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Translational motion of two interacting bubbles in a strong acoustic field
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Using the Lagrangian formalism, equations of radial and translational motions of two coupled spherical gas
bubbles have been derived up to terms of third order in the inverse distance between the bubbles. The equations
of radial pulsations were then modified, for the purpose of allowing for effects of liquid compressibility, using
Keller-Miksis’ approach, and the equations of translation were added by viscous forces in the form of the
Levich drag. This model was then used in a numerical investigation of the translational motion of two small,
driven well below resonance, bubbles in strong acoustic fields with pressure amplitudes exceeding 1 bar. It has
been found that, if the forcing is strong enough, the bubbles form a bound pair with a steady spacing rather
than collide and coalesce, as classical Bjerknes theory predicts. Moreover, the viscous forces cause skewness
in the system, which results in self-propulsion of the bubble pair. The latter travels as a unit along the center
line in a direction that is determined by the ratio of the initial bubble radii. The results obtained are of
immediate interest for understanding and modeling collective bubble phenomena in strong fields, such as
acoustic cavitation streamers.
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I. INTRODUCTION direct calculation of the translational motigimstead of the
mean forces as if6]) of two interacting spherical gas

According to classical Bjerknes thedry], if two bubbles  bubbles in a strong acoustic field. The model includes four
are driven below or above their natufMinnaer) frequen-  combined ordinary differential equations of second order that
cies, they attract each other, whereas if the driving frequencglescribe the coupled volume and translational oscillations of
is in between the two natural frequencies, the bubbles repéhe bubbles and take account of viscous drag forces on them.
each other. However, experiments show that even in a weakhe application of this model to the parameter space charac-
acoustic field, bubble dynamics does not necessarily followferistic of acoustic streamers reveals that for most combina-
this scenario. For instance, it was observed more than ondions of bubble radii, contrary to the predictions [&f], a
[2,3] that bubbles, driven above resonance, formed stablButual approach results in a dynamically equilibrium sepa-
clusters with persistent Separation distances Comparab|e f@tlon distance between the bubbles rather than collision and
the bubble size, which were given the name “bhubblecoalescence. It is apparent that this result can provide an
grapes.” In a strong field, bubbles exhibit even more intricateeXplanation for the structure of acoustic streamers.
behavior: They group themselves into branched filamentary
structures that are referred to as acoustic streafdérdn- Il. MATHEMATICAL MODEL
like the bubble grapes, the streamers are composed of small
cavitation bubbles that are driven well below resonance
Physical mechanisms responsible for the bubble grapes a
now clear enougi5], but this is not true for the cavitation
streamers. Mettiet al.[6] have investigated numerically the
time-averaged interaction force between two small bubble
in strong sound fields with pressure amplitudes exceeding
bar. For calculation of the bubble oscillations, they used th
Keller-Miksis model[ 7] which was supplemented with terms
allowing for radiation coupling between the bubbles. It was
found that, for some bubble pairs, where one bubble was a
little smaller and the other bubble larger than the resonance
size corresponding to the dynamical Blake threshold, the in-
teraction force could change from attraction to repulsion as
the bubbles came close to each other, although the driving
frequency was always much smaller than the linear reso-
nance frequencies of the two bubbles. This implies the exis-
tence of a stable equilibrium distance between two strongly

Consider two gas bubbles, undergoing volume and trans-
L%tional oscillations, in a perfect incompressible liquid. Sup-
pose that the spacing between the bubbles is large compared
with their size so that the bubbles remain spherical at all
g’mes. Using local spherical coordinates originated at the

oving centers of the bubbl€Fig. 1), the boundary condi-
lons at the bubble surfaces can be represented as

de
ar |

:RJ+XJ COSQJ' at rJ:RJ(t), j:1,2, (1)

oscillating bubbles. However, as the authors themselves con- - ;
clude, their findings cannot explain the structure of acoustic W D() ,']ez(t)
streamers because of the predominant attractive situations in §
parameter space.

