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Kinetic theory of point vortices: Diffusion coefficient and systematic drift
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We develop a kinetic theory for point vortices in two-dimensional hydrodynamics. Using standard projection
operator techniques, we derive a Fokker-Planck equation describing the relaxation of a “test” vortex in a bath
of “field” vortices at statistical equilibrium. The relaxation is due to the combined effect of a diffusion and a
drift. The drift is shown to be responsible for the organization of point vortices at negative temperatures. A
description that goes beyond the thermal bath approximation is attempted. A new kinetic equation is obtained
which respects all conservation laws of the point vortex system and satisfies a H theorem. Close to equilibrium,
this equation reduces to the ordinary Fokker-Planck equation.
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[. INTRODUCTION are applied here to a system of vortices. We first consider the

relaxation of a “test” vortex in a thermal bath in which the

It is often useful in two-dimensional turbulence to ap- “field” vortices are in statistical equilibrium. In this approxi-
proximate a continuous vorticity field by a cloud of point Mation, the Fokker-Planck equation appears in its usual form

vortices. The main interest is that such a system is HamilWVith & diffusion term and a drift term. The drift coefficient is
tonian[1] and can be studied by rather ordinary statisticalconnemed to the diffusion coefficient and to the temperature

mechanics. This was first considered by Onsdgarwho  Of the bath 16 by an Einstein formula. The diffusion coef-
showed qualitatively the existence of negative temperatur{a'r?em is expressed as a Kubo formula, i.e., as the integral of

states at which vortices cluster. He could therefore explai e velocity autocorrelation function. Using an approxima-
- » . ,p fion in which the vortices are advected by the equilibrium
the occurrence of large-scale vortices “supervortices’)

. ' -~/ flow, we find that the autocorrelation function decays like
often observed in nature. This was a remarkable anticipatiop-2 ¢ large timeg5]. This is a slow decay but it ensures the

since observations were very scarce at that time. His workqnyergence of the diffusion coefficient. We also derive non-
was pursued by Joyce and Montgom¢Bj and Lundgren  \jarkovian equations that keep track of memory effects.
and Pointin[4], who introduced a mean-field approximation Then, we relax the thermal bath approximation and derive a
and obtained explicit results for the equilibrium state. Theygeneralized kinetic equation for our vortex system. This in-
derived in particular a Maxwell-Boltzmann statistics for the tegrodifferential equation satisfies all conservation laws of
distribution of point vortices at equilibrium. the point vortex system and increases the Boltzmann entropy
Less is known concerning the relaxation towards(y theorem. The relaxation towards equilibrium is due to a
equilibium. In fact, the evolution of th&l-particle distribu-  condition of resonance. If this condition is not satisfied, the
tion function is governed by a Liouville equation, but this system can remain frozen in a sort of “metastable” equilib-
equation contains too much information to be of practicaljym. In contrast, if the system is sufficiently resonant, it will
use. One is more interested in the evolution of the onegonverge towards the maximum entropy state described by
particle distribution functiorP(r,t), which gives the prob-  the Boltzmann distribution. Close to equilibrium, our gener-
ab|l|ty that a pOint vortex will be fOUnd in at t|met In Ref alized kinetic equation reduces to the Ordinary Fokker-
[5], we have described the relaxation Bfr,t) towards the  pjanck equation.
Boltzmann distribution in terms of a phenomenological The methods developed in this paper are inspired by those
Fokker-Planck equation. In this appl’oach, the vortices have mtroduced in p|asma physics and stellar dynan{mb In
diffusive motion due to random fluctuations and they expeparticular, thesystematic driff5] of a point vortex is the
rience in addition asystematic driff5] directed along the counterpart of thedynamical friction[8] experienced by a
background density gradient. Physically, the drift is the resultar in a stellar system. Further analogies between two-
of a polarization process and its mathematical expression cafimensional(2D) vortices and stellar systems are discussed
be determined with a linear-response thef@, It is found  in the paper and ifi9—14). Other kinetic theories of point
that the drift is “attractive” at negative temperatures so theygrtices have been developed in RigH4] in a different con-

vortices cluster into macrovortices in agreement with Onsagtext. A good review on point vortex dynamics is given by
er’s thermodynamical approach. At equilibrium, the drift bal- Newton [35)].

ances the scattering and maintains a nontrivial vortex distri-
bution (the Boltzmann distributionproviding a dynamical Il. STATISTICAL MECHANICS OF POINT VORTICES
explanation for the persistence of clustering.

In this paper, we justify our phenomenological model by
deriving the Fokker-Planck equation directly from the Liou- In a two-dimensional incompressible fluid, the velocity
ville equation, using projection operator technigques. field u is divergenceless and can be written in terms of a
These methods are standard in statistical mechanics but thegream functiony in the form

A. The point vortex model
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shall see later on that it also represents the kinetic energy of
the flow). Therefore, point vortices behave like particles in

wherez is a unit vector normal to the flow. The stream func- interactionlike electric charges or stars. Note, however, that

tion is related to the vorticitywz=V Xu by the Poisson
equation

w=—=Ay (2
obtained by taking the curl of Eq1l). The impermeability

condition implies that/ is constant on the boundary and we

shall takey=0 by convention.

We shall consider the situation in which the velocity is
created by a collection dfl point vortices of equal circula-

the Hamiltonian(9) does not involve a “kinetic” energy of
the vortices in the usual sense. This is related to the particu-
lar circumstance that a point vortex produces a velocity, not
an acceleration. As a result, an isolated vortex remains at
rest, contrary to a material particle, which has a rectilinear
motion due to its inertia. Point vortices form, therefore, a
very peculiar Hamiltonian system.

B. The microcanonical approach of Onsager

tion vy. In that case, the vorticity field can be expressed as a The statistical mechanics of point vortices was first con-

sum of § functions in the form

N
w(r,t>=i§1 yo(r—ri()), 3)

wherer;(t) denotes the position of point vortéat timet. Its
velocity is given by

_dri_ -
Vi = —2XVilr=rb), 4

where ¢ is a solution of the Poisson equatié®) with the
vorticity field (3). In an unbounded fluid, one has

1 N
r==5-2 yhlr=rj. (5)

Therefore, the velocity of a point vortex is equal to the sum

of the velocitiesV(j—i) produced by thé&\—1 other vorti-
ces, i.e.,

Vi=2, V(j—i) (6)

J#I
with

rj_ri

V(joi)=— - 7x

> (@)

rj—ril*

The above dynamics can be cast in a Hamiltonian fotin

dXi_O')H dyi_ oH 8
Yt ey Yaro o ax 8
H= ! > Y21 9

__Ei:#j Y n|ri—l’j|, ()

where the coordinatex(y) of the point vortices are canoni-

sidered by Onsagd®], who showed the existence of nega-
tive temperatures at which point vortices cluster into “sup-
ervortices.” Let us briefly recall his argumentation.

Consider a liquid enclosed by a boundary, so that the vor-
tices are confined to an aréa Since the coordinate(y)
of the point vortices are canonically conjugate, the phase
space coincides with the configuration space arfihite:

N
f dxldy1~-~dedyN=(dedy) =AN. (10

This striking property contrasts with most classical Hamil-
tonian systems considered in statistical mechanics, which
have unbounded phase spaces due to the presence of a ki-
netic term in the Hamiltonian.

As is usual in the microcanonical description of a system
of N particles, we introduce the density of states,

g(E)=J' dx,dy; - - - dxndyNS(E—H(Xq,Y1, -+ XL YN,
(11

which gives the phase-space volume per unit interaction en-
ergy E. The phase-space volume, which corresponds to en-
ergiesH less than a given valug, can be written

E
<D(E)=L ‘9(E)dE. (12)

It increases monotonically from zero #®Y when E goes
from E,, to +oo. Thereforeg(E) =d®(E)/dE will have a
maximum value at some=E,,, say, before decreasing to
zero whenE— + oo,

In the microcanonical ensemble, the entropy and the tem-
perature are defined by

1
S=Ing(E) B:?:E_

Q
wn

(13

cally conjugate. These equations of motion still apply whenFor E>E,, S(E) is a decreasing function of energy and
the fluid is restrained by boundaries, in which case theconsequently the temperaturerisgative Now, high-energy
Hamiltonian(9) is modified so as to allow for vortex images, statese>E,, are clearly those in which the vortices are
and may be constructed in terms of Green’s functions deerowded as close together as possible. For energies only

pending on the geometry of the domain. Sittés not ex-

slighlty greater thark,,, the concentration will not be so

plicitly time dependent, it is a constant of the motion and itdramatic but there will be a tendency for the vortices to

represents the “potential” energy of the point vorticese

group themselves together on a macroscopic scale and form
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“clusters” or “supervortices.” In contrast, foE<E,,, the point vortices, butb) small enough for all the particles in the
temperature is positive and the vortices have the tendency tell to be assumed to possess the same average characteristic
accumulate on the boundary of the domain in order to deef the cell.

crease their energy. For a system with positive and negative In this mean-field approximation, the Hamiltoni&®) is
vortices, the negative temperature states, achieved for relahanged into

tively high energies, consist of two large counter-rotating
vortices physically well separated in the box. On the con-
trary, whenE— —«, the temperature is positive and vortices
of opposite circulation tend to pair off.

E=— o[ @) mir—rldrd. a9

In writing this expression, we have not taken into account the
constraintj #i appearing in Eq(9). Really, in Eq.(19) the
integration extends over the pointr’ so that Eq(19) con-
It is easy to show that the exact distribution of point vor- tains self-energy terms that become infinitely large for point

C. The mean-field approximation

tices expressed in terms éffunctions, vortices. As will soon become apparent, this mean-field ap-
N proximation implies that the enerdyis positive, a property
_ . that is not necessarily shared by the Hamiltoni@n

©exacl 1) Z’l yor=ri(v)), (14) Using Eq. (5), adequately generalized to account for a

continuous distribution of vortices, our expressidf) for E

is a solution of the Euler equation, can be rewritten
Jwey 1 2
F +UgyVwe=0, (15 EZE (w)ypd?r. (20
whereu,, is the exact velocity field determined by Edqs), Introducing explicitly the Poisson equation in EO) and

(2), and(14). This is proved as follows. Taking the derivative integrating by parts, one has successively
of Eq. (14) with respect to time, we obtain

1 1 2
N E=§f w(—Aw)d2r=§J (V¢)2d2r=J%d2r,

Jwey
PR L GO (16) -

where(u) is the smooth velocity fielfthe second equality is
obtained by a part integration with the conditigi= 0 on the
boundary. Therefore,E can be interpreted either as the po-

Using V,=ug,(r;(t),t), we can rewrite the foregoing equa-
tion in the form

P N tential energy of interaction between vortidege Eq.(20)]
w . .
ateX: _Vizl (= 1:()UaT1). 17) or as the kinetic energy of the flojgee Eq.(21)].

. o . D. The mean-field equilibrium
Since the velocity is divergenceless, we obtain ) ) S )
We now wish to determine the distribution of vortices at

Iy N equilibrium following a statistical mechanics approd@.
7 (r,t)y= —uex(r,t)V_Z YO(r—r;(t))= — UV wey(T,1). To that purpose, using the Boltzmann procedure, we divide
=1 18 the macrocellsi(;r +dr) into a large number of microcells
(18) and enumerate the number of “microstates” that correspond

Therefore, the Euler equatidas) with Egs. (1), (2), and(3) to thg same “m_acroscopic" cqnfiguration of the system. The
contains exactly the same information as the Hamiltoniarf9arithm of this number defines the entropy. In the mean-

system(8) and (9). field approximation, this leads to the classical formula
This description in terms of functions, while being tech-
nically correct, is useless for practical purposes, because it S= —NJ P(r)In P(r)d?r, (22

requires the knowledge of the exact trajectories of the point
vortices for an arbitrary initial conditiofior the solution of
the Euler equatioifl5)]. WhenN is large, this task is impos-
sibly difficult. Therefore, instead of the exact vorticity field
expressed in terms af functions, one is more interested in
functions that are smooth. For that reason, we introduce a {)(r)=NyP(r). (23
smooth vorticity field(w)(r,t), which is proportional to the

average number of vortices contained in the celt ¢ dr) at At equilibrium, the system is in the most probable macro-
time t. This mean-field description, which ignores the granu-scopic state, i.e., the state that is the most represented at the
larities of the sytem, requires that it be possible to divide thanicroscopic level. This optimal state is obtained by maxi-
domain in a large number of cells in such a way that eachmizing the Boltzmann entropg22) at fixed energy20) and

cell is (a) large enough to contain a macroscopic number ofvortex numbem, or total circulation

whereP(r) is the density probability that a point vortex will
be in the surface element centeredromhe average vortic-
ity in r is related to this probability density by
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Ill. ELEMENTARY DERIVATION OF THE SYSTEMATIC
I'= Ny=J' (w)d?r. (24 DRIFT
A. Analogy with Brownian motion: The necessity of the drift

Writing the variational principle in the form ] ) T )
We shall first show the necessity of this drift by using an

6S— BSE—adl'=0, (25 analogy with Brownian theory. The starting point of this
analogy is to realize that the velocity of a point vortex can be
where 8 and « are Lagrange multipliers, we find that the decomposed in two terms, namely a smoothly varying func-
maximum entropy state corresponds to the Boltzmann distrition of position and timéV)(r,t) and a function\V(t) taking
bution 3], into account the “granularity” of the system and undergoing
Ao By strong discontinuities. The total velocity of a point vortex
(w)=Ae "7, (260 can therefore be written

with inverse temperatur8. We can account for the conser- V=(V)(r,t) +V(1). (30)
vation of angular momenturh = [{w)r2d?r (in a circular

domain and impulseP=[(w)yd’r (in a channelby intro-  The velocity(V)(r,t) reflects the influence of the system as
ducing appropriate Lagrange multiplieisandU for each of 3 whole and is generated by the mean vorticity)(r,t)

these constraints. In that case, Eg6) remains valid pro- according to the Biot and Savart formula:
vided that we replace the stream functigrby the relative

stream functiony’ =+ (Q/2)r>—Uy. This more general 1
situation has been considered in, e.g., R&8] to describe (V)(r,t)=— sz]
rotating or translating dipoles.

