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Large negative velocity gradients in Burgers turbulence
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We consider one-dimensional Burgers equation driven by large-scale white-in-time random force. The tails
of the velocity gradients probability distribution function~PDF! are analyzed by saddle point approximation in
the path integral describing the velocity statistics. The structure of the saddle-point~instanton!, that is, the
velocity field configuration realizing the maximum of probability, is studied numerically in details. The nu-
merical results allow us to find analytical solution for the long-time part of the instanton. Its careful analysis
confirms the result of Balkovskyet al. @Phys. Rev. Lett.78, 1452~1997!# based on short-time estimations that
the left tail of PDF has the form lnP(ux)}2uuxu3/2.
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I. INTRODUCTION

We consider the random forced Burgers equation

ut1uux2nuxx5f ~1!

that describes weak one-dimensional~1D! acoustic perturba-
tions in the reference frame moving with the sound veloc
@1#. The external forcef in this frame is generally shor
correlated in time, so let us assume that

^f~x1 ,t1!f~x2 ,t2!&5d~ t12t2!x~x12x2!. ~2!

Then the statistics off can be thought Gaussian and the
fore is completely characterized by Eq.~2!. We are interested
in turbulence with a large value of Reynolds number
5@x(0)L4#1/3/n, whereL is the characteristic scale of th
stirring force correlatorx(x). This problem was intensively
studied during the last years@2–7#.

The main feature of Burgers turbulence is the format
of shock waves with large negative velocity gradient ins
and small viscous width of the front. The positive veloc
gradients are decreased by the dynamics of Burgers equ
due to self-advection of velocity. On the contrary the incre
ing of negative gradients could be stopped only by viscos
The motion of shock waves leads to a strong intermitten
the PDF of velocity gradientsP(ux) is strongly non-
Gaussian. The one way to describe the intermittency is
study rare events with large fluctuations of velocity, that g
the main contribution to the high momenta^ux

n& or to the
PDF tails.

The right tail ~positive largeux) of PDF lnP(ux)}2ux
3

was first found by Feigel’man@8# for the problem of charge
density wave in an impurity potential. Later it was recover
using operator product expansion@2# ~see also Ref.@5#!, in-
stanton calculus@3#, minimizers approach@6#, and mapping
closure @7#. The left tail in the inviscid limit seems to b
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algebraic, probablyP(ux)}uuxu27/2 @6# ~see also Refs.@7,9#!.
Due to viscosity the very far left tail is stretched exponent
ln P(ux)}2n3uux /nub. The large negative gradients exi
practically only inside the shock waves. The maximal va
of gradient is proportional to the square of the velocity jum
on the shock waveuuxumax5(Du)2/8n. Then roughly the tail
of the shock wave amplitude PDF has the for
ln Pshock(Du)}2n322b(Du)2b. The analysis of the instan
ton structure predicts the valueb53/2 @4#. This prediction is
consistent with the assumption, that the tails ofPshock(Du)
should not depend on the viscousityn.

We are interested in the statistics of large values of g
dients ux@ur.m.s./L;@x(0)/L2#1/3. The velocity field con-
figurationsu(x,t) that make a contribution to the probabilit
P(a) of the equalityux(0,0)5a have the gradient greater o
equal toa somewhere. The probabilityP(a) decays very fast
while a increases, i.e., the contribution of events with gra
ent greater thana somewhere is highly suppressed. Then o
believes that only some specific field configurationsu(x,t,a)
~‘‘optimal fluctuations’’ @10# or instantons! make contribu-
tion toP(a) at largea.(ur.m.s./L)Re. Under this assumption
to calculateP(a) one should find this optimal field configu
rationu(x,t,a) and estimate the probability of its realizatio

All instantons of this type are posed at the far tail of t
statistical weight of averagingm@f(x,t)#. Indeed, to produce
large fluctuation ofu the stirring forcef also should be
large, and the probability of such fluctuationf is low. The
weight m@f# may not contain a large parameter, but
should have fast tails, e.g., exponential ones. Then the c
currence between statistical weight and the value of ca
lated quantity makes the contributing realizations off(x,t)
rather determined. This approach was introduced by Lifsh
@10#. Later it was applied to determine high order correlati
functions in field theory@11# and in the systems of hydrody
namic type: simultaneous~see, e.g., Refs.@12,3,13#! and
nonsimultaneous@14# ones.