The present paper proposes a model that makes possible a FIG. 1. Geometry of the system.
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where ¢ is the velocity potentialR;(t) and x;(t) are the The next step is the construction of the Lagrangian func-
time-dependent radius and position of the center ofjthe tion of the systemL=T—U. The kinetic energyT of the
bubble, respectively, and the overdot denotes the time derivaystem is determined by the kinetic energy of the host liquid,
tive. The velocity potential, satisfying the Laplace equation
A@=0, can be expanded as T gf IV ol?dV, )
e=¢1+ @z, 2 _ , o .

with p denoting the liquid density and the volume occu-
whereg;, the scattered potential of th¢h bubble, is given pied by the liquid. The potential energy of the system can
by be represented as

o U=—p1V1—P2Vo—X1Fexa = XoFex, (10
o= 2 AP " Py(wy), 3 _ _
n=0 where p; is the scattered pressure at the surface ofjthe
. bubble,Vj=47er3/3 is the time-varying volume of thé¢th
_ 2 B0 ()" bubble, and-.,; denotes an external force on tjté bubble,
= (Or3-Pnlpz-j)- (4) such as viscous drag. Equati® can be transformed to the
sumT=T,+T, with
Here uj=cos6, and P, is the Legendre polynomial. Equa- L p
tion (3) gives ¢; in the proper coordinates of thj¢h bubble T =— WPRZI ((P_(P) du; . (11)
and Eq.(4) in the coordinates of the other bubbjes 1—3 . P)oal P I =R .
—j=2, and vice versdNote also that Eq(4) is only valid :
in the vicinity of the second bubble, which is quite enough toOn substitution of Eqs(1) and(7), Eq. (11) gives
gain our ends, thoughA relation betweerA!) and B{ is

obtained using the well-known identify] T.=2mp
=

P _ L
3p2 3.2 2 3-
R’R*— =R~ R’R;Bf J>—xjA(1”). (12

3

Pa(py) _ (=D"™Y & (=D)M(n+m)!

1 1 = Further calculation will be carried out with accuracy up to
r' D" m=0 nim! . ; -1

j terms of third order inD™*. From Egs.(6) and (8), one

am obtains
ra—j
X\ 5| Pmlms-j), 5 . RV s -

A~ — ﬁ( o TR Rej Rs—jxs—i) (13
where D(t) is the time-dependent distance between the ! 2\ D2 D3 /)’
translating centers of the bubbles. The result is as follows:

2 _ i N
. _ _ 3 [ - (—1)'R3_jX3_; _
500t _(—pi s (_1)(Jfl)m(n+m)!A(j)t . By I~— °D (2R3_1+T +0(D™%).
(0= o & n'miD™ (- © (14)

Substituting Eqs(13) and (14) into Eq. (12) and using Eq.

Then, utilizing Egs.(3) and (4), the total velocity potential ; . .
g Eds.(3) “) yp (10), one finds the Lagrangian function of the system as

near thejth bubble is written as

[

R3x? R3X5 2R’R3R;R,

. . _ 3p2 3p2
o= 3 (AP +BE D OIPy (). () ETAT RIRERIR Tem T
202 = IRV 5 . 3p3y, <
Substitution of this equation into the boundary conditions, + RIR2(RiRoX1~ RoR1X5) _ RiR5X1X2
Eq. (1), yields D2 D3
L p3 2n+1 4
A _pR2 Al SR MR e + 5 (P1RI+P2RY) + X1F e+ XoF esc (15
0 JIN n 2 nl n+1 n

ConsideringR;, X;, Rj, andkj as generalized coordinates
and velocities, the equations of radial and translational mo-

Here 6, is the Kronecker delta and the time dependence i%lr?gisoef ;?ihzutggerilnagi?ar?g?&g%%r:g the usual way through

omitted for the sake of simplicity. It is easy to see that Egs.

for n=1. (8)

