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Asymptotic analysis and renormalized perturbation theory of the non-Hermitian dynamics
of an inviscid vortex
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An analysis of the non-Hermitian fluid systems described by the Rayleigh equation in an unbounded domain
has been carried out in the regime of large wave numbers. The evolution of a special class of localized
vorticities is also discussed. Asymptotic and perturbative approaches lead to the same final result. In the limit
considered, the system is stable. The perturbation analysis reveals interesting pathologies of the non-Hermitian
systems. Under specific conditions, the expansion is found to show secular growth. A discussion about the
mechanism of insurgence of such singular behavior is presented. It is also shown that the divergent expansion
is renormalizable by means of the renormalization group method—the renormalized results are in complete
conformity with the asymptotic solutions.
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[. INTRODUCTION By solving the initial value problem(which for non-
Hermitian systems is more appropriate than solving an ei-

Non-Hermitian operators represent a challenge for funcgenvalue problem we will first investigate the time-
tional analysts and mathematical physicists. For such operasymptotic evolution of the system. Then we will rederive
tors, no general theory of spectral resolution in infinite di-this result by means of a perturbative analysis in the regime
mensional function spaces is yet available. The mairPf small curvature of the ambient flow. The issue of the va-
obstacle is that, unlike Hermitian operators, they are not relidity of the perturbation theory for non-Hermitian systems is
solvable in terms of orthogonal and complete sets of eigend central point in this investigation. As pointed out before,
modes, making impossible the formulation of an appropriatdion-Hermitian operators induce coupling of orthogonal
spectral theorem. Moreover, analogous to nonlinear systemg}odes and they mimic the behavior of the nonlinear opera-
the Coup”ng induced by non-Hermitian operators renders g)rs. Since nonlinearities are known to induce divel’gences in
decomposition in terms of orthogonal modés., Fourier ~ Perturbation theory2,3] we might expect to find the same
modes quite useless. pathology in non-Hermitian systems. This is indeed the case.

The repercussions on the analysis of physical systemdVe will show that, under specific conditions, the perturbative
whose dynamics is governed by a non-Hermitian operato@nalysis leads to a singularity. We will also show how to
are rather serious. A canonical example is represented pgnormalize this divergence by means of the renormalization
sheared flows, which are described by the ideal Euler equdioup method4,5]. The renormalized expression comes out
tion. When these equations are linearized about an equilido be in perfect agreement with the results of the asympototic
rium shear flow, the generator of the dynamics turns out to ba&nalysis.
non-Hermitian. The energy of the perturbations, which is de- This proof of renormalizability is important in connection
composed from the energy of the mean field, is not closedVith another issue, namely, the suitability of Kelvin's repre-
and the exchange of the energies among perturbations a§gntation to describe strong sheared flows. This mefihd
the ambient field is extremely complicated. A physical con-first introduced more than a century ago in the stability
sequence is that the linear equations do not conserve “ernalysis of the Couette flow, and widely used in the last
ergy” which is an essential property of the original nonlineardecade[7—14] to unveil many important aspects of non-
system. Hermitian, shear-flow systems, is rather limited; it is appli-

In this paper we will discuss some of the pathologies ofcable only if the the shear-flow profile is linear. The renor-
non-Hermitian operators by analyzing, perhaps, the simpledhalized perturbative analysis shows that a departure from
example of a shear-flow system, the Rayleigh equation in afe linear profile need not, and perhaps does not lead to
unbounded domain. In boundéchannel regions this equa- Singular changes in the time asymptotic behavior. The results
tion has been widely analyzed in the framework of theOf this study puts Kelvin's extremely simple method on a

Kelvin-Helmholtz instability[1]. much firmer footing. _ _
In Sec. I, we will present an asymptotic analysis of the

unbounded Rayleigh equation followed in Sec. Il by its per-
*Email address: fvolponi@plasma.q.t.u-tokyo.ac.jp turbative investigation. Section IV will be devoted to the
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proof of renormalizability of the divergence found in Sec. we will present a treatment which takes into account special