The paper is organized as follows. In Sec. II we derive
equations for the instanton. Section III is devoted to the
tailed description of our scheme of numerical calculations
Sec. IV we discuss the numerical results and describe
behavior of the solution of instanton equations at large tim
©2001 The American Physical Society06-1
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II. SADDLE-POINT APPROXIMATION

The velocity gradients PDFP(a) can be written as the
path integral

P~a!5^d@ux~0,0!2a#&f

5E DuDpE
2 i`

i`

dF exp$2S14n2F@ux~0,0!2a#%,

~3!

where the effective actionS has the form@15,12#

S5 1
2 E

2`

0

dtE dx1dx2 p~x1 ,t !x~x12x2!p~x2 ,t !

2 i E
2`

0

dtE dx p~ut1uux2nuxx!. ~4!

The integration overF gives rise tod@ux(0,0)2a#, and the
factor 4n2 was chosen for our convenience. Note that if
tarded regularization of the path integral~3! is used then
*DuDp exp(2S)51 and we have no normalizin
u-dependent denominators in Eq.~3!. One can find some
analogies between the appearance of the second fieldp and
technique that was developed by Keldysh@16# for nonequi-
librium dynamics description.

We are interested in the tails of PDFP(a), i.e., the pa-
rametera in the integral~3! is large. The asymptotics o
P(a) at largeuau@@x(0)L#2/3/n is determined by the saddle
point configuration of fieldsu(x,t), p(x,t) ~and also param-
eterF), near which the variation of the integrand is equal
zero @12#. The saddle-point configuration~sometimes called
classical trajectory or instanton! is governed by the following
equations:

ut1uux2nuxx52 ix* p, ~5!

pt1upx1npxx54in2Fd~ t !d8~x!, ~6!

wherex* p is the convolution

~x* p!~x!5E dx8 x~x2x8!p~x8!. ~7!

The solution should satisfy boundary conditions

lim
t→2`

u~x,t !50, lim
t→10

p~x,t !50,

~8!
lim

uxu→`

u~x,t !50, lim
uxu→`

p~x,t !50.

The value ofF is tuned in such a way that the conditio
ux(0,0)5a holds. The quantityF is a Lagrange multiplier
for finding the extremum ofS with the conditionux(0,0)
5a.

The equation forp should be solved moving back in tim
because of the signs atpt and pxx in the instanton equation
~6!. The convolution2 ix* p is the optimal configuration o
external forcef that produces large negative gradient.
02630
-

In what follows we will measure the length inL units, i.e.,
we setL51. Rescaling the timet and fieldsu, p one can
exclude the parametern from the instanton equations

t5T/2n, u52nU, p54in2P, a52nA, ~9!

UT1UUx2 1
2 Uxx5E dx8 x~x2x8!P~x8!, ~10!

PT1UPx1 1
2 Pxx5Fd~T!d8~x!, ~11!

at T50 one hasUx(0,0)5A. The only parameter in the in
stanton equations isA5a/2n. Note that the steady-state kin
solution of Burgers equation with the negative gradienta is

u52A2nuautanh~Auau/2nx!. ~12!

Thus the physical meaning ofuAu is the square of the ratio o
pumping scaleL51 and the kink widthwkink51/AuAu.

The effective actionSextr at the instanton that gives th
right exponent

ln P~a!.2Sextr~a! ~13!

is equal to

Sextr52 1
2 E

2`

0

dtE dx1dx2 p~x1 ,t !x~x12x2!p~x2 ,t !

54n3E
2`

0

dTE dx1dx2P~x1 ,T!x~x12x2!P~x2 ,T!.

~14!

The freedom of rescaling the fieldsu, p and the timet with
appropriate change ofn gives us the following relation:

Sextr~a!58n3S~a/2n!5~2n!3S~A!, ~15!

with the functionS(A) to be determined. One can prove b
straightforward calculation the following relation betwee
functionsF(A) andS(A):

F~A!5
dS~A!

dA
. ~16!

The relations of such sort are well known in classical m
chanics; hereA and F are conjugate variables, and sadd
point configuration is the trajectory of extremal action.

The instanton equations~10!,~11! are Hamiltonian:

UT~x,T!52
dH

dP~x,T!
, PT~x,T!5

dH
dU~x,T!

, ~17!

H5E dx P~UUx2 1
2 Uxx2

1
2 x* P!. ~18!

The HamiltonianH is the integral of motion, i.e.,dH/dT
50. Since bothU and P tend to zero atT→2` we have
H50. From the instanton equations and the conditionH
50 we get
6-2
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S5
FA

2
1 1

4 E dTdx PxU
25

FA

3
1 1

6 E dTdx PxUx .

~19!

