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Large negative velocity gradients in Burgers turbulence
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We consider one-dimensional Burgers equation driven by large-scale white-in-time random force. The tails
of the velocity gradients probability distribution functi0RDF) are analyzed by saddle point approximation in
the path integral describing the velocity statistics. The structure of the saddle¢psitanton, that is, the
velocity field configuration realizing the maximum of probability, is studied numerically in details. The nu-
merical results allow us to find analytical solution for the long-time part of the instanton. Its careful analysis
confirms the result of Balkovskgt al.[Phys. Rev. Lett78, 1452(1997] based on short-time estimations that
the left tail of PDF has the form ®(u,) o — |u,|¥?.
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. INTRODUCTION algebraic, probabl(u,) = |u,| ~"?[6] (see also Ref$7,9]).
Due to viscosity the very far left tail is stretched exponential
We consider the random forced Burgers equation InP(u,) = — v3|u, /v|A. The large negative gradients exist
practically only inside the shock waves. The maximal value
Ui+ UUy— YUy = ¢ (1) of gradient is proportional to the square of the velocity jump

on the shock wavéu,|ma= (Au)?/8v. Then roughly the tail
that describes weak one-dimensio(HD) acoustic perturba- of the shock wave amplitude PDF has the form
tions in the reference frame moving with the sound velocityin P, .(Au)= — 13 25(Au)?#. The analysis of the instan-

[1]. The external forcep in this frame is generally short ton structure predicts the valyg=3/2[4]. This prediction is

correlated in time, so let us assume that consistent with the assumption, that the tailsTaf,.( Au)
should not depend on the viscousity
((X1,t1) d(Xa,12)) = (11— t2) X(X1 = X2). 2 We are interested in the statistics of large values of gra-

dients u,>u, s /L~[ x(0)/L%]Y3. The velocity field con-
Then the statistics of can be thought Gaussian and there-figurationsu(x,t) that make a contribution to the probability
fore is completely characterized by E®). We are interested P(a) of the equalityu,(0,0)=a have the gradient greater or
in turbulence with a large value of Reynolds number Reequal toa somewhere. The probabiliff(a) decays very fast
=[x(0)L*]*¥v, whereL is the characteristic scale of the while a increases, i.e., the contribution of events with gradi-
stirring force correlaton(x). This problem was intensively ent greater tham somewhere is highly suppressed. Then one
studied during the last yeaf2-7]. believes that only some specific field configuratiois, t,a)

The main feature of Burgers turbulence is the formation(“optima| fluctuations” [10] or instantons make contribu-
of shock waves with large negative velocity gradient insidetion to P(a) at largea> (u, , s /L) Re. Under this assumption
and small viscous width of the front. The positive velocity to calculateP(a) one should find this optimal field configu-
gradients are decreased by the dynamics of Burgers equatiggtionu(x,t,a) and estimate the probability of its realization.
due to self-advection of VeIOCity. On the Contrary the increas- All instantons of this type are posed at the far tail of the
ing of negative gradients could be stopped only by viscositystatistical weight of averaging|[ ¢(x,t)]. Indeed, to produce
The motion of shoc.k waves leads to a strong intermitténcyjarge fluctuation ofu the stirring force¢ also should be
the PDF of velocity gradientsP(u,) is strongly non- |arge, and the probability of such fluctuatighis low. The
Gaussian. The one way to describe the intermittency is theight u[ 4] may not contain a large parameter, but it
study rare events with large fluctuations of velocity, that giveshoyld have fast tails, e.g., exponential ones. Then the con-
the main contribution to the high momentay) or to the  currence between statistical weight and the value of calcu-
PDF tails. lated quantity makes the contributing realizationsgdik, t)

The right tail (positive largeu,) of PDF InP(u,)=—u  rather determined. This approach was introduced by Lifshitz
was first found by Feigel'maf8] for the problem of charge [10]. Later it was applied to determine high order correlation
density wave in an impurity potential. Later it was recoveredfunctions in field theory11] and in the systems of hydrody-
using operator product expansif?] (see also Refl5]), in-  namic type: simultaneoussee, e.g., Refs[12,3,13) and
stanton calculu$3], minimizers approach6], and mapping nonsimultaneou§l4] ones.
closure[7]. The left tail in the inviscid limit seems to be  The paper is organized as follows. In Sec. Il we derive the

equations for the instanton. Section Ill is devoted to the de-

tailed description of our scheme of numerical calculations. In
*Email address: Chernykh@iae.nsk.su Sec. IV we discuss the numerical results and describe the
"Email address: Stepanov@iae.nsk.su behavior of the solution of instanton equations at large times.
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Il. SADDLE-POINT APPROXIMATION

