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Nonlinear collisional absorption in dense laser plasmas
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Collisional absorption of dense, fully ionized plasmas in strong laser fields is investigated starting from a
quantum kinetic equation with non-Markovian and field-dependent collision integrals in dynamically screened
Born approximation. This allows to find rather general balance equations for the energy and the current. For
high-frequency laser fields, quantum statistical expressions for the electrical current density and the cycle-
averaged electron-ion collision frequency in terms of the Lindhard dielectric function are derived. The expres-
sions are valid for arbitrary field strength assuming the nonrelativistic case. Numerical results are presented to
discuss these quantities as a function of the applied laser field and for different plasma parameters. In particu-
lar, nonlinear phenomena such as higher harmonics generation and multiphoton emission and absorption in
electron-ion collisions are considered. The significance to include quantum effects is demonstrated comparing
our results for the collision frequency with previous results obtained from classical theories.
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I. INTRODUCTION

In recent years the laser-matter interaction has becom
field of increasing interest. This is due to the impress
progress in laser technology that makes short-pulse lase
high intensity available in laboratory experiments@1#. Dur-
ing the interaction of such laser pulses with solid targe
dense plasmas can be created relevant for astrophysica
search and for inertial confinement fusion. Especially, at h
intensities the quiver velocityv05eE0 /mev can be large
compared to the thermal velocityv th5AkBTe /me, and inter-
esting nonlinear effects have to be expected.

Of special importance for modeling intense laser-ma
interaction is to understand the transfer processes of en
from the laser field to matter. They determine the crea
nonequilibrium plasma state and the various high-field p
nomena such as multiphoton ionization, higher harmon
generation, and x-ray emission. One of the important mec
nisms of energy deposition is inverse bremsstrahlung
considers laser light absorption via collisional processes
tween the plasma particles. In strongly ionized plasmas,
absorption process is essentially governed by the elect
ion interaction usually described in terms of the electron-
collision frequency.

In several papers, various approaches were used to c
late the electron-ion collision frequency and the dynam
conductivity, respectively, for laser plasmas under differ
conditions. Dawson and Oberman@2# evaluated the high-
frequency conductivity for fully ionized plasmas in lowe
order of v0 /v th in the frame of classical dielectric theor
based on the Vlasov-Poisson set of equations. Recently,
model was extended to the strong field case in a pape
Deckeret al. @3#. Expressions for the electron-ion collisio
frequency for arbitrary ratiosv0 /v th were already derived by
Silin in 1964 @4# and by Klimontovich in 1975@5# starting
from kinetic equations for classical plasmas with no
Markovian Landau and Lenard-Balescu collision terms,
spectively. A ballistic model was recently considered
Mulser et al. @6# in order to study the time-depende
1063-651X/2001/64~2!/026414~12!/$20.00 64 0264
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electron-ion collision frequency in laser plasmas. The eff
of non-Maxwellian distribution functions during the absor
tion process was predicted by Langdon@7#, and it was inves-
tigated more in detail by several authors in subsequent
pers~see, e.g.,@8–10,3#!. Inverse Bremsstrahlung absorptio
calculations for classical strongly coupled plasmas apply
a tree code simulation were performed by Pfalzner and G
bon @11#.

The theories mentioned so far consider classical plasm
Consequently, they cannot be applied to situations wh
quantum effects become important. Quantum effects in de
plasmas can be expected~i! if the Landau length l
5e2/4pe0kBTe is comparable with the thermal waveleng
l5(2p\2/mekBTe)

1/2, i.e., l /l<1, ~ii ! for \v/kBTe.1
with v being the laser frequency, and~iii ! if the electrons
with number densityne have to be described by Fermi st
tistics in degenerate plasmas, i.e.,nel

3.1. Quantum me-
chanical treatments were first given by Rand@12# and by
Schlessinger and Wright@13# determining the nonlinear ab
sorption rate by averaging the Born cross section of pho
emission and absorption. A quantum approach to calcu
the electron-ion collision frequency in strong fields was a
developed by Silin and Uryupin@14#. Cauble and Rozmus
@15# investigated the inverse bremsstrahlung absorption
efficient in the linear regime using a semiclassical mem
function kinetic formalism including lowest order quantu
effects by a quantum pair potential. Here, the correlatio
between the particles were treated by applying class
integral-equation methods. In papers of Ro¨pkeet al. @16# and
Reinholz et al. @17#, a quantum statistical approach to th
dynamical conductivity was presented using linear-respo
theory. A quantum mechanical dielectric model to calcul
the electron-ion collision frequency for arbitrary fie
strength was recently presented by Kull and Plagne@18#.

A rigorous kinetic approach to the inverse bremsstrahlu
absorption in dense plasmas including all the quantum
fects mentioned above was still missing until recent
Kremp et al. @19# derived a quantum kinetic equation fo
dense plasmas in strong laser fields using nonequilibr
©2001 The American Physical Society14-1
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Green’s function techniques. In this approach, the differ
interaction processes, e.g., electron-electron, electron
and electron-atom scattering, can be taken into accoun
appropriate approximations of the generalized fie
dependent scattering rates. In the paper mentioned above
theory was applied to fully ionized nonrelativistic plasma
The non-Markovian collision term was evaluated in statica
screened Born approximation including nonlinear field
fects such as multiphoton processes and higher harmo
generation. Subsequently, quantum statistical expression
the electron-ion collision frequency were derived, and tim
dependent phenomena were studied by numerical solutio
this equation@20–22#. It turns out that the quantum treatme
avoids automatically the well-known divergencies occurr
in the classical weak coupling theories. Generalized quan
expressions for the collision term and the electron-ion co
sion frequency including dynamic screening were given
the first time in@23# and @24#.

The aim of the present paper is to continue our investi
tion on inverse bremsstrahlung absorption in dense fully i
ized laser plasma based on quantum kinetic theory.Espe-
cially, the influence of quantum effects on the electron-
collision frequency is studied in more detail for arbitra
values ofv0 /v th . For this purpose a kinetic equation with
new appropriate form of the quantum collision term in d
namically screened Born approximation is derived and
plied to high-frequency laser fields.