The last term is due to viscousity. At the right tail it is u
important, and we havedS/dA53S/A, i.e., S}A3. At the
viscous left tail its contribution to the action is of the sam
order as other terms. If lnP(a) is a powerlike function:
ln P(a)}uaub, then one has*dTdx PxUx52(32b)S.

The high momenta can be calculated by the instan
method in a following way. BecauseanP(a) is a narrow
function for largen, and only narrow velocity interval, which
position depends onn, contributes tô an&. The position of
this interval is exactly the saddle point in the integral^an&
}*da anexp@2Sextr(a)# @see Eq. ~13!#, that satisfies the
equation

n5a
dSextr~a!

da
58n3A

dS~A!

dA
. ~20!

Combining it withF5n/8n3A we again get Eq.~16!. To get
the instanton equations for the average^an& one should only
substituteF in Eq. ~11! for n/8n3A. Then the instanton equa
tions become the same as in Ref.@4#.

One also should consider fluctuations near the instan
as a background. The way how the fluctuations can be ta
into account is unknown yet but their influence to lnP(a)
due to their phase volume is small in comparison withSextr
while a@(urms/L) Re. At smaller gradients the fluctuation
essentially change the answer and we have the algebrai
@6#.

III. NUMERICAL CALCULATIONS

The preliminary calculations that were made inx, T vari-
ables have shown that the width of the instanton equat
solution grows withuTu and is proportional touTu1/2, while its
amplitude is proportional touTu21/2. To avoid the necessity
of treating simultaneously narrow structure at smallT and
wide one at largeT we used the following variables:

x5jAT02T, T5T0~12e2t!, ~21!

U5Ũ/AT02T, P5 P̃/AT02T, ~22!

whereT0 is some constant of the order of unity. The insta
ton equations in these variables take the form

Ũt1 1
2 ~jŨ2Ũj!j1ŨŨj5x̃~t!* P̃, ~23!

P̃t1 1
2 ~j P̃1 P̃j!j1Ũ P̃j5Fd~t!d8~j!/AT0, ~24!

where x̃(j,t)5(T02T)3/2x(x). The boundary conditions
for Ũ, P̃ are analogous to Eq.~8!.

Let us describe now the general structure of the numer
scheme that finds the solution of our boundary problem. T
diffusion termsŨjj , P̃jj in instanton equations~23!,~24!
have opposite signs. If one considers these equations as
linked Cauchy problems, then the natural direction of time
02630
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Eq. ~23! is positive, while in Eq.~24! the direction is nega-
tive. Assume that at a given value ofF the approximate
solution Ũold(j,t) is known. Let us try to make it closer to
the true solution of the problem. For this purpose let us so
the Cauchy problem for Eq.~24! starting fromt510 and
moving up to large enoughtmin,0. Then usingP̃ that we
have got in the previous step we solve the Cauchy prob
for Eq. ~23! moving fromt5tmin up tot50. As a result we
get the new valuesŨnew(j,t). Further we will use the signf
for the mappingŨold→Ũnew. The stationary pointŨ of the
mappingf and the corresponding functionP̃ are the desired
solution of Eqs.~23!,~24!.

The numerical experiments have shown that iterations

Ũ ( i 11)5 f @Ũ ( i )#, Ũ (0)[0 ~25!

converge ifF.F* .20.96. WhileF,F* the simple itera-
tions ~25! are divergent.

Curve 1 at the Fig. 1~a! shows how the value of the gra
dient Ã5]Ũ(j,t)/]juj50,t50 depends on the number of it
eration forF522. It can be seen that the stationary point
f is unstable, but the mappingf @ f @Ũ## has two stable sta
tionary points. The stability properties of the iterations a
determined by the spectrum of the linearizationK̂ of f near a
stationary point

f @Ũ1V#5Ũ1K̂V1•••. ~26!

The iteration process is convergent if the modulus of all
genvalues of the linear partK̂ is less than 1. The period
doubling indicates that whileF passes throughF* one of
K̂ ’s eigenvalues passes through21 @17#. Let us denote this
eigenvalue asl.

This knowledge allows us to construct the new mapp
with stable stationary point that coincides with one of t
mappingf. Let us proceed the following iterations:

Ũ ( i 11)5 f c@Ũ ( i )#[c f@Ũ ( i )#1~12c!Ũ ( i ), ~27!

wherec is some constant. It is easy to check that the stati
ary points of the mappingsf and f c do coincide. The linear
part of f c is equal toK̂c5cK̂1(12c)1̂, its eigenvalue cor-
responding to unstablel is lc5cl1(12c). If we take the
value ofc inside the interval 0,c,2/(12l),1, thenulcu
,1, and the iterations~27! are convergent.