[ll. We summarize our results in Sec. V. classes of localized perturbations and which is valid for wave
numbersk>1. _
Il. ASYMPTOTIC INITIAL VALUE TREATMENT In the first case, sinckis large there ¥V ~Yl is a strong

damping factor and it is reasonable to assume that the main
contribution to the integral in Eq11) comes from the neigh-

borhood ofy. By Taylor expanding‘(?) andQ(yt) abouty

We start our analysis from the two-dimensiof2D) vor-
ticity equation for inviscid fluids which reads

Q+{P,0}=0, (1)  we have
where wherd,} represents the Poisson bracket. The stream- o f(y) —
function @ is related to the velocity and the vorticity() f(y)—f(y)=f"(y)(y—y)+ T(y—y)2=aZvL b7,
through the equations
(12)
V=VbXe,, (2
)= )+ D(y—y)= B +a bz,
Q= —AD, 3 Qy,1)=Q(y,1) +4,Q(y,t) (y=y) =Q(y,) + 3,Q(y,1)
(13
wheree, is the unit vector in the direction andA is the 2D o
Laplacian. By decomposing the streamfunction as wherez=y—vy, a=f’(y) andb=f"(y)/2. Substituting Egs.
=Dyt b, @ (12—(13) into Eq.(11) we have
where®, represents the equilibrium angl the perturbative _it"(y) me*kIZ\eikt(aHbzz)d
field, we can linearize Eq1) to obtain Q= 2 Q e z
d(Ad)+{p,Ado}+{Po,A¢}=0. ©)

it 3,Q f e Hgk@ Ay, (14
For a parallel equilibrium flow of the typeV, 2 -
=(—1(y),0,0), wheref(y) is an analytic function, we obtain

the Rayleigh equation An asymptotic evaluation of the above integrals gives two
’ different limits depending on whether the first derivatae
(0= T(y)d)Ap=—1"(y)dx¢, (6)  =f'(y) vanishes or not. la=f'(y) is nonzero then, for a

. . o ... large time, the two integraldl5] yield
where ' =4, . Since the ambient field is homogeneous with get wo integraliL5] yi

respect tox, we can decomposé into Fourier modes pro-

portional toe'*. Writing d,=ik with a good quantum num- 0= 2ib o 4abt 2.0 (15)
berk (in what follows, we takec>0) Eq.(6) translates as T k(1+atd) " kA(1+ai?)? v
[g—ikf(y)]A¢p=—ikf"(y) . (7)

We have gone back to a partial differential equation. How-
By inverting the Laplacian operatdr we obtain ever since we are interested in the long-term time behavior,
we may neglect the second term on the right side due to its

_ vyl e faster decayt( ). In force of this neglection we can, then,
N Kly—yl

¢ Ao 2kf_oo e oy, t)dy. (8) readily integrate Eq(15) to find

By using Eq.(8) we can recast Ed7) into Q(y t):Qo(y)ei(b/ak)tan_l(at). (16)

: Y (v vyl e
[o—ikf(y)]w= Tf, e Y o(y,tydy. (9  Therefore, fort—x, depending on the sign af

In terms of Q(y,t)—Qq(y)e!(bm2alsone), 17)
Q(y,t)=e M Wiu(y,t) (10 implying a simple phase shift from the initial perturbation. In
. . terms of the vorticity, we recover an oscillatory behavior of
the system is described by the t
ype
) [ iy yio v 1 ek~ Tl gy, | |
aQ(y,)=——| e VQ(y,ne" TV dy. o(y,t)=Qq(y)e (Pr2alsonelkit, (18)

11
Y An important deviation from the oscillatory response is

We will carry out the analysis of Eq11) in the regime of found whenf’(y) vanishes at some point. In this case, Eq.
short wavelengthglarge k) perturbations. In the Appendix (11) becomes
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if(y) 2 Plugging Eq.(25) into Eg. (24), we obtain the following
5,Q= TQL e Zgiktbz g7 recursion relations:

wo=Qg(y)e Y, (26)
i + o — t - . - —
0= g;y)J_w e—ky—yl(J wo(y,t)e"‘f(y)(t“)dﬁdy,

The second integral vanishes by symmetry, and the 0
asymptotic evaluation of the first leads to the equation (27)

b .
(9tQ: k_’;TeI(3/4)WQ, (20)

it e
+ —z(y) (?yQJ ze KgiktbZy 7 (19)

i + oo — t _ N —
“’m:%y)fx eklyyl( J'mel(yvt)elkf(yxtt)dﬁ dy.