The paper is organized as follows. In Sec. II, a brief de
vation of the quantum kinetic equation for the Wigner dist
bution function is presented. Here, the non-Markovian a
field-dependent scattering rates are given in terms of
screened potential and the two-time polarization functio
that are used inrandom phase approximation~RPA!. The
resulting balance equations for the energy and the elect
current density are given in Sec. III. In particular, a gene
non-Markovian equation determining the current density
terms of the field-dependent dielectric function is derived.
Sec. IV, the theory is applied to high-frequency laser fie
using a perturbation ansatz for the electron distribution fu
tion. In the case of harmonic fields, the current density a
the electron-ion collision frequency can be expressed the
Fourier expansion in terms of Bessel functions and the fie
free quantum~Lindhard! dielectric function. Numerical re-
sults for the current density and the cycle-averaged elect
ion collision frequency for dense, fully ionized plasmas a
function of v0 /v th and for different plasma parameters a
discussed in Sec. V. Nonlinear field phenomena such
higher harmonics generation and multiphoton processe
electron-ion collisions are considered, and the influence
quantum effects is demonstrated comparing the results
those obtained from classical theories.

II. QUANTUM KINETIC EQUATION FOR DENSE
PLASMAS IN ELECTROMAGNETIC FIELDS

We consider a dense plasma under the influence of inte
laser radiation. The plasma is assumed to be fully ioni
consisting of electrons with number densityne and ions of
chargeei5Ze with number densityni . Focusing on spatially
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homogeneous electric fields and using the vector poten
gauge

A~ t !52E
2`

t

d t̄ E~ t̄ !; A05f50, ~1!

the following kinetic equation for the gauge invariant Wign
distribution function was derived recently@19#

H ]

]t
1eaE~ t !•“kaJ f a~ka ,t !522ReE

t0

t

d t̄$Sa
.ga

,2Sa
,ga

.%

5I a~ka ,t !, ~2!

wherea labels the particle species. The collision integral
given in terms of the self-energy functions~scattering rates!,
Sa

: , and the two-time correlation functionsga
: . Here, the

arguments are

Sa
:ga

"[Sa
:@ka1Ka

A~ t, t̄ !;t, t̄ #ga
"@ka1Ka

A~ t, t̄ !; t̄ ,t#,
~3!

where Ka
A is the field-induced momentum shiftKa

A(t, t̄ )

[ea* t̄
t
dt8@A(t)2A(t8)#/(t2 t̄ ). The gauge-invariant modi

fied Fourier transform is given by@25,26#

ga~k;t,t8!5E d3rga~r ;t,t8!

3expH 2
i

\
r•Fk1eaE

t8

t

d t̄
A~ t̄ !

~ t2t8!G J . ~4!

The kinetic equation~2! is still very general, and two
steps are necessary to find a closed form with an exp
expression for the collision term:~i! The self-energy func-
tions have to be specified in a certain approximation, and~ii !
the two-time correlation functions have to be expressed
terms of the Wigner distribution function. The latter point
known as the reconstruction problem@27#.

Powerful schemes are available to determine appropr
approximations for the self-energy functionsSa

: taking into
account nonlinear field dependence as well as many-b
and quantum effects relevant for high-density plasmas.
will use here the so-calledVs-approximation that corre-
sponds to a dynamically screened Born approximation ap
cable to weakly coupled plasmas. It reads for the gau
invariant Fourier transform

Sa
:~k;t,t8!5 i\E d3q

~2p\!3
ga

:~k2q;t,t8!Vaa
s :~q;t,t8!.

~5!

After insertion of this expression into Eq.~2! the collision
integral can be written as
4-2
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I a~ka ,t !52 ReE
t0

t

d t̄E d3q

~2p\!3
$Vaa

s .~q;t, t̄ !

3P̃aa
, @ka1Ka

A~ t, t̄ !,q, t̄ ,t#2Vaa
s ,~q;t, t̄ !

3P̃aa
. @ka1Ka

A~ t, t̄ !,q; t̄ ,t#%. ~6!

Here, we introduced the auxiliary functionP̃aa
" (ka,q; t̄ ,t)5

2 i\ ga
:(ka2q;t, t̄ )ga

"(ka ; t̄ ,t). The key quantities in the
collision term~6! are the correlation functions of the dynam
cally screened potential,Vs . andVs ,, which are related to
the correlation functions of the longitudinal field fluctuatio
@28#. Within the RPA we have

Vab
s :~q;t1 ,t2!5(

c
E

t0

`

d t̄Vac~q!@Pcc
R ~q;t1 , t̄ !Vcb

s :~q; t̄ ,t2!

1Pcc
: ~q;t1 , t̄ !Vcb

s A~q; t̄ ,t2!#, ~7!

and

Vab
s R/A~q;t1 ,t2!5Vab~q!d~ t12t2!1(

c
E

t0

`

d t̄ Vac~q!

3Pcc
R/A~q;t1 , t̄ !Vcb

s R/A~q; t̄ ,t2!, ~8!

where Vab(q)5eaeb\2/(«0q2) is the Coulomb potential
and Vab

s R/A are the retarded and advanced screened po
tials. The polarization functionsPaa

: (q;t1 ,t2) are given by

Paa
: ~q;t1 ,t2!5E d3ka

~2p\!3
P̃aa

: ~ka,q;t1 ,t2!, ~9!

and for the retarded and advanced polarization functions
have

Paa
R/A~q;t1 ,t2!56Q@6~ t12t2!# @Paa

. ~q;t1 ,t2!

2Paa
, ~q;t1 ,t2!#

The collision integral~6! contains the dependence on t
species in an implicit form. However, for our further consi
erations, especially the discussion of balance equations,
necessary to identify the particular integrals for collisio
between the different species according toI a(ka ,t)
5(bI ab(ka ,t). Using Eqs.~7! and ~8!, we get the result

I ab~ka ,t !52 ReE d3q

~2p\!3
Vab~q!E

t0

t

d t̄1E
t0

t

d t̄2

3$Pbb
R ~q;t, t̄ 2!Vba

s R~q; t̄ 2 , t̄ 1!

3P̃aa
, ~ka1Ka

A ,q; t̄ 1 ,t !1@Pbb
R ~q;t, t̄ 2!

3Vba
s ,~q; t̄ 2 , t̄ 1!1Pbb

, ~q;t, t̄ 2!Vba
s A~q; t̄ 2 , t̄ 1!#

3P̃aa
A ~ka1Ka

A ,q; t̄ 1 ,t !#%, ~10!
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whereKa
A is a short hand notation for the field-induced m

mentum shift~3! with Ka
A5Ka

A(t, t̄ 1). Here we want to men-
tion, that Eq.~7! could be transformed into another form
Vab

: 5(c*Vac
s RPcc

: Vcb
s A , which is often used@cf. Eq. ~56! in

@23##. However, this form is unfavorable to derive no
Markovian source terms in the balance equations.

