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Detecting functional relationships between simultaneous time series
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We describe a method to characterize the predictability and functionality between two simultaneously gen-
erated time series. This nonlinear method requires minimal assumptions and can be applied to data measured
either from coupled systems or from different positions on a spatially extended system. This analysis generates
a function statistic® .o, that quantifies the level of predictability between two time series. We illustrate the
utility of this procedure by presenting results from a computer simulation and two experimental systems.
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[. INTRODUCTION tended to investigate the nature of the functional relationship
between the two time series by testing for nonlinearity in the

A common challenge encountered by experimentalists ifunction. One important aspect of this technique is that it
nonlinear dynamics is how to relate pairs of time series, suchises the data to establish a limiting length scale—a limit of
as those measured from two points on a spatially extendet@levance8]—rather than intuition or knowledge about the
system or from two coupled systems. Many nonlinear syssystem. This analysis is also general enough to be applicable
tems exhibit spatial as well as temporal dynamics and af0 both experimental and computational results.
understanding of the spatial behavior is often vital to under-

;tanding the overall dynamidd]. Exa_mples of such spa- Il. PROCEDURE

tiotemporal systems are “auto-oscillations” of magnetostatic

spin wave modes in ferrimagnetic filrhi3], the response of a Given two simultaneous time seri¢b; ,g;} [9], we con-
magnetostrictive ribbon to ac magnetic fields, and fluid mo-struct vectorst; andy; and attractorX andY, such that
tion in Taylor-Coquette flow 3] or Rayleigh-Bernard con-

vection[4]. One way to characterize the spatial dynamics is Xi= (i hig s hipxg-1)) € X

to simultaneously monitor a property of the system at two

different positions and determine the relationship betwee

the resulting data. The relationship between simultaneous

time series may also describe properties of the coupling be-

tween two coupled systems. A wide variety of linear tech- Yi=(Gi Gitrr - Gitrxa-1) €Y,

nigues are available to investigate the functionality between

concurrent time series, but these techniques often fail to prday time delay embedding. The parameters of the embedding,
vide any useful information if the relationship is nonlinear. the time delayr and the embedding dimensiak are deter-

In this paper we will describe a general nonlinear tech-mined using the minimum of the autocorrelation functi@h
nique that investigates the functionality between pairs ofand the false nearest neighbor algorithm of Abarb&hé),
time series with minimal assumptions about the nature ofespectivelyf{11]. However, any combination af and r that
either the data or the dynamics. This generality allows thisadequately captures the dynamics of the system should yield
technique to be applied to a wide range of experimental sysiseful results. Next we assume that a functfoaxists such
tems and to account for more general functionality tharthaty,=F(x;). FunctionF is assumed to be continuous but
strictly linear. The result of this analysis is a function statis-no other conditions are imposed. Since the determination of
tic, ®.0, that quantifies the predictability and functionality F may not be trivial, an intermediate goal is to investigate
between the two time series and can be compared to resultsoperties of the function. We will calculate a function sta-
from linear techniques such as the cross correlation. Thitistic that allows us to describe whether functiBbractually
technique may be useful to experimentalists with time seriegxists, how accurately we can make predictions between
data as well as provide another tool for general time serieme series, and if the function is nonlinear. To derive this
analysts. statistic, we assume that nearby points>omap to nearby

The procedure builds on techniques designed to investipoints onY (see Fig. 1, providedF exists. This behavior is
gate functionality between time seridsg, especially those of equivalent to the two time series being related by a continu-
several of the authori$,7]. These earlier procedures calcu- ous function. Our function statisti€) .o, is a measure of the
late statistics that quantify certain properties of functions redocal predictability between the two time series. A high value
lating time series such as continuity or differentiability. This indicates strong predictability between the time series.
analysis provides a way to calculate a function statistic that Here is an outline of the procedure to calcul@g. In all
is a measure of the predictability between the time seriesf the following, we assume that we have measured the data
Roughly speaking, this statistic quantifies how well can wein such a way thah; andg; are sampled simultaneously and
predict the behavior of one time series if we know the be-we definex; andy; as corresponding points if the indices of
havior of the other time series. This technique can be exthe first coordinates are equal. We systematically investigate
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Source Target