Substituting the Boltzmann relation betwegn) and in
the Poisson equatiai2), we obtain a differential equation for
the stream function:

r'—r
|r,_r|2<w>(r’.t)d2r’. (31

The fluctuationV(t) arises from the difference between the
exact distribution of the point vortices,c(r,t) and their
“smoothed-out” distribution(w)(r,t). It is on account of
—Ay=Ae A" (point vortices, (27 these fluctuations that the velocity of the test vortex will
depart from its mean-field valug/). The velocity fluctua-
which determines the equilibrium distribution of vortices. In tion V, of order y/d (whered~n~? is the intervortex dis-
the case of stellar systems and electric charges, the correance, is much smaller than the average velocfly), of

sponding Boltzmann-Poisson equation has the fdt6j ordernyR (whereR is the domain size but this term has a
, cumulative effect that gives rise to a process of diffusion. It
AD=47GAe £ ™ (stellar systems (28) makes sense, therefore, to introduce a stochastic description

of the vortex motion such as that for colloidal suspensions in
A g . a liquid [17] or stars in globular clustef8]. However, con-
—Ad)—e—oe (electric charges (29 trary to the ideal Brownian motion, point vortex systems
have relatively long correlation times. This makes the study
where® denotes successively the gravitational and the elecmuch more complicated than usual and a technical study of
trostatic potential. For these systen®&,>0 since the tem- Sec. IV is required. In order to gain some physical insight
perature is a measure of the kinetic energy. In contrast, fointo the problem, we shall ignore this difficulty for the mo-
point vortices there is no kinetic term in the Hamiltoni@  ment and describe the system by traditional stochastic pro-
and the temperature can be either positive or negative. Whe$fSSes.
B<0, Eq.(27) is similar in structure to Eq28). The vorti- According to Eq.(30), we would naively expect that the
ces tend to attract each other, like stars in a galaxy, and forf@volution of the density probability?(r,t) would be gov-
“clusters” or “supervortices.” The density profile deter- €erned by a diffusion equation of the form
mined by Eq(27) or Eq.(28) is adecreasingunction of the
distance. WherB>0, Eq.(27) is similar in structure to Eq.
(29). The vortices tend to repel each other, like electric
charges, and accumulate at the boundary. The density profile
determined by Eq(27) or Eq.(29) is anincreasingfunction ~ This would in fact be the case for a passive particle having
of the distance. Therefore, the formal analogy between 2o retroaction on the vortices or when the distribution of
vortices and stellar systems is intimately related to the exisvortices is uniform, as if18,13,19. However, this diffusion
tence of negative temperatures in 2D turbulence. Howevegquation cannot be valid when the system is inhomogeneous.
the physical mechanism by which vortices and stellar sysA first apparent reason is that E(2) does not converge
tems achieve equilibrium is different. Whereas the organizatowards the Boltzmann distributiof26) whent— +«. An-
tion of stars is relatively clear because of the attractive naturether related difficulty is that Eq(32) does not conserve
of gravity, the organization of point vortices at negative tem-energy. It seems, therefore, that a term is missing to act
peratures is much less intuitive. In the following section, weagainst the diffusion.
shall give a physical interpretation of this phenomenon in  These problems are similar to those encountered in
terms of a “systematic drift.” Brownian theory or for stellar systems. They have tradition-

oP
— T(V)VP=DAP. (32)
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ally been solved by introducing@ynamical frictionin order D=%T(V)V?). (38)

to compensate for the effect of diffusion. The occurrence of

this frictional force is a manifestation of the “fluctuation-  We now assume that the motion of a point vortex can be
dissipation” theorem in statistical mechanics. In the presenidealized by a Markov process, i.e., the probability at time
context, the dynamical friction is replaced bysgstematic t+ At depends on the probability at tiniéout not at earlier
drift of the vortices. We must therefore rewrite the decompotimes. As indicated previously, this approximation is not

sition (30) in the form completely correct in the case of point vortices, which have
long correlation times. However, relaxing this hypothesis
V=(V)—&Vy+ (1), (33)  would involve more intricate equatiorisee Sec. IYand we

) ) o ) shall ignore this difficulty for the moment. We write, there-
where¢ is the drift coefficient. In Sec. Il B, we shall give a fore,

physical justification for the existence of the drift in terms of

a polarization process, and in Sec. IV we shall derive this )

term directly from the Liouville equation by using P(V’HAU:] P(r—Ar,tyw(r—Ar|Ar)d*(Ar),
projection-operator techniques. The importance of this drift (39
was first pointed out by Chavanj§] using a thermal bath

approximation and a linear-response theory. The drift termvherew(r —Ar|Ar) is the probability for a point vortex lo-
must be calculated by resorting to relatively elaborate techcated inr —Ar to suffer an increment of positioAr during
niques, but it is remarkable that a general relationship beAt. ExpandingP(r,t+At), P(r—Ar,t), andw(r — Ar[Ar)
tween &£ and D can be obtained without analyzing at any in the form of Taylor series, we arrive at the Fokker-Planck

point the details of the “subdynamics.” equation in its general form:
According to Eq.(33), the equation of motion for a point e P
vortex can be written in the form sz _2 W(P<Ari>)
I
dr
7= (V)= &V V(). (34) 1 92
dt ) AT
+2% ah&rj(P(ArlArJ)), (40)

Since the velocityW(t) undergoes strong discontinuities, the

trajectoryr (t) of the point vortex is not differentiable. There- where

fore, Eq.(34) must be viewed as a stochastic equation analo-

gous to the Langevin equation in the ordinary Brownian <Afi>=f Ar,w(r|Ar)d3(Ar), (41)
theory. LetAt be an interval of time long compared to the

fluctuation time but short at the scale on which the physical

parameters change appreciably. The variation in the position (Ar-Ar-)=f At Arw(r|Ar)d3(Ar). (42)
Ar of the particle duringAt is given by e e

Ar=(V)At— &V yAt+B(At), (35)  According to Eq.(37), the transition probability fronr to
r+Ar is given by
where 2
w(r|Ar)= . p[ [Ar—((V)— £V y)AL]
t+At - - .
B(AD=|  w(t)dt'. (36 4mDAL 4DAt
t

(43

Each fluctuationy produces a small displacemefitbut the ~ With Eq. (43), the moments(41) and (42) can be easily
repeated action of these fluctuations produces a net displacgvaluated, yielding

ment of the same order as the d@fV ¢. To determine the _ B _
probability w[ B(At)] that the fluctuations produce a dis- (AN=(V)=&Vy)At, (AriAr)=2DAts;. (44)

placemenB(At) during the time intervalit, we first divide  gypsituting these results in the general Fokker-Planck equa-
the interval ¢,t+At) into a succession of discrete incre- jon (40), we find that

ments in position and observe thB{At) is a sum ofN
random variablesT(V,)V;, where T()) characterizes the
typical duration of the velocity fluctuatiow. This is a prob-
lem of random walks wher8(At) represents the distance
reached afteN steps. For larg8l’s, the central-limit theorem We had previously introduced this equation in Hé&f. using

P
(Z—t+<V>VP=V(DVP+§PV1//). (45)

leads to a Gaussian transition probability: phenomenological arguments. The physical interpretation of
each term is straightforward. The left-hand sighich can
_ —B(At)2/4DAL be writtendP/dt) is an advection term due to the smooth
WB(A)] 47DAtC (87 mean-field velocity V). The right-hand side can be written

as the divergence of a currentV -J and is the sum of two
with a diffusion coefficient terms: the first term is a diffusion due to the erratic motion of
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the vortices caused by the fluctuation’ the second term friction can be viewed as the drag exerted on a test star by
accounts for the systematic drift of the vortices. At equilib-the wake it induces in the field stars, as in a polarization
rium, the drift precisely balances random scatterings and therocess. We can use a similar approach to understand the
distribution(26) is settled. More precisely, the condition that origin of the drift. Let us consider a collection &f point
the Maxwell-Boltzmann statistic§26) satisfies Eq.(45)  vortices at statistical equilibrium with inverse temperatare
identically requires thab and ¢ be related according to the When <0, the density of these “field” vortices decreases
relation from the center to the periphery of the domain. A “test”
vortex moving through this medium locally modifies the vor-
§=DBy, (46)  ticity distribution and produces a polarization cloud that
L L i i amounts typically to a rotation of the surrounding vortices.
which is a generalization of the Einstein formula to the caserys creates an excess of density behind it and a deficit of
of point vortices. A more rigorous justification of this rela- yensity in front of it. Therefore, the retroaction of the field
tion will be given in Sec. IV, where the diffusion coefficient |, tices leads to a drift of the test vortex directed inward. We
and the drift term are calculated explicitly. reach the opposite conclusion if the temperature is positive.
When the system is homogeneoy®=<0 in a domain with
B. Systematic drift: The result of a polarization process no special symmety the polarization cloud induced by the
According to the previous discussion, the relaxation of af€st vortex has no effect and the drift cancels out. Therefore,
point vortex towards statistical equilibrium can be describec® homogeneous system of point vortices remains homoge-
by a Fokker-Planck equation, neous[18,13,19.

JP i i inci
E%—(V)VP:V[D(VP%—B)/PV!,&)] 47) C. The maximum entropy production principle

In Sec. IV, we shall derive the Fokker-Planck equation
(47) directly from the Liouville equation. However, we want

involving a diffusion term—DV P and a drift term to show first that the general structure of this equation can be

(V)ain=—DBYV . (48) understood from relatively simple thermodynamic argu-
ments.
The drift is normal to the mean-field velocit/)=—z Let us rewrite Eq(47) in the form
X Vi of the vortices, and its direction, depending on the
_sign of B, has important physi<_:a| imp_lications. To f_i>$ the_ o) +(U)V(w)=—V-J, (51)
ideas, let us assume that all point vortices have positive cir- at

culation (the opposite case leads to the same concliision ) e . .
Due to the mean-field velocity, a particular point vortex ro- WhereJ is an unknown diffusion current. :rhls equation con-
tates anticlockwise. At negative temperatures, the drift is diserves the circulatiof24) provided that)-n=0 on the do-
rected to its left and the vortex mitractedto the center of main boundary ff is a unit vector normal to the boundary
the domain. On the contrary, at positive temperatures, th&he problem at hand consists in determining the expression
drift is directed to its right and the vortex igsjectedagainst  for J. Its exact expression depends on microscopic processes
the boundary. Therefore, the effect of the drift is consistentand is therefore difficult to capture. However, it is easy to
with the Onsager thermodynamical approach and it providesyrite down some macroscopic constraints that it must satisfy.
in addition, a physical mechanism to understand the organifhese constraints are provided by the first and second prin-
zation of point vortices at negative temperatures. Bet0, ciples of thermodynamics, namely the conservation of en-
the medium is homogeneous and there is no drift. Equatioergy and the increase of entropy. We shall find that these
(47) reduces to a pure diffusion equation like in Refs.constraints are very stringent and determine completely the
[18,13,19. Therefore, the drift occurs only in the presence ofstructure of the diffusion current.
a background shear. Taking the time derivative of Eq$20) and(22) and sub-

In stellar systems, the relaxation of the distribution func-stituting for Eq.(51), we obtain the constraints
tion f(r,v,t) is usually described by the Kramers-

Chandrasekhar equation: E:f J-Vyd2r=0 (52)
of of F of _ J b of ; 49
op Vo H(F) o =2 Dl o, Amiv, (49 and
which is a particular Fokker-Planck equation with a structure S=— EJ J-V In{)d?r=0. (53)
analogous to Eq47). In this analogy, the dynamical friction Y

experienced by a star as a result of close encoupdérs _ o
We shall now introduce an optimization procedure known as