So far the collision integral~10! is given as a functional of
the two-time correlation functionsga

:(t,t8). In order to get
an expression in terms of one-time distribution function
one has to solve the reconstruction problem mentio
above. Due to the non–Markovian character of the collis
integral~10!, we introduce the Wigner distribution function
by the generalized Kadanoff-Baym ansatz~GKBA!. It reads
in gauge-invariant form@19#

6ga
:~k;t,t8!5ga

R~k;t,t8! f a
:@k2Ka

A~ t8,t !,t8#

2 f a
:@k2Ka

A~ t,t8!,t#ga
A~k;t,t8!, ~11!

where f a
,(t)52 i\ga

,(t,t)5 f a(t) defines the Wigner func-
tion f a(t). Furthermore, we havef a

.(t)5 i\ga
.(t,t)51

2 f a(t). The gauge-invariant retarded and advanced pro
gators for free particles in an external field are given by

ga
R/A~k;t,t8!56

1

i\
Q„6~ t2t8!…expS 2

i

\H k2

2ma
~ t2t8!

1
ea

2

2ma
F E

t8

t

d t̄A2~ t̄ !

1
1

t2t8S Et8

t

d t̄8A~ t̄ ! D 2G J D . ~12!

In fact, the quantities given in the collision integral~10!
can now be expressed in terms of the Wigner distribut
functions. We get, e.g., the following field-dependent expr
sion for the retarded polarization function in RPA

Paa
R ~q;t,t8!52

i

\
Q~ t2t8!e( i /\)q•Ra(t,t8)E d3k

~2p\!3

3e2( i /\)(ek1q
a

2ek
a)(t2t8)$ f a@k1Qa~ t,t8!;t8#

2 f a@k1q1Qa~ t,t8!;t8#%, ~13!

with ek
a5k2/2ma being the single particle energy. The a

vanced polarization function follows from the relatio
Paa

A (q;t,t8)5@Paa
R (q;t8,t)#* . The quantitiesQa andRa are

given by

Qa~ t, t̄ ![2eaE
t̄

t

dt8 E~ t8!5ea@A~ t !2A~ t̄ !#, ~14!

Ra~ t, t̄ ![
ea

ma
E

t̄

t

dt8E
t8

t

dt9E~ t9!5
ea

ma
E

t̄

t

dt8@A~ t8!2A~ t !#.

~15!
4-3
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The physical meaning of the two latter quantities becomes obvious from the equation of motion of charged particle
electric fieldE. Qa(t,t8) is just the momentum gain of a particle in theE field during the timet2t8 that is of the order of the
duration of the collision.Ra(t,t8) is the field-induced replacement of the particle during this time.

Finally, the collision integral can be written as

I ab~ka ,t !52
2

\2
ReE

t0

t

d t̄1E
t0

t

d t̄2E d3q

~2p\!3E d3kb

~2p\!3
Vab~q!exp„2 i $@eka2q

a 2eka

a #~ t2 t̄ 1!2q•Ra~ t, t̄ 1!%/\…

3exp„2 i $@ekb1q
b 2ekb

b #~ t2 t̄ 2!1q•Rb~ t, t̄ 2!%/\…$@ f b~ t̄ 2!2 f̄ b~ t̄ 2!#Vba
s R~q; t̄ 2 , t̄ 1! f a~ t̄ 1!@12 f̄ a~ t̄ 1!#

1@ f b~ t̄ 2!2 f̄ b~ t̄ 2!#Vba
s ,~q; t̄ 2 , t̄ 1!@ f a~ t̄ 1!2 f̄ a~ t̄ 1!#1 f̄ b~ t̄ 2!@12 f b~ t̄ 2!#Vba

s A~q; t̄ 2 , t̄ 1!@ f a~ t̄ 1!2 f̄ a~ t̄ 1!#%.

~16!
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For a shorter notation, the momentum arguments of the
tribution functions were dropped, i.e., one hasf c( t̄ )5 f c„kc

1Qc(t, t̄ ); t̄ … with c5a,b. For the functionsf̄ a and f̄ b one
has to replacekc by ka2q andkb1q, respectively.

The above quantum collision term is valid for arbitra
field strengths. The comparison with the field-free ca
shows that the applied time-dependent field modifies the
lision integral in several ways:~i! The momentum argument
of the distribution functions are shifted byQc , i.e., they
contain an additional retardation. This is called intraco
sional field effect.~ii ! A further modification occurs in the
exponential functions that essentially govern the energy
ance. There appear additional terms leading to a fie
dependent broadening determined by the functionRc that
describes the field-induced displacement of a free particlc.
~iii ! The collision integral is dependent on the field in a no
linear way. This will lead to typical nonlinear effects like th
occurrence of higher harmonics and multiphoton absorp
that will be, together with quantum effects, considered be
in detail.

III. BALANCE EQUATIONS, COLLISIONAL ABSORPTION

As we are interested here in the collisional absorption
the dense plasma, it is obvious to start from the bala
equation for the energy resulting from the second momen
the kinetic equation~2! with ~10!

dWkin

dt
2 j•E5(

a,b
E d3ka

~2p\!3

ka
2

2ma
I ab~ka!. ~17!

Here Wkin and j are the mean kinetic energy and the to
electrical current density, respectively, according to

Wkin~ t !5(
a
E d3ka

~2p\!3

ka
2

2ma
f a~ka ,t !, ~18!

j ~ t !5(
a

eaE d3ka

~2p\!3

ka

2ma
f a~ka ,t !. ~19!
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In the Appendix, we show that the right hand side of E
~17! is just2(d/dt)Wpot with the mean potential energy den
sity given by

Wpot5
1

2
~ i\!(

a,b
E

t0

`

d t̄1E
t0

`

d t̄2E d3q

~2p\!3
Vab~q!

3@Pbb
R ~q;t, t̄ 2!Vba

s R~q; t̄ 2 , t̄ 1!Paa
, ~q; t̄ 1 ,t !

1Pbb
R ~q;t, t̄ 2!Vba

s ,~q; t̄ 2 , t̄ 1!Paa
A ~q; t̄ 1 ,t !

1Pbb
, ~q;t, t̄ 2!Vba

s A~q; t̄ 2 , t̄ 1!Paa
A ~q; t̄ 1 ,t !#. ~20!