Since we do not knowl a priori, the value ofc that
provides the convergence of iterations, was determined f
experiment. Figure 1~a! illustrates the influence of the de
creasing ofc on the dependence ofÃ vs number of iteration.
In the final version of the computer code the value ofc was
changed in an adaptive way: each time the value ofuÃu was
decreased after an iteration,c was multiplied by 0.9. One can
compare from the Fig. 1~b! the iterations run forc50.1,
c50.05 and for adaptive decreasing ofc, all three for
F522. The initial and final values ofc in the case of adap
tive change were equal to 0.1 and 0.130.9450.05905•••,
6-3
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respectively. It is clear that for the two last cases the ite
tions converge to the same solution.

A. Grid parameters

The solution of Cauchy problem is found numerically u
ing the method of finite differencies. The grid covers t
rectangular domain 0,j,jmax, tmin,t,0. In numerical
calculations some of the boundary conditions~8! that in prin-
ciple are posed at the infinity were considered as they
posed at~large enough! jmax andtmin . Typical values used
jmax510 andtmin5230. The grid had uniform mesh inte
vals inj, typical number of grid sites alongj axe was equa
to 1024.

The first calculations had shown that the solution chan
rapidly in the vicinity of t50, while at larget it varies
slowly. Because of this we used nonuniform grid for variab
t. The time step was smaller inside the intervalt1,t,0,

FIG. 1. The gradientÃ as a function of number of iteration.~a!
The dots corresponding to one run are joined by a line for con
nience. The curves are:~a! simple iterations according to Eq.~25!
~curve 1! and according to Eq.~27! with c50.1 ~curve 2!; ~b! c
50.1 ~curve 1, its thickness is determined by the amplitude
serrated oscillations!, c50.05~curve 2!, and adaptive decreasing o
c during the run, the initial value isc50.1, c was multiplied by 0.9
four times~curve 3!; F522.
02630
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typical value used:t1520.4. The number of grid sites in
side this interval varied from 2000 to 4000. The compu
power we had limited the number of all time steps in the g
by 5000. During all calculations we usedT051.

B. Cauchy problem for P̃

Equation ~24! should be solved backward in time. Th
source term in the right-hand side of Eq.~24! provides us the
initial condition P̃(t520)}d8(j). This means that at sma
times the fieldP̃ is localized in a very narrow interval cen
tered atj50. Such initial condition can not be accurate
discretized, so we used another way to representP̃ at small
times.

For smallt the field P̃ is very narrow. At its support we
can approximate the velocityŨ by a linear profile Ũ

5Ã(t)j. The evolution ofP̃ in such a velocity field is de-
scribed by the derivative of Gaussian contour

P̃~j,t!5F jP amp~t!

A2pT0D3~t!
expS 2

j2

2D~t! D , ~28!

Pamp~20!51, D~20!50,

D~t!5E
t

0

dt8expS E
t8

t

dt9@2Ã~t9!11# D , ~29!

Pamp~t!5expS 2E
t

0

dt8@2Ã~t8!11/2# D . ~30!

We use such a representation forP̃ for t0,t,0. The value
of t0 is chosen in such a way, that the velocity fieldŨ is still
linear at the width ofP̃. From the other hand,P̃ at t5t0
already becomes wide in comparison with mesh intervalDj.
Typical value oft0 used:t0521/1500. For timest,t0 the
solution is found by fully implicit scheme

P̃i
n112 P̃i

n

Dt
1

1

2
P̃i

n111Di
n11

P̃i 11
n1122P̃i

n111 P̃i 21
n11

Dj2

1r 1,i
n11

P̃i 11
n112 P̃i

n11

Dj
1r 2,i

n11
P̃i

n112 P̃i 21
n11

Dj
50, ~31!

wherer 6,i
n , Di

n are equal to

r 6,i
n 50.5@r ~j i ,tn!6ur ~j i ,tn!u#,

~32!

Di
n5

1

110.5ur ~j i ,tn!uDj
.

The function r (j,t) is expressed via velocity fieldr (j,t)
50.5j1Ũ(j,t).

HereDj.0, Dt,0 are mesh intervals andj i , tn are site
coordinates. The numerical scheme used is monotonous
stable, it is of the first order of accuracy inDt and of the
second order inDj @18#.