FIG. 1. This technique quantifies the behavior of corresponding
points on the two time series; that is, do points, which are nearest
neighbors on the source attractor, have corresponding fsinsi-
taneous in timpwhich are nearest neighbors on the target attractor.

clusters of nearest neighbors on one attratioe sourcg

and quantify the locality of the corresponding points on the F|G. 2. The target attractor is divided into clusters of points,

other attractor(the targel using a reference length scake  which are nearest neighbors to a center point. The variance of these

We utilize the variance of points on the attractors as oupoints is used in the determination of the length seale

measurement and determine the predictability using the sig-

nificance of this variance. The significance of the variance is (6) Repeat for a number of other centers on the source

defined as the probability that the actual variance is largesttractor and average to find a value for the attractor-wide

than a given variance, given a probability distribution func-fynction statistic.

tion for the variance witho?> as the mean variance. Each

cluster of points on the target attractor will yield a value for  For good predictability our null hypothesis is thatis a

0 0. We repeat this calculation for a number of clusters andypical length scale for our data, implying that sets with no

average the values to find an attractor-wide value for thgunctional relationship will have predictability errors o,

function statistic. There are two primary steps in this analy-hence resulting in low significance of variance. In actuality,

sis, first, to determine the reference length scale and then tge want to show that the variance is much smaller than

calculate the function statistic. The two steps are outlinedind thats acts as a good upper bound so we know prediction

below: at error levels belows is likely. This is the same as requiring
that the variance of a cluster of points has an upper bound.
High values of the significance of the variance correspond to

(1) Determination of length scale on target attractor: high predictability and therefore the high likelihood that the
(1) Select a pointa “center”) y. on the target attractof  time series are related by a function. This analysis investi-
(Y is generated from thg; time serie gates the functionality between two time series and does not

(2) GatherN nearest neighbors of this center, whétés  seek to address whether the two time series are synchronized
large enough to achieve good statistics but small enough tg e one system is driving the othefThe results we de-

calculate a minimum length scalig. 2). scribe here are determined from time series generated by
(3) Determine the variance of these points abyut sampling at two points on spatially extended systems and
(4) Set the significance of the variance equal 0.95 angnost likely do not experience a monodirectional interaction
solve foro(yc). and are examples of mutual couplifitg].

(5) Repeat for a numbem\,) of other centers oty and
average these results to generate an attractor-wide scale,
= 1INGE o (ys).

(II) Determination of function statistic:

(1) Select a centex, on source attractoX.

(2) Gather all of the points within some radiudsof this
center.

(3) Find all of the correspondingi.e., simultaneous in
time [12]) points on the target attractor centered aroypd
the corresponding point of, (Fig. 3). Xq andy, have simul-
taneously sampled first coordinates, ilg,,andg,, respec-

Source

tively. . _ . FIG. 3. Nearest neighbors on the source attraxt@defined as
~(4) Find the variance of these points and calculate theyeing within radiuss of a given center poinky) and the corre-
significance of this varianc® .o(Xo). sponding points on the target attrac¥orOur statistic quantifies the

(5) Vary 6 to maximize the significance for this point. locality of the corresponding points to within some length seale

026221-2



DETECTING FUNCTIONAL RELATIONSHIPS BETWEEN . .. PHYSICAL REVIEW B4 026221

2 2 2 2
p(s2)=eXP[—%(%—lj] %jovexr<—;(;z—l) )dsz=1 as V—oo 3

to find thaté=1+E;(\/N/2), E; is the error function. This
expression for the normalization constant accounts for the
truncation of negative variance values.