Thus the energy balance~17! reads now

dWkin

dt
1

dWpot

dt
5 j•E, ~21!

i.e., the change of the total energy of the system of partic
is equal toj•E that is in turn the energy loss of the electr
magnetic field due to Poynting’s theorem. Both the me
kinetic energy and the potential energy are functionals of
actual distribution functions that follow from the kineti
equation. It is an important feature of Eq.~21! that there
occurs the total energy on the left hand side. This means
a nonideal system is described by the underlying n
Markovian kinetic equation.

The balance equation for the electrical current reads

dj

dt
2(

a

naea
2

ma
E5(

ab
E d3ka

~2p\!3

eaka

ma
I ab~ka!. ~22!

If collision could be neglected completely, we would fin
j (0)5(a(ea

2/ma)na* t0
t dt8E(t8). Now, defining j[ j (0)1 j (1),

we have

dj (1)

dt
5(

ab
E d3ka

~2p\!3

eaka

ma
I ab~ka!. ~23!

With the collision integral~10!, the equation for the cur-
rent j (1) is therefore given by
4-4
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dj (1)

dt
5ReE

t0

`

d t̄1E
t0

`

d t̄2E d3q

~2p\!3

3
1

2 (
ab

S ea

ma
2

eb

mb
Dq Vab~q!

3$Pbb
R ~q;t, t̄ 2!Vba

s R~q; t̄ 2 , t̄ 1!Paa
, ~q; t̄ 1 ,t !

1Pbb
R ~q;t, t̄ 2!Vba

s ,~q; t̄ 2 , t̄ 1!Paa
A ~q; t̄ 1 ,t !

1Pbb
, ~q;t, t̄ 2!Vba

s A~q; t̄ 2 , t̄ 1!Paa
A ~q; t̄ 1 ,t !%, ~24!

where the upper limits of the time integration are determin
by the heaviside functions contained in the advanced
retarded functions, respectively. It is easy to see that o
collision termsI ab with aÞb contribute to the current bal
ance.

In the following, we will consider a two-componen
plasma consisting of electrons and ions (mi@me). The ions
will be treated in adiabatic approximation that leads
P i i

R/A(q;t,t8)'0 and i\P i i
,(q;t,t8)'ni with ni being the

ion density. Further,Vab(q)5eaebV(q) is the Coulomb po-
tential withV(q)51/(«0q2/\2). With these assumptions, ex
pression~24! is simplified considerably

dj (1)

dt
5ni ReE

t0

t

d t̄1E
t̄ 1

t

d t̄2E d3q

~2p\!3

eeei
2

mei\
q

3V~q!ee
2Pee

R ~q;t, t̄ 2!Vs R~q; t̄ 2 , t̄ 1!, ~25!

where only the electrons contribute to the dynamica
screened potentialVs R5V1V e2Pee

R Vs R. If, finally, the fol-
lowing quantity is introduced

«R
21~q;t,t8!5d~ t2t8 !1E

t8

t

d t̄ ee
2 Pee

R ~q;t, t̄ !Vs R~q; t̄ ,t8!,

~26!

we have

dj (1)

dt
5

eeniei
2

me\
ReE

t0

t

d t̄1E d3q

~2p\!3
qV~q!

3
1

i
@«R

21~q;t, t̄ 1!2d~ t2 t̄ 1!#. ~27!

This expression for the current is a very important result. T
quantity «21 represents a generalization of the dielect
function. It is a functional of the electron Green’s function
and it includes the full memory. The Wigner distributio
functions can be introduced in an approximation by
GKBA in its gauge-invariant form, c.f. Sec. II.

If one is able to solve equation~27! for j (1), it is simple to
calculatej•E and the respective energy absorption rate. T
derivation of analytical expressions will, of course, requ
further approximations that will be considered in the ne
section.
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IV. HIGH-FREQUENCY FIELDS

So far the calculation of the inverse dielectric functio
includes all the memory. Now we consider the collision fr
quency as low compared to the oscillation frequency of
field, i.e., the collisions can be treated as a small pertur
tion. This enables us to use a perturbation ansatz for
electron distribution function introduced by Silin@4#, f e

5 f e
01 f e

1 , in which the distribution functionf e
0 obeys the

collisionless equation

H ]

]t
2ee

] A

]t
•¹keJ f e

0~ke ,t !50. ~28!

We have@23#

f e
0~k,t !5 f e 0@k1eeA~ t !#, ~29!

with f e 0 being an arbitrary function depending on the initi
conditions. In this section we will adopt equilibrium distr
butions.

For the dielectric function follows

«R
21~q;t,t8!5expF i

\

eeq

me
•E

t8

t

d t̄A~ t̄ !G«RPA
21

3~q;t2t8!, ~30!

where«RPA is the RPA~Lindhard! dielectric function being a
functional of f e 0.

This simplified expression for the dielectric function ca
be inserted in Eq.~27! for the current that reads now

dj (1)

dt
5

eeniei
2

me\
Re

1

i Et0

t

d t̄1E d3q

~2p\!3
q V~q!

3expF i

\

eeq

me
•E

t̄ 1

t

d t̄A~ t̄ !G«RPA
21 ~q;t2 t̄ 1!, ~31!

and which will serve as the basis for the investigation
higher harmonics in the current, and for the calculation of
inverse Bremsstrahlung absorption in a dense quan
plasma.

A. Higher harmonics in the electrical current

For a harmonic field,E5E0cosvt, one can expand
Eq. ~31! into a Fourier series using e2 iz cosvt

5(l52`
` (2i)lJl(z)e

ilvt, whereJl is the Bessel function ofl th
order. This leads to

dj (1)

dt
5

eeniei
2

me\
ReE d3q

~2p\!3
q V~q!

3(
m

(
n

~2 i !m11JnS q•ve
0

\v D Jn2mS q•ve
0

\v Deimvt

3E
0

t2t0
dt e2( i /\)nvt@«RPA

21 ~q;t!2d~t!#, ~32!
4-5
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with ve
05eeE0 /mev. For timest@t0, which will be consid-

ered in the following, the expression in the second line of
above equation is just the Fourier transform of the inve
dielectric function.

After integration in time one has

j (1)~ t !5
eeniei

2

me\
ImE d3q

~2p\!3
q V~q!

3(
m

(
n

~2 i !m12JnS q•ve
0

\v D Jn2mS q•ve
0

\v D
3

eimvt

mv F 1

«RPA~q;2nv!
21G , ~33!

with the Lindhard dielectric function

«RPA~qv!

511e2V~q!E d3p

~2p\!3

f e0~p1q!2 f e0~p!