The velocity gradients PDP(a) can be written as the
path integral

P(a)=(dux(0,0—al)y

zf Dquﬂa_c dFexp[— S+4v2Fu,(0,0—a]l,

3
where the effective actio§ has the forn{15,12
. 0
Szifi dtj dx;dx; p(Xq,t) x(X1—=X2) p(X2,t)
0
—if dtf dX p(Ug+ Ul — pUyy). (4)

The integration overF gives rise tod[ u,(0,0)—a], and the
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In what follows we will measure the length inunits, i.e.,
we setL=1. Rescaling the timé and fieldsu, p one can
exclude the parameter from the instanton equations

t=T/2v, u=2vU, p=4i’P, a=2vA, (9

Ur+ UUX—%UXX=f dx’ x(x—x")P(x"), (10)

Pr+UP,+ 3P =F8(T)8' (x), (12)

at T=0 one hadJ,(0,0)=A. The only parameter in the in-
stanton equations i8=a/2v. Note that the steady-state kink
solution of Burgers equation with the negative gradieiis

u=—2v|altani(/|a|/2vx).

Thus the physical meaning pA| is the square of the ratio of
pumping scald. =1 and the kink widthw,;,,=1/V|A|.
The effective actionS,y;, at the instanton that gives the

(12

factor 4v° was chosen for our convenience. Note that if re-right exponent

tarded regularization of the path integrd) is used then
/DuDpexp(=S)=1 and we have no normalizing
u-dependent denominators in E(B). One can find some
analogies between the appearance of the secondpfialtd
technigue that was developed by Keldydit] for nonequi-
librium dynamics description.

We are interested in the tails of PO/ a), i.e., the pa-
rametera in the integral(3) is large. The asymptotics of
P(a) at large|a|>[ x(0)L]1?¥ v is determined by the saddle-
point configuration of fieldsi(x,t), p(x,t) (and also param-

eterF), near which the variation of the integrand is equal to

zero[12]. The saddle-point configuratiolsometimes called
classical trajectory or instantpis governed by the following
equations:

Ui+ UUg— vUyy = — i x* P, (5)
Py UPx+ vPyy=4i 2FS(1) 8 (X), (6)
where x* p is the convolution
(X*p)(X)=f dx’ x(x=x")p(x"). (7
The solution should satisfy boundary conditions
lim u(x,t)=0, lim p(x,t)=0,
t——x t—+0
: . 8
lim u(x,t)=0, lim p(x,t)=0.

|X| o0 |X]|— 00

The value of F is tuned in such a way that the condition
u,(0,0)=a holds. The quantityF is a Lagrange multiplier
for finding the extremum ofS with the conditionu,(0,0)
=a.

The equation fop should be solved moving back in time
because of the signs pt and p,, in the instanton equation
(6). The convolution—ix* p is the optimal configuration of
external forceg that produces large negative gradient.

InP(a)=—Sexl@) (13

is equal to

0
Sextr:_%Jl dtf dx10%; p(Xq,t) x(X1—X2) p(Xz,t)

0
=4V3f7 de dxdxP (X1, T) x(X1—X2) P(X2,T).

(14)

The freedom of rescaling the fields p and the timet with
appropriate change of gives us the following relation:

(15

with the functionS(A) to be determined. One can prove by
straightforward calculation the following relation between
functions F(A) and S(A):

Seal@)=8v°S(a/2v)=(2v)*S(A),

_dS(A)

F(A)= dA

(16)

The relations of such sort are well known in classical me-
chanics; heréA and F are conjugate variables, and saddle-
point configuration is the trajectory of extremal action.