(6) and(8) allow us to get the coefficienis!’ andB{’ with d il ol
any required accuracy with respect to the small parameters ————=0. (16)
R, /D. dtog;
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This yields four combined ordinary differential equations of

second order:

. 3., p; X RIR,+2R,R3
Sre_P1_ M1 T2 Mo
RiRit 5RE- =7 5

R2(x1R,+ RyXp+ 5RpX5)
+

2D?
 RXa(Xg+ 2Xp) w
2D3 ’
. 3., p, X5 R2R;+2R,R?
— 2__:__—
RoR,+ SRS =2 5
_ RIGR1+RiXg +5Rxy)
2D?
R3X1(Xo+ 2X;)
_ 1A INA2 1 ' (18)
2D3
Rx; .. 1d .
3 +RyXxy + D? a(RleRz)
R3(RiRoXp+ RoRi X+ 5RRoX,)  Foy
D3 2mpR2’
(19
RoX, . 1d .
3 " RoXz— D? a(RleRl)
RE(R{RXy + RiRpXy +5RoR1Xs)  Feye
D3 27TpR§.
(20)
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~-1)IR?R. R,
( ) )
- +

D2 D3

(23

Uj=

The left-hand sides of Eqg17) and (18) are simply the
Rayleigh-Plesset equations. Terms due to translational mo-
tion and bubble coupling are grouped on the right-hand
sides. It is known that for large forcing amplitudes the
Rayleigh-Plesset equation yields unsatisfactory results since
the velocity of radial oscillations is no longer small com-
pared with the sound speed in the liquid. Better results are
provided by the Keller-Miksis moddl7], which allows for
acoustic radiation from bubbles. To make E@s/) and(18)
adequate for large forcing amplitudes, we can just replace
their left-hand sides with the Keller-Miksis equations, keep-
ing the right-hand sides intact. This results in

Ri| . [3 Ry|., 1 R, R; dp;
(1_F)R1R1+ E_E)Rl_; 1+? pl—p—CW
X2 R3R,+2R,R5  R3(X;Ry+ RyXo+5R,X5)

=—- +
4 D 2D?2
R3X, (X, + 2X5)
_ 22\ A1 2 ’ (24)
2D3

Ryl . [3 Ry|., 1 R, R, dp,
(1‘?)RZR2+ z‘z)Rz“ Y Lorar T
X5 R2R;+2R;R?  R2(x,R;+R;X;+5R;X;)
Z_ D - 2D2

R3X,(Xo+ 2X4)
i 1IANINA2 1, (25)
2D3

wherec is the speed of sound in the liquid. The translational
equations, Eqgs(19) and (20), can also be left untouched
since in most cases of interest the translational velocities of

Equations(17) and (18) govern radial pulsations of the the bubbles are small compared with their radial velocities.

bubbles and Eq919) and (20) their translation. Assuming
that the bubbles are driven by the acoustic pressure field

Pex(t) = —Pgsinwt, the pressur@; is taken in the form
_[p 29)(Rio % 20 49R, b b sinut
PPt R/l Ry TR T TRy et Pasnet

(21)

whereR, is the equilibrium radius of thgth bubble,P is
the hydrostatic pressure; is the surface tensiony is the
polytropic exponent of the gas within the bubbles, angs
the viscosity of the liquid. The external forcésg,; are set
equal to the Levich viscous drd§]:

Fexj= — 12m7Ri(X;—v3_)), (22)

Ill. NUMERICAL RESULTS

Calculations have been made for two air bubbles in water
at the driving frequencyf =20 kHz. The other parameters
were set toP,=1 bar,p=998 kg/n?, c=0.0725 N/m, 7
=0.001 kg(ms), c=1500 m/s, andy=1.4. The system of
equations(19), (20), (24), and (25) was solved using the
programMATHEMATICA . The results obtained are presented
in Figs. 2—4.