{Friction= — D MV, (500 the maximum entropy production principfMEPP. This
principle was introduced initially in the context of 2D turbu-
is the counterpart of the systematic dfii) experienced by lence by Robert and Sommefi20], but its domain of appli-
a point vortex in two-dimensional turbulence. The dynamicalcability is very general and concerns, for example, the case
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of stellar systemg$9,21]. This principle states that “out of gradients of generalized potentials. However, the MEPP
equilibrium, the system evolves so as to maximize its rate ofjives a more elegant approach to the problem and, conceding

entropy productior while accounting for all the constraints @ real importance to the constraints, it is easier to implement

imposed by the dynamics, in particular the conservation oft more complicated situationg20,9,23. In addition, it
energyE =0.” There is no precise justification for this prin- shows that the structure of the relaxation is determined by

ciple and it is important therefore to confront the MEPP with purely thermo<_jyn_am|c arguments. Al epr|C|t_ referenc_:e_ to
more rigorous methods, such as those of Sec. IV, to deteme subdynamics is encapsulated in the diffusion coefficient,

mine its domain of validity. In any case, the MEPP can beWhiCh is left unspecifiedit appears as a L?‘gfa.”ge multiplier
Y y lated to an unknown bound on the diffusion curjefit

considered as a convenient tool to build relaxation equationEe . ; :
that are mathematically well-behaved and that can serve ust therefore be calculated with a more microscopic model
such as the one of Sec. IV.

numerical algorithms to calculate maximum entropy states.
We seek, therefore, the optimal diffusion currdntvhich

maximizes the rate of entropy productiéhat fixed energy. V. RELAXATION OF A POINT VORTEX IN A THERMAL

In order to avoid the unphysical solutigd|— + with BATH
J-V =0, we impose the additional constraint A. The Liouville equation
22=C(r,p), (54) Let us consider a collection df+1 point vortices with
identical circulationy. We select one of these vortices, for
where C is an upper bound which must exist but is not€xample point vortex 0, and call it the “test vortex.” The
known. The solution of the optimization problem is other vortices 1. .. ,N will be refered to as the “field vorti-
ces.” Let u(r,rq, ... ry,t) denote the N+ 1)-particle dis-
J=—D[V{w)+ B(1) y{w)V ], (55  tribution of the system, i.e.,
where B(t) andD(r,t) are Lagrange multipliers associated w(r,ry, ... Iy, t)d?rd?ry- - -d?ry
with the constraint§52) and (54). When substituted in Eq. N ) ) )
(51), we obtain represents the probabmty that point vortex 0 will be in the
cell (r,r+dr), point vortex 1 in the cellt(;,r{+drq) ... ,
Hw) and point vortexN in the cell (y,ry+dry) at timet. The
—t T VV(0)=V(B[V(w)+B(t) (@) Vi]). (N+1)-particle distribution function.(t) satisfies the Liou-
(56) ville equation
This equation has the same form as the Fokker-Planck equa- (9_,“ + EN: V. 5_#_0 (59
tion (47). Here, the diffusion term arises from the variations a <o torp

of entropy S and the drift term is necessary to conserve

energy. Note that the Einstein formuldé) is automatically ~WhereV; is the velocity of vortex produced by the other
satisfied by this variational approach. vortices according to Eq$6) and(7). We also introduce the

The time evolution of the inverse temperatyét) is de-  one- andN-particle distribution functions defined by
termined by the conservation of energy. Substituting the dif- N
fusion current(55) in the constraint52), we find P(r,t)=f “({rk}’t)kﬂl dr, , (60)

JDV<w>~Vzﬂd2r

B(O=- . (57 podte it [ pdOdr (6D
| Doy

The physical picture that we have in mind is that the test

We can also check that the entropy monotonically increase¥Crteéx evolves in a “bath” of field vortices. Therefore, we
during the relaxation provided thBX=0. Indeed, using Eqs. "ewrite the distribution function. in the suggestive form

53), (55), and(52), we can easily establish that
( ) ( ) ( ) y Iu‘(r7r17 "'1rN1t):P(r1t)MSy4rlv '--erat)

.S:f J? dr=0. (58) +uy(r,rg, .. Nt (62
Dy(w)

where u, reflects the effect of correlations between the test
At equilibrium, J=0 and we recover the Boltzmann distri- vortex and the field vortices. Physically, this term accounts

bution (26). for the polarization process described qualitatively in Sec.
Note that the optimal currenf55) can be writtenJ 1 B.
=xVa, wherea=In{w)+ By is a “generalized potential” The Liouville equation(59) provides the correct starting

that is uniform at equilibrium. Therefore, the MEPP can bepoint for the analysis of the dynamics of our vortex system.
viewed as a variational formulation of the linear thermody-However, wher\ is large, this equation contains much more
namics of Onsager, which relates the diffusion currents to thinformation than one can interpret. Consequently, what one

026309-7



P. H. CHAVANIS PHYSICAL REVIEW E 64 026309

would like to do is to describe the system in some averagand

sense by a one-particle distribution function. In the previous

sections, we have indeed derived heuristically some differen- i (X,y,)=—i(1—P)Lug—i(1—P)Ly,. (70

tial equation satisfied by this distribution function on the

basis of stochastic arguments. We shall now discuss the coRy,age equations should be compared with Egsand (9),

nection of such heuristic theories with a more microscopic,hich appear in the quasilinear theory of 2D turbulefzs.

description of the system. In the present context, Eq69) and (70) describe the sepa-
ration between a “macrodynamics” and a “subdynamics.”

B. The projection operator formalism In the quasilinear theory, Eqé8) and (9) describe the evo-
Our first objective is to derive somexactkinetic equa-  lution of the “coarse-grained” and “fine-grained” compo-
tions satisfied byP(r,t) andue,dry, . . . fy,t). This can be  NeNts of the vorticity.

achieved by using the projection operator formalism devel- Introducing the Greenian
oped by Willis and Picarfi6]. This formalism was also used
by Kandrup([7] in the context of stellar dynamics to derive a N . "
generalized Landau equation describing the time evolution of g(t,t)=exp —i t,dt [1=PADIL, (72)
the distribution function of stars in an inhomogeneous me-
dium. We shall just recall the main steps of the theory. More , . . .
details can be found in the original paper of Willis and Picard\(/\;%)cﬁzr:;medlately write down a formal solution of Eq.
[6] and in Kandrug7]. To have similar notations, we sgt ’ y
={r} andy={rq, ... ry}. Then, Eq.(62) can be set in the .
form kY0 =~ [ AU G- P Lk ),
(XY, 0= pr(XY, 1)+ u (XY, 1) (63) (72

with where we have assumed that initially the particles are uncor-

x,y.t)=f(x.t 1), 64 related so that:,(x,y,0)=0. Substituting foru,(x,y,t) from
#ROGY.D=T6D8(Y D 64 Eqg. (72) in Eq. (69), we obtain
where we have written f(x,t)=P(r,t) and g(y,t)

=uqdr1, - .-y, t). The Liouville equation is also cast in ) v ,
the form Gur(% Y0 = —IPLug= | dt'POLG(LY)

J . . X[1-P(t")]L y.t). 73

] ) The integration ovey will yield an equation describing the
whereL, andLs,s act, respectively, only on the variablgs  evolution off. Using some mathematical properties of the
andy, whereas the interaction Liouvilliah’ acts upon both  projection operato(66), the final result can be set in the nice

x andy (the complex numbeiris here purely formal and has symmetrical form given by Willis and Picai@]:
been introduced only to have the same notations as Refs.

[6,7]). AF () +Hilof +i(L" g
Following Willis and Picard, we introduce the time- FODHILof Fi(LDsys

dependent projection operator, t
=—f dt’f dyA.L'G(t,t")A L g(y,t")f(x,t"),
0

P(x,y,t)=g(y,t)f dy+f(x,t)f dx (74)
_f(xyt)g(y,t)f dxf dy. (66) where the notations stand for
We can easily check that <L,>SYSZJ dy’L'(x,y")g(y’ 1), (75)
P(levt)lu“(xaylt):MR(vaat): (67)
[1-P(X,Y,)1(X,Y,t) = w(X,Y,1). (68) <L’>o=f dx'L"(x",y)f(x,1), (76)

We also verify thalP is a projection in the sense thBE(t)
=P(t). Applying P and 1 P on the Liouville equatiori65), AL =L"=(L")sys= (L )o- (77)
we obtain the coupled equations
Similarly, after integrating ovex, we find the equation sat-
dpr(X,y,t)=—iPLug—iPLu, (69) isfied byg [6],
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a9(y,H) +iLgg—i(L' )19 N J

R (Lyo= 2 (V(0—i))5 @)

—fodt'f dxA LGt AL gy tHf(xt)). |
N

9 N
(78) iAtL’=i21 {V(i—>0)—<V(i—>O)>}E+iZl {V(0—i)

C. Application to the point vortex system

The previous theory is completely general and we now
consider its application to a system of point vortices. Let us
first rewrite the Liouville equatiori59) in a form that sepa-
rates the contribution of the test vortex from the contribution
of the field vortices:

Jd
~(V(O— )} (88)

Introducing the velocity fluctuations,
W(i—0)=V(i—0)—(V(i—0)), (89)

N N
[7—“+Z V(i—>0)(?—'u+2 V(0—>i)a—'u V(0—i)=V(0—i)—(V(0—i)), (90)
a = a =1 ar;

!

we can rewrite our expression farL’ in the form

N N o
+i§ 2 V(j—>i)?=0. (79

'AL’—}N: i 03+2N: 0 ) 91
The different operators that arise in the decompositié) 13 = wi— )ﬁ =1 W —H)&_ri' D

are
L0 80 Substituting these results in E74), we obtain the fol-
ILo=b (80) lowing kinetic equation for the one-particule distribution
function of a vortex system:
. ... 9
iLoys=2, 2 V(=5 (81)
i=1j#i,0 I JP JP
E%—(V) J'dt'f H dzrkz V(|—>O)—
N
17
iL'=> (V(IHO)—-FV(OHI)(W (82)

=

N
J
[ xg(t,t’)|21 v(jHO)E
The mean-field velocity created by the field vortern =
the test vortex is denoted by N

+El

i=

J
V(O%J)W} P(r:t,)/*sys({rk}vt,)
J

<V(i_>0)>=f P(ri,t)V(i—0)d?r;. (83

Similarly,

<V(o_>i)>=f P(r,t)V(0—i)d?r (84)

(92

or, alternatively,

0P+V&P
Vg

denotes the mean-field velocity created by the test vortex on
the field vortexi. Finally, the total mean-field velocity expe-

N N
H d2r 21 _Zl VE(i—0)G(t,t— 1)
o “ e

rienced by the test vortex is given by Tk
N N
<v>=i§l (V(i—>0)>=izl (V(1—0))=N(V(1—0)), X ( v
(85) j
Xp(rit_T)MsyS({rk}!t_T)l (93)

where the second equality follows from the identity of the
point vortices.

We are now ready to evaluate the quantiti&s), (76),
and (77). After straightforward integration by parts, we find

where the Greek indices refer to the componentd’ah a
fixed system of coordinates. We can note that &g al-
ready shares some analogies with the Fokker-Planck equa-

successively tion of Sec. II. Indeed, the first term on the right-hand side
5 N P corresponds to a diffusion and the second term to a drift. For
N AN i .0))— a passive particle”(0—j)=0 and the drift cancels out, as
(L)gs=(Vgr=2Z, (V-0 5. (89 ZREsSe
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D. The thermal bath approximation

Equation(93) is anexactdifferential equation folP(r,t).

PHYSICAL REVIEW E 64 026309

N
XP(r(t—7),t— T)k1;[1 Ped re(t— 7)1,

However, this equation is not directly soluble since the un-

kown function ug {{ry},t) is given by an equation of the
form (78) depending in turn oP(r,t). We have therefore to
solve the coupled systeif74)—(78). This system bears ex-

actly the same information as the initial Liouville equation

(65) and, without further simplification, is untractable.

To reduce the complexity of the problem, we shall imple-
ment a “thermal bath approximation.” We assume that the"

field vortices are in statistical equilibrium with inverse tem-
peratureSqq. Therefore, theN-particle distribution function
msd{ryt) can be approximated by a product bif one-
particle distribution functionsP.q given by the Maxwell-
Boltzmann statistic$26). In other words, we make the ap-
proximation

,u,sys(l’l, ...,I’N,t)z,ueq(rl, ...,rN) (94)
with
N N
MedT1, - FN)= I1 Pedro) = [I A Pedrtedo,
=1 k=1
(95

where i, is solution of the Poisson equatid@) with the
equilibrium vorticity (w)eq=NyPeq. Substituting explicitly
for the Boltzmann distribution from E@95) in Eq. (93), we
obtain

JP JP
E+<V>eqﬁ
(5' N N N
= H d?r >, > VA(i—0)G(t,t—7)
o = i=1j=

(//eq

J

V(] HO)__ﬁeq'yv (O*)J)

N
><P(r,t—r)|£[1 Ped Tk, (96)

(97)

where the retarded velocify(j —i,t— 7) must be viewed as
an explicit function of time. More precisel}(j —i,t—17) is
a short-hand notation foJ[r;(t—7)—ri(t—7)], where
ri(t—7) denotes the position at time- 7 of the ith point
vortex located inr;=r,(t) at timet. The trajectories of the
point vortices betweet 7 andt are determined by the com-
plicated GreeniarG(t,t—7) defined in Eq.(71). We need
therefore to solve the exact Kirchhoff-Hamilton equations of
motion(8). In fact, to a good approximation, we can consider
that the point vortices are purely advected by the equilibrium
mean-field velocity(V)eq. Indeed, whenN—«, we have
already indicated that the velocity fluctuation is much
smaller than the mean-field velocity}/).,. Therefore, we
can replace the exact Greenignby a smoother Greenian
(G)eq, Which would be obtained if the point vortices were
moving in the velocity field created by the equilibrium dis-
tribution function weq. Formally, this Greenian is con-
structed with the averaged Liouville operatofl),,
=3 (Videdlary).