(28)

with the solution

)= 2 BATRe 7T 21 —
QY1) =Qoly) @) Carrying out the integration in the first order correctiow,

We notice that, independent of the signpfQ always de- "€ads
cays with time. The vorticityw

w1 (y,t) = o)
w(y,t)ZQo(y)ez“ P ei(3/4)wfeikf(y)t (22) 1wy 2k
G +o _ ki) —fwit_q
has oscillations imposed on the decay. XJ e VY0 (y)———dy.
The main result of this section is that in an unbounded - f(y)—f(y)
inviscid fluid with a background parallel shear flow, the vor- (29)

ticity perturbations for larg& show asymptotic oscillations if
the first derivative of the background flow does not vanish atrg getermine the temporal behavior, we must evaluate the
some point. At the points where the first derivative does VaNintegral on the right side of Eq29)

ish, the perturbations suffer an exponential decay of the type

et fe oK) -fpIt_q
S(y,t)= f e 0g(y) —=———dy. (30
lll. PERTURBATIVE ANALYSIS o (¥)=1(y)
In this section, we develop a perturbation analysis of thé-ollowing the argument used in the previous section, for
Rayleigh equation when the flow curvatuf&(y) is small.  largek, we can approximate
Assumingf”(y)=¢&?g(y), whereg(y) is anO(1) function _ _
ande is a small positive parameter quantifying the smallness Qo(y)=Qo(y)+(y—Yy)dy&o(y), (31)
of the curvature with respect to the fldy), Eq.(7) may be o
written as andf(y) by Egs.(12). Using (12) and Eq.(31), Sbecomes
[o—ikf(y)]Ap=—eikg(y) ¢. (23) oo glk(azrbZ)t_ 1
SZQO(y)f ekl "4z
By using Eq.(8) and applying d,—ikf(y)] * to both sides o azt+bz’
of Eq. (23), we arrive at the integral equation . ik(az+b2)t_ 1
+3,0 f zeMd———— —dz. (32
ig(y) vV ] az+bz? (32

(Y, 1) =Qo(y)e V42—
By differentiating with time, we obtain

<[ e [Lompesonat
- ) 3;S=ik

QoY) f oMz gkaz b2
(24) N

+o0 )
whereQ(y) is an arbitrary function, to be specified by the +‘9y00(y)f ze Mrlgk@zroP)g,| (33
initial conditions. We look for an approximate solution of Eq. o

(24) by means of a Born perturbative series of the type The two integrals in the above equation are the same already

+oo calculated in Eq(14). Analogously to what done before we
o= E eMw, . (25) neglect the secon_d _integral on the right hand side due to its
n=0 faster decay, obtaining fd&

026312-3



VOLPONI, MAHAJAN, AND YOSHIDA PHYSICAL REVIEW E 64 026312

2iQ)
o= o(Y),
1+a%t?

t

w2 iy COSKFY —f(yIH -1 —
34 Re(S)=0 Kly=yl = dy.
(34 &9 o(y)Loe T .
which is easily integrated as

If f(y)—f(y) is an odd function ofy—y), Re(S)=0 due to

2i
S= gﬂo(y)tanfl(at). (35)  symmetry. For
The first order correctiom; is given by fy)=T(y)=Fely=y), (44)
wl(y,t)zeikf(y)tZigf(y) Quytaniay. (@6 with F(y—y) an even function of—y, Re(S) reads
+ o0 efklyfﬂ _ _
The result of the perturbative analysis is Re(S):Qo(y)f ﬁ[cos{ktFe(y—y))— 1]dy.
2 FelYTY
. i (45
w(y,t)=eKTMt (y) 1+32%|Z)tan*1(at) , (37