-

f
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C. Cauchy problem for Ũ

At this stage we use the initial conditionŨ(t5tmin)[0.
The viscousity, source and self-advection terms are tre
by splitting technique@19#. At each time step the change o
Ũ due to the source is first calculated, then to the viscous
and last to the nonlinearity.

From calculated already grid layerŨn5Ũ(t5tn) the
next layerŨn11 is found in the following order. First, the
equationŨt5x̃(t)* P̃, is solved:

Ũ i
n112Ũ i

n

Dt
5@ x̃~t!* P̃#n . ~33!

The convolutionx̃* P̃ is calculated as the result of invers
fast Fourier transform~FFT! acting on the product ofx̃ ’s and
P̃’s FFT images. The external force correlator during all c
culations was equal to x(x)5(12x2)e2x2/2

52d2e2x2/2/dx2. The numbersŨ i
n11 that are found in such

a wayare nota final solution for the layerŨn11, since only
the source term has been taken into account yet. We use
as an input at the next step, we will denote them asŨ i

n @note

that theydo notcoincide withŨ i
n in ~33!#.

Next, the viscousity and linear part of advection are tak
into account, according to the equationŨt1 1

2 (jŨ2Ũ)j

50. The fully implicit scheme was used analogously to E
~31!:

Ũ i
n112Ũ i

n

Dt
1

1

2
Ũ i

n112Di

Ũi 11
n1122Ũ i

n111Ũ i 21
n11

Dj2

1
1

2

Ũ i
n112Ũ i 21

n11

Dj
50, ~34!

hereDi51/(110.25j iDj). Again, the numbersŨ i
n11 do not

form a final solution, and we send them to the next step w
a Ũ i

n notation.

The nonlinear part of the equationŨt1ŨŨj50 was
solved by explicit conservative scheme@20#:

Ũ i
n112Ũ i

n

Dt
1

Ũ i 11
n 1Ũ i

n1Ũ i 21
n

3

Ũ i 11
n 2Ũ i 21

n

2Dj
50, ~35!

that finally gives us the next layer of the velocity fieldŨn11.
This scheme is of the first order of accuracy inDt and of the
second one inDj.

IV. VISCOUS INSTANTON

In this section we represent the results of our calculatio
that show the structure of the instanton and its change w
uFu. The minimal value ofF at which the reliable results in
numerics were obtained isF522.

The general features of the instanton structure cha
02630
ed

y,

-

em

n

.

h

s,
th

e

with F can be obtained from Fig. 2 that shows the lev

curves ofŨ(j,t) for three values ofF. SinceŨ and P̃ are
the odd functions ofj, we draw only the region wherej
.0. The calculations were done in a rectangular 0,j,10,
230,t,0, whose dimensions are a bit larger than it
shown at the figure.

One can see that the instanton life-time and the maxi
value of uŨu rapidly increase with the growth ofuFu. The
growth leads to the deformation of level curves neart50
because of the influence of nonlinearity, that is weak aF
520.9 @Fig. 2~a!# and very strong atF522.0 @Fig. 2~c!#.

FIG. 2. The level curves ifŨ(j,t) for F520.9 ~a!, F521.1
~b!, andF522 ~c!. The values of levels can be calculated from t
two given levels according to arithmetic progression law.
6-5



th
v
e

th

e
ri

s

a
e

e

od

s

in

c
t

e

fa

e

an
t

s

-
is

hen
p-

-

ond

n-

ile

A. I. CHERNYKH AND M. G. STEPANOV PHYSICAL REVIEW E64 026306
A. Structure

A detailed analysis of the instanton solution based on
results of numerical calculations allows us to distinguish fi
different regimes in the instanton time evolution. Below w
discuss them consequently fromt50 to t52`.

The first regime consist in the viscous smearing of
field p up to the scale of the kink widthwkink5A2n/uau
51/AuAu @see Eq.~12!, Fig. 3#. Since the viscousity plays th
crucial role in this regime, we will also use dimensional va
ables. Att520 we havep(x,t)}d8(x), and the width of the
kink in the velocity profile is equal towkink5A2n/uau @see
Eq. ~12!#. Sincep is very narrow, the viscousity dominate
the evolution. The width ofp obeys the diffusion law and
equals toA2nutu. These two widths become comparable
time t521/uau, or T521/uAu. This means that during th
whole time of smearing ofp by viscousity the width of the
kink is of the order ofwkink . Indeed, if the shape of th
velocity profile deviates from steady-state kink solution~12!,
then the change of the kink width during this time peri
would be of the order ofut;A2nuau/uau5A2n/uau5wkink .
At this regime the source termx* P in instanton equation
~10! is unimportant. When the width ofp becomes of the
order ofwkink the rate of expansion ofp due to the velocity
gradient becomes comparable with the rate due to viscou
~such a balance determines the width of the kink!.