In this approximation, the correlations involving two dif-
ferent vortex pairs vanish and the equation can be simplified
considerably. Using the results of Appendix[8ee, in par-
ticular, Eq.(B11)], we find

JaP

J’_
ot

P
>eq 6’[‘ 1 ar#

fdff d?r;V4(i—0y)

_ d
V' (i—0t—7)—
or’

= BegyV"'(0—i,t—1)

‘/’eq

[r (t—=7) ])

xP(r(t—T),t—r)Peq(ri), (99
where we have usePq]ri(t—17)]=Pefri) since P,
=f(¥eg is constant along a streamline and the particles are
assumed to follow the streamlines in a first approximation.

where( )¢, denotes the average with respect to the equilib-Since the vortices are identical, we also have

riun distributionP,,. Explicating the action of the Greenian,

we can rewrite our Eq96) in the form

c?P JP
V) e =

N N
f fl'[d leglv#(mo,t)
[ro-onz
X|V(j—=0t—1)—
or

'/feq

~ BeqyV'(0—1], t—T) [f (t=7)]

(9P+v P dfdz VA(1-0t
at < >eqar (9["“’ T rl ( - )

d
V(1—-0t—7)—
ar’
a‘peq

1

- ﬁequy(0—> 1i—17)

X[rl(t_T)]>
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XP(r(t—17),t=7)Pefry). (99  where

Noting that the integral is dominated by the divergence of the _ 9

productV#V” whenr,;—r, we can make a “local approxi- )= <V>e“(y) (109

mation” and replacel.q/dri(r,) andPe((r,) by their val-

ues taken irr. For the same reason, we can neglect vortexS the local shear of the flow, equal here to the vorticity. Note

images and replace the Kerné{0— 1) by its singular part that the velocity autocorrelation function decays like? for

(7) satisfyingV(0—1)= — V(0—1). With these approxima- 7% [5]. _ _ ) )

tions, the kinetic equatiof09) takes the form Equation (102 is a non-Markovian equation since the
probability P(y,t) at time t depends on the probability

P P(y,t—7) at earlier times through an integration owerAc-
N—f de d2r1Pe4r)VM(1_>0,t) cordingly, the present study, which explicitly takes into ac-
r“Jo count memory effects, is more general than the stochastic

oP v P

_+ —

ot (V)eq ar
model presented in Sec. Il A. However, if we implement a

JP Markov approximation and replaé¥y,t— 7) by P(y,t), we
X 4 — — RS — — 3 3 [}
Vi(1-0t T)< arv(r(t M.t recover the Fokker-Planck equation of Sec. IlI:

‘//eq iz i Dl — P +8 ypa"beq (106)
+ Beqyp(r( 7),t— T) [r(t_ m]|. at oy (Qy €q ay
(100  with a diffusion coefficient
+ o
E. The Fokker-Planck equation D=DYY= NJ' d’TJ’ d?r,VY(1—04)
0
1. Unidirectionnal flow
y _
We will now see how the preceding equation can be sim- XVI(1=0=7)Pedy) (107
plified for particular equilibrium flows. We shall fLrst CoN- 4nd a drift term
sider the case of a unidirectional flofW)c,=Ve{y)X pro-
duced by a vorticity distribution(w)e(y). If we restrict Ifeq
ourselves to solutions of the forrA=P(y,t), the kinetic =~ (Vy)arin= BeqyD— -~ ay (108

equation(100 becomes

The drift coefficient is given by an Einstein relation as ex-
pected from the general considerations of Sec. Ill A. The
diffusion coefficient is expressed as a Kubo formula, i.e., as
the integral of the velocity correlation functidsee Appen-
dix B). In Appendix C1, it is found thafsee also Ref\5])

P Jd
7Ny drf d2r 1P Y)WV (1—0)VY(1—0t—7)

% l/’eq

aP
o (Y t= 1)+ BeqyP(y,t— 1) (Y)) (101

ay

1 1
=_N~+2—
where we have useg(t— 7) =y(t) =y since the point vorti- D=gNv |2 (y)] N NPed(y)- (109

ces follow the streamlines of the equilibrium flow. This equa- o _ _ _
tion can be rewritten in the form The reason for the logarithmic divergence is explained in

Appendix A and in Ref[13].

w_7 drC ( P t— )+ BucyP(y.t— 1)L i i
oyl ()| == (Y,t=7)+ BeqyP(y,t—17) ay | 2. Axisymmetrical flow
(102 We now consider the case of an axisymmetrical equilib-
rium flow such tha(V)eq=<V>eq(r)é9. This flow is gener-
where ated by an equilibrium vorticity fieldw)r). If we restrict

ourselves to solutions of the forlR=P(r,t), the kinetic
C(T)Ecyy(T):Nf d%r VY(1—0)VY(1—0t— 1) Pedy) equation(100) simplifies in

(103 aP
E: F(?—rrf dTJ d rlP q(r)Vr(t)(1HOt)
is the velocity autocorrelation function. In Appendix C 1, it is
found that XV (=)(150t—7)
N2 1 aP tﬂeq
C(r)=g—INN—F Ped ), (104 X| 2 AT t= 1)+ BeqyP(r 1= 1) (r)

Lrg¥me (110
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where we have usedt— 7)=r(t)=r since the point vorti-

ces follow the streamlines of the equilibrium flow. Further-
more, V'® and V'~ denote the radial components of

PHYSICAL REVIEW E 64 026309

vy 1
D= 3 —~——In N(w)eq,

=] (120

V(1—0) attimest andt— 7 in a polar system of coordinates where|3.(r)|=2—det@) is the local shear of the flow and

(e.(t),e,4(t)) moving with the test vortex. Equatida10) can
be rewritten

P 14 jtd N 5 Itheq
Gt rar )47 (D 2 (1= 1)+ BeqyP(r 1= 1)— =,
(119

whereC(7) is the velocity autocorrelation function

C(n)= Nf d?r, V' O(1—=0)V ™ )(1—0t— 7)Per).

(112
In Appendix C 2, it is found that
C(r)= N872|n N Pegr), (113
T 1+ :32(r) 72
where
SO (VRG] 1

is the local shear of the flow.

and detf) is the determinant of the stress ten3gt” (see
Sec. V Q. In the regions where the shear cancels out, our
approximations clearly break down. In particular, we cannot
calculate the Kubo integral by assuming that the vortices
follow the streamlines of the equilibrium flow. This is be-
cause, for a local solid rotation, the vortices always remain at
the same relative distance and the correlation time is infinite.
In that case, it is necessary to take into account the dispersion
of the vortices. An alternative derivation of the diffusion co-
efficient can be obtained by analyzing the statistics of veloc-
ity fluctuations created by a random distribution of point
vortices[13]. When the differential rotation of the vortices is
neglected/which corresponds to the opposite limit of that
leading to Eq(120)], we obtain(see Ref[13] and Appendix

A)

D~ yvInN.

Clearly, a more complete study should take into account si-
multaneously the effect of the shear and the dispersion of the
vortices to match the two formuld420 and(121).

For t— +oo, the distribution functionP(r,t) of the test
vortex converges towards the Maxwell-Boltzmann statistics
(26). The time of relaxation corresponds typically to the time

(122)

If we ignore memory effects, we obtain the Fokker-Planckpceded by the test vortex to diffuse over a distaRcehe

equation,
P 14 P Iteq
H—FEFD(E‘FBM’)’P ar ” (115
with a diffusion coefficient
+ o0
D= Nf de d?r,viO(1-0y)
0
XV (150t —7)Pedr) (116)
and a drift term
Iy
= _<Vr>driﬁ:Beq7D76q- (117

Explicitly, the diffusion coefficient has the forfsee Appen-
dix C 2 and Ref[5])

1 2 1
D=gNy 7N NPc{r).

S(0] 1y

3. The general case

system size. Thereforé,,~ R?/D, whereD~ yIn N is the
order of magnitude of the diffusion coefficient given by Eg.
(120. UsingI'=N+v and introducing the dynamical tintg
~{(w)"'~R?IT", we obtain the estimate

trelax™ mtD . (122)

Since the statistical description is expected to yield relevant
results for largeN, we conclude that the relaxation of point
vortices towards the Boltzmann distribution is a very slow
process. It is plausible that a more violent relaxation may be
at work in the system. This problem is discussed more spe-
cifically in the conclusion.

In the previous calculations, we have assumed that the
distribution of the field vortices is given by the Maxwell-
Boltzmann statistic§26), which corresponds to statistical
equilibrium. In the case of an arbitrary background distribu-
tion P¢, the expression of the drift is

<V>drift:DV InP (123)

eqr

whereD is still given by Eq.(120. SinceD>0, the drift is
always directed along the density gradient. The estimate of

We can show in the general case that the relaxation of théhe time of relaxation is not changed in this more general

test vortex is described by the Fokker-Planck equation
aP
3 +(Veg VP=V[D(VP+BeqyPViey] (119

with a diffusion coefficient

situation.

V. A GENERALIZED KINETIC EQUATION

In the preceding section, we have described the relaxation
of a test vortex in a “bath” of field vortices at statistical
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equilibrium. We would like now to relax this thermal bath JP JP
approximation in order to obtain a generalized kinetic equa- E+<V>W

tion describing the evolution of the whole system.

N N N
_0 fl'[ dzl’thdTZ > VEi—0)G(t,t—7)
k=1 0 i=1j=1

or#

A. The factorization hypothesis
If the vortices are initially decorrelated, then, for suffi- ) d o d
ciently short times, they will remain decorrelated. This X VV(J—>0)$+VV(O_>I)arP>
means that theN+ 1)-particle distribution function can be !
factorized in a product ofN+1) one-particle distribution N
functions: XP(r,t— T)knl P(r,t—1). (127)

N
w(rry, ... ,rN,t)=k]:[O P(ry.t).

If we integrate the Liouville equatiofb9) on the positions of
the N vortices 1 ... ,N and use the factorizatio(124), we

directly obtain

(9P+ V)VP=0

(124 Repeating the steps leading from EQ6) to Eq. (99), we

obtain
ot < > oar ar*Jo M1 ( )t

JP
V'(1—-0)P;—
ar’

X

(125

P,
+V*(0—1)P— : (128
ary .

Therefore, for sufficiently short times, the average vorticity

(w) satisfies the 2D Euler equation. However, at later timeswherePz P(r,t) and P,=P(r

1,1). We also recall that be-

the distribution functiony. differs from the pure product yyeent andt— 7, the trajectories of the particles are deter-
(124 and the Euler equation does not provide a good apmined from the smooth velocity field created by the vorticity
proximation anymore. In Sec. IV A, we have determined andistribution (w)=NyP(r,t). This non-Markovian integrod-

exact equation93) satisfied by the one-particle distribution jfferential equation is similar to the equation obtained by
function at any time. This equation is not closed, howeverchavanig23] in two-dimensional turbulence using a quasi-
since it involves theéN-vortex distribution functionus,s. We  linear theory of the Euler-Poisson system. It is shown in
shall close the system by assuming thag, can still be  Appendix D that this equation rigorously conserves angular
approximated by a product dil one-particle distribution momentum in a circular domain and linear impulse in a

functions:

N
Msys(rl! coalN ,t):ll;[]_ P(rk,t),

channel(or in an infinite domain However, under this form,

it is not possible to prove the conservation of energy and the
H theorem. In our previous investigation of the problez8],

we have considered a somewhat crude approximation, which

(1260 amounts to neglecting memory effects in E428. We

beleived that this approximation would not introduce any
significant error, but, as we shall see, we were wrong: such
an approximation breaks the conservation of energy.

but, Contrary to Sec. IV D, the One—particle distribution func- If we assume that the decorrelation timés Short(which

tion P(ry,t) is not ascribed to the equilibrium valuBey.  does not need to be the casand we implement a strong
Physically, the decompositio(62) and (126) assumes that Markov approximation, we obtain

the correlations that develop between the vortigeam w,)

are due uniquely to the polarization cloud imposed by each
individual vortex. Without this polarization, the vortices £+(V EIM
would be uncorrelatedterm ug . In particular, this decom-  dJt a2

J JP
—f d?r,VA(1—-0){ V" (1—0)P;—
art ar’
position does not take into account three-body encounters,

which can play a crucial role in the dynamics of vorti¢es

particular when the system is neutral and homogeneous, see

Refs. [24,19). These high-order correlations develop on

dP4
+V'(0—1)P ~[- (129
ry

longer time scales and may be neglected in a first approach.
The approximatiori126) introduced in Eq(93) leads to a  In the case of an infinite domaik,(0—1)=—-V(0—1) and
generalized kinetic equation, we have the further simplification
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2 2
P _Ny’ 2 v i EZ_N_yiJ . _ ("=
+V) oo —T—fd riK "(f)( por at ar ar), "1dnd@=Qyin -
1 oP 1 9P
JP p_—p 1t
-P 1) ><[rplar rlparl]’ (133
ary
(130 whereQ=Q(r,t), Q,=Q(rq,t), andr- (r.) is the biggest
(smallest of r andr,. The angular velocity is related to the
where vorticity by
grel_gor-gg
K'#/(§) =" (13D (==L ar?), (134