We further assume (af.(y—y) is a function of definite
in “full” agreement with the result of Eq(18). sign, (b) |im/—_>y|:e(y_y):0, and (c) e—k\y—yI/Fe@_y)

A pathology of the perturbative analysis is found in thedecays at infinity faster than /¢ y).

case whenf’(y) vanishes for somg=ys. In fact for a Due to (b) the envelope of the integrand,‘k‘y‘“/Fe(y

=0, Sreads —y) is singular. We want to classify the dependence of
e aikb2t g Re(S) on t according to the type of singularity that
S= Qo(y)f e M ———dz e MY=Yl/F(y—vy) has aty=y. To this end let us rewrite Eq.
- bz (45) as
+oo ikbZ2t _
Kz~ +oo
R e ReS)-0q(y) [ E(tzkidz (46
Since the second integral on the right hand side vanishes for
symmetry considerations, we are lead to where
. e ) —K|z|
&tS=leo(y)f e Melkbztgz, (39) E(t,2K)= £ [cosktFy(2) - 1] (47)
e .
Evaluating the integral by familiar means, we find If 1/F(2) diverges az=0 as 1" with n=1, then the en-
velopee ¥Z/F (2) is not integrable. Therefore for increas-
9,S=kQy(y) /iei(3/4)7-r' (40) Ingt, since the effective frequency in ¢atF(2)] increases
kbt and cofktF((2)]—-1 has a definite sign, the integral of

E(t,z,k) in Eqg. (46) tends to some fraction of the infinite
which, when integrated, yields area undee¥7/F (z). This means that R&)} is an increas-
. ing function oft; in Otkﬁ]?r words Re$) has secular growth.
B [KT & aimm On the other end i~ “%/F.(2) is integrable, secularity will
S=0oly) Fe( "2t (41) not occur since, no matter what the increasd, ithe area
undere™X7/F (z) will always be finite.
The resultingw(y,t) Summarizing, the origin of the secularity is in the singu-
larity of the envelope™ kIZ‘/Fe(z) at zero. In order to obtain

19T oz a nondivergent behavior, there is a need to introduce an ap-
1+e 2k e Z‘E propriate cutoff at smalt.

o(y,t) ="' Q(y)

(42)
L . L IV. RENORMALIZATION

shows secular growth in time. The perturbative analysis di-
verges, and breaks down at time scales: 2. In Sec. IV, In this section by means of the renormalization group
we will show that this secularity is renormalizable. method[4,5] we will uniformize the divergence met above.

We end this section with a remark about the insurgence ofn order to renormalize the expansion given in ER) we
this secular behavior. Let us consider, for simplicity, the realntroduce in the system an arbitrary parametdia cutoff,
part of S and a renormalization constant
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+ oo

R(y,r)=1+nzl e"a,(y,7) (48)

such that

Qo(y)=R(y, 1)y, 7).

The coefficientsa,(y, ) are chosen order by order into
eliminate the secular terms.

By adding and subtractingr to \t and using Eq(48) in
EqQ. (42) we obtain, to ordek,

1+en /—g(;lzwe“?"“)”z( =)
lg(zyli”ei(smwz Jr+a,

(49

w(y,t)=Q(y,7)e"d O

+Q(y, r)e* Mt

+0(e?). (50)
It is clear that by choosing
gly)m i(3/4)m
a;=— Te 2 \/; (51)

the secular term vanishes.
Since r does not appear in the original problem(y,t)

should not depend on it. Therefore, we impose the renormal-

ization group equation

d
(d_Tw)TtZO' (52
which gives forQ(y, r) the equation
O%Qz eQ\/ %ei“"‘)”% (53
with the solution
Q(y, ) =0(y)es TOTRLEI2E (54)
where{)((y) is the initial value of Eq(53).
The final renormalized expansion is therefore
w(y,t) =0,(y)e? [0 ei(3/4)’7\f‘feikf(y)t, (55)

which is in agreement with Eq22). This shows that the
first-order correction divergence is renormalizable.