The instanton equationd0),(11) are Hamiltonian:

OH
UT(X,T)Z—m' PT(X,T)Zm, (17)
H=J dx P(UUX—%UXX—%X*P). (18

The Hamiltonian is the integral of motion, i.e.dH/dT

=0. Since bothU and P tend to zero al— —o we have
‘H=0. From the instanton equations and the conditign
=0 we get

026306-2



LARGE NEGATIVE VELOCITY GRADIENTS IN . .. PHYSICAL REVIEW E64 026306

FA FA Eq. (23) is positive, while in Eq.(24) the direction is nega-
S= 7+%j dTdx PxU2:T+%J dTdx BUy. tive. Assume that at a given value d&f the approximate
(19 solution U y4(&,7) is known. Let us try to make it closer to
the true solution of the problem. For this purpose let us solve
The last term is due to viscousity. At the right gall it is un- the Cauchy pr0b|em for E({24) Starting fromr=+0 and
important, and we havelS/dA=35/A, i.e,, S<A”. At the moving up to large enough,,;;<0. Then using|~3 that we

viscous left tail its contribution to the action is of the samepave got in the previous step we solve the Cauchy problem
order as other terms. If IR(a) is a powerlike function: ¢, Eq. (23) moving fromr= 7, up to r=0. As a result we

InP(a)=|al?, then one hagdTdx RU,=2(3—p)S. =~ . .
T(he) h|ig|h momenta cai be calxcuTated( byﬁt)he instanto§€t the new ValtieU“evxg'T)‘ Further we will use the sigh

method in a following way. Becausa™P(a) is a narrow for the mappingUg—Une,. The stationary point of the
function for largen, and only narrow velocity interval, which mappingf and the corresponding functid? are the desired
position depends on, contributes ta(a"). The position of  solution of Eqs(23),(24).

this interval is exactly the saddle point in the integfal') The numerical experiments have shown that iterations
«[da a'exd —Sex(@)] [see Eq.(13)], that satisfies the o o _
equation 0i+D=£10M], UO=0 (25)
:adsextf(a) :8V3AdS(A) (20) converge ifF>F, =—0.96. While F<F, the simple itera-
da dA tions (25) are divergent.

Curve 1 at the Fig. () shows how the value of the gra-

dientA= U (& 7)/3¢|¢—0.,—0 depends on the number of it-
eration forF= —2. It can be seen that the stationary point of

Combining it with 7=n/8v>A we again get Eq(16). To get
the instanton equations for the averdgé) one should only

substituteF in Eq. (11) for n/8»3A. Then the instanton equa- _ . . ~
tions become the same as in Ri]. f is unstable, but the mappind f[U]] has two stable sta-

One also should consider fluctuations near the instantoHOnary points. The stability properties of the iterations are

as a background. The way how the fluctuations can be take#etermined by the spectrum of the linearizatiowf f near a

into account is unknown yet but their influence toAga)  Stationary point

due to their phase volume is small in comparison V&g, _ .

while a> (u,s/L) Re. At smaller gradients the fluctuations flU+V]=U+KV+.... (26)

essentially change the answer and we have the algebraic tail

[6]. The iteration process is convergent if the modulus of all ei-

genvalues of the linear pal:( is less than 1. The period

[1l. NUMERICAL CALCULATIONS doubling indicates that whileF passes througlf, one of

K's eigenvalues passes throughl [17]. Let us denote this
gigenvalue as.

This knowledge allows us to construct the new mapping
with stable stationary point that coincides with one of the
mappingf. Let us proceed the following iterations:

The preliminary calculations that were madexjnT vari-
ables have shown that the width of the instanton equation
solution grows witH T| and is proportional t§T|*2, while its
amplitude is proportional t¢T| 2. To avoid the necessity
of treating simultaneously narrow structure at snialand
wide one at largd we used the following variables:

X=&JTo—T, T=Ty(l—e"7), (21
wherec is some constant. It is easy to check that the station-

U :0/\/1—0—_1— p:Ta/\/TO—_T (22) ary points of the mappingsand f. do coincide. The linear
part of f is equal toK ,=cK+(1—c)1, its eigenvalue cor-
whereT, is some constant of the order of unity. The instan-responding to unstabbe is \.=c\+ (1—c). If we take the

D(i+1):fC[D(i)]ch[D(i)]+(l—C)U(i), 27

ton equations in these variables take the form value ofc inside the interval &2c<2/(1—\)<1, then|\|
- o _ <1, and the iteration§27) are convergent.
U, +3(U—-Uy+UU=x(7)*P, (23 Since we do not know a priori, the value ofc that

_ o s provides the convergence of iterations, was determined from

P.+3(éP+ Pt UP.=F4(7) 6’(5)/\/T_, (29 experiment. Figure (B) illustrates the influence of the de-