\v2ee~p1q!1ee~p!1 i0
.

~34!

Eq. ~33! is clearly a Fourier expansion of the current
terms of all harmonics. The Fourier coefficients of the c
rent, j (t)5(m52`

` jm(v)e2 imvt with j m5 j 2m* , can be iden-
tified easily from Eq.~33!. One can show that only the od
harmonics are allowed due to the symmetry of the interac
that is characterized by Re«0

21(q,v)5Re«0
21(2q,2v)

and Im«0
21(q,v)52Im «0

21(2q,2v). In particular, we
get for the real parts (l 50,1,2, . . . )

Rej2l 11~v!5
~21! l

~2l 11!
niei

2E d3q

~2p\!3

ee

me\v
q

3V~q! (
n50

`

JnS q•ve
0

\v D FJn2(2l 11)S q•ve
0

\v D
1Jn1(2l 11)S q•ve

0

\v D G Im «RPA
21 ~q;2nv!,

~35!

whereas for the imaginary parts follows

Im j2l 11~v!5d l ,0

nee
2

me

E0

2
1

~21!l

~2l11!
niei

2E d3q

~2p\!3

ee

me\v
q

3V~q! (
n50

`

JnS q•ve
0

\v D FJn2(2l 11)S q•ve
0

\v D
2Jn1(2l 11)S q•ve

0

\v D G @Re«RPA
21 ~q;2nv!21#.

~36!

Evaluation of these expressions allows to investigate
spectrum of the time-dependent electrical current as a fu
tion of the electrical field strength, of the frequency, and
the plasma temperature and density, respectively.
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B. Collisional absorption rate

The energy dissipation in an electrical fieldE5E0cosvt
is then given by

j ~ t !•E~ t !5E0•H Rej1~v!1(
l 51

`

@Re$ j2l 11~v!

1 j2l 21~v!%cos~2lvt !1Im$ j2l 11~v!

1 j2l 21~v!%sin~2lvt !#J , ~37!

containing beside the constant term even harmonics only
Now the dissipation of energy is calculated averaged o

one oscillation cycle

^ j•E&[
1

TEt2T

t

dt8j ~ t8!•E~ t8!5E0•Rej1~v!. ~38!

The currentj (0) gives no contribution here. We want to me
tion that with the Silin ansatz~29!, there holds ^ j•E&
5^dWkin/dt&. That means that the potential energy averag
over an oscillation cycle is constant in this approximation

In the expression for Rej1 one can use the recursion fo
mula for the Bessel functions

Jn21~z!1Jn11~z!5
2n

z
Jn~z!, ~39!

which leads to

^ j•E&5niei
2E d3q

~2p\!3
V~q! (

n51

`

nv Jn
2S q•ve

0

\v D
3Im

1

«RPA~q;2nv!
. ~40!

This result has a similar form as that of the nonline
Dawson-Oberman model@3#. We want to stress, howeve
that in the present paper, the dielectric function is given
the quantum Lindhard form, whereas the dielectric theory
Deckeret al. leads to the classical Vlasov dielectric functio

Finally, using Im«2152Im «/u«u2, we get

^ j•E&5niei
2E d3q

~2p\!3

3V~q! (
n51

`

nv Jn
2S q•ve

0

\v D Im «RPA~q;nv!

u«RPA~q;nv!u2
. ~41!

The Lindhard dielectric function has to be calculated n
merically, that can be done for arbitrary degeneracy. Fo
transparent discussion of the different quantum effects, h
ever, it is advantageous to consider especially the nonde
erate case, in which some necessary integrations can be
analytically. For this case of a Maxwellian electron distrib
tion function, we get@24#
4-6
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^ j•E&5
8A2pZ2e4neniAme

~4p«0!2~kBT!3/2
v2(

n51

`

n2E
0

`dk

k3

1

u«RPA~k,nv!u2

3e2(n2mev2/2kBT k2)e2(\2k2/8mekBT)

3
sinh~n\v/2kBT!

~n\v/2kBT!
E

0

1

dz Jn
2S eE0k

mev
2

zD . ~42!

In the classical limit,\→0, this expression is well known
Within the classical kinetic theory it was derived first b
Klimontovich @5#. Later Deckeret al. @3# got such an expres
sion in the framework of the nonlinear Dawson-Oberm
model. The classical formulas have the well-known probl
of a divergency at largek that is solved by some cutoff pro
cedures. In contrast, in our quantum approach no diverg
cies exist.

Quantum effects, indicated by\, occur here at differen
places. The first place is one of the exponential functions
Eq. ~42! describing the quantum diffraction effect at larg
momentak. This exponential function ensures the conv
gence of the integral. The second place is the term with
sinh function that is connected with the Bose statistics
multiple photon emission and absorption. Finally, quant
effects enter also the calculation ofu«(q,nv)u2 itself. These
effects will be discussed in detail in the next section.

Often the energy absorption ratenE is discussed that is
defined bynE5^ j•E&/^e0E2&, or the electron-ion collision
frequency nei that is introduced according to a high
frequency Drude model with

nei5
v2

vpl
2

^ j•E&

^«0E2&
. ~43!

V. NUMERICAL RESULTS

In this section we will present numerical results for t
collision frequency and the higher harmonics in the curr
density based on the formulas of the foregoing chapter.
emphasis will be to show the importance of a quantum
proach. In the following a hydrogen plasma is conside
that is assumed to be fully ionized.

In Fig. 1 the collision frequency in such a plasma
shown as a function of the quiver velocity. For comparis
there are given curves~dashed line! following from the
asymptotic formulas of Silin for the cases of small and of b
quiver velocities, respectively. These formulas read@4#

nei5
4

3

A2pe4Z2ni

~4p«0!2me
2v th

3
ln

kmax

kmin
, v0!v th , ~44!

nei

vp
5

Z

p2

1

nlD
3 S v th

v0
D 3F lnS v0

2v th
D11G lnkmax

kmin
, v0@v th ,

~45!

with lD being the Debye length. In the high-frequency fie
under consideration,kmin is given as usual bykmin5v0 /vth .
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For the upper cutoff we take here for the comparison of
classical one,kmax54p«0kBT/(Ze2).