B. Scale determination

One strength of this analysis is that we calculate a length
scale from the data themselves without making any assump-
tions about the dynamics. The attractors allow us to deter-
mine a scaler directly from the data. Here is the procedure.
Select a randomly determined poipt (the center on the
target attractor{y|yy,Y1,Y2,Ys,...;. Gather theN nearest
0 v | neighbors of centey. and calculate the variance of these
points,

P(V) =1-A

FIG. 4. We evaluate the Gaussian from»® to determine a 1 N
value for the significance of the variance and therefore the function V= E T2 4
statistic. The normalization of the integration will depend on the N-1/=
mean of the distributiorA is the area beneath the curve.
wherey is the mean. A Theiler exclusiofil4] is used to
A. Derivation of significance of variance avoid counting points that are very close in time as nearest

| d lcul he sianifi f th . ; neighbors. Each cluster of points will contain a specified
n order to calculate the significance of the variance for, ,mper of points, large enough to achieve good statistics but
these clusters of points, we need an expression for the pro

o S i ) . . mall enough to produce a minimum length scale. The num-
ability distribution functionp for the variance, which we will er of pointsN has ranged from 20 to 50 points to 1—2 % of
determine using the central limit theorem. For any group o

2

212 o o he total number of points, depending on the nature of the
values, {s°|s;,s;,s5,...}, where both the meano®  ata(considering factors such as noise and the total number
=(UN)={N;Ys? and the standard deviation®=((s?  of points.
—(s%))?) are known, we can approximate thgs®) as To determine a value fos, we insert this variance into
exf{N(s’~0?)/2y%}] asN—. If the Gaussian approxima- the equation for the significance of the variance, set the sig-
tion (y°=20") is applied, then the probability distribution nificance equal to 0.95, and determine the corresponaing
function can be written as Repeat for a number of randomly determined cenfterand
N/ <2 2 average the values to produce an attractor-wide seale
2\ —
p(s)—exp( 4(02 1) ) 1)

We then use this expression as the probability distribution
function of the variance of clusters of points on attractors.The resulting value is based solely on the data withoutany
The significance of the variandis defined as the probabil- priori assumptions about the system dynamics. We now use
ity that a given variance is larger thaf, this scale to calculate the function statistic. For the cases
described here we have used 100 points and therefore calcu-
1 (v N 2 ![ﬁtetd 100 vgrigrlm_fedv.athgs%wh]icch atl_llovxf ut?] to be confident
—q1_ = A at our probability distribution function for the variance is a
P(V)=1 ¢ fo ex;{ 4 (_2 1) )dsz, @ normal distribution| 15].

1
7= N2 T)- ()

ci=

where ¢ is the normalization constaiEig. 4). This expres- C. Calculation of function statistic

sion is used to calculate both the length scaleand the Given scales on the target attractor, we now turn to the
function statistic® .o (see previous sectign source attractofx|Xg,X;,X2,X3,...}. To begin the function

When using a Gaussian for the probability distributionstatistic calculation, we gather all of the points within some
function of a set of variances, we need to account for theadius § of some randomly selected center on this attractor
possibility of unphysical negative variances. We account foxy, {Xo|X1,X2,X3,...}. (In this case the indices of these
this by integrating from 6-V, truncating the negative vari- points refer to the spatial neighbors xf, not the temporal
ances, and by modifying the normalization constant. If theorder of the time seriesThe variance and significance of the
mean of the distribution is far from 0, thep—2. On the  corresponding points on the target attradwylys,y-,Ys,...}
other hand, as the mean of the distribution approaches @re then calculateds is then varied on the source attractor
then¢— 1. To find the normalization constant, we set (Fig. 5 to maximize theP(V) for this center,
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D. Function statistic beyond linear

Another application of this analysis is to use this statistic
to test for nonlinearity in the functional relationship between
two time series. The function statistic beyond linear is a mea-
sure of how much more accurate a nonlinear prediction is
than a strictly linear prediction. The procedure for this appli-
cation is this:

(1) Fit the attractors to a linear modef:=AX. We have
used a least squares fit model in the analysis presented here.
(2) Determine the variance of the residues

n=2, (yi—Ax)% ®)