~ creasing ot on the dependence &f vs number of iteration.
where x(& 7)=(To—T)*%¢(x). The boundary conditions In the final version of the computer code the valueavas

for U, P are analogous to E@8). changed in an adaptive way: each time the valugAbfwas

Let us describe now the general structure of the numericajecreased after an iteratianwas multiplied by 0.9. One can
scheme that finds the solution of our boundary problem. Theompare from the Fig. (b) the iterations run forc=0.1,

diffusion termsogg, E’gg in instanton equation$23),(24) c=0.05 and for adaptive decreasing of all three for
have opposite signs. If one considers these equations as tw= —2. The initial and final values af in the case of adap-
linked Cauchy problems, then the natural direction of time intive change were equal to 0.1 and 8.0.9'=0.05905 - -,
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v - - - - typical value usedr;=—0.4. The number of grid sites in-
- (a) side this interval varied from 2000 to 4000. The computer
A 1 power we had limited the number of all time steps in the grid

1ol | by 5000. During all calculations we uség=1.

B. Cauchy problem for P
Equation (24) should be solved backward in time. The
source term in the right-hand side of Eg4) provides us the
initial conditionP (7= —0)e &’ (£). This means that at small

2 times the fieldP is localized in a very narrow interval cen-
301 ] tered at¢é=0. Such initial condition can not be accurately

, . , , discretized, so we used another way to repreE’eat small
0 10 20 30 40 50 times.

Number of iteration For smallr the fieldP is very narrow. At its support we
can approximate the velocity) by a linear profile U

=A(7)£&. The evolution ofP in such a velocity field is de-
scribed by the derivative of Gaussian contour

h

2
-50 ﬁ(f,T)ZF gPamp(T) &

® 2rT%n N 2D(7)

Pamd—0)=1, D(-0)=0,

) . (29

-100 -

D(T)Ifodr’eX[{fidr”[ZﬁA(qJ’)Jrl] (29

-150 -

O ~
0 1000 2000 3000 4000 500( Pamd 7)= exr( - J dr'[2A(7)+1/2]
Number of iteration T

. (30

FIG. 1. The gradier& as a function of number of iteratiote) V& US€ such a representation forfor 7o<7<0. Tbe value
The dots corresponding to one run are joined by a line for conveof 7 iS chosen in such a way, that the velocity fiélds still
nience. The curves aréa) simple iterations according to E®5)  |inear at the width ofP. From the other hand® at 7= 7,
(curve 3 and according to Eq(27) with c=0.1 (curve 2; (b) ¢ zlready becomes wide in comparison with mesh intetl

=0.1 (curve 1, its thickness is determined by the amplitude OnypicaI value ofr, used:7,= — 1/1500. For times-< 7, the
serrated oscillationsc=0.05(curve 3, and adaptive decreasing of solution is found by fully implicit scheme

¢ during the run, the initial value is=0.1, c was multiplied by 0.9

four times(curve 3; F=—-2. = = = = =
(curve 3 T P - e L= A=
T + EPI + Di >
respectively. It is clear that for the two last cases the itera- Aé
tions converge to the same solution. =nt1_ Tn+l =nt1_ n+l
n+1Pi+1 Pi rH_]_Pi i—1
+r; +rl =0, (31
’ Ag ' A¢
A. Grid parameters
The solution of Cauchy problem is found numerically us-whererZ ;, D' are equal to
ing the method of finite differencies. The grid covers the N
rectangular domain €< & Tmin<7<0. In numerical rLi=0.5r(&, m) =[r(&, m)l],
calculations some of the boundary conditi¢8sthat in prin- (32
ciple are posed at the infinity were considered as they are D= 1
posed atlarge enough &, and 7, . Typical values used: bo1+0.9r (&, ) |AE

Emax= 10 and7,,;,= — 30. The grid had uniform mesh inter-
vals in &, typical number of grid sites alongjaxe was equal The functionr(¢,7) is expressed via velocity field(,7)
to 1024. =0.5:+U0(¢&,7).

The first calculations had shown that the solution changes HereA&>0, A7<0 are mesh intervals arid, 7, are site
rapidly in the vicinity of =0, while at larger it varies  coordinates. The numerical scheme used is monotonous and
slowly. Because of this we used nonuniform grid for variablestable, it is of the first order of accuracy inr and of the
7. The time step was smaller inside the intervgkk 7<0,  second order i\ & [18].
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C. Cauchy problem for U

At this stage we use the initial conditidth( 7= 7,,;,)=0.