Further, the classical expression of Deckeret al. @unfortu-
nately, in their Eq.~22! in @3#, a factor 2/(nelD

3 ) is missing#
is evaluated~dash-dotted line!. Our quantum expression, Eq
~43! with ~41!, was evaluated with the quantum Lindha
dielectric function fully dynamical and, for comparison, al
with static screening in the denominator in Eq.~41!. These
results are given in Fig. 1 with solid lines. In the given log
rithmic scale, there is almost no difference between th
two cases to be observed. The qualitative behavior of
results from the classical dielectric theory of Deckeret al.
and from our quantum approach is very similar. The collisi
frequency is nearly constant for small field strengths up
v0 /v th51 and then decreases rapidly for higher fields. T
is in agreement with the asymptotic formulas of Silin, to
There are, however, quantitative differences. These can
attributed to the use of Coulomb logarithms in the classi
approaches that correspond to cutting procedures in the
gral over momentum.

In order to make the differences between the differ
approximations in the range of weak and moderate value
v0 more prominent, in Fig. 2 the collision frequency is give
in a linear scale for the same parameters as in the foreg
figure, and in Fig. 3 for a higher temperature.

In this linear scale, the small differences between
cases of dynamical screening and statical screening are
seen. The static approximation for 1/u«u2 slightly overesti-
mates the effect of screening. The difference to the class
results of Deckeret al. is much bigger in Fig. 2 whereas fo
the case of a higher temperature@lower coupling paramete
G5(e2/4p«0)/dkBT with d5(4pni /3)21/3# the agreement
is much better, cf. Fig. 3.

The dependence of the collision frequency on the c
pling parameter will be considered now more in detail. Fir
in Fig. 4, the collision frequency is shown as a function
coupling parameterG for a small quiver velocity, i.e., a sma

FIG. 1. Electron-ion collision frequency as a function of th
quiver velocityv05eE/vme for a hydrogen plasma in a laser fiel
(Z51;ne51022 cm23;T53•105 K;v/vp55). For comparison,
results of Deckeret al. ~dash-dotted line! and of the asymptotic
formulas~44! and ~45! of Silin ~dashed line! are given.
4-7
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field strength. Results of the evaluation of Eqs.~43! and~40!
are given by the upper solid line. The static screening res
are the lower solid curve. Again the asymptotic formula
Silin for small quiver velocities is given, and the classic
expression of Deckeret al. was evaluated~Fig. 5!. Further-
more, numerical results of Cauble and Rozmus@15# are plot-
ted. They considered small field strengths and use
memory function kinetic approach that allows to consid
plasmas up to strong coupling. The points in Fig. 4 cor
spond to their so-called Debye-Hu¨ckel mean field approxi-
mation, cf. Ref.@15#. Finally, we compare in Fig. 4 also with
numerical simulation results of Pfalzner and Gibbon@11#.
They applied a tree code method to classical molecular
namics simulations using a soft Coulomb potential.

According to Fig. 4 the collision frequency increases w
increasing couplingG. For smallG, the dielectric theory and
our theory give almost the same results. The values of
asymptotic formula of Silin are slightly bigger. With increa

FIG. 2. Electron-ion collision frequency vs quiver velocity fo
the same parameters as in Fig. 1.

FIG. 3. Electron-ion collision frequency as a function of t
quiver velocityv05eE/vme for a hydrogen plasma in a laser fie
(Z51;ne51022 cm23;T5106 K;v/vp55). For comparison, re-
sults of Deckeret al. ~dash-dotted line! and of the asymptotic for-
mulas~44! and ~45! of Silin ~dashed line! are given.
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ing G this asymptotic formula as well as the dielectric a
proach reach a maximum aroundG;0.2 and sharply drop
down afterwards. This behavior is governed by the Coulo
logarithm used in these approaches. It results from a cu
procedure at large momentak. Such a cutoff, inherent in
many classical approaches, is avoided in our approach
cause thek integration is automatically convergent, cf. th
second exponential function in Eq.~42!. Therefore the range
of applicability of our approach is extended to higher valu
of G.

The agreement with the results of Caubleet al. and of
Pfalzneret al. is rather good with the values of the prese
theory being slightly smaller. One has to take into accou
however, that our approximation is a weak coupling theo
whereas the approaches we compare with include the co
lations in higher approximations. We want to mention th

FIG. 4. Electron-ion collision frequency as a function of th
coupling parameterG for a hydrogen plasma in a laser field (Z
51;v0 /v th50.2;ne51022 cm23;v/vp53). Comparison is given
with the theory of Deckeret al. and with the asymptotic formula
~44! of Silin ~dashed line.!

FIG. 5. Electron-ion collision frequency as a function of th
coupling parameterG for a hydrogen plasma in a laser field (Z
51;v0 /v th510;ne51022 cm23;v/vp55). Comparison is given
with the theory of Deckeret al. and with the asymptotic formula
~45! of Silin ~dashed line.!
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our results do not depend solely onG, but depend on tem
perature and on density~as well as the results of Caub
et al. do because of the usage of a modified potential tak
into account short-range quantum effects!.

Before we are going to elucidate the quantum effects,
want to present in Fig. 5 the behavior of the collision fr
quency vsG for a higher value of the electrical field streng
(v0 /v th510). As the theory of Cauble and Rozmus is limit
to small field strengths, and because there are no result
this high fields from molecular dynamics calculations ava
able up to now, we can compare our results only with th
of the classical dielectric theory and with the asymptotic f
mula of Silin for big quiver velocities. The qualitative beha
ior is similar to that forv0 /v th50.2. Numerical values of the
collision frequency for differentG and various ratiosv0 /v th
are given in Table I.

Now the consequences of the quantum approach in c
trast to the classical dielectric theory will be investigated.
consider such parameters that the plasma can be assum
be nondegenerate, i.e., Eq.~42! can be used. In this case
direct comparison with the classical dielectric theory
Decker et al. is possible. Quantum effects indicated by\
occur in Eq.~42! at two places. One is the quantum diffra
tion effect ensuring the convergence of the integral at bik
~cf. the second exponential function!. The other is the factor
sinhx/x with x5n\v/(2kBT). The classical theory uses, in
stead, a cutoffkmax5mvth

2 4p«0 /Ze2, and the sinh factor is
missing.

An important feature of the expressions~40!–~42! is the
sum overn that can be interpreted as a sum over the differ
multiphoton processes, i.e., the emission and absorptio
energiesn\v. The different contributionsnn in the sum
nei5(nnn are dependent on the field strength. It is obvio
that with increasing field the number of terms contributi
essentially to the sum is also increasing. The following t
figures, Fig. 6 and Fig. 7, showingnn vs n ~full solution of
Eq. ~42!—solid line! for two different field strengths illus-
trate this issue. Moreover, we compare with the class
dielectric theory~dotted line! and the case in which the facto
sinhx/x in Eq. ~42! is set to unity~dashed line!. One observes
that the differences between these three cases grow wit
creasing photon numbern. The reason for the faster decrea
ing contributions in the classical approach is the hard cu
in the k integration while the maximum of the integrand
shifted to higher k due to the exponential facto
exp@2(n2v2me)/(2kBTk2)#. Thus the relative error of thenn
increases withn.