(3) Use this valuey for the scales in the significance
FIG. 5. The radius is varied around a given center and the varicalculation.
ance of each collection of points is calculated. The number of points
used to determine the length scal@aries depending on the nature If there is only a linear relationship between the two attrac-
of data. tors, » and o are on the same order and the values for the
function statistic beyond linear are low. If there are nonlinear
0 0(Xg) =5{P(X0)}. (6)  components to the relationship between the time series, then
7n> o and the values for the function statistic are high. Care
This is roughly a measure of the percentage of points on thgust be taken when using this analysis and it should only be
first attractor whose corresponding points fall within  utilized when a relationship is believed to exist between the
aroundy, on the target attractor. The function statifficois  two time series. Two completely stochastic time series will
defined as the average @¥.o(xp) for a number of clusters produce a large value for the variance of the residues and the

across the attractor: calculated statistic may also be high, indicating functionality
Ng when none exists. We now present results from several ex-
l .
0= N_-Zl ®co(X), ) perimental systems.
ci=

. . Il. ROSSLER FORCED LORENZ SIMULATION
whereN; is the number of centers. Again, we use at least

100 points to achieve good statist[d$]. High values for the We will first apply this technique to data from a computer
function statistic indicate that good predictability and strongsimulation to verify that we generate the expected results.
functionality exist; low values indicate that it is unlikely that We will use a six-dimensional system consisting of a Lorenz

the two time series are related by a function. system driven by a Rossler system:
|
Xr=—(Yr+Zg)
Rossler drive | Yg=Xg+aYgr 9

ZR: b+ ZR(XR_ C),

XL:_U(XL_YL)
Lorenz response { Y, =—X. Z +pX —Y_+K(yYgr—Y.), K=coupling constant (10
Z =X Y = BZ,

wherea=b=0.2,¢=0.7,0=10, 8=8/3, andp=60. In or-  series. The data are simultaneous measurements of the

der to make the two systems comparable we selecd.0 as  RosslerX coordinate and the Loren% coordinate. The first

the gain constant, which makes the Rossler amplitude conset has no additive noise and no coupling, the second set has

parable to the Lorenz amplitude and tune the time steps too additive noise and strong coupling€0.4), and the

make the two time scales comparable. third set has 5% additive noise and strong couplitg (
We present three sets of data where we determine the 0.4). Values for the cross correlation, function statistic,

predictability from the Resler time series to the Lorenz time and function statistic beyond linear for each of these states
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FIG. 6. A plot showing three different statistics, the cross cor- "
relation (gray fill), the function statistigblack), and the function Preamplifiers
statistic beyond linea¢crosshatchy for the Rossler driven Lorenz
system. The three cases d@@ no coupling, no noise(b) 40%
coupling, no noise, antt) 40% coupling, 5% noise. The high val-
ues for the cases with coupling indicate that there is a functional
relationship between the two time series, likely nonlinear in nature
considering the high values for the nonlinear statistic. Computer

are shown in Fig. 6. The cross-correlation and the function _ _

statistic are low for the uncoupled case, which is consistent F!G. 7. Coaxial probes measure the magnetic moment of the
for two independent systems. The lack of any linear relationY!G film at two positions. A pair of diode detectors then measures
ship implies a large value for the variance of the residues ani'® medulation of the spin waves.

explains the higher value for the function statistic beyondy fie|q, the spins will precess around the dc field direction at

linear. _ L the resonant frequendy21]. Phase modulations in the pro-
Th.e high yalues for the three statistics indicate that th%essions of neighboring spins produce traveling spin waves

two time series have strong predictability and are strongly, nich when reflected at the film boundaries, result in stand-

related by a function for the two coupled cases. The additiorilngl waves corresponding to the magnetostatic modes of the
4 ) 0 _
of 5% noise has a very sligtit% or 2% changeeffect on ) “at jow applied ac powers, these modes are linear at the

the two statistics. The high value for the function statistiC .agonant frequency but are coupled to initially negligible

peyond I!near for bOt.h COUpled cases indicate Fhat the funCr'1on|inear modes. As the excitation power is increased above
tion relating the two time series may have nonlinear COMPO3 threshold powerthe Suhl instability [16], the linear