The viscousity, source and self-advection terms are treates

by splitting techniqud 19]. At each time step the change of

U due to the source is first calculated, then to the viscousity,

and last to the nonlinearity.

From calculated already grid laydy"=U(r=r,) the
next layerU"*! is found in the following order. First, the
equationU = y(7)* P, is solved:

Dm—l_“’n
i

— L =[X(n)*P,.

At (33)

The convolutiony* P is calculated as the result of inverse
fast Fourier transforniFFT) acting on the product of’s and
P’s FFT images. The external force correlator during all cal-
culations was equal to y(x)=(1-x%)e ¥

— —d%e**2/dx2. The number&"* ! that are found in such

a wayare nota final solution for the layet"*?, since only

the source term has been taken into account yet. We use thel

as an input at the next step, we will denote thenﬁ]ﬁinote
that theydo notcoincide withU! in (33)].

Next, the viscousity and linear part of advection are taken

into account, according to the equatidh,+3(£0-0),
=0. The fully implicit scheme was used analogously to Eg.
(3D):

grri-on . EDnH_DAUlel—zD{”HU?_*f
At 271 ! Ag?
2 A¢ e

hereD;=1/(1+0.25A £). Again, the number8!** do not

form a final solution, and we send them to the next step with

aU"" notation.
The nonlinear part of the equatiod,+UU,=0 was
solved by explicit conservative scherf:

n n

—U!
i+1 i-1_

-0y
AT

up,,+0M+07, U
3

that finally gives us the next layer of the velocity fiéld 1.
This scheme is of the first order of accuracydim and of the
second one i\ ¢.

IV. VISCOUS INSTANTON

PHYSICAL REVIEW E64 026306

¢ (a)

: (b)

3

FIG. 2. The level curves iD)(¢,7) for F=—0.9 (a), F=—1.1
(b), andF= —2 (c). The values of levels can be calculated from the
two given levels according to arithmetic progression law.

with F can be obtained from Fig. 2 that shows the level

curves ofU(&,7) for three values ofF. SinceU andP are
the odd functions of, we draw only the region wherég
>0. The calculations were done in a rectangularé3< 10,
—30< 7<0, whose dimensions are a bit larger than it is
shown at the figure.

In this section we represent the results of our calculations, One can see that the instanton life-time and the maximal
that show the structure of the instanton and its change witlvalue of [U| rapidly increase with the growth dfF. The

| A. The minimal value ofF at which the reliable results in
numerics were obtained = —2.
The general features of the instanton structure chang

growth leads to the deformation of level curves nea0
because of the influence of nonlinearity, that is weakFat
& —0.9[Fig. 2(a)] and very strong af=—2.0[Fig. 2(c)].
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AT

T10

Wkink

Yo~

0 2 4 6 8 10
&

FIG. 4. Comparison obl (¢,7) (solid curve$ and y,P(&,7) for
three values ofr; F=-2.

FIG. 3. The kink in the velocity field) (£,7) at 7=0; F=—2.

A. Structure
A detailed analysis of the instanton solution based on th%qglatt'%r;lsggg(’ |\f1/ trat}igce to the Burgers equations with the
results of numerical calculations allows us to distinguish five VSU Ih b ':it tli n'i not alw ible. Durin h an
different regimes in the instanton time evolution. Below we uch a substilution 1S not always possible. uring such a
evolution the shock waves ocdigee, e.g., the level curves at

discuss them consequently fram 0 tot= —o. ) _ : .
The first regime consist in the viscous smearing of theF'g' 2c) nearr=—5, Fig. 4, curves 1 and]2For transition

. . . i to Egs. (36) to be valid the width of these shock waves
field p up to the scale of the kink widthv, = 2vi|al should be larger thah=1. Otherwise the substitution gf

= L/J|A| [see Eq(12), Fig. 3|. Since the viscousity plays the by &” is not valid. The width of the shock wave in dimen-
crucial role in this regime, we will also use dimensional vari-SionIeSS variable's is greater than 1 only if its height is
a.bles.. At=-0 we havep(x,.t)oc &'(x), and theleth of the smaller than 1. However, right after the second regime when
klnk(lnz)t]hesvelocny profile is equakll (OViink = 2V/|da| [See the width ofU andP fields becomes greater than the pump-
Eq. (12)]. Sincep is very narrow, the viscousity dominates . ; _ : )
the evoiution. The width of obeys the diffusion law and ing force correlation length =1 the amplitude of the veloc