The next ~second! regime was exhaustively studied
Ref. @4#. It consists in dilation of fieldsU, P up to the pump
scaleL51. The fields are advected by velocityU, and con-
sidering evolution back in time they are expanded by it sin
Uxux50,0. The time needed for the expansion is equal
T* ;L/U;1/AuAu.

During the third through fifth regimes the width ofU and
P field is much greater thanL51. Then it is naturally to
substitutex(x) by 2x2d9(x). The instanton equations tak
the following simple form:

UT1UUx1 1
2 Vxx50, VT1UVx1 1

2 Uxx50, ~36!

whereV52x2P2U, x252 1
2 *dx x2x(x). While moving to

large negative time numerical solution has a tendency to
in U5V ~see Fig. 4, curvest524 andt528). Then the

FIG. 3. The kink in the velocity fieldŨ(j,t) at t50; F522.
02630
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equations forU, V reduce to the Burgers equations with th
evolution back in time.

Such a substitution is not always possible. During such
evolution the shock waves occur@see, e.g., the level curves a
Fig. 2~c! neart525, Fig. 4, curves 1 and 2#. For transition
to Eqs. ~36! to be valid the width of these shock wave
should be larger thanL51. Otherwise the substitution ofx
by d9 is not valid. The width of the shock wave in dimen
sionless variables is greater than 1 only if its height
smaller than 1. However, right after the second regime w
the width ofU andP fields becomes greater than the pum
ing force correlation lengthL51 the amplitude of the veloc
ity field U is of the order ofAuAu@1. The amplitude ofU
becames small only at very large times~it is shown below
that such a crossover happens atT;2AuAu). It means that
there is an intermediate regime that goes after the sec
one, where the substitution ofx by d9 is inapplicable. In this
~third! regime the fieldsU andP are smooth functions in the
interval wider than 1. At the ends of this interval they co
tain shock waves—the value ofU andP rapidly goes to zero
~as it is shown schematically in Fig. 5!. We will use the word
‘‘shock’’ for these structures at the ends of the interval, wh
for narrow structure in the velocity fieldU near x50, T
50 we will use the word ‘‘kink.’’

FIG. 4. Comparison ofŨ(j,t) ~solid curves! andx2P̃(j,t) for
three values oft; F522.

FIG. 5. Schematic representation ofU and P for the third re-
gime,F→2`.
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Now we will consider the structure of the shocks in deta
Let us denote the height of the shocks inU(x,T) andP(x,T)
fields byHU(T) andHP(T), respectively. Their position we
will denote asxshock(T) (xshock.0, shocks are posed atx
56xshock).

In the third regime the width of the shocks in the fieldP is
determined by the competition of squeezing them by the
locity U and spreading by viscousity~see Fig. 6!. Since we
are in a strongly nonlinear regime the viscousity is weak, a
the width of P’s shocks is very small. The shocks inP are
stationed at the center ofU ’s shocks, i.e., in almost linea
velocity profile with the gradientUx;HU . The width ofP’s
shocks can be estimated as 1/AHU!L. Then the good ap-
proximation forP(x,T) near the shockx.xshock is P(x,T)
.2HP(T)u@xshock(T)2x#, whereu(x) is the step function.
During the evolution forward in time the shocks inU do not
break down because of source termx* P. The source pre-
vents the destructive effect of advection termUUx . The
shocks inP should carry theU ’s shocks of the heightHU ,
i.e., of strengthUUx;HU

2 . Thus we should haveHP}HU
2 in

this regime. Now we show it more carefully.
Let us write the instanton equation~10! in the reference

frame of the shock near the pointx5xshock ~see Fig. 6!. We
have two contributions to time derivativeUT : from the
growth ofHU in time ~of orderHU /T) and from the motion
of the shock~of orderHU

2 ). Neglecting the first one we write
the following equation for the velocityU(x,T):

1

2
@U~x!2U~xshock!#x

252HPX8~x2xshock!, ~37!

where the new functionX(x) is determined by the equatio
x(x)52X9(x) with the conditionX→0 with x→6`. Inte-
grating this equation once we obtain

@U~x!2U~xshock!#
252HP@X~0!2X~x2xshock!#. ~38!

