

[3] C.D. Decker, W.B. Mori, J.M. Dawson, and T. Katsouleas,
Phys. Plasmai,, 4043(1994.

[4] V.P. Silin, Zh. Esp. Teor. Fiz.47, 2254 (1964 [Sov. Phys.
JETP20, 1510(1965].

[5] Yu.L. Klimontovich, Kinetic Theory of Nonideal Gases and
Nonideal Plasmas(Russ) (Nauka, Moscow, 1975 (Engl.
transl.: Pergamon Press, Oxford, 1982

[6] P. Mulser and A. Saemann, Contrib. Plasma PI8/&.211
(1997; P. Mulser, F. Cornolti, E. Besuelle, and R. Schneider,
Phys. Rev. B63, 63 (2000.

[7] A.B. Langdon, Phys. Rev. Let#i4, 575(1980.

[8] R.D. Jones and K. Lee, Phys. Fluids, 2307(1982.

[9] J.R. Albritton, Phys. Rev. Letb0, 2078(1983.

[10] B.N. Chichkov, S.A. Shumsky, and S.A. Uryupin, Phys. Rev. A
45, 7475(1992.

[11] S. Pfalzner and P. Gibbon, Phys. ReV5E 4698(1998.

[12] S. Rand, Phys. Re.36 B231(1964.

[13] L. Schlessinger and J. Wright, Phys. Rev2@, 1934(1979.

[14] V.P. Silin and S.A. Uryupin, Zh. Esp. Teor. Fiz.81, 910
(1981) [Sov. Phys. JETB4, 485(1981)].

[15] R. Cauble and W. Rozmus, Phys. Flu 3387(1985.

[16] G. Rapke, Phys. Rev. 57, 4673 (1999; G. Ropke and A.
Wierling, ibid. 57, 7075(1998.

[17] H. Reinholz, R. Redmer, G. R&e, and A. Wierling, Phys.
Rev. E62, 5648(2000.

[18] H.-J. Kull and L. Plagndéunpublishegl

[19] D. Kremp, Th. Bornath, M. Bonitz, and M. Schlanges, Phys.
Rev. E60, 4725(1999.

[20] Th. Bornath, M. Schlanges, P. Hilse, D. Kremp, and M. Bonitz,
Laser Part. Beam$8, 535 (2000.

[21] D. Kremp, Th. Bornath, P. Hilse, H. Haberland, M. Schlanges,
and M. Bonitz, Contrib. Plasma Phy1, 259 (2002.

[22] H. Haberland, M. Bonitz, and D. Kremp, Phys. Rev.6E,
026405(2001)).

[23] M. Bonitz, Th. Bornath, D. Kremp, M. Schlanges, and W.D.
Kraeft, Contrib. Plasma Phy89, 329(1999.

[24] M. Schlanges, Th. Bornath, D. Kremp, M. Bonitz, and P. Hilse,
J. Phys. IV10, Pr5-323(2000.

[25] S. Fujita, Introduction to Nonequilibrium Quantum Statistical

Mechanics(Saunders, Philadelphia, 1966

H. Haug and A.P. Jauh&uantum Kinetics in Transport and

Optics of SemiconductorSpringer-Verlag, Heidelberg, New

York, 1996.

[27] P. Lipavsky, V. Spicka, and B. \elicky, Phys. Rev.38, 6933
(1986.

[28] M. Schlanges and Th. Bornath, Contrib. Plasma PBys239
(1997).

[29] V.P. Silin, Quantum Electror29, 11 (1999 [Kvant. Elektron.
(Moscow 26, 11 (1999].

[30] Th. Bornath, D. Kremp, and M. Schlanges, Phys. ReG0E
6382(1999.

[26]

026414-12