hents. modes begin to interact with continuum half-frequency spin
waves in the film. The nonlinear interaction of the stationary
1. SPIN WAVES IN YTTRIUM IRON GARNET FILMS modgs an(_j the half-frequency sp?n wave manifolq produce
nonlinearities that eventually dominate the dynamics. These
A solid state system that exhibits spatial-temporal chaotiénteractions lead to low frequendiHz) modulations of the
dynamics is spin wave modulation of resonant modes in ytamplitude of the(GHz) magnetostatic mode resonances.
trium iron garnet(YIG) films. YIG is a technologically use- These modulations have been observed in both small spheres
ful ferrimagnetic material used in microwave devices such aand thin films of YIG. These modulations are measured in
limiters, resonators, and filters and many aspects of its noreur experiments and can exhibit periodicalled auto-
linear behavior have been studied and exploiféd]. A oscillations, quasiperiodic, and chaotic behavior.
number of previous experiments performed by several of the A diagram of the experiment can be seen in Fig. 7. Our
authors[17-20Q have investigated the global temporal dy- sample is a rectangular film cut from a single YIG crystal
namics of YIG structures. In our experiments, we analyze thevith dimensions 0.850.72cnf and is 37 um thick. The
magnetic response at two positions on the surface of a YlGnodulations of the magnetostatic modes are detected by us-
film to investigate the spatial dynamics across the film. ing a pair of coaxial probes mounted near the film surface.
When YIG films are placed in saturating dc magneticThe film is mounted in a waveguide and is excited by a 2—4
fields, the atomic spins initially align and precess around th&Hz microwave field. The probes are oriented to pick up the
direction of the dc field. Unless the spins are excited by an agesonant oscillation of the magnetization in the film. The
magnetic field, the spin precessions will damp out. When @robe microwave field is amplified and detected using stan-
resonant ac magnetic field is applied perpendicularly to thelard diode detectors. The kHz auto-oscillation modulation is
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] ) FIG. 9. This plot shows the value of the function statistic be-
FIG. 8. This plot shows the maximum value for the cross COr-yond linear (M) for the power sweep performed at 460.1 G and
relation (O) and the function statistic# ) for a power sweep per- 3 9251 GHz, plotted against radio frequency poRer. The high
formed at dc field 460.1 G and excitation frequency 3.0251 GHzygjyes even where both the cross correlation and function statistic

plotted against radio frequency powef;. The linear cross corre-  yajyes are lowsuch as those above 10 dBindicate that there is
lation and the nonlinear function statistic exhibit similar behavior, gome functionality in these states and that it is nonlinear in nature.

indicating that there is strong functionality in a region of periodic

behavior. This functi lity d ff as th isi d. . . .
ehavior. This functionalily drops off as Ihe power s increase correlation is much lower than the values for either of the

. L _nonlinear statistics at these powers. These results imply that
then digitized and processed. Both periodic and chaotignere js some functionality in the power range that is highly
states have been observed over a wide parameter range. Eqdhlinear in nature. This is also an example of a system with

data set consists of a time series of the voltage signal from,ctionality that cannot be characterized by the linear cross
each probe. We investigate the relationship between the ey rglation and demonstrates the utility of the function sta-

time series by initially performing cross-correlation analysisyisic analysis. In order to further explore the behavior in this
to quantify the linear aspects of the relationship and then,ver range, we calculated both the function statistic and

itpvestigating the nonlinear aspects using the function statisynction statistic beyond linear for these states, interchanging
ics.