SinceU(xshock)52HU/2 we haveHP5HU
2 /8X(0).

The next step consists in finding the solution of Eq
~10!,~11! between the shocks posed atx56xshock consider-
ing the fieldsU, P as smooth ones and using the bound
condition

FIG. 6. Shock structure in the third regime,F→2`.
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P~6xshock70,T!57U2~xshock20,T!/8X~0!. ~39!

The instanton equations~10!,~11! take the form

UT1UUx50, PT1UPx50. ~40!

Here we approximate the shocks as jump discontinuities,
the condition~39! relates the heights of the jumps~see Fig.
5!. Here the diffusion terms and the termx* P are omitted.
One can check that they are negligible since the charact
tic x scale of the solution is large enough.

Equations~40! can be integrated by characteristics~or La-
grangian trajectories!. The velocity of the shocks is equal t
6HU/2, i.e., all the trajectories disappear at the shocks~if we
consider the evolution back in time!. The value ofU ~or P)
is conserved in time if we follow the Lagrangian trajector
This means that the relationP5UuUu/8X(0) holds every-
where between the shocks.

Due to self-advection the velocity fieldU became more
and more linear as a function ofx while uTu increases. This
happens at the border between the second and the thir
gimes. In the third regime we can takeU(x,T)5x/T be-
tween the shocks. The fieldP is equal to P(x,T)
52xuxu/8X(0)T2. The velocityU simply squeezes or ex
pands the fieldP without changing its shape. SinceHP

;HU
2 , the fieldP should have the same scaling asU2, i.e.,

P}x2. The concave form ofP ~as one can seeF522 is not
yet good enough for a clear picture! is shown in Fig. 7.

Let us determine the time dependence ofxshock. We have

dxshock

dT
52

1

2
HU~T!52

xshock

2T
. ~41!

Solving this equation we getxshock(T)5BA2T. Since
xshock;1 at uTu;1/AuAu, we get B;uAu1/4. The shocks
heights are equal to HU(T)5B/A2T, HP(T)
5B2/8X(0)uTu. The width of the shocks inP field is of the
order of 1/AHU. The shocks in velocity fieldU have the
width of the order of 1, sinceU is pumped byx* P.

At large timeT;2AuAu the heightHU ~and consequently
the width of the shocks inP) became of the order of 1. Thi

FIG. 7. Ũ(j) ~solid curve! andx2P̃(j) ~dashed curve! profiles
at t520.4. F522.
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indicates the end of the third regime and the beginning of
fourth. Going further back in time we finally enter the d
main of validity of Eq.~36!. The solution falls intoU5V.
Again, the solution has two shocks between which it is
smooth function. The shock position satisfiesxshock}A2T,
between the shocksU5V5x/T holds. This regime exactly
corresponds to self-similar solutionu(x,t)5u(t2Cx2)x/t of
inviscid Burgers equationut1uux20•uxx50 ~here C is a
parameter!.

At the far tail of the instanton due to viscous dissipati
the solutionU5V transforms to the derivative of Gaussia
contour — the self-similar solution of the diffusion equatio
~see Fig. 4,t5216). During the fifth regime the advectio
term UUx becomes irrelevant. Inj, t variables the solution
tends toŨ}j exp(t/22j2/2), that was observed in numer
cal calculations.

During the fourth and the fifth regimes the amplitude
the velocity fieldU is less than unity. It means that the am
plitude of U is lower than the order of the typical statistic
fluctuations, and the saddle-point approximation is mean
less there. The typical events that demonstrate large neg
gradients start from some velocity configurationU(x) with
the amplitude of the order of unity and are governed by
third regime first. The action on these events and their furt
evolution almost do not depend on the initial velocity fie
U(x), and the dependence ofP(a) on a remains unaltered
by the averaging over all possible configurationsU(x). We
considered the 4th and the 5th regimes since they are
parts of the whole solution of our nonlinear boundary pro
lem.

