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Detecting functional relationships between simultaneous time series

C. L. Goodridge, L. M. Pecora, T. L. Carroll, and F. J. Rachford
Code 6345, U.S. Naval Research Laboratory, Washington, D.C. 20375

~Received 12 September 2000; revised manuscript received March 8 2001; published 23 July 2001!

We describe a method to characterize the predictability and functionality between two simultaneously gen-
erated time series. This nonlinear method requires minimal assumptions and can be applied to data measured
either from coupled systems or from different positions on a spatially extended system. This analysis generates
a function statistic,Qc0, that quantifies the level of predictability between two time series. We illustrate the
utility of this procedure by presenting results from a computer simulation and two experimental systems.
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I. INTRODUCTION

A common challenge encountered by experimentalists
nonlinear dynamics is how to relate pairs of time series, s
as those measured from two points on a spatially exten
system or from two coupled systems. Many nonlinear s
tems exhibit spatial as well as temporal dynamics and
understanding of the spatial behavior is often vital to und
standing the overall dynamics@1#. Examples of such spa
tiotemporal systems are ‘‘auto-oscillations’’ of magnetosta
spin wave modes in ferrimagnetic films@2#, the response of a
magnetostrictive ribbon to ac magnetic fields, and fluid m
tion in Taylor-Coquette flow@3# or Rayleigh-Bernard con
vection @4#. One way to characterize the spatial dynamics
to simultaneously monitor a property of the system at t
different positions and determine the relationship betw
the resulting data. The relationship between simultane
time series may also describe properties of the coupling
tween two coupled systems. A wide variety of linear tec
niques are available to investigate the functionality betw
concurrent time series, but these techniques often fail to
vide any useful information if the relationship is nonlinea

In this paper we will describe a general nonlinear te
nique that investigates the functionality between pairs
time series with minimal assumptions about the nature
either the data or the dynamics. This generality allows t
technique to be applied to a wide range of experimental s
tems and to account for more general functionality th
strictly linear. The result of this analysis is a function stat
tic, Qc0, that quantifies the predictability and functionali
between the two time series and can be compared to re
from linear techniques such as the cross correlation. T
technique may be useful to experimentalists with time se
data as well as provide another tool for general time se
analysts.

The procedure builds on techniques designed to inve
gate functionality between time series@5#, especially those of
several of the authors@6,7#. These earlier procedures calc
late statistics that quantify certain properties of functions
lating time series such as continuity or differentiability. Th
analysis provides a way to calculate a function statistic t
is a measure of the predictability between the time ser
Roughly speaking, this statistic quantifies how well can
predict the behavior of one time series if we know the b
havior of the other time series. This technique can be
1063-651X/2001/64~2!/026221~10!/$20.00 64 0262
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tended to investigate the nature of the functional relations
between the two time series by testing for nonlinearity in
function. One important aspect of this technique is tha
uses the data to establish a limiting length scale—a limit
relevance@8#—rather than intuition or knowledge about th
system. This analysis is also general enough to be applic
to both experimental and computational results.

II. PROCEDURE

Given two simultaneous time series$hi ,gi% @9#, we con-
struct vectorsxi andyi and attractorsX andY, such that

xi5~hi ,hi 1t ,...,hi 1t* ~d21!!PX

and

yi5~gi ,gi 1t ,...,gi 1t* ~d21!!PY,

by time delay embedding. The parameters of the embedd
the time delayt and the embedding dimensiond, are deter-
mined using the minimum of the autocorrelation function@1#
and the false nearest neighbor algorithm of Abarbanel@10#,
respectively@11#. However, any combination ofd andt that
adequately captures the dynamics of the system should y
useful results. Next we assume that a functionF exists such
that yi5F(xi). FunctionF is assumed to be continuous b
no other conditions are imposed. Since the determination
F may not be trivial, an intermediate goal is to investiga
properties of the function. We will calculate a function st
tistic that allows us to describe whether functionF actually
exists, how accurately we can make predictions betw
time series, and if the function is nonlinear. To derive th
statistic, we assume that nearby points onX map to nearby
points onY ~see Fig. 1!, providedF exists. This behavior is
equivalent to the two time series being related by a conti
ous function. Our function statistic,Qc0, is a measure of the
local predictability between the two time series. A high val
indicates strong predictability between the time series.