Figure 8 shows the linear correlation and nonlinear func-
tion statistic as a function of microwave excitation power for
a power sweep performed at 460.1 Oe and 3.0251 GHz. Ini- 1
tially the signal-to-noise ratio is low but eventually the sys-
tem evolves into a region of periodic states where both the
cross-correlation and function statistic values are high. Both
measures drop off as the states lose periodic structure and
become more chaotic. We also show a plot of the function o,
statistic beyond linearFig. 9), calculated using a least @ ~
squares approximation for the linear model. The high value U
for the function statistic beyond linear indicates that the error 0.4
in the linear model is greater than the attractor-wide noise
scaleo. These results imply that there is a nonlinear compo-
nent to the relationship in this parameter range. 0.2

We present results from another power swgsgrformed
at 2.9747 GHz and 449.9 @& Fig. 10. The states in this
power sweep produce periodic signals with similar spectra 0—3 y s 7 3 910
except in the region between 5.4 and 7.4 dBm. Here, the P (dBm)
measured time series are quasiperiodic with two noncom-
mensurate frequencies. The individual probes measure both £, 10. A plot of the cross correlatiofD), function statistic
frequencies but the relative intensities of the individual fre-(e), and function statistic beyond linedgray M) for a power
quencies are different for each probe. The higher frequenciesveep at 2.9747 GHz and 449.9 Oe, plotted against radio frequency
are more intense at the position monitored by the first probesower P, . In the region between 5.4—7.4 dBm, the two nonlinear
while the lower frequencies dominate the dynamics at thetatistics are higher than the linear cross correlation, indicating that
position monitored by the second probe. The linear crosshe functionality in this region is nonlinear.

W
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0 10 20 30 40 50Hz
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FIG. 13. Power spectrur8 of the signal from the center of the

ribbon when the ac driving field is 1.4 Oe. The time series has been
sampled once per cycle of the driving frequency of 113 Hz.

0.2

6.4 6.8 72 7.6 8
P (dBm) ries. We can estimate the variance of the noise level from the
y intercept of they(p) vs A(p) plot.
FIG. 11. Two different noise levels; (a measure of the stochas- ~ We plot two noise measureg,and o, and the variance of
tic noise level of the time series da(@ray ®) ando (found during  the residues for a least squares linear model in Fig. 11. We
the calculation of function statisfiod[l), are plotted withn (the  plot the value of they statistic as defined above, which is a
variance of the residues from a least squares linear m¢@8l  measure of the noise variance in tipgime series. We also
against radio frequency pOWEl;f. gis upper bounded by but the plot o, which is a measure of the variance of a group of
two noise statistics are close in valughas more variation and is  egrest neighbors on thé attractor (calculated when we
dependent on the strength of a linear fit between the attractors. atermine the function statislic The y statistic remains
roughly the same size over the range of powers in Fig. 11,
indicating that the noise levels in the different time series are
the source and target attractors. These values were very closgughly the same relative to the signal size. The differences
to those previously determingtoth for the function statistic seen between the statistics in Fig. 10 are not caused by dif-
and the function statistic beyond lingand support the ex- fering noise levels. It is interesting to note thais roughly
istence of an invertible function relating the time series.  the same size ag the two different methods of determining
We would like to determine if the results in Fig. 10 are a minimum length scale on the attractérgive similar re-
caused by differences in the dynamics as driving power isults. o (calculated in the determination of the function sta-
increased or by different noise levels in the time series usetlistic) is upper bounded by, indicating that this noise sta-
to calculate the statistics. We use the Gamma staf@fitas tistic is smaller than the underlying noise level in the data.
a test of the noise level. To find the Gamma statistic, we
calculate the mean square distance from an arbitrary refer- 20
ence point to thepth nearest neighbor in th& attractor
[A(p)] and the mean square distance from an arbitrary ref-
erence point to theth nearest neighbor in thg attractor
[v(p)]- We then ploty(p) as a function ofA(p). As p
—0, Steffansson, Konear, and Jorj@2] show thaty(p)
approaches the variance of the noise level inghene se-

it g il T

»

Helmholtz
coils

FIG. 14. Plot of one strobed time serig¢g(n)] vs another
FIG. 12. Simple diagram of the driven magnetic ribbon experi-strobed time serielsy(n)] taken with both laser spots at the center
ment. The laser illuminates two spots on the ribbon, and the motiof the ribbon when the driving amplitude is 1.4 Oe. The two laser
of these spots is used to detect the motion of the ribbon at thbeams are at different angles, so the two time series are not the
location of the spot. same.
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FIG. 16. Power spectrur8 of the signal from the center of the
ribbon when the ac driving field is 6.1 Oe. The time series has been
sampled once per cycle of the driving frequency of 113 Hz.

