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Translational motion of two interacting bubbles in a strong acoustic field

Alexander A. Doinikov
Institute of Nuclear Problems, Byelorussian State University, 11 Bobruiskaya Street, Minsk 220050, Belarus

~Received 20 February 2001; published 16 July 2001!

Using the Lagrangian formalism, equations of radial and translational motions of two coupled spherical gas
bubbles have been derived up to terms of third order in the inverse distance between the bubbles. The equations
of radial pulsations were then modified, for the purpose of allowing for effects of liquid compressibility, using
Keller-Miksis’ approach, and the equations of translation were added by viscous forces in the form of the
Levich drag. This model was then used in a numerical investigation of the translational motion of two small,
driven well below resonance, bubbles in strong acoustic fields with pressure amplitudes exceeding 1 bar. It has
been found that, if the forcing is strong enough, the bubbles form a bound pair with a steady spacing rather
than collide and coalesce, as classical Bjerknes theory predicts. Moreover, the viscous forces cause skewness
in the system, which results in self-propulsion of the bubble pair. The latter travels as a unit along the center
line in a direction that is determined by the ratio of the initial bubble radii. The results obtained are of
immediate interest for understanding and modeling collective bubble phenomena in strong fields, such as
acoustic cavitation streamers.
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I. INTRODUCTION

According to classical Bjerknes theory@1#, if two bubbles
are driven below or above their natural~Minnaert! frequen-
cies, they attract each other, whereas if the driving freque
is in between the two natural frequencies, the bubbles re
each other. However, experiments show that even in a w
acoustic field, bubble dynamics does not necessarily fol
this scenario. For instance, it was observed more than o
@2,3# that bubbles, driven above resonance, formed sta
clusters with persistent separation distances comparab
the bubble size, which were given the name ‘‘bubb
grapes.’’ In a strong field, bubbles exhibit even more intric
behavior: They group themselves into branched filamen
structures that are referred to as acoustic streamers@4#. Un-
like the bubble grapes, the streamers are composed of s
cavitation bubbles that are driven well below resonan
Physical mechanisms responsible for the bubble grapes
now clear enough@5#, but this is not true for the cavitation
streamers. Mettinet al. @6# have investigated numerically th
time-averaged interaction force between two small bubb
in strong sound fields with pressure amplitudes exceedin
bar. For calculation of the bubble oscillations, they used
Keller-Miksis model@7# which was supplemented with term
allowing for radiation coupling between the bubbles. It w
found that, for some bubble pairs, where one bubble wa
little smaller and the other bubble larger than the resona
size corresponding to the dynamical Blake threshold, the
teraction force could change from attraction to repulsion
the bubbles came close to each other, although the dri
frequency was always much smaller than the linear re
nance frequencies of the two bubbles. This implies the e
tence of a stable equilibrium distance between two stron
oscillating bubbles. However, as the authors themselves
clude, their findings cannot explain the structure of acou
streamers because of the predominant attractive situation
parameter space.

The present paper proposes a model that makes poss
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direct calculation of the translational motion~instead of the
mean forces as in@6#! of two interacting spherical ga
bubbles in a strong acoustic field. The model includes f
combined ordinary differential equations of second order t
describe the coupled volume and translational oscillations
the bubbles and take account of viscous drag forces on th
The application of this model to the parameter space cha
teristic of acoustic streamers reveals that for most comb
tions of bubble radii, contrary to the predictions of@6#, a
mutual approach results in a dynamically equilibrium se
ration distance between the bubbles rather than collision
coalescence. It is apparent that this result can provide
explanation for the structure of acoustic streamers.

II. MATHEMATICAL MODEL

Consider two gas bubbles, undergoing volume and tra
lational oscillations, in a perfect incompressible liquid. Su
pose that the spacing between the bubbles is large comp
with their size so that the bubbles remain spherical at
times. Using local spherical coordinates originated at
moving centers of the bubbles~Fig. 1!, the boundary condi-
tions at the bubble surfaces can be represented as

]w

]r j
5Ṙj1 ẋ j cosu j at r j5Rj~ t !, j 51,2, ~1!

FIG. 1. Geometry of the system.
©2001 The American Physical Society01-1
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ALEXANDER A. DOINIKOV PHYSICAL REVIEW E 64 026301
where w is the velocity potential,Rj (t) and xj (t) are the
time-dependent radius and position of the center of thej th
bubble, respectively, and the overdot denotes the time de
tive. The velocity potential, satisfying the Laplace equat
Dw50, can be expanded as

w5w11w2 , ~2!

wherew j , the scattered potential of thej th bubble, is given
by

w j5 (
n50

`

An
( j )~ t !r j

2n21Pn~m j !, ~3!

5 (
n50

`

Bn
( j )~ t !r 32 j

n Pn~m32 j !. ~4!

Here m j5cosuj and Pn is the Legendre polynomial. Equa
tion ~3! givesw j in the proper coordinates of thej th bubble
and Eq.~4! in the coordinates of the other bubble,j 51→3
2 j 52, and vice versa.@Note also that Eq.~4! is only valid
in the vicinity of the second bubble, which is quite enough
gain our ends, though.# A relation betweenAn

( j ) and Bn
( j ) is

obtained using the well-known identity@8#

Pn~m j !

r j
n11

5
~21!n( j 21)

Dn11 (
m50

`
~21! jm~n1m!!

n!m!

3S r 32 j

D D m

Pm~m32 j !, ~5!

where D(t) is the time-dependent distance between
translating centers of the bubbles. The result is as follow

Bn
( j )~ t !5

~21! jn

Dn11 (
m50

`
~21!( j 21)m~n1m!!

n!m!Dm
An

( j )~ t !. ~6!

Then, utilizing Eqs.~3! and ~4!, the total velocity potential
near thej th bubble is written as

w5 (
n50

`

@An
( j )~ t !r j

2n211Bn
(32 j )~ t !r j

n#Pn~m j !. ~7!

Substitution of this equation into the boundary conditio
Eq. ~1!, yields

A0
( j )52ṘjRj

2 , An
( j )52

ẋ jRj
3

2
dn11

nRj
2n11

n11
Bn

(32 j )

for n>1. ~8!

Herednm is the Kronecker delta and the time dependenc
omitted for the sake of simplicity. It is easy to see that E
~6! and~8! allow us to get the coefficientsAn

( j ) andBn
( j ) with

any required accuracy with respect to the small parame
Rj /D.
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The next step is the construction of the Lagrangian fu
tion of the systemL5T2U. The kinetic energyT of the
system is determined by the kinetic energy of the host liqu

T5
r

2E u¹wu2dV, ~9!

with r denoting the liquid density andV the volume occu-
pied by the liquid. The potential energyU of the system can
be represented as

U52p1V12p2V22x1Fex12x2Fex2 , ~10!

wherepj is the scattered pressure at the surface of thej th
bubble,Vj54pRj

3/3 is the time-varying volume of thej th
bubble, andFex j denotes an external force on thej th bubble,
such as viscous drag. Equation~9! can be transformed to th
sumT5T11T2 with

Tj52prRj
2E

21

1 S w
]w

]r j
D

r j 5Rj

dm j . ~11!

On substitution of Eqs.~1! and ~7!, Eq. ~11! gives

Tj52prS Rj
3Ṙj

22
1

3
Rj

3ẋ j
22Rj

2ṘjB0
(32 j )2 ẋ jA1

( j )D . ~12!

Further calculation will be carried out with accuracy up
terms of third order inD21. From Eqs.~6! and ~8!, one
obtains

A1
( j )'2

Rj
3

2 S ẋ j2
~21! jR32 j

2 Ṙ32 j

D2
2

R32 j
3 ẋ32 j

D3 D , ~13!

B0
32 j'2

R32 j
2

2D
S 2Ṙ32 j1

~21! jR32 j ẋ32 j

D
D 1O~D24!.

~14!

Substituting Eqs.~13! and ~14! into Eq. ~12! and using Eq.
~10!, one finds the Lagrangian function of the system as

L52prFR1
3Ṙ1

21R2
3Ṙ2

21
R1

3ẋ1
2

6
1

R2
3ẋ2

2

6
1

2R1
2R2

2Ṙ1Ṙ2

D

1
R1

2R2
2~R1Ṙ2ẋ12R2Ṙ1ẋ2!

D2
2

R1
3R2

3ẋ1ẋ2

D3 G
1

4p

3
~p1R1

31p2R2
3!1x1Fex11x2Fex2 . ~15!

ConsideringRj , xj , Ṙj , and ẋ j as generalized coordinate
and velocities, the equations of radial and translational m
tions of the bubbles are obtained in the usual way throu
the use of the Lagrangian equations

d

dt

]L

]q̇i

2
]L

]qi
50. ~16!
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TRANSLATIONAL MOTION OF TWO INTERACTING . . . PHYSICAL REVIEW E64 026301
This yields four combined ordinary differential equations
second order:

R1R̈11
3

2
Ṙ1

22
p1

r
5

ẋ1
2

4
2

R2
2R̈212R2Ṙ2

2

D

1
R2

2~ ẋ1Ṙ21R2ẍ215Ṙ2ẋ2!

2D2

2
R2

3ẋ2~ ẋ112ẋ2!

2D3
, ~17!

R2R̈21
3

2
Ṙ2

22
p2

r
5

ẋ2
2

4
2

R1
2R̈112R1Ṙ1

2

D

2
R1

2~ ẋ2Ṙ11R1ẍ115Ṙ1ẋ1!

2D2

2
R1

3ẋ1~ ẋ212ẋ1!

2D3
, ~18!

R1ẍ1

3
1Ṙ1ẋ11

1

D2

d

dt
~R1R2

2Ṙ2!

2
R2

2~R1R2ẍ21R2Ṙ1ẋ215R1Ṙ2ẋ2!

D3
5

Fex1

2prR1
2

,

~19!

R2ẍ2

3
1Ṙ2ẋ22

1

D2

d

dt
~R2R1

2Ṙ1!

2
R1

2~R1R2ẍ11R1Ṙ2ẋ115R2Ṙ1ẋ1!

D3
5

Fex2

2prR2
2

.

~20!

Equations ~17! and ~18! govern radial pulsations of th
bubbles and Eqs.~19! and ~20! their translation. Assuming
that the bubbles are driven by the acoustic pressure
Pex(t)52Pa sinvt, the pressurepj is taken in the form

pj5S P01
2s

Rj 0
D S Rj 0

Rj
D 3g

2
2s

Rj
2

4hṘj

Rj
2P01Pa sinvt,

~21!

whereRj 0 is the equilibrium radius of thej th bubble,P0 is
the hydrostatic pressure,s is the surface tension,g is the
polytropic exponent of the gas within the bubbles, andh is
the viscosity of the liquid. The external forcesFex j are set
equal to the Levich viscous drag@9#:

Fex j5212phRj~ ẋ j2v32 j !, ~22!

wherev j denotes the liquid velocity that is generated by t
j th bubble at the center of the other bubble. Up to orderD23,
this velocity is given by
02630
f
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v j52
~21! jRj

2Ṙj

D2
1

Rj
3ẋ j

D3
. ~23!

The left-hand sides of Eqs.~17! and ~18! are simply the
Rayleigh-Plesset equations. Terms due to translational
tion and bubble coupling are grouped on the right-ha
sides. It is known that for large forcing amplitudes th
Rayleigh-Plesset equation yields unsatisfactory results s
the velocity of radial oscillations is no longer small com
pared with the sound speed in the liquid. Better results
provided by the Keller-Miksis model@7#, which allows for
acoustic radiation from bubbles. To make Eqs.~17! and~18!
adequate for large forcing amplitudes, we can just repl
their left-hand sides with the Keller-Miksis equations, kee
ing the right-hand sides intact. This results in

S 12
Ṙ1

c
DR1R̈11S 3

2
2

Ṙ1

2c
D Ṙ1

22
1

r
S 11

Ṙ1

c
D p12

R1

rc

dp1

dt

5
ẋ1

2

4
2

R2
2R̈212R2Ṙ2

2

D
1

R2
2~ ẋ1Ṙ21R2ẍ215Ṙ2ẋ2!

2D2

2
R2

3ẋ2~ ẋ112ẋ2!

2D3
, ~24!

S 12
Ṙ2

c
DR2R̈21S 3

2
2

Ṙ2

2c
D Ṙ2

22
1

r
S 11

Ṙ2

c
D p22

R2

rc

dp2

dt

5
ẋ2

2

4
2

R1
2R̈112R1Ṙ1

2

D
2

R1
2~ ẋ2Ṙ11R1ẍ115Ṙ1ẋ1!

2D2

2
R1

3ẋ1~ ẋ212ẋ1!

2D3
, ~25!

wherec is the speed of sound in the liquid. The translation
equations, Eqs.~19! and ~20!, can also be left untouche
since in most cases of interest the translational velocitie
the bubbles are small compared with their radial velocitie

III. NUMERICAL RESULTS

Calculations have been made for two air bubbles in wa
at the driving frequencyf 520 kHz. The other parameter
were set toP051 bar,r5998 kg/m3, s50.0725 N/m,h
50.001 kg/~m s!, c51500 m/s, andg51.4. The system of
equations~19!, ~20!, ~24!, and ~25! was solved using the
programMATHEMATICA . The results obtained are present
in Figs. 2–4.

Figure 2 shows trajectories of various bubble pairs. T
choice of the equilibrium bubble radii was motivated by t
presumed bubble size distribution in acoustic streamers@6#,
according to which the majority of the cavitating bubbles h
an equilibrium radius below 10mm. The trajectories are
formed by the positions of the bubble centers at the end
each acoustic cycle; i.e., they are smoothed rather than
bubble paths. Examples of real bubble paths for the ini
stage of motion are given in Fig. 3. The lower curves of Fi
1-3
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FIG. 2. Smoothed paths of bubble pairs. The positions of the bubbles are taken at the end of each acoustic cycle.
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2 and 3 correspond to bubble 1 and the upper curve
bubble 2. It is seen that, although the bubble radii of
examined pairs are varied over a fairly wide range, the m
tual approach of the bubbles results in a dynamical equ
rium separation distance rather than collision and coa
cence. Contact of bubbles was observed only if their ra
were sufficiently close. Situations of this sort are illustrat
by Fig. 4~a!, where the upper curve is the time-varying d
tance between the moving bubble centers,D(t), and the
lower curve is the sum of the instantaneous bubble ra
R1(t)1R2(t). It is seen that the bubbles come into contac
7.5 acoustic cycles. For comparison, Fig. 4~b! shows a simi-
lar plot for one of the noncolliding bubble pairs of Fig.
Contact also occurs if the forcing is set weak. For instan
the bubble pair shown in Fig. 4~b! comes into contact in 95
acoustic cycles for initial separation distanceD(0)
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530 mm when the driving pressurePa is set to 0.9 bar.
Besides, it is found that in all cases investigated the bubb
collide very quickly if the viscous forces are omitted fro
the equations.

So the fact that the bubble pairs shown in Fig. 2 are p
vented from coalescing can most likely be explained by
combined effect of high-amplitude bubble pulsations a
viscous forces. Every acoustic cycle, the attractive second
Bjerknes force attempts to bring the bubbles together.
each of the bubbles generates a very strong velocity fiel
the surrounding liquid, the intensity of which increases ra
idly as the spacing between the bubbles decreases. The
locity fields give rise to vigorous viscous drag forces, whi
decelerate the bubbles and, owing to inertia, cause them
turn back. These attempts of alternate approaches and
bounds can be easily seen in Fig. 3. As a result, a dynam
1-4
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TRANSLATIONAL MOTION OF TWO INTERACTING . . . PHYSICAL REVIEW E64 026301
steady state is established at which the distance between
bubbles remains, on average, constant. Obviously this re
can provide an explanation of why, instead of coalescing
Bjerknes theory requires, cavitation bubbles in acous
streamers form a line at stable intervals.

Another interesting effect that follows from Fig. 2 is tha
the bubble pairs undergo self-propulsion. In Figs. 2~a!, 2~b!,
and 2~d!, the bubble pairs travel in the direction of the
smaller bubble and, in Figs. 2~c!, 2~e!, and 2~f!, toward the
bigger bubble. Clearly this effect also results from the pre
ence of viscous forces, which break down conservatism
the system and cause skewness in it. A detailed mechan
of this phenomenon~which is, strictly speaking, not in the
scope of this paper! is not quite understood yet and will be
investigated elsewhere.

IV. CONCLUSION

In this paper, a model has been proposed that make
possible to calculate radial and translational motions of tw
interacting spherical gas bubbles in a strong acoustic fie

FIG. 3. Examples of real bubble paths.
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The model allows for the radiation coupling between th
bubbles up to terms of third order in the inverse separati
distance, viscous drag forces on the bubbles, and effects
liquid compressibility on their volume pulsations. Using thi
model, numerical investigation of translational motion o
two small, driven well below resonance, bubbles in soun
fields with pressure amplitudes exceeding 1 bar has be
made. It has been shown that for most combinations
bubble radii characteristic of acoustic streamers, a mutu
approach results in a dynamical steady state at which t
distance between the bubbles remains, on average, cons
It is supposed that this result can provide an explanation f
the structure of acoustic streamers.
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FIG. 4. The sum of the instantaneous bubble radiiR1(t)
1R2(t) and the time-varying distance between the bubble cente
D(t) as functions of the number of acoustic cycles for~a! colliding
and ~b! noncolliding bubble pairs.
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