) ity field U is of the order ofy|A|>1. The amplitude otJ
equals toy2v|t|. These two widths become comparable atyacames small onlv at very large timésis shown belo
time t=—1/]a|, or T=—1/|A|. This means that during the y at very large timesi W W

. . ) : . that such a crossover happensTat — /|A|). It means that
whole time of smearing op by viscousity the width of the . : : :
kink is of the order ofwg. Indeed, if the shape of the there is an intermediate regime that goes after the second

velocity profile deviates from steady-state kink soluti@g), one, where the substitution gfby 9" is inapplicable. In this

. . ) A . (third) regime the fielddJ andP are smooth functions in the
then the change of the kink width during this time perIOdinterval wider than 1. At the ends of this interval they con-
would be of the order ofit~y2v|al|/|a| = \2v/|a] =W .

; : L : tain shock waves—the value tfandP rapidly goes to zero
At this regime the source terng* P in instanton equation

. : _ (as it is shown schematically in Fig).8Ne will use the word
(10) is unimportant. When the ‘.N'dth g becomes of the “shock” for these structures at the ends of the interval, while
order ofw,; the rate of expansion qf due to the velocity

. ; ) for narrow structure in the velocity field nearx=0, T
gradient becomes comparable with the rate due to viscousit:

\'A i “kink.”
(such a balance determines the width of the kink 0 we will use the word kink.
The next (secondl regime was exhaustively studied in p? \U P
Ref.[4]. It consists in dilation of field&J, P up to the pump "
scaleL=1. The fields are advected by veloclty and con- [
sidering evolution back in time they are expanded by it since B
U,|x=0<0. The time needed for the expansion is equal to
T, ~L/U~1JA]. Y
During the third through fifth regimes the width bf and | RN Fshock
P field is much greater thah=1. Then it is naturally to —Zshock 0 I
substitutey(x) by —x,8"(x). The instanton equations take N Hy
the following simple form: ¥ Hp

A

sy

Ur+UU+ 3V, =0, Vi+UV,+3U,=0, (36) %

I
\I
!

whereV=2y,P—U, x,=—3/dx xXx(x). While moving to
large negative time numerical solution has a tendency to fall FIG. 5. Schematic representation dfand P for the third re-
in U=V (see Fig. 4, curves=—4 andr=—8). Then the gime, F——o.
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FIG. 6. Shock structure in the third regimg— — .
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FIG. 7. U(¢) (solid curve and x,P(£) (dashed curveprofiles

Now we will consider the structure of the shocks in detail. & 7= —0.4. 7=—2.

Let us denote the height of the shocks(x, T) andP(x,T)
fields byH(T) andHp(T), respectively. Their position we
will denote asXgnocd T) (Xshocie>0, Shocks are posed at
= & Xshock -

In the third regime the width of the shocks in the fi€lds

P(* Xghock™ 0,T) = F U?(Xgpoa— 0,T)/8X(0).  (39)
The instanton equationd0),(11) take the form
Ur+UU,=0, P;+UP,=0. (40)

determined by the competition of squeezing them by the ve-

locity U and spreading by viscousitgee Fig. 6. Since we

Here we approximate the shocks as jump discontinuities, and

are in a strongly nonlinear regime the viscousity is weak, anghe condition(39) relates the heights of the jumgsee Fig.

the width of P’s shocks is very small. The shocks hare
stationed at the center &d’s shocks, i.e., in almost linear
velocity profile with the gradient),~Hy, . The width ofP’s
shocks can be estimated as/H/{;<L. Then the good ap-
proximation forP(x,T) near the shock=XgpckiS P(X,T)
=—Hp(T) O Xsnocd T) —X], whered(x) is the step function.
During the evolution forward in time the shockslihdo not
break down because of source teghP. The source pre-
vents the destructive effect of advection tetoJ,. The
shocks inP should carry theéJ’s shocks of the heightl;,
i.e., of strengthJU,~HZ . Thus we should havelp<HZ in
this regime. Now we show it more carefully.