& & ror

andé=r,—r (we also recall tha£, is the vecto rotated by ~ Similarly, in the case of a unidirectional flow, we can assume
+m/2). To arrive at Eq(131), we have explicitly used the that, betweert and t—r, the point vortices follow linear
form of the kernel(7), and to get the second equality we trajectories with velocitfV)=(V)(y,t)e,. This leads to the
have used the fact that we are in two dimensions. Note thatinetic equationsee Appendix

the symmetrical form of Eq.130) is reminiscent of the Lan- ’
dau equation introduced in plasma physics and in stellar dy- P N7 J
namics[7]. In this analogy, the position of the vortices a4 gyl
plays the role of the velocity of the electric charges or
stars. Therefore, we can directly infer the conservation of
linear impulse P, = [wrd?r and angular momentuni

= [wr2d?r, which play, respectively, the role of impul$e _
=[fvd® and kinetic energyk=[f(v?/2)d% in plasma WhereV=(V)(y,t) andV;=(V)(yy.t). The functionE,(x)
physics. In addition, we can preva H theorem for the Bolt- S the exponential integral aridis an upper cutoff necessary
zmann entropy(22) exactly like for the Landau equation. in that casésee Appendix E We also recall that the average
Finally, we can show that the solutions of E§i30) converge  Velocity is related to the vorticity by

towards the Gaussian vortéthe equivalent of the Maxwell-

ian distribution in plasma physics within place ofv): (0)=— —(V) (136)

2|y1—y|)

dY15(V1_V)E1( L

x| Py——

1oy oy ) (139

P aPl)

P(r)=Ae (12er 10", (132 o
We can remarkably propose an approximation of the gen-
which is the maximum entropy state at fixed circulation, an-eral kinetic equatior{128) which encompasses both the axi-
gular momentum, and impulse. It is in general different fromsymmetric form (133 and the unidirectional forn{1395).
the Boltzmann distribution(26) with the relative stream Memory effects are not neglected, unlike in E¢30), but
function ' =+ (Q/2)r?2—U, -r. This clearly indicates that they are simplified in a way which preserves all the conser-
Eq. (129 doesnot conserve the meanfield energg0). It  vation laws of the systerfas discussed belowWe propose
may happen, however, that the energy is approximately corthe generalized kinetic equation:
served if we start from an initial condition with a value of )
energyE, corresponding t8—0, Q— +%, anda= BO/2 JP Ny* d ,
finite at equilibrium. In that case, E¢L32) is the maximum E‘F(V)VP: e ar_/‘J d?r KHY ()
entropy state at fixedl, L, andE, (the conservation of im-
pulse can be satisfied trivially by taking the center of vortic- ( P P 1)
X| Py

ity as the origin of our system of coordinateslowever, ifE (137
differs fromEq by a large amount, the kinetic equatit?9
will not correctly describe the evolution of the system for
late times.

Now, if we account properly for memory effects in Eq. grer 2 uv_ gugy
(128), we can obtain a more general equation that guarantees KAv(§) = L5l § §'é (139
in addition the conservation of energy and is therefore more &2 &2
satisfactory. In the case of an axisymmetrical flow, it is pos-
sible to calculate the memory function appearing in Egandé=r;—r, v=(V)(ry,t)—(V)(r,t). For specific applica-
(128 explicitly if we assume that the correlation time is tions, it may be necessary to introduce a shielding of the
smaller (but not necessarilynuchsmalley than the typical form (E39) in the interaction between vortices. This shield-
time on which the average vorticity changes appreciably. Iring arises naturally in geophysics in the “quasigeostrophic
this approximation, the point vortices follow, betweeand  approximation.” In that case, the tenskf*” is replaced by
t—7, circular trajectories with angular velocity)(r,t) (LL)K (&L EVEYIE, where Ky is the modified Bessel
=(Vy)(r,t)/r, and Eq.(128) simplifies in(see Appendix E  function of first order and. is an upper cutofficalled the

ar’ ary

with
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Rossby radius in geophysicsvhich plays the same role as jng expressions yieldB=0. For the conservation of energy,

the Debye length in plasma physics. __ we start from Eq(52) and follow the by now familiar pro-
Equation(137) is not exact, in a strict sense, yet it satis- coqure. This yields

fies all the conservations laws of the vortex system as well as
a H theorem(Sec. V B. This is very gratifying and can have

2.3
important practical applications. It is remarkable that we can £ _ N7y fdzrdzr K“vphs(&-v)| P A _
write down an approximate kinetic equation in the general 16 ! * Yorv ary
case without being required to specify the trajectory of the (141

point vortices between andt— . In fact, to arrive at Eq.
(137), we have made implicitly two approximations) We Considering the form of the tens(t38), we have

have assumed that the vorticity field does not change dra-

matically when we follow the vortices in their motion be- £

tweent and t— 7. (ii) After the time integration has been Kuva:_i(g, V). (142
effected, the nonuniversal functidff(1—0,t— 7) gives rise &

to a logarithmic term, which has been replaced by 1 in the

subsequent calculations. This term produces a sublogarittWhen substituted in Eq141), we see that the occurrence of
mic correction that is fIOW-dependent and that has been N&he S function in the kinetic equation |mp||£:0 Fina”y,
glected. Itis on account of this weak dependence that a gefior the rate of entropy production, we have, according to
eral kinetic equation can be obtained. For axisymmetrical 0Eqs. (53) and (137),

unidirectionnal flows, Eq(137) reduces to Eqs(133 and
(135 with In(jry—r|/(r,+7r)) andKy(ly—y|/L) instead of

2.2
In(1—(r_/r-)?) and E{(2]y—y;|/L). This discrepency is S= N_yf d2rd2rlip1£Kw5(§.v)
not too severgthese functions have a similar logarithmic 8 PPy “ore
behavioj so our approximations are reasonable.
From Egs.(133), (135, and (137, it is clear that the P Py
. oy S X| Pp—— : (143
relaxation towards equilibrium is due to a phenomenon of ar’ ar?

resonance. Only the pointg satisfying the conditiorg-v
=0 with ry#r will contribute to the diffusion currentin. In
the axisymmetrical case, this condition of resonance reduc
to Q(r)=Q(r) and in the unidirectional case td(y,)

Permuting the dummy variables and r; and adding the
erts—ésulting expression to E¢143), we get

=V(y). These conditions of resonance had never been no- N2~2 1
ticed previously. Further work on the subject will have to S= Y f d?rd?r; = 8(£-v)
make these criteria more precise by computing explicitly 16 PP,

“resonance lines” in two-dimensional real flows.

P 9P, P 9P,
P K| Pp— —P—|.

, ark arf ar’ arg
B. Conservation laws and H theorem

We now derive the conservation laws and the H theorem (1449
satisfied by Eq(137). First of all, the conservation of the e AT 2.2 .
circulation is straightforward since E¢L37) can be written Now, for any vector, A”K"A __(A'_gi) l¢ %0' This
in the form of a continuity equatiofD1). To prove the con- Proves a H theorem$=0) for our kinetic equatiori137). It
servation of angular momentum, we start from EB4),  Should be emphasized that the conservation laws and the H

substitute for Eq(137), permut the dummy variablesand ~ theorem result from thesymmetryof the kinetic equation

r,, and add the resulting expressions. This yields (and the condition of resonanceand not from formal
Lagrange multipliers as in the thermodynamical approach of
. N%B IP P, Sec. lll C. In addition, the H theorem @ovedby our ap-
L= TJ d?rd?r K*Ee8(&-v)| Pr——P— 1. proach instead of beeing postulated. This is more satisfying
or ar on physical grounds.
(139 It remains for one to show that the Boltzmann distribution
But, from Eq.(138), we immediately verify that P=Ae ANY+(Q2)r7-U, 1] (145)
Kevgr=. (140 is a stationary solution of Eq137). Noting that

. . JP el
This proves the conservation of angular momentum. We can =—By +Qr’—u’t |P, (146
prove the conservation of linear impulse in a similar manner. ar? ar’”

Starting from Eq(D16), substituting for Eq(137), permut-
ing the dummy variables andr,, and adding the two result- we have successively
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9P P, Euler equation in order to smooth out the small scales and
K Py— —P— | =ByPP K (v] +Q¢") prevent numerical instabilities breaks the conservation laws
ar ary of the inviscid dynamics. This inot the case for our equa-

" tion (148): not only does it smooth out the unresolved scales
= ByP Plg—L(§~ V) (147) (as_ e>_<emp|ified by the exigtencéa)H theor_en)z bl_Jt it also _
2 ' satisfies all the conservation laws of the inviscid dynamics
and respects the invariance properties of the Euler equation

where we have used Eq4.40) and(142). When substituted (invariance by translation and rotation of the coordinates,
in Eq. (137), we find that the right-hand side cancels out dueGalilean invariance, and invariance by rotation of the refer-
to the & function. The advective term is also zero sife €ntia). In addition, there is no free parameter in our theory
=f(y)’). Therefore, the distributiof145) is a stationary so- €XCept the coarse-graining mesh (or resolution scale
lution of Eq. (137). Note, however, that this is not the only Which depends on the situation contemplated. Different at-
solution. Any stationary solution satisfying v+0 for any ~ empts had been made previously to obtain an equation sat-
couple of points,ry (with r#r,) is a solution of Eq(137). |sfy|r_1g all these requirements, but only partial results were
Physically, this implies that the system needs sufficientlyoPtained20,9,22,5,2%

strong resonances to relax towards the maximum entropy

state. If this is not realized, it will be frozen in a sort of C. Connection with the Fokker-Planck equation

‘metastable” equilibrium. This may explain why the maxi-  Equation(137) can be considered as our final result, but
mum entropy state is not always reached in two-dimensionae wish to show that a direct connection with the Fokker-

turbulence. For example, for a unidirectional flow wih)  pjanck equation of Sec. IV can be found. Introducing a dif-
positive or negative everywhere, the velocity field is monoto-sion tensor

nous[see Eq.(136)] and the condition of resonance cannot

be satisfied. The evolution of the system will require non- N2 )

trivial correlations between point vortices that are not taken DW:TJ dr K#*"6(& v)Py (149
into account in the present approch. One would need to re-

place the factorization hypothegis26) by a product of two-  gnd a drift term

point or three-point correlation functions. However, it is

plausible that these correlations develop on a very long time Y P,
scale, so it remains a matter of debate to decide whether they nt=— TJ dzrle“’é(g v)—V, (150
are really relevant for the dynamics or not. ar

In the context of 2D turbulence described by the Euler- (137) b tten in th iluminating form:
Poisson system, the quasilinear theory developed by Chg-q' can be rewritten in the more fiuminating form.
vanis yields, instead of Eq137),

JP
D~¥
or’

+Px*|, (157

i +{(V)VP i
Jdw o 62 J ot < > ar#
—+u-Vo= ——f d2r’ KM §(£-v)

8 Jr* similar to the general Fokker-Planck equatiot0). Note,
however, that Eq(151) is an integrodifferential equation
since the density probabiliti?(r,t) in r at timet depends on
the value of the whole distribution of probabiliB(r,,t) at
the same time by an integration ovey. In contrast, the

(148 Fokker-Planck equatiod?) is a differential equation. The
usual way to transform an integrodifferential equation into a
where K#* is defined by Eq.(138 and w=o(r,t), o' differential equation is to make a guess for the function
P(r1) appearing under the integral sign and refine the guess

. . — by successive iterations. In practice, we simply make one
equation guarantees that the coarse-grained vortiite- sensible guess. Therefore, if we are close to equilibrium, it

mains bognded by the maximum value of the initial distribu-Seems natural to replace the functiBy appearing in the
tion, i.e., w<ay. This equation satisfeea H theorem for the jntegrals by the Boltzmann distribution,

Fermi-Dirac entropy introduced by Miller-Robert-Sommeria

at equilibrium[26,27]. Our approach provides, therefore, an- P(rl):Ae*BW/”(rl)‘ (152)
other way of justifying their results from a dynamical point

of view. Equation(148) is written for a single level of vor-  Thjs corresponds to the “thermal bath approximation” of
ticity oo, but it is possible to extend the quasilinear theory tosec. |V D: the vortices have not yet relaxed completely, but
an arbitrary distribution of vorticity levelgin preparation  when we focus on the relaxation of a given point vortex
Our equations should provide, therefore, an interesting angjescribed byP), we can consider, in a first approximation,
useful parametrization of the 2D Euler equation. It should bgnat the rest of the systefflescribed byP,) is at equilib-
recalled in that respect that the usual turbulent diffusioryjum. within this approximation, the diffusion coefficient
vAw introducedad hocon the right-hand side of the 2D and the drift simplify in

— = aa__ __az’
X{ o' (o w)—m# (o w)—/ ,
ar #

=E(r’,t). In addition to the previous conservation laws, this
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' seek a tensof such thats =T3'T, where3’ is antidiago-

n*=ByD" o (153 nal and, by definitionT#*=T"*. We also impose thaf is

unitary so that T=T"' Then, if we denote by

Ny (M, M2 M2t M??) the components of a’22 matrix, we
D’”=TP(r,t)f K 5(&-v)d?E, (154 find 3'=(0b’,b’ 0) and T=(a,B8,— B,a) with a?+p?