TABLE I. Electron-ion collision frequency,nei /vp , calculated
from Eq. ~41! for different values ofG and v0 /v th with ne

51022 cm23 andv/vp55.

v0 /v th

G 0.1 1.0 5.0 10

0.01 1.876731023 1.576631023 1.941031024 3.518331025

0.10 2.647631022 2.319131022 3.698131023 7.249731024

0.50 8.701831022 8.176531023 2.270331022 4.887031023

1.00 1.055031021 1.022131021 4.357731022 1.025431022
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The other quantum effect is connected with the sinhx fac-
tor that behaves for largex(n) asex/2x. Therefore this factor
becomes more important for largen, the processes involving
large numbers of photons are enhanced. This can be se
Fig. 7 that considers the casev0 /v th510. The solid curve
corresponding to the full solution extends to much highen
values than that curve that results from a neglection of
sinh term. An interesting feature is the plateau like behav
up to n;350 with the subsequent sharp drop down. We c
conclude at this point, that especially in the strong field c
where multiphoton processes play an increasing role, i
important to treat the problem on the basis of quantum m
chanics. This problem was also discussed in@18# based on an
asymptotic solution of expression~42! for strong fields.

In order to complete the discussion of the collision fr
quency, the dependence on the laser frequency is consid
This is shown in Fig. 8 for two different field strengths. Th

FIG. 6. Contributionsnn vs photon numbern in a hydrogen
plasma (ne51022 cm23; v/vp55; G50.1) for v0 /v th51.0.
Present approach~solid line!, sinh term neglected~dashed line!,
classical dielectric theory~dotted line!.

FIG. 7. Contributionsnn vs photon numbern in a hydrogen
plasma (ne51022 cm23; v/vp55; G50.1) for v0 /v th510.
Present approach~solid line!, sinh term neglected~dashed line!;
classical dielectric theory~dotted line!.
4-9
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full dynamic solution is compared with the static screen
approximation for 1/u«u2. For large frequencies the differ
ences between the two approximation decrease. Collec
effects in the dielectric function play a role only in the vici
ity of the plasma frequency. This behavior is to be seen a
for the higher field strength. In the high-field case, the sta
screening approximation deviates from the dynamical
also for the lower frequencies. This is caused by collect
effects in the terms with highern in the respective sum in Eq
~42! for arguments of the dielectric functionnv'vp .

The discussion of the behavior ofnei(v) for laser fre-
quencies around and below the plasma frequency has t
treated, of course, with some care because the underl
theory is a high-frequency approximation.

A further issue that is very interesting is the possibility
higher harmonics@29# in a strong laser field. The highe
harmonics in the current density can be calculated accor
to Eqs.~35! and~36!. In Fig. 9, the amplitudes of the differ
ent harmonics, 2A(Rej m)21(Imj m)2, are given as a function
of the field strength. The harmonics have amplitudes incre
ing with the field strength up to maxima at certain values a
decreasing afterwards. For high fields the differences
tween the higher harmonics decrease. The ratio toj (0), how-
ever, becomes very small.

VI. CONCLUSION

Starting from a generalized quantum kinetic equation
dense, laser plasmas in the framework of gauge-invar
Green’s functions, we derived balance equations for the
ergy and the electrical current of a plasma in strong la
fields. The non-Markovian collision integral was consider
in dynamically screened Born approximation~RPA!. In the
case of high frequencies the so-called Silin ansatz could
used leading to explicit expressions for the current and
electron-ion collision frequency in terms of the quantu
Lindhard dielectric function. This generalizes results of e

FIG. 8. Electron-ion collision frequency as a function of t
laser frequency for a hydrogen plasma (ne51021 cm23; T
5105 K) for two different field strengths. The upper curve of ea
pair corresponds to the full dynamical screening, the lower on
the static screening approximation.
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lier papers using classical kinetic theory and the class
dielectric theory, respectively. An important feature of t
quantum approaches is that no cutting procedures for la
momenta have to be introduced in the respective integr
Moreover, it turned out that quantum effects become es
cially important for strong fields when the energy absorb
in the collisions is much greater thankBT and multiphoton
processes play an essential role. This was found also rece
in the framework of the quantum Vlasov theory of Kull an
Plagne@18# who could reproduce our equation~42!. It should
be mentioned that the Green’s functions method allows
generalize the approach rather straightforwardly, e.g., to
clude strong coupling effects as ion correlations and bo
states.
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APPENDIX: MEAN POTENTIAL ENERGY

In general the mean potential energy is given by

^V&5
1

2 (
a,b

E d3r 1d3r 2Vab~r 12r 2! ~ i\!2gab
, ~r1r2t,r1r2t !,

~A1!

with gab
, (t,t8) being the two-time two-particle correlatio

function

gab
, ~r 1r 2t,r 18r 28t8!5

1

~ i\!2
^Ca

†~r 18t8!Cb
†~r 28t8!

3Cb~r 2t !Ca~r 1t !&. ~A2!

to

FIG. 9. Amplitudes 2A(Rej m)21(Imj m)2 of the m5(2l

11)th harmonics of the current vs field strength denoted
v0 /v th . The parametes arene5431021 cm23 andT51.23105 K.
4-10
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We will consider here the dynamically screened ladder
proximation@30# up to first order

gab5ga gb1 i\ gagbVab
s gagb1•••, ~A3!

which has to be evaluated on the Keldysh time conto
When this expression is inserted into Eq.~A1! the zeroth-
order term~Hartree term! gives no contribution for a neutra
plasma, and therefore we get~neglecting exchange terms an
initial correlation terms!

^V&~ t !5
1

2
~ i\!(

a,b
E

t0

`

d t̄1E
t0

`

d t̄2E d3r 1d3r 2E d2r̄ 1d3r̄ 2

3Vab~ ur12r2u!@Pbb
R ~r2t, r̄2 t̄ 2!Vba

s R~ r̄2 t̄ 2 , r̄1 t̄ 1!