Let us now run the whole evolution forward in time. A
the beginning~fifth regime! the field U is pumped by very
wide P. The pumping force is proportional toPxx . During
the fourth regime the source is localized at shocks inP that
leads to a formation of shocks inU. TheU ’s shocks want to
break down because of self-advection, but the source t
x* P keeps them going. When the growing height ofP be-
comes larger than unity the shocks inP become narrow. The
balance between the termsUUx and x* P in Eq. ~10!
changes a little, that results in the change of the form ofU ’s
shocks — it is determined by the shape ofx(x) now. The
distance between theP’s shocks decreases in time and eve
tually it becomes comparable with unity. After thisP be-
comes even more narrow and the efficiency of the sou
term begins to fall down. The self-advection of the veloc
destroyes the shocks and leads to a formation of the k
at x50, while P transformes tod8(x). The kink shape at
F522 is shown in Fig. 3. Schematically time evolution
the instanton is illustrated in Fig. 8.

B. Action

One can present the actionS(A) in the form of S
5*2`

0 dT s(T) as in expression~14!. For F522 the action
densitys(T) that was obtained from numerical calculatio
is shown in Fig. 9. WhileT,T* 521/AuAu the convolution
x* p is localized at shocks, sos(T);HP

2 (T);B4/T2. The
maximum ofs(T) is posed atT;T* . Further increasingT
leads to the decreasing of the densitys(T) becauseP(x)
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becomes more and more narrow without an adequate gro
of its amplitude. This region of small timeT.T* was stud-
ied in Ref.@4#. It was shown that the contributionST.T

*
to

the extremal action from this interval is of orderuAu3/2, and
the main contribution to the action from it comes from t
regionT;T* — the border between the second and the th
regimes. Exactly these two regimes determine the opti
configuration of noise providing the event with large neg
tive gradient.

The contribution of region of time2AuAu5TB,T,T*
521/AuAu ~third regime! to the extremal actionS(A) can be
estimated as

ST,T
*
;E

TB

T
* dT HP

2 ~T!;2B4/T* ;uAu3/2. ~42!

Note that the value ofST,T
*

is again cumulated from the

region T;T* . The crucial point is that the contribution t
the actionS(A) from the tail of the instanton~or large time
T,T* ) is finite, i.e., the integral~42! converges~the addi-
tion to the action from intervalT,TB is negligible!. Also
this contribution is not dominant, i.e., it is not much grea
than the contribution of the orderuAu3/2 from small times
(T.T* ). It means that in our case the instanton is localiz
enough in time. Its long-time dynamics does not destroy
fact that it is the main fluctuation determining the statistics
large negative gradients.

At the Fig. 10 the functiond(ln S)/d(ln A)5FA/S that was
obtained from numerical calculations is shown. We used
ferent grid parameters during calculations for instanton str

FIG. 8. Schematic representation of the instanton time structu

FIG. 9. The action densitys(t) as a function of ‘‘time’’ t. F
522.
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LARGE NEGATIVE VELOCITY GRADIENTS IN . . . PHYSICAL REVIEW E64 026306
ture and for this figure. Here we usedtmin524 with bound-
ary condition Ũ(j,tmin)5x2P̃(j,tmin). This boundary
condition was used as initial condition forŨ during itera-
tions. It turned out, that e.g. forF522 we get the following
values ofFA/S andA with different value oftmin :

tmin FA/S A

24 1.441 2148.1
230 1.437 2102.6

Although, when calculating withtmin5230, the condi-
tion Ũ(j,24)5x2P̃(j,24) holds within 15%~as one can
see from Fig. 4! we prefer to use the grid shorter in tim

FIG. 10. FA/S5d(ln S)/d(ln A) @see Eq.~16!# as a function of
gradientA.
v,

s.

02630
(tmin524) to have smaller time step. The value ofA
strongly depends on time step. It was observed in numer
experiment. Such sensitivity is characteristic of Burge
equation also. Although the calculations with smallutminu
give us worse accuracy at the tail of the instanton, the sm
ness of the time step allows us accurately describe the m
part of the instanton where the nonlinearity level is high.

One can see the cubic asymptoticsS}A3 at A.0. The
instanton structure forA.0 that was described in Refs.@3,4#
was confirmed by our numerical calculations. The caseA
,0 corresponding to the PDF’s left tail is more complicate
The functionFA/S has minimal value atA.212. At further
decrease ofA it starts to grow and finally tends to the valu
3/2. In this case the coefficientS/uAu3/2 is small.

V. CONCLUSION

We have examined the remote left tail of the veloc
gradients PDFP(ux) in Burgers forced turbulence. The po
sibility of direct numerical solving of instanton equations b
iterations is demonstrated. Numerical calculations and
analysis of the instanton behavior at the time large compa
with its lifetime t* ;1/Anuuxu with the solution at small time
from Ref. @4# show that lnP(ux)}2uuxu3/2.
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