=1 and b’'=b/(a?— B?)=—al2aB. From the above re-

where we have made the local approximation. If we assumeults, it is also clear thab’?= —det()=a?+b?, where
that the correlation time is short, i.e., if we replacedet) stands for the determinant of the matix Now,

£25(&-v) by 7/ [compare Eqs(137) and (130], we ob- introducing a new system of coordinates such tiat

tain =THv¢", or alternatively&“=T"#¢' ¥ we easily check that

/ the Jacobian of the transformati ', i.e., the determi-

7=ByDVY, (159 nant of T, is equal to 1. Under thgg;iircumstances, the dif-

fusion tensor(161) can be writterD=TD'T with

D= 16 InN<w> (156)

v N,yZ nga,u,V_gr/,Lng
In that case, Eq.152) reduces to the Fokker-Planck equation D= 8 Pf '
found in Sec. IV: 3

8(|1%(r)[£;65)dé1dE5,
(162

P
- HV)VP=VID(VP+ByPVy")]. (157  where we have sefS(r)|=2-detE). Physically, this
quantity represents the local shear of the flow. The compo-
If instead of the Boltzmann distributiofl52 we use the nents of the tensdil62) can now be determined easily. First
Gaussian distributioi132), we get of all,

2 12
£Jr<V>VP=V[D(VP+ayPr)]. (158 D'11=Ny - Pf 2 S(&1€5) dErdé,
at 8 |E(r)| 32+§§2 162 1462

This equation is closely related to the Kramers- (163
Chandrasekhar equatidd9) since the drift and the friction
are linear inr andv, respectively.

The diffusion coefficient(156) was previously obtained
by [9,28,23 using phenomenological arguments. However, N2 oo o
in these studies the correlation timewas not specified. A D’11=—/— —Pf §d§f d@sinf05(£2 cosésing),
first determination ofr was obtained in Ref5], but it was 8 20" Jo 0
restricted to axisymmetrical or unidirectional flows. Using (164
Eq. (154), we can determine the expression of the diffusion
coefficient and the correlation time in the general case. Ex-
panding the velocity difference=(V;)—(V) in a Taylor

Setting &1 = ¢ cosd and &,= £sind, where é=¢&' =|r;—r|,
we get

or, equivalently,

series iné=r,—r, we obtain to first order in the expansion Drn:NT?’ ﬁ J' gJ' d@sin65(cosé).
;
Ev=3rTErE, (159 (169
where As explained in Appendix A, we regularize the logarithmic
divergence by introducing appropriate cutoffs at small and
1/ V)" V)" large scales. With the change of variattiescosd, we obtain
L[ KV ) s a0 g
2\ orv ark 2 2
pri=_" PInNJ dté(t)—Ny ! PInN.
is the stress tensor. It satisfies the property of symmetry 8 [=(n]| 8 |X(n)|
SHr=3"" Since the flow is divergenceless, we also have (166

X4+ 3¥Y=0. This suggests introducing the notatioas
=3X*=_3YY andb=3*Y=3Y* In terms of the stress ten- By the same arguments, we find tfat?>=D'!=D. On the

sor (160, the diffusion tensof154) can be rewritten other hand, it follows, for reasons of antisymmetry by the
transformation¢;— — ¢;, that D'*2=D’'?!=0. Therefore,
o Ny 525’” Eregy , ) D’'#*=Dé*? is diagonal in the basis whei® is antidiago-
D#*= f S(xHErgn)d°E (161 nal. This remains true in any basis sinc®*”

=T\D'\To*=D(TT)**=D §**. Therefore, close to equi-
This integral can be performed easily by working in a basidibrium, the diffusion is isotropic and the general expression
where the tensok*” is antidiagonal. For that purpose, we of the diffusion coefficient is
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1 tion. A similar equation also occurs in the quasilinear theory
S00] INN{w). (167)  of the 2D Euler equatiof23]. Within some approximation, it
is possible to carry out the time integration explicitly, and

Comparing with Eq(156), we find that the correlation time this yields a simpler equatiof137), which only conserves a

D=

0|

is given by delocalization in space. This equation respects all the conser-
vation laws of the point vortex system and satisfeH theo-
2 rem. The relaxation is due to a condition of resonance be-
= [=(n)| (168 tween distant vortices. If the system is sufficiently

“resonant,” it will reach a maximum entropy state described

The quantity|2(r)|:2‘/—det(z) plays a fundamental role by the Boltzmann distribution._ However, if there are not
in the theory. Clearly, this expression is invariant by a chang&nough resonances the evolution may stop on a metastable
of referential. For a unidirectional flow or an axisymmetrical State. Only nontrivial correlations between vorticés ex-

flow, we recover the results of Sec IV E and of R ample, three-body collisiopscan unfreeze the system and
induce further evolution. These correlations are not taken

into account in the present analysis, although the projection
operator formalism might still apply. It would be necessary
In this paper, we have provided a systematic derivation ofo modify the factorization hypothesi$26) so as to account
the kinetic equations of point vortices, applying the powerfulfor two-body or three-body correlation functions. It is pos-
projection operator techniques to this problem. We have desible, however, that these correlations develop on a much
scribed how a cloud of point vortices relaxes toward thelonger time scale, so it is not yet clear whether they are
mean-field statistical equilibrium, leading to a clustering intophysically relevant. In any case, the approximations made in
large coherent vortices. In the first part of the paper, we havéhe present paper are a first step towards a rational kinetic
focused on the relaxation of a “test” vortex in a cloud of theory of point vortices.
background vortices at statistical equilibrium. The cloud of It is also possible that a system of point vortices under-
“field” vortices plays the role of a thermal bath, as in other goes a form of “violent relaxation” in its early stage. For
problems of statistical physics. We have shown that the testhort time scales, the correlations between point vortices
vortex undergoes a usual diffusion effect due to random fluchave not yet developed and the average vorticity is a solution
tuations and that it also experiencesystematic driftThis  of the 2D Euler equation. When the initial condition is far
drift, due to a polarization of the background vortices by thefrom equilibrium, it is well known that the 2D Euler equation
test vortex, balances the effect of diffusion at equilibrium,develops a complicated mixing process leading to the forma-
providing a dynamical explanation for the persistence oftion of an organized statén a coarse-grained scald his
clustering. The drift was previously derived with a linear- relaxation is quite rapid, of the order of the dynamical time
response theor}b], but the diffusion was heuristically intro- tp, and the resulting equilibrium state is predicted to be a
duced by adding a white-noise effect. The present derivatiosomplicated superposition of Fermi-Dirac distributions re-
systematically derives the two effects—diffusion and drift— specting all the constraints of the Euler equafi@,27. On
from the same formalism, and is therefore more satisfactoryjonger time scales, of the order oR{In N)ty, the correla-
The diffusion derived here turns out to be influenced bytions between point vortices develop and the system under-
long-time correlations, so it is more complex than the usuaboes another form of relaxation, much slower. This relax-
white-noise effect. When memory effects are ignored, weation is towards the Boltzmann distribution derived by Joyce
obtain a Fokker-Planck equation for the evolution of the one-and Montgomery3] and Lundgren and Pointi], which is
particle distribution function. This Fokker-Planck equationthe true equilibrium state for a system of point vortices. The
can also be derived from a phenomenological maximum enfirst type of relaxation, by vorticity mixing, was described in
tropy production principl¢20]. This shows that the structure Ref.[23] using a quasilinear theory of the 2D Euler equation.
of this equation is influenced more by thermodynaniibe = The exclusion principle leading to the Fermi-Dirac statistics
first and second principlegshan by the precise microscopic was explicity shown as well as H theorem. The second
model. However, our systematic procedure starting directlytype of relaxation, due to discrete interactions between point
from the Liouville equation provides pustification for this  vortices, was the object of the present paper.
thermodynamic approach and specifies its range of validity. It is noteworthy that a similar distinction occurs in the
It also allows us to determine explicitly the value of the context of stellar systen{®]. Indeed, the relaxation of stars
diffusion coefficient, which was left unspecified by the maxi- is a two-stage process. For short time scalds,, the en-
mum entropy production principle. All these results could becounters between stars can be neglected and the distribution
tested numerically by introducing a test vortex in a “sea” of function is a solution of the Vlasov equatidganalogous to
vortices at statistical equilibrium and by solving the the 2D Euler equation If the system is initially far from
Kirchhoff-Hamilton equations of motion. mechanical equilibrium, it will experience a “violent relax-
In the second part of the paper, we have attempted tation” towards a virialized state. This equilibrium is pre-
describe the evolution of the whole system of vortices fadicted to be a superposition of Fermi-Dirac statisf2s,29,
from equilibrium. We have obtained a new kinetic equationas for the 2D Euler equation. Then, on a longer time scale, of
(128, which incorporates a delocalization in space and timethe order of N/In N)ty, the encounters between stars cannot
This is therefore a non-Markovian intregro-differential equa-be ignored anymore and will cause the stars to deviate from

VI. CONCLUSION
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their unperturbed trajectories. This collisional relaxation isHere,P(r;) denotes the probability of occurrence of a point
usually described by a Landau or Fokker-Planck equatiowortex inr; and by definition

that converges towards the Maxwell-Boltzmann distribution

at equilibrium. On even longer time scales, three-body en- oy (rger)y

counters leading to the formation of binaries induce a slow P=- 2 Ir—r|? (AS)
evolution of the systerf80]. Three-body encountefgvolv-

ing vortices of different signare also relevant in two- |ntroducing explicitly the vortex density(r;)=NP(r;), we
dimensional turbulence and lead to the formation of vortexygyve

“pairs” [19]. The analogy with “binary stars” is interesting

to note. It would be important to test these ideas with nu- 1 a2
merical simulations of point vortices or stars. The situation is An(p)= (Nj n(ry)e'” dor,
difficult in the stellar context because a maximum entropy

state does not always exist. Indeed, the system can collapsgnce

and overheat: this is the so-called “gravothermal catastro-

phe” [31]. This problem does not occur for point vortices, )

and it should be possible to show the tyar more succes- f n(ry)dry=N, (A7)
sive equilibria more properly. An advantage of point vortices

with respect to stars is the lower dimensionality of spacewe can rewrite our expression féq(p) in the form
(D=2 instead ofD=3, or D=6 in phase spagewhich
should make numerical simulations easier.

N

(A6)

N
1—%f n(r)(1—e”®d?%,| . (A8)

An(p)=
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APPENDIX A: THE STATISTICS OF VELOCITY
FLUCTUATIONS IN AN INHOMOGENEOUS MEDIUM C(p)=f n(ry)(1—e'?®)d?r,. (A10)

In this appendix, we study the statistics of velocity fluc- ) ) ) )
tuations produced by an inhomogeneous distribution of poinbeparating the real and imaginary partsGtfp), we obtain
vortices. This study extends the calculation$3#,33,13 for

a uniform medium and provides a simple framework to un- C(p)=Ca(p)—iCs(p)
derstand the logarithmic divergence of the diffusion coeffi-
cient. Let us consider a collection &f point vortices ran- =f n(ry)[1—cog p-®)]d?r,

domly distributed in a disk of radiu® with an average
densityn(r). The velocityV occurring at a given location ) ) 5
of the flow is the sum of the velocitie®; (i=1,... N) _'f n(ry)sin(p- ®)d<ry. (A11)
produced by theéN vortices:
In the first integral, we find it convenient to introduce the

N . . . .
relative separatiog=r,—r in terms of which
V=2 @, (A1) P =
i=1
(1) Cl(p)=f n(r+&[1-codp-®)]d’¢  (A12)
vy (ri—=r),
¢=—— . (A2)
' 27 |r,—rl|? with
Following a procedure similar to that adopted in Rdf3], y &
the velocity distribution can be expressed as P=-5— 2 (A13)
Wy(V) = if An(pre P Vd2p (A3) In Ref. [11_3], it was f(_)und that an important contributior_w to
412 the velocity fluctuations comes from the nearest neigbor.
This justifies to making the local approximatiar(r+ &)
with =n(r) in Eq. (A12). In this approximation,
. N
AN(p)=Ue'”"I’P(r1)d2r1) : (A4) Cl(p)=n(r)f [1-cogp- ®)]d°£ (A14)
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This quantity is closely related to the functi@{(p) evalu- n(r)y? 12

ated in Ref[13] for a distribution of vortices with uniform ch(N)”( yp= In N) INYA(InN). (A23)
densityn. The only difference is the presence of the local

densityn(r) in place ofn. Therefore, we can infer directly This distribution lies at the frontier between Gaussian and

that Levy laws: the core of the distribution is Gaussian while the
(Y2 [2aR tail dec_ays algebrai_cal!y_ as for' g .Ie_lws. Th.is is because
Cip)= —7 |n(L)p2. (A15)  the variance of the individual velocitig#2) diverges loga-