Let us write the instanton equatidf0) in the reference
frame of the shock near the poirt Xghoc (S€E Fig. 6. We
have two contributions to time derivativd;: from the
growth ofHy, in time (of orderH /T) and from the motion
of the shock(of ordeer,). Neglecting the first one we write
the following equation for the velocity (x,T):

1
SLUG0 = U(Xshood 5= = HpX' (X—Xshoad s (37)

where the new functioiX(x) is determined by the equation

x(x)=—X"(x) with the conditionX— 0 with x— * o0, Inte-

grating this equation once we obtain
[U(X)_U(Xshock)]zz2HP[X(0)_X(X_Xsh0cQ]- (39

SinceU (Xghoed = — Hu/2 we haveHp=H2/8X(0).

5). Here the diffusion terms and the terpi P are omitted.
One can check that they are negligible since the characteris-
tic x scale of the solution is large enough.

Equationg40) can be integrated by characteristics La-
grangian trajectorigs The velocity of the shocks is equal to
*Hy/2, i.e., all the trajectories disappear at the shqdkse
consider the evolution back in timeThe value ofU (or P)
is conserved in time if we follow the Lagrangian trajectory.
This means that the relatioR=U|U|/8X(0) holds every-
where between the shocks.

Due to self-advection the velocity field became more
and more linear as a function &fwhile |T| increases. This
happens at the border between the second and the third re-
gimes. In the third regime we can také&(x,T)=x/T be-
tween the shocks. The field® is equal to P(x,T)
= —X|x|/8X(0)T?. The velocityU simply squeezes or ex-
pands the fieldP without changing its shape. Sindép
~H2, the fieldP should have the same scaling@s, i.e.,
Pox2. The concave form of (as one can seg= —2 is not
yet good enough for a clear pictyris shown in Fig. 7.

Let us determine the time dependencegf,... We have

d Xshock 1
ot M=o

Xshock

2T

(41)

Solving this equation we gekg,,{T)=B+\—T. Since
Xshoo=1 at |T|~1/J]A[, we get B~|A|¥% The shocks
heights are equal to Hy(T)=B/{J-T, Hp(T)
=B?/8X(0)|T|. The width of the shocks i field is of the

The next step consists in finding the solution of Egs.order of 1A/Hy. The shocks in velocity fieldJ have the

(10),(11) between the shocks posedxat + Xgp,ock CONSIdeEr-

width of the order of 1, sinc& is pumped byy* P.

ing the fieldsU, P as smooth ones and using the boundary At large timeT~ — /|A| the heightH, (and consequently

condition

the width of the shocks i) became of the order of 1. This
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indicates the end of the third regime and the beginning of the 1st 2nd 3rd 4th 5th
fourth. Going further back in time we finally enter the do-

main of validity of Eq.(36). The solution falls intoU=V. /1/ J\r J\l’ J\l’ /\/ U

Again, the solution has two shocks between which it is a

smooth function. The shock position satisfiegoecV— T, v * o P
between the shockd =V=x/T holds. This regime exactly -1  —05 0.5 In |ﬁ
corresponds to self-similar solutiarfx,t) = #(t— Cx?)x/t of T=T. T="Ts mlA
inviscid Burgers equatiomni,+uu,—0-u,,=0 (hereC is a n |4
parameter.

. . . o FIG. 8. Schematic representation of the instanton time structure.
At the far tail of the instanton due to viscous dissipation

the solutionU=V transforms to the derivative of Gaussian pecomes more and more narrow without an adequate growth
contour — the self-similar solution of the diffusion equation f jts amplitude. This region of small timiE>T, was stud-

(see Fig. 4,/=—16). During the fifth regime the advection ied in Ref.[4]. It was shown that the contributioB-1 to
term UU, becomes irrelevant. |g, = variables the solution the extremal action from this interval is of orde|*2 *and
X ) i ) .
tends toU= & exp(/2— £°/2), that was observed in numeri- {he main contribution to the action from it comes from the
cal callculat|ons. ) ) , regionT~T, — the border between the second and the third
During the fourth and the fifth regimes the amplitude of .o gimes. Exactly these two regimes determine the optimal

the velocity fieldU is less than unity. It means that the am- ¢onfiguration of noise providing the event with large nega-
plitude of U is lower than the order of the typical statistical ¢ gradient.