Here is an outline of the procedure to calculateQc0. In all
of the following, we assume that we have measured the d
in such a way thathi andgi are sampled simultaneously an
we definexi andyi as corresponding points if the indices
the first coordinates are equal. We systematically investig
©2001 The American Physical Society21-1
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GOODRIDGE, PECORA, CARROLL, AND RACHFORD PHYSICAL REVIEW E64 026221
clusters of nearest neighbors on one attractor~the source!,
and quantify the locality of the corresponding points on
other attractor~the target! using a reference length scales.
We utilize the variance of points on the attractors as
measurement and determine the predictability using the
nificance of this variance. The significance of the varianc
defined as the probability that the actual variance is lar
than a given variance, given a probability distribution fun
tion for the variance withs2 as the mean variance. Eac
cluster of points on the target attractor will yield a value f
Qc0. We repeat this calculation for a number of clusters a
average the values to find an attractor-wide value for
function statistic. There are two primary steps in this ana
sis, first, to determine the reference length scale and the
calculate the function statistic. The two steps are outlin
below:

~I! Determination of length scales on target attractor:
~1! Select a point~a ‘‘center’’! yc on the target attractorY

~Y is generated from thegi time series!.
~2! GatherN nearest neighbors of this center, whereN is

large enough to achieve good statistics but small enoug
calculate a minimum length scale~Fig. 2!.

~3! Determine the variance of these points aboutyc .
~4! Set the significance of the variance equal 0.95 a

solve fors(yc).
~5! Repeat for a number (Nc) of other centers onY and

average these results to generate an attractor-wide scas
51/Nc( i 51

Nc s(yi).
~II ! Determination of function statistic:

~1! Select a centerx0 on source attractorX.
~2! Gather all of the points within some radiusd of this

center.
~3! Find all of the corresponding~i.e., simultaneous in

time @12#! points on the target attractor centered aroundy0 ,
the corresponding point ofx0 ~Fig. 3!. x0 andy0 have simul-
taneously sampled first coordinates, i.e.,h0 andg0 , respec-
tively.

~4! Find the variance of these points and calculate
significance of this varianceQc0(x0).

~5! Vary d to maximize the significance for this point.

FIG. 1. This technique quantifies the behavior of correspond
points on the two time series; that is, do points, which are nea
neighbors on the source attractor, have corresponding points~simul-
taneous in time! which are nearest neighbors on the target attrac
02622
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~6! Repeat for a number of other centers on the sou
attractor and average to find a value for the attractor-w
function statistic.

For good predictability our null hypothesis is thats is a
typical length scale for our data, implying that sets with
functional relationship will have predictability errors@s,
hence resulting in low significance of variance. In actuali
we want to show that the variance is much smaller thans
and thats acts as a good upper bound so we know predict
at error levels belows is likely. This is the same as requirin
that the variance of a cluster of points has an upper bou
High values of the significance of the variance correspond
high predictability and therefore the high likelihood that t
time series are related by a function. This analysis inve
gates the functionality between two time series and does
seek to address whether the two time series are synchron
~i.e., one system is driving the other!. The results we de-
scribe here are determined from time series generated
sampling at two points on spatially extended systems
most likely do not experience a monodirectional interact
and are examples of mutual coupling@13#.

g
st

r.

FIG. 2. The target attractor is divided into clusters of poin
which are nearest neighbors to a center point. The variance of t
points is used in the determination of the length scales.

FIG. 3. Nearest neighbors on the source attractorX ~defined as
being within radiusd of a given center pointx0! and the corre-
sponding points on the target attractorY. Our statistic quantifies the
locality of the corresponding points to within some length scales.
1-2
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DETECTING FUNCTIONAL RELATIONSHIPS BETWEEN . . . PHYSICAL REVIEW E64 026221
A. Derivation of significance of variance

In order to calculate the significance of the variance
these clusters of points, we need an expression for the p
ability distribution functionr for the variance, which we will
determine using the central limit theorem. For any group
values, $s2us1

2,s2
2,s3

2,...%, where both the means2

5(1/N)( i 50
(N21)si

2 and the standard deviationg25^(si
2

2^s2&)2& are known, we can approximate ther(s2) as
exp@$N(s22s2)/2g2%# asN→`. If the Gaussian approxima
tion (g252s4) is applied, then the probability distributio
function can be written as

r~s2!5expS 2
N

4 S s2

s221D 2D . ~1!

We then use this expression as the probability distribut
function of the variance of clusters of points on attracto
The significance of the varianceP is defined as the probabil
ity that a given variance is larger thans2,

P~V!512
1

f E
0

V

expS 2N

4 S s2

s221D 2Dds2, ~2!

wheref is the normalization constant~Fig. 4!. This expres-
sion is used to calculate both the length scales and the
function statisticQc0 ~see previous