flected light was focused on two small-area differential diode
detectors, which compared the reflected beams to reference
beams straight out of the laser in order to reduce noise from
laser intensity modulations. Movement of the reflected beam
across the detector produced a time varying signal propor-
tional to the deflection of the ribbon at the spot illuminated
by that spot. One laser spot was kept fixed in the center of
the ribbon, while the other spot was scanned over the sur-
face, so that two different signals were produced by the two
detectors. Because each of the beams hit the ribbon at a
different angle, different signals were produced even when
both beams illuminated the same position.

The magnetization of the ribbon was coupled to its strain

3 4 5 6 because the ribbon had a large magnetostriction. A magnetic
1 (cm) field applied to the ribbon would alter the stiffness of the

ribbon, as well as change its shape. The stiffness of the rib-

FIG. 15. (a) Plot of the function statistic beyond line@r,o over ~ bon affected its mechanical response, so driving the ribbon
the surface of the ribbon, where one of the time series is measurewtith an ac magnetic field produced a highly nonlinear sys-
at the center of the ribbofwhen the drive amplitude is 1.4 Qe tem.
White is equal to 1, while black is equal to (b) Plot of the We applied the function statistic, the function statistic be-
function statistic® .o over the surface of the ribboic) Plot of the yond linear, and linear cross correlation to pairs of time se-
maximum value of the cross-correlation between detected time s&ies from the ribbon. Because the motion of the ribbon was

ries from the ribbon. highly nonlinear, it was not possible to tell by eye what the
relation wag(if any) between the two time series. Instead, we
IV. MAGNETOSTRICTIVE RIBBON EXPERIMENT applied the statistics to determine what sort of relationships

. o ] there might be. We drove the ribbon at an ac frequency of
We also applied the statistics described above to data13 Hz, which corresponds to a bending mode of the ribbon.
from an experiment involving a magnetostrictive metal rib-\we then sampled the time series signals from the two detec-
bon. We suspended a ribbon of Metglass 2605 sc betweentars every time the driving signal crossed zero in the positive
pair of Helmholtz coils. The top of the ribbon was rigidly direction. We then applied the statistics to these strobed time
clamped, while a 1.6 g mass was clamped across the bottoseries.
of the ribbon, allowing the bottom of the ribbon to swing
freely. The ribbon was 25 mm wide, 60 mm long, and 1 mm
thick. The Helmholtz coils produced a magnetic field in the
plane of the ribbon. The magnetic field consisted of a 6.5 Oe Figure 13 shows the power spectrum of one of these
dc field and an ac field that could be set to different magnistrobed time series when the ac magnetic field rms amplitude
tude and frequencies. The ac magnetic field couples to theas 1.4 Oe. Figure 14 is a Poincare section obtained by
domain walls in the ribbon to exert a time varying force on plotting the strobed time series from one detector against the
the ribbon. Figure 12 is a simple diagram of the experimentstrobed time series from the other detector. The response of
Two small spotgabout 1 mm) on the ribbon were illu- the ribbon appears to be quasiperiodic, responding at fre-
minated by a He-Ne laser. The ribbon surface was notuencies of 113 Hz, 4.5 Hz, and combinations of these fre-
smooth, so the spots produced diffuse reflections. The reguencies.

A. Driving at 1.4 Oe
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FIG. 17. Plot of one strobed time serigg(n)] vs another
strobed time serielsy(n)] taken with both laser spots at the center
of the ribbon when the driving amplitude is 6.1 Oe. The two laser
beams are at different angles, so the two time series are not the
same.