8m vp rithmically so the central-limit theorem is only marginally

o . . applicable. For that reason, we have proposed to call this
In fact, the local approximation is only marginally valid be- gistribtion the “marginal Gaussian distributiofit4]. In the

cause, a;bdisgussed_ in IREélffB],hthe contribgtion fOf the nea:jr- strict mathematical limilN— + o, the transition between the

est neig Dor IS precisely o the same order ot magnitu '€ 3o regimes is rejected to infinity and the velocity p.d.f. is
the contribution of the rest of the system. This results in apurely Gaussiar{33]. However, the convergence towards
logarithmic divergence in EqA1S5) due to the weak collec- this Gaussian distribution is so slow that in practical appli-

tive behavior of the system. L . cations it is never reached: the algebraic tail always remain
In the second integral appearing in EA11), the contri- [18]

bution from proximate vortices vanishes by symmetry. As a
result, the integral is dominated by large values/rgf or,
equivalently, by small values ¢fp|. We can therefore make
the approximation sig(: ®)=p- ® and write

According to Eqs(Al) and(A2), the variance of the ve-
locity can be written

<V2>: i n(r+§) yz d2§:n(r)fR7_227T§d§
2 g=0 4m2g? 0 472E2 ’
Cz(P):PJ n(ry)®der;. (A16) (A24)

In the integral, we recognize the mean-field velocity created?n€ré we have made the local approximation in the second
in r by the average distribution of vortices: equality. This quantity diverges logarithmically at both small
and large vortex separations. The divergence at small sepa-

rations is a failure of our model, which ignores correlations
<V>(r)=f n(ry)®d?r;. (A17)  petween vortices. In fact, when two vortices approach each
other, they can form a pair, as discussed in [RE8], and our
Hence, mean-field theory clearly breaks down. We shall account
heuristically for this failure by introducing a cutoff at some
Calp)=p(V)(1). (A18)  minimum distanced,,;~ (7n InN) Y2 [13]. The divergence
o o ) ) at large separations is due to the unshielded nature of the
Substituting the explicit expression f@(p) in Eq. (A9),  interaction potential. It is therefore natural to cut the integral
we obtain atR, the typical size of the system. With this regularization,

A(p) = [NOF8rl @RI+ ipV)() (A1) we obtain

ﬂ(lr)vzI (R): n(r)y?

o na yp= InN. (A25)

Therefore, the velocity distribution in can be written quite (V2=
generally,

Since the divergence is wedlogarithmig, the result does
_ 1 —[n(r) Y287 In(2 7R/ yp) p2 =i p[V = (V)(r)] 42 not depend crucially on the precise value of the cutoffs. The
W(\V)=——| e e dop. ; - ;
same expression for the variance can also be obtained from
(A20) the formula

This is the same distribution as for a uniform distribution of

vortices except that the constant densitijas been replaced

by the local densityn(r) and the distribution is for the fluc- ] N

tuating velocity V=V —(V)(r). Repeating the calculations if we introduce a cutoff at large velocities and use Egs.

of Ref.[13], the velocity p.d.f is explicitly given by (A21), (A22), and(A23) [to sufficient accuracy, we just need
to consider Eq(A21)].

(V3= f W(V)V227vdy (A26)

4 [0 Y2 I N] V2 The diffusion coefficient can be expressed in terms of the
W(V)= n(N,inNe 7 [V=Vei(N)], variance(A25) and the typical correlation time by [13]
(A21) D=1r(V?). (A27)
n(r)y?* i o w) = i
W(V)~ s [V=Ve(N)], (A22) Using Eq.(A25) and the relatioq w)=nvy, we obtain
a
YT

Where D= Eln N(w) (A28)

026309-20



KINETIC THEORY OF POINT VORTICES: ... PHYSICAL REVIEW B4 026309

in agreement with our resultLl56). The correlation time is where( ), denotes the average with respect to the equilib-
more difficult to evaluate. If we ignore the differential rota- rium distribution(B1). Since the correlation function appear-
tion of the vortices, the calculations of R¢L3] are directly  ing in the integral only depends on the time difference

applicable and lead to the expression [t"—1t'|, we also have
1 D= dt’f dt"(VA(t+1)V (t+1"))eq (BS)
~— A29 AtJo eq
(0)(r)yInN (A29)

or, alternatively,
This is the typical time needed by a vortex to cross the in- .
terparticle distanced~1/y/n(r) with the velocity V(2. v , " ) "
With this approximation, the diffusion coefficient is éive>n by D* TAt), dt f drU(VAOV (41" 1))eq- (BE)
Eq.(121). On the other hand, if we consider that the vortices
are transported by the equilibrium flow and evaluate the dif\with the change of variables=t’—t”, we obtain succes-
fusion coefficient with the Kubo formulésee Appendix B sively
we find that the correlation time is related to the local shear

by Eq(168), l.e., DAY= dt/f d7_<v,u v(t_,r)>eq

= ) At At
=0 (430 o ar [ Car v e
At
Physically, it corresponds to the time needed by two vortices
with relative velocity>d to be stretched by the shear on a
distance~d. This approximation breaks down, however,
when the shear is weak. In that cases given by Eq.(A29)
obtained when only the dispersion of the vortices is consi
ered. Clearly, a general formula should take into accoun
simultaneously the effect of the shear and the dispersion df
the particles.

1 u ,
A_tJ dr(VH()V"(t—17))efAt—7). (B7)

iglf the correlat|on functio V#(t)V"(t— 7))eq decays more
{ap|dly than7~ 1, we can take the limi\t— + to finally
tain

+ oo

Dwzf (VHOV(t=1)edT. (B8)
0

APPENDIX B: THE KUBO FORMULA

f This is the Kubo formula for our problem. Remembering that
V denotes the fluctuation of the total velocity,

V() =V (1) = (V(1))eq, (B9)

Let us consider the diffusion of a test vortex in a “sea” o
field vortices described by the equilibrium distribution

N
fedT1, - - - ,rN)=i:Hl Ped(ri)- (B1) e find that

VEOVY(t— =(VH()V"(t—
The general form of the diffusion coefficient, as defined by (VEOVHE= o= (VAOVT= M)eq
Eq. (40), reads —(VE(1))e V(1= 7)) eq-
(B10)
W_(Ar”Ar”)

2At (B2

Now, the first quantity in brackets can be written explicitly as

" vt _
Now, the net displacement of the test vortex produced by théV (DVI(t=7))eq

fluctuations of the velocity betwedrandt+ At is given by

t+At

Ar= V(t')dt'. (B3) N
: X ]___[ d2rk
k=1
Substituting explicitly forAr from Eq.(B3) in Eq. (B2), we N
have
:;1 2 fV'U’(I—>0t)VV(j—>Ot ) ed{T})
1 [ < > L
D#Y= dt’f dU(VA(t+t) V7 (t+"))eq,
24t - (B4) H I’k+2 VAIi—=0)V(i—0t—17)
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1. Unidirectional flow

:“eq({rk})kll dry We shall first calculate the velocity correlation function
(B15) and the diffusion coefficien(B14) in the case of a
=N(N=1)(VA(1—=01))eV(1—0t—17))eq unidirectional equilibrium flow. The trajectory of a fluid par-
ticle advected by this flow is simply.
v _ 2
(B11)
X(t=7)=X(t) =(V)ed Y) 7. (C2

For large N, we can make the approximatioN(N—1)

=N2. Using Egs.(B10) and (B11), the correlation function According to Sec. IV E 1, we are particularly interested by

can be set in the form theyy componen{103) of the velocity correlation function.
Explicitly, it has the form

(V'“(t)VV(t—T)>eq=NJ VH(1—-0H)V"(1—-0t—17) N'yz
C(n= FJ dx;dy;

X Pery)d?ry. (B12)
Since the integral is dominated by interactions involving X1~ X
relatively close vortices, we can make the local approxima- X P 5(1)
tion (X =x)"+(y1=y)

>< Xl_X
(X3 =X)%+(y1— )2

(VHOVY (1= 7))o= NJ VA(1-0t)V'(1—0t—17) )Pedy), (C3)

2
X Ped 1)d7r. (B13) where we have used E¢7). The second term involves the
The expression for the diffusion coefficient then becomes duantity
e (X3 =X)(t= 1) =X =X+ [(V)ed Y1) = (V)ed ¥) ] 7.
D“V=NJ dff VA1 0V (10t — 7)Pedr)d2rs. ! ! (Vedy2) = (Vied (C4)
0
(B14) N L
In the local approximation, we can expand the velocity dif-
For the sake of brevity, we shall denote the velocity correlaférence in a Taylor series iy, —y. To first order, we have
tion function by
(VedY) = (Vedy)=—2(Y)(y1—Y), (C5)

CH(T)=(VHO)V"(1—17))eq
where2 (y) is the local shear of the flo\05). Introducing

:Nf V“(1—>O,t)V”(1—>O,t—T)Peq(r)dzrl. the variablesX=x,—x andY=y,; -y, we obtain
(B15) X+3(y)Yr
cr=-2 eq<y>f dXdY—— S
Therefore, the Kubo formula takes the form X +Y° [X+2(y)Y7] +\((C6
+
D= jo CH*(ndr. (B16)  The integration ovetX can be performed easily since the
integrand is just a rational function of polynomials. After
More generally, we have straightforward calculations, we find
iy A N2 1 +edY
(Ar AT >:2f0 CH(r)(At-ndr.  (B17) C(7)= 4o Pedy) f G ©

2 270
1+ ZE (y)r
These quantities are calculated explicitly in Appendix C in

the case of simple flows. ) ) ) )
The integral overy diverges logarithmically for both small

and largeY. The reason for this divergence has been given in
Ref. [13] and in Appendix A. Introducing two cutoffs at
scalesd and R, and noting that Igd)~3InN, we finally

In this appendix, we calculate the Kubo integral using anobtain Eq.(104). For 7— +, the correlation function de-
approximation in which the point vortices follow the stream- creases liker 2. This is a slow decay but still the diffusion
lines of the equilibrium flow. coefficient(B16) converges. Using

APPENDIX C: THE CALCULATION OF THE DIFFUSION
COEFFICIENT
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Ny InN .

(C8)

jOtC(T)dT

and taking the limit— +<, we find Eq.(109. More gener-
ally, using Eqs(B17) and(C8), we have

2
2 _ ’y
((Ay)?)= S PedY) arctafé IE(Y)lAt>At
—Lm 1+ E2( )2(At)2” (C9)
S(y)] 4=V '
For At—0 (ballistic motion),
N2 1
(Ay))= 5 INNPef ) (A2 =5{(V2) (AL)?,
(C10
and forAt— + o (diffusive motion,
2
2

2. Axisymmetrical flow

In an axisymmetrical flow, the trajectory of a fluid particle
takes the simple form

r(t—7)=r(t),

Vedr)

r

(C12

o(

(C13

As indicated in Sec. IV E 2, we are particularly interested in

ther(t)r(t—7) componen{112) of the correlation function.
Let us introduce the separatiégin=r,—r between the field
vortex 1 and the test vortex. In the local approximatién,

PHYSICAL REVIEW B4 026309

X(t—71)=r(t—7)80(t—7)=r(t—7)[01(t—7)— 6(t—7)]
Vedr1) <V>eq<r>)
" . 7l

=r[01(t)—0(t)—(
(C19

In the local approximation, we can expand the last term in
Eqg. (C18) in a Taylor series im,—r. This yields

(Med)

r

)(rl_r)T

(C19

X(t=7)=r[0.(t)—0O(t)]—r dr(
=X=3(r)Yr,

where2 (r) is the local shear of the floidl14). Substituting
Egs.(C17) and(C19 into Eq.(C16), we get
X=3(n)Yr

X2+ Y2 [X=3(r)Y7]2+Y?
(C20

N’y2
C(n)= —ZPeq(r)f dXdy
47

This integral is similar to Eq(C6), so we directly obtain
Egs.(113 and (118).

APPENDIX D: CONSERVATION LAWS SATISFIED
BY THE GENERALIZED KINETIC EQUATION

In this section, we prove some general properties satisfied
by Eq.(128. Note first that it can be written

—+(V)VP=-V.J, (D1)
where
J=— Nfotdrf d’r,V(1—-0){V(1—0)P,VP
+V(0—1)PVP}_, (D2)

can be considered as a small quantity. Therefore we can write

Sr=rdhe,+ ore=Xe,+Ye,, (C19

d?r;=d?(sr)=dXdY. (C15

With these notations, the correlation functi¢til?2) can be
rewritten as

C(T)— q(r)f dXdYx2+Y2(t)X2>+(Y2(t—T).
(C16)
Now,
Y(t—rn)=or(t—m)=ry(t—7)—r(t—7)=ry(t)—r(t)
=Y(t)=Y (C17)
and

is the diffusion current. It is clear at first sight that E1)
conserves the total circulatioR = [(w)d?r provided that

J-n=0 on the boundary. We now prove the conservation of
other integral constraints depending on the domain shape.