fluctuations, and the saddle-point approximation is meaning- . «ontribution of region of time- JA]=Te<T<T
*

less there. The typical events that demonstrate large negativ:e_l/\/m (third regimé to the extremal actioS(A) can be
gradients start from some velocity configuratiorix) with estimated as g

the amplitude of the order of unity and are governed by the
third regime first. The action on these events and their further Ty
evolution almost do not depend on the initial velocity field Srer,~ | dTHA(T)~-BYT, ~|AF% (42
U(x), and the dependence ®fa) on a remains unaltered Te

by the averaging over all possible configuratidhéx). We N
considered the 4th and the 5th regimes since they are the

parts of the whole solution of our nonlinear boundary prob-r€9ion T~T, . The crucial point is that the contribution to
lem. the actionS(A) from the tail of the instantoifor large time

Let us now run the whole evolution forward in time. At T<T) is finite, i.e., the integral42) converges(the addi-
the beginning(fifth regime the field U is pumped by very tion to the action from interval <Tg is negligiblg. Also
wide P. The pumping force is proportional #®,,. During this contribution is not dominant, i.e., it is not much greater
the fourth regime the source is localized at shock® ihat ~ than the contribution of the ordéA|*? from small times
leads to a formation of shocks . TheU'’s shocks want to  (T>T.). It means that in our case the instanton is localized
break down because of self-advection, but the source terf@nough in time. Its long-time dynamics does not destroy the
¥* P keeps them going. When the growing heightPobe- fact that it is the main fluctuation determining the statistics of

comes larger than unity the shocksRrbecome narrow. The large negative gradients.
balance between the termdU, and x*P in Eq. (10) At the Fig. 10 the functiom(In §)/d(In A)=FA/S that was
changes a little, that results in the change of the forrysf obtained from numerical calculations is shown. We used dif-

shocks — it is determined by the shape i) now. The ferent grid parameters during calculations for instanton struc-

distance between the’'s shocks decreases in time and even-
tually it becomes comparable with unity. After this be-
comes even more narrow and the efficiency of the source
term begins to fall down. The self-advection of the velocity
destroyes the shocks and leads to a formation of the kink
at x=0, while P transformes to5’(x). The kink shape at
F=—2 is shown in Fig. 3. Schematically time evolution of
the instanton is illustrated in Fig. 8.

ote that the value OBT<T* is again cumulated from the

s

T 500

B. Action

One can present the actioB(A) in the form of S
=[0_dT T) as in expressiofl4). For F=—2 the action
densitys(T) that was obtained from numerical calculations

is shown in Fig. 9. WhiléT<T, = —1/|A| the convolution _(’J s T 0 e
x*p is localized at shocks, s§(T)~H3(T)~B*T2. The ' *
maximum ofs(T) is posed aff ~T, . Further increasing FIG. 9. The action densitg(7) as a function of “time” 7. F

leads to the decreasing of the denssyT) becauseP(x) =-2.
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FIG. 10. FA/S=d(In 9/d(In A) [see Eq.(16)] as a function of
gradientA.

ture and for this figure. Here we usegl;,= — 4 with bound-
ary condition U(&, 7)) =x2P(& 7). This boundary
condition was used as initial condition f&t during itera-
tions. It turned out, that e.g. foF= —2 we get the following
values of FA/S and A with different value ofr,:

Tonin FAIS A
—4 1.441 —148.1
-30 1.437 ~102.6

Although, when calculating withr,,;,= — 30, the condi-
tion U(¢&,—4)=x,P(& —4) holds within 15%(as one can
see from Fig. # we prefer to use the grid shorter in time

PHYSICAL REVIEW E64 026306

(7min=—4) to have smaller time step. The value Af
strongly depends on time step. It was observed in numerical
experiment. Such sensitivity is characteristic of Burgers
equation also. Although the calculations with smiad,|
give us worse accuracy at the tail of the instanton, the small-
ness of the time step allows us accurately describe the main
part of the instanton where the nonlinearity level is high.
One can see the cubic asymptot®sA® at A>0. The
instanton structure foh>0 that was described in Ref8,4]
was confirmed by our numerical calculations. The case
<0 corresponding to the PDF’s left tail is more complicated.
The functionFA/S has minimal value ah= —12. At further
decrease OA it starts to grow and finally tends to the value
3/2. In this case the coefficie®|A|%? is small.

V. CONCLUSION

We have examined the remote left tail of the velocity
gradients PDFP(u,) in Burgers forced turbulence. The pos-
sibility of direct numerical solving of instanton equations by
iterations is demonstrated. Numerical calculations and the
analysis of the instanton behavior at the time large compared
with its lifetime t,, ~ 1/\/v|u,| with the solution at small time
from Ref.[4] show that IrP(u,) = — |u,|%2
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