V. SUMMARY

The evolution of a fluid system described by the un-
bounded Rayleigh equation has been investigated. Even

this simple context, pathologies due to the non-Hermitian

PHYSICAL REVIEW E64 026312

yo Where f’(yq) #0, the vorticity simply oscillates in time
(the same result holds for localized perturbatjorf3or yq4
with f'(yq4) =0, it experiences an exponential decay of the
typee L.

We recall that the analysis of the Rayleigh equation in a
channel also predicts the stability for largewhile Kelvin-
Helmholtz unstable modes are found for large wavelength
perturbations. However a close comparison between the
present system and the one described by the channel Ray-
leigh equation is difficult since the absence of boundaries
drastically alters the physical and mathematical nature of the
problem.

The perturbative analysis of the system shows a possible
pathology of non-Hermitian systems, namely, a divergence
of the first-order correction in the perturbation expansion.
This problem is reminiscent of the analogous pathologies
met in nonlinear systems; the common origin is the coupling
of modes, their nonindependent time evolution. Divergences
are found in the case of vanishirfd(y), while for f’(y)

# 0, uniform expansions always pertain.

The singularity of the perturbative analysis is renormaliz-
able by means of the renormalization group method.
Asymptotic solutions and the results of the renormalized per-
turbative expansions are in full agreement.
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APPENDIX

Our goal is to solve Eq11) for a special class of local-
ized perturbations, therefore we need to evaluate the integral

= [T ia et gy

By the change of variable=y—vy, | becomes
| = fMQ(y_;_z,t)e*kIZIeikt[f(yﬂ)*f(y)]dz_ (A2)

We assume:
(i) Q(y+2) is supported i) (bounded and isC*(R),
(i) |07'Q(y+zt)|<B(t) Vn,Vt, where B(t) is a
continuous ot (t=0); and
N Gii) f(y+2)=f(y)+f'(y)z in Q with f'(y)#0.
Using (iii) above and splitting in two the domain of inte-

nature o_f the problem_ arise. We first carried ~out angration we have
asymptotic nonperturbative analysis of the system in the re=
gime of largek. The analysis shows the stability of the sys-
tem. The type of stable behavior depends on whether the first
derivative of the flow vanishes at a particular point. At pointswhere

I=1,+1,, (A3)
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+oo o and
I1=f Q(y+z,t)e Kkt Mzgz (A4)
0 R(n)_ (_ 1)n+1
and Ikt (y)]"
0 .
|2:j0 Qy+z,t)ezelktl Mzg 7, (A5) ><f_w(?’Z‘J’lQ(erz,t)ekz(”'tf Mdz  (A11)
Integratingn+ 1 times by partd, we obtain Now if k>1 and using the assumptidin), we have for alit
~ R () 1T (n)| —
L=T"M+RM, (AB) nL'Tw“l I3 |—HL|TOO|R1 |=0, (A12)
where ~
lim |1,=T|= lim |R{|=0. (A13)
T(n)_ i 0;,“Q(y,t) A7 n— +o n— +o
&= [K(1—itf'(y))]™*? (A7) Therefore we obtain fol,, I, the series representations
and . § ay'Q(y,t) (AL4)
1 1 m=0 km+1(1_itfl(y))m+l’
R{V= +oo
[k(1—itf'(y)]""* B . ayQy,t)
lo= 2 (- (AL9)
+oo o m=0 KM (1+itf'(y))
xf 0 1Q(y+z,t)e KTt WMz (A8)
0 Finally we have for
Analogously, integratingn+1 times by partd, we have 2Q 4if ' (y)ta,Q .
= +0O(t™%).
L=T{M+RM, (A9) K(1+t2F7(y)?)  K2(1+t%f'(y)?)? AL6)
where

Keeping the first two terms in the limit—c and substituting
amQ(y,1) | in Eq. (11) we again obtain Eq(15). Therefore the same

y i (A10)  results previously obtained for large and f'(y) #0 will
[k(1+itf’ (yn]m hold.

n
=2 (-1
m=0
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