Figure 2 shows trajectories of various bubble pairs. The
choice of the equilibrium bubble radii was motivated by the
presumed bubble size distribution in acoustic strearf@s
according to which the majority of the cavitating bubbles has
an equilibrium radius below 1Qum. The trajectories are
formed by the positions of the bubble centers at the end of

wherev; denotes the liquid velocity that is generated by theeach acoustic cycle; i.e., they are smoothed rather than real

jth bubble at the center of the other bubble. Up to ofleF,
this velocity is given by

bubble paths. Examples of real bubble paths for the initial
stage of motion are given in Fig. 3. The lower curves of Figs.
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FIG. 2. Smoothed paths of bubble pairs. The positions of the bubbles are taken at the end of each acoustic cycle.

2 and 3 correspond to bubble 1 and the upper curves te30 um when the driving pressurB, is set to 0.9 bar.
bubble 2. It is seen that, although the bubble radii of theBesides, it is found that in all cases investigated the bubbles
examined pairs are varied over a fairly wide range, the mueollide very quickly if the viscous forces are omitted from
tual approach of the bubbles results in a dynamical equilibthe equations.

rium separation distance rather than collision and coales- So the fact that the bubble pairs shown in Fig. 2 are pre-
cence. Contact of bubbles was observed only if their radivented from coalescing can most likely be explained by a
were sufficiently close. Situations of this sort are illustratedcombined effect of high-amplitude bubble pulsations and
by Fig. 4a), where the upper curve is the time-varying dis- viscous forces. Every acoustic cycle, the attractive secondary
tance between the moving bubble centddgt), and the Bjerknes force attempts to bring the bubbles together. But
lower curve is the sum of the instantaneous bubble radiieach of the bubbles generates a very strong velocity field in
R1(t) + Ry(t). It is seen that the bubbles come into contact inthe surrounding liquid, the intensity of which increases rap-
7.5 acoustic cycles. For comparison, Figo)¥shows a simi- idly as the spacing between the bubbles decreases. The ve-
lar plot for one of the noncolliding bubble pairs of Fig. 2. locity fields give rise to vigorous viscous drag forces, which
Contact also occurs if the forcing is set weak. For instancegecelerate the bubbles and, owing to inertia, cause them to
the bubble pair shown in Fig.() comes into contact in 95 turn back. These attempts of alternate approaches and re-
acoustic cycles for initial separation distancB(0) bounds can be easily seen in Fig. 3. As a result, a dynamical
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FIG. 3. Examples of real bubble paths. FIG. 4. The sum of the instantaneous bubble ra®glii(t)

+R,(t) and the time-varying distance between the bubble centers
steady state is established at which the distance between tR&t) as functions of the number of acoustic cycles (@rcolliding
bubbles remains, on average, constant. Obviously this resuif'd (?) noncolliding bubble pairs.
can provide an explanation of why, instead of coalescing as o .
Bjerknes theory requires, cavitation bubbles in acoustic "€ model allows for the radiation coupling between the

streamers form a line at stable intervals. bubbles up to terms of third order in the inverse separation
Another interesting effect that follows from Fig. 2 is that distance, viscous drag forces on the bubbles, and effects of
the bubble pairs undergo self-propulsion. In Fig&) 22(b), liquid compressibility on their volume pulsations. Using this

and 2d), the bubble pairs travel in the direction of the Model, numerical investigation of translational motion of

smaller bubble and, in Figs(®, 2(e), and 2f), toward the two small, driven well below resonance, bubbles in sound
bigger bubble. Clearly this effect also results from the presfields with pressure amplitudes exceeding 1 bar has been
ence of viscous forces, which break down conservatism offade. It has been shown that for most combinations of
the system and cause skewness in it. A detailed mechanisRyPble radii characteristic of acoustic streamers, a mutual

of this phenomenoriwhich is, strictly speaking, not in the approach results in a dynamical st_eady state at which the
scope of this papgiis not quite understood yet and will be distance between the bubbles remains, on average, constant.

investigated elsewhere. It is supposed that this result can provide an explanation for
the structure of acoustic streamers.

IV. CONCLUSION
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