(i) In a circular and in an infinite domain, the angular
momentum defined by

=J {w)r?d?r (D3)
must be conserved. Taking the time derivative of Hg),

substituting for Eq.(D1), and remembering thdt is con-
served by the advective term, we get

L=2Nny~rd2r. (D4)

Substituting explicitly for the diffusion curreiD?2) in Eq.
(D4), we obtain

026309-23



P. H. CHAVANIS PHYSICAL REVIEW E 64 026309

L= —2N2yftd7f d2rd2r,[r-V(1—0)]{V(1—0)P,VP Ro-0 PR S ‘Er_ r
0 R R R? 175 RM
+V(0—1)PVP}_,. (D5) (D13)
Permuting the dummy variablesandr,, we get we finally conclude that
r-V(1—0)+r;-V(0—1)=0. (D14)

t
L:—zNnyodrf d?rd?ry[r,-V(0—1)];
From this identity and from EqD7), it results that the ki-
X{V(1—-0)P,VP+V(0—1)PVP};—,. (D6)  netic equation(128 conserves the angular momentum in a
fisk and in an infinite domain, i.el=0.
(i) In an infinite domain or in a channel, the linear im-
pulse

Adding these two quantities, we arrive at the final expressio

. t
L=— Nzyf de d?rd?ry[r-V(1—0)+r;-V(0—1)];
0

x{V(1—0)P,VP+V(0—1)PVP,},_,. (D7) P= f rx(w)zd?r (D15)

Now, the term in curly brackets vanishes as shown by then st be conservegin a channel extending in thedirection,
following argument. Consider two point vortices in a circular only the componenP, of the linear impulse must be con-
. g s . . . X
(or infinite) domain. Their angular momentum is served. Taking the time derivative of EqD15), substituting
—r2 2 for Eq. (D1), and remembering th& is conserved by the
L=y(r"+r1) (D8) advective term, we get

and it is conserved. This implies

» 2

. dL—z dr dr, PL—NyJ Jd?r. (D16)
BT TRy

Substituting explicitly for the diffusion currenD?2) in Eq.

=29[r-V(1-0)+r;-V(0—1)]. (D9  (D16), permutting the dummy variablesandr, and taking

) . . the half-sum of the resulting expressions, we finally obtain
We can also prove this result by a direct calculation. In an

unbounded domai¥ (0—1)=—V(1—0) and consequently N2y [t
P, =~ —f drf d?rd?r,[V(1—0)+V(0—1)],
r-V(1—0)+r,;-V(0—1)=V(1—0)-(r—r;)=0, 2 Jo

(010 x{V(1—-0)P,VP+V(0—1)PVP,};_ .. (D17
where we have used E@7) to get the last equality. In a
circular domain, the velocity/(1—0) is given by Eq.(7) Now, we can use the same argument as before to show that
plus a termV,(1—0) which can be determined with the the term in curly brackets vanishes. Let us consider two point
method of “images” if appropriate. IR denotes the domain vortices in a channglor in an infinite domain Their linear
radius, we find impulse is

R? P =y(r+ry) (D18)
—2r1—r

Y~ . . .
V,(1—0)= sz 5. (D11)  and it is conserved. This implies

dP, dr dry
0=~ =gt a/ - MV@A—-0)+V(O-1)].
Therefore, (D19)

. +ry- . . .
r-Ve(1=0)+1-Vyp(0—1) We can also prove this result by a direct calculation. Equa-

y (ZXT)-1 (ZX1) 14 tion (D19) is obvious in an unbounded domain sin¢¢0
=5-{TR T2 + R 2 —1)=-V(1—0).Ina f:hannel extending in thedirection,
—rl——lr —r—=r; we need to show thaP,=0, i.e., Vy(1—0)+V,(0—1)
M1 R r R =0. Now, the velocityV,(1—0) is given by Eq(7) plusa
(D12)  termV,(1—0), which can be determined with the method
. . of “images.” If a denotes the width of the channel, we find
Noting that ¢Xr,)-r=—(zXr)-r, and that that
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y te X—Xq —17),t—7)=P(r,t) betweent andt— 7. In other words, this
Vp(1-0)y=—5— > 5 5 means that the correlation time is smaller than the time scale
Ton=== [(X=Xy) "+ (y—y,—2na) on which the average vorticity changes appreciably. We do
Y x not assume that it imuchsmaller, so this approximation is
_ ! ) (D20)  hot over restrictive. In that case, the diffusion current be-
(x—x)%+(y+y;—2na)? comes
Under this form, it is clear tha¥,,(1—0), is antisymmetric 27 +oo
under the exchange of 1 and 0, so that finally Jr= _NJo dTJO dalfo rradraVyy(1—0)
Vy(1—>0)+Vy(0—>1)=0. (D21) 1 P 1 9P,
o : XV - T)(1—>0)[ P1—— —P—} (E6)
From this identity and from Eq(D17), it results that the or ary

kinetic equation(128 conserves the linear impulse in a

. o N where the time integral has been extended-te. We now
channel or in an infinite domain, i.e?=0.

need to evaluate the memory function

APPENDIX E: CALCULATION OF THE MEMORY +o (2w
FUNCTION M= fo dffo d61Viy(1—=0)V (- »(1—0). (E7)

In this appendix, we calculate the memory function that

occurs in Eq(128). Introducing the notationg= 6,— 6 and

1. Axisymmetrical flow = irr 12< 1, (E8)
If we assume thaP=P(r,t), then Eq.(128 simplifies to s
9P 1 P we have explicitly
E I’ (9!’( rd), (ED ( f q f2n—d sing
where Ay T TN cos 1—\ cos¢
Jr:_Nfode dzrlvr(t)(lﬂo)t[vr(tr)(lﬂo)Plﬁ_r Xl—)\ cogp+AQT)’ (&9

This can also be written

P
Vi, t-n(1=0)P arl] &2 2 riw 27
t— — L) f dr d¢v/(¢)V’(¢+AQT),
0 0

4ar

and whereV,)(1—0) is the component of the vectdf(1

—0) in the direction of (t). If we denote by(r (t),(t)) and (E10
(r1(t),04(t)) the polar coordinates that specify the position,ynere
of the point vortices 0 and 1 at tintewe easily find that
) V(¢)=In(1—\ cosg). (E1D
Y rysin(6—0,)
Vip(1—=0)=— o r1+r 2_2rr, cod 0— 61) (E3 We_ now write the functiorvV(¢) in the form of a Fourier
series,
We shall assume that betweeandt— r, the point vortices o 1
follow circular trajectories with angular velocit§(r,t). In _ ing . :_f’f Zing
that caser(t—7)=r and 6(t—7)=6—Q(r,t) 7. Then, we V(¢) nzz_m an® with 2y 2 ﬁv(d))e dg.
obtain (E12
) v rysin(6—6,—AQr) The memory function becomes
Vii—n(1—0)=——
(Gl 27 r24r2-2rr, cod 60— 6,— AQ7) 1 y \2(+= (o=
(= gl [l e
with
i(Nntm)¢paimAQ T
AQ=0(r,t)—Q(rt). (E5) Xn,m;w NM&hame enr. (B3

We find similarly that Vi - »(1—0)=(r/r))Vi¢-»(1  Carrying out the integrations os and 7 using the integral
—0). Our previous assumptions also imply thB(r(t representation of the delta function
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1 (+=

- —ipx

O(X) zwﬁxe dp, (E14)
we are left with
Y <
M=—-— E NMa,and, - mé(MAQ)
8r2 nm=-- '
y? -

= @guﬂ)n;w Inja2. (E15

It remains for us to evaluate the series that appears in the last

expression of the memory function. Using the identities

fwln(l—)\ cos¢)cogng)de
0

o 1 1 !
- x—wlﬁ—l (n>0), (Ele

N

2

fﬂln(l—)\cos@d(ﬁ:wln %+ , (E17)
0

and the definition(E8) of \, we find thatay<<e and, forn
>0,

M<

an=——

(r§+r2)—|r§—rz|>”_ 1
n

2rr, n

)n, (E19

=

wherer. (r.) is the bigges{smallest of r andr,. There-
fore, the value of the series is

+ oo

+ +o 1/r 2n
> Injaj=23 nai=2% —(—<)
© n=1 n=1N\r~

n=—

r.\?
==2In1-{—] | (E19
r~
The memory function takes the form
2 2
Y r<
M=—-—6(A0)In 1—(—) E20
100A0) — (E20

and the diffusion current in the axisymmetrical case can be

written
3N e sa—aom 1o =) [ Ep, 2P
=ar ), r,dri6(Q2—0Q4)In “\rz) (|7 Prar
it E21)
nt ) =2

This leads to the kinetic equatidfi33).
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2. Unidirectional flow
If we assume thaP=P(y,t), then Eq.(128) simplifies to

P _ A,

Ty (E22

with

t
Jy=—Nf drf dx,dy;VY(1—0) V¥(1—0),_,
0

o PP
Yoy ovi)

Assuming that betweenandt— 7 the vortices follow linear
trajectories with velocity(V)=(V)(y,t)e,, we havey(t
—7)=y andx(t— 7)=x—(V)(y,t) 7. Therefore, the function
VY(1—0) at timest andt— 7 takes explicitly the form

(E23

VY(1—0),= — = X (E24)
U227 (=) 7+ (Y- y)?
and
X1—X—AV
V(10 =g —— e
27 (x;—Xx—AV7)?+(y;—y)?
(E25
where we have introduced the notation
AV=(V)(y1,t) =(V)(y,1). (E26)

We also assume that the correlation time is smaller than the
time scale over which the vorticity changes appreciably.
Then,P(y(t— 7),t— 7)=P(y,t) and the diffusion current be-
comes

t
J=- Nfodrf dx,dy,VY(1—0)V¥(1—0),_.

X{Pj——P—

E2
ay Y1 (E27

JP aPl]

We now need to calculate the memory function

+ + o
M= f drf dx,VY(1—0),V(1—-0),_.. (E29
0 —

Using Eqgs.(E24) and(E25), we have explicitly

2 o
eV
472J)o

g fﬂcdx X X—AVr
T 1
o X?2+Y? (X—AV7)?+Y?
(E29

where we have se{=x;—x, Y=y;—Yy. Equation(E29 can
also be written
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whereK is the modified Bessel function of order zero dnd

Y2 [*te [t W oW _ :
M=— drf dX—X(X,Y)—X(X—AVT,Y) is a length scale of the order of the system size. For small
4mJo —» 0 J separationKy(z)~—Inz and for large separation€y(z)
(E30 ~+/(w/2z)e" % This modification amounts to replacing the
with Poisson equatiof2) by an equation of the form
W(X,Y)=InyX2+Y2=In ¢. (E3Y Ayt %df: o (E39
We shall now write the functiolV(£) in the form of a Fou-
rier integral ) ) ) ) ) ) o
Equation(E39 is precisely what is obtained in geophysics in
1 R , the “quasigeostrophic approximation.” The deformation of
W(§)= zj W(k)e 'k éd%k  with the fluid surface introduces a shielding of the interaction be-
(2m) tween vortices on a length-L, called the Rossby radius.

Obviously, the Rossby radius plays the same role as the De-

W(k)zj W(&)elk d2g, (E32) bye I_ength in plasr_na_ physics:
With this prescription, we find that

Then, the foregoing expression for the memory function be-

A 2
comes W(k)=— ———, (E40
) k+ki
;y + oo + oo ~ N
M=— J drj dxf d?kd?k" W(k)W(k")
(2m)>Jo - wherek, =1/L. Substituting in Eq(E35), we get
<k krefi(k+k’)-§eik)'<AV7_ E33
N (B33 oy - = cogkyY) |\
Carrying out the integrations overand X, we get M= 2_7725(AV) f_x dkykyl fo K2+ K2+ kidky '
) (E4)
Y A “
M=— f d?kd?k" W(K)W(K" ) kK, _ _ , ,
3274 The integral ork, can be carried out easily, leaving the result
X 8(ky+ ke K HRY S(KIAV) (E34) 2 o K
M = 7—5(AV)f dk,—— e~ 2YINK K. (E42)
and, consequently, 4 0 kZ+k2
2 [=]
M= _7 . 5(AV)J+ dk,di,dk/W(ky k)W Now, settingt?=4Y2(k2+k?), we finally obtain
anr — 0
I 2 2|y
(— Ky k) [k @71y TR)Y, (E35 M= YT 5(AV)E1( %) ) (E43
Now, the Fourier transform oV can be written explicitly
where
~ o
W27 [ “Woskeede, (39 .

+xe
El(X)=j Tdt (E44)
where use has been made of the well-known identity X

is the exponential integral. For— 0, we haveE{(x)=—-C
—Inx, whereC=0.5772 . .. isEuler’s constant. In conclu-
sion, the diffusion current in the unidirectional case takes the
whereJy is the Bessel function of order zero. It is immedi- form

ately seen that the Fourier transform\fas defined by Eq.

J'ZWcos(z cosh)df=2mwly(2), (E37)
0

(E31) does not exist. Indeed, the integrdt36) diverges Ny?2 [+ 2|y, -yl
whené— +«, i.e., at large separations. However, in physical Jy=——— dy15(V1—V)E1( )

. ; . o - 4 J_. L
situations the domain never extends to infinity so that, in
practice, the integral remains finite. A convenient way to JP FI
introduce a cutoff at large separations is to make the substi- X{Py—— —) (E45H
tution %y %1

W(E)=In¢é—W(&=—Ky(é/L), (E38 and it leads to the kinetic equatigh35).
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