3Paa
, ~ r̄1 t̄ 1 ,r1t !1Pbb

R ~r2t, r̄2 t̄ 2!Vba
s ,~ r̄2 t̄ 2 , r̄1 t̄ 1!

3Paa
A ~ r̄1 t̄ 1 ,r1t !1Pbb

, ~r2t, r̄2 t̄ 2!Vba
s A~ r̄2 t̄ 2 , r̄1 t̄ 1!

3Paa
A ~ r̄1 t̄ 1 ,r1t !#. ~A4!

Now we use the gauge-invariant Fourier~back! transforma-
tion ~in the following a homogeneous system is assumed!
02641
-

r.

ga~r ,tt8!5E d3k

~2p\!3

3expH i

\
r•Fk1eaE

t8

t

d t̄
A~ t̄ !

~ t2t8!
G J ga~k,tt8!,

~A5!

which leads to

^V&~ t !5
1

2
~ i\!(

a,b
VE

t0

`

d t̄1E
t0

`

d t̄2E d3q

~2p\!3
Vab~q!

3@Pbb
R ~q;t, t̄ 2!Vba

s R~q; t̄ 2 , t̄ 1!Paa
, ~q; t̄ 1 ,t !

1Pbb
R ~q;t, t̄ 2!Vba

s ,~q; t̄ 2 , t̄ 1!Paa
A ~q; t̄ 1 ,t !

1Pbb
, ~q;t, t̄ 2!Vba

s A~q; t̄ 2 , t̄ 1!Paa
A ~q; t̄ 1 ,t !# ~A6!

with V being the volume. The potential energy density
thereforeWpot(t)5^V&/V.

The dependence on the timet can be made explicit using
the GKBA. Using expression~13! for PR and similar ones
for P, andPA, we get the following expression
his
Wpot~t!5
1

2i\ (
a,b

E
t0

t

d t̄1E
t0

t

d t̄2E d3ka

~2p\!3
d3kb

~2p\!3
d3q

~2p\!3
Vab~q!expS 2

i

\F ~ekb1q
b 2ekb

b !~t2 t̄ 2!2
eb

mb
q•E

t̄ 2

t

dt8A~ t8!G D
3expS 2

i

\F ~eka2q
a 2eka

a !~ t2 t̄ 1!1
ea

ma
q•E

t̄ 1

t

dt8A~ t8!G D $@Fb~kb , t̄ 2!2Fb~kb1q, t̄ 2!#Vba
s R~q; t̄ 2, t̄ 1!

3Fa~ka, t̄ 1!@12Fa~ka2q, t̄ 1!#1@Fb~kb , t̄ 2!2Fb~kb1q, t̄ 2!#Vba
s ,~q; t̄ 2 , t̄ 1! @Fa~ka , t̄ 1!2Fa~ka2q, t̄ 1!#

1Fb~kb1q, t̄ 2! @12Fb~kb , t̄ 2!#Vba
s A~q; t̄ 2 , t̄ 1! @Fa~ka , t̄ 1!2Fa~ka2q, t̄ 1!#%, ~A7!

where we have definedFa(k, t̄ )[ f a(k2(ea /c)A( t̄ ), t̄ ). Now it is easy to calculate also the temporal derivation of t
expression

d

dt
Wpot~ t !52

1

\2 (
a,b

E
t0

t

d t̄1E
t0

t

d t̄2E d3ka

~2p\!3

d3kb

~2p\!3

d3q

~2p\!3
Vab~q!Feka2q

a 1ekb1q
b 2eka

a 2ekb

b 1S ea

ma
2

eb

mb
Dq•A~ t !G

3expS 2
i

\F ~ekb1q
b 2ekb

b !~ t2 t̄ 2!2
eb

mb
q•E

t̄ 2

t

dt8A~ t8!G D expS 2
i

\F ~eka2q
a 2eka

a !~ t2 t̄ 1!

1
ea

ma
q•E

t̄ 1

t

dt8A~ t8!G D $@Fb~kb , t̄ 2!2Fb~kb1q, t̄ 2!#Vba
s R~q; t̄ 2 , t̄ 1!Fa~ka , t̄ 1!@12Fa~ka2q, t̄ 1!#

1@Fb~kb , t̄ 2!2Fb~kb1q, t̄ 2!#Vba
s ,~q; t̄ 2 , t̄ 1!@Fa~ka , t̄ 1!2Fa~ka2q, t̄ 1!#

1Fb~kb1q, t̄ 2! @12Fb~kb , t̄ 2!#Vba
s A~q; t̄ 2 , t̄ 1! @Fa~ka , t̄ 1!2Fa~ka2q, t̄ 1!#%. ~A8!
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This expression can be compared with that resulting fr
the right hand side of the energy balance equation~17!. First,
we summarize important symmetry relations of the no
Markovian collision integral

I ab~ka ,t !5E d3k̄ad3kbd3k̄b

~2p\!6
Ĩ ab~ka ,kb ,k̄a ,k̄b!

3d~ka1kb2 k̄a2 k̄b!. ~A9!

Using that Vab
s :(q;t1 ,t2)5Vba

s "(2q;t2 ,t1) and
Vab

s R(q;t1,t2)5Vba
s A(2q;t2,t1), it is easy to show that the

quantity Ĩ ab has the following properties

Ĩ ab~ka ,kb ; k̄a ,k̄b!52 Ĩ ab~ k̄a ,k̄b ;ka ,kb!,
~A10!

Ĩ ab~ka ,kb ; k̄a ,k̄b!5 Ĩ ba~kb ,ka ; k̄b ,k̄a!.

Therefore, for any functionha(ka), we have
s

d

er

. A

02641
-
(
a,b

E d3ka

~2p\!3
ha~ka!I ab~ka!

5(
a,b

E d3kad3k̄ad3kbd3k̄b

~2p\!9
d~ka1kb2 k̄a2 k̄b!

3
1

4
@ha~ka!1hb~kb!2ha~ k̄a!2hb~ k̄b!#

3 Ĩ ab~ka,kb,k̄a,k̄b!. ~A11!

Inserting the explicit form of the collision integralĨ ab that
follows from a comparison with Eq.~16! and performing the
necessary substitution of integration variables, there follo

(
a,b

E d3k1

~2p\!3

k1
2

2ma
I ab~k1!52

d

dt
Wpot. ~A12!

Thus the energy balance~17! reads now

dWkin

dt
1

dWpot

dt
5 j•E, ~A13!

i.e., the change of the total energy of the system of partic
is equal toj•E. In the case of a vanishing external field, th
total energy is conserved.
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