In order to determine statistics, the laser spot that gener-
ated the time series labeleg"was fixed at the center of the =
ribbon, while the time series labeled™ was scanned over g
the ribbon. There were eight scans recorded along the narron >~ 1.0
dimension of the ribbon and 32 scans recorded along the
long dimension, for a total of 256 scans. 0.0

Figure 1%a) is a plot of the function statistic beyond lin- 5 ; 5 g
ear® . obtained by comparing the strobed time series from 1 (cm)
the center of the ribbon to the strobed time series at other
points at the ribbon. Each time series contained 2000 points FIG. 18. (a) Plot of the function statistic beyond line@r.o over

embedded in flve dlmepsul)ns. White on the plqt indicates @he surface of the ribbon, where one of the time series is measured
value of 1, while black indicates a value of@co is near 1t the center of the ribbotwhen the drive amplitude is 6.1 Qe
over the entire surface of the ribbon, indicating that the re\wnite is equal to 1, while black is equal to (b) Plot of the
lationship between the two embedded time series is not eXunction statistic® .o over the surface of the ribborc) Plot of the
plained by a linear map. Either the relationship is nonlineamaximum value of the cross-correlation between detected time se-
or there is no relation between the time series. ries from the ribbon.

Figure 1%b) shows the value of the function statisico ) ] ) o )
over the surface of the ribbdwhere one of the time series is correlatlpn agrees with the func’Flon statistic b.eyond Illnea_lr
taken at the center of the ribbpr® . is slightly larger near @Co,.whmh shows that any relation between time series is
the middle of the ribbon than near the ends, which suggest2oniinear.
that it is easier to predict the motion at a point on the ribbon N
from a nearby point than from a distant point. We expect that B. Driving at 6.1 Oe
we should be able to predict the motion of one point on the Figure 16 shows a power spectrum from a strobed time
ribbon from the motion at another point because the ribbon iseries when the ac magnetic field had an rms amplitude of
undergoing quasiperiodic motion, but noise can reduce th6é.1 Oe. Spectral lines at multiples of 5 Hz are still present,
value of . but there is now also a large broadband background signal.

Figure 15c) shows the maximum value of the cross cor-In Fig. 17, the Poincare section for this data no longer ap-
relation between the time series from the center of the ribbopears to be quasiperiodic. The statistics for pairs of time
and time series at other points. The cross correlation meseries were computed as before, with an embedding dimen-
sures whether or not two signals are linearly related and alssion of 5.
allows for a shift in time. The cross correlation between the The function statistic beyond line@® .o in Fig. 18a) is
time series is not very large for most points on the ribbon, smear 1 everywhere, suggesting that any relation between mo-
while ®.0 shows that there is some predictability betweention on different points on the ribbon is nonlinear. The func-
time series from different points on the ribbon, the relation-tion statistic® .o in Fig. 18b) appears to show two separate
ship between these time series is not simply linear. The crosegions.® .o is near 0 for regions near the top of the ribbon

2.0

4 5 6
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and larger for regions near the bottom. The motion of the top V. CONCLUSIONS

half of the ribbon is not very predictable from the motion of . o .

the bottom half. The cross-correlation plot in Fig.(d8 _We have descnbgd anewway of qua_ntﬁymg the re!atlon-
shows that the relation between motion on different parts 01$h|p between'two time series anq applleq this technique to
the ribbon is very nonlinear, except when the two parts of theseveral e_xperlmental $y§tems. This 'Fechnlque allows for the
ribbon are very close toget,her computation of a statistic that describes the strength of the

This magnetic ribbon is being driven very hard, so it is relationship between two time series and also the intensity of

unlikely that modeling of the motion of the ribbon for such the nonlmearlty of any .SUCh reIat|onsh|p. Using t_h|s tech-
large driving fields would be possible. All the information nique along with other linear and nonlinear techniques can

we can gain about the ribbon will come from statistics suchhelp elucidate the relationship between time series and the

as those used above. It is tempting to speculate whether gnderlymg dynamics. Results from a variety of experiments

not the motion seen when the driving field is at 6.1 Oe issthow the utility of this analysis.

chaotic, but in our experience, attempting to calculate indi-
cators of chaos such as Lyapunov exponents from experi-
mental data is not yet very reliable at distinguishing chaotic The authors wish to thank D. King, W. Lechner, and J.
motion from other complicated types of motion. Valenzi for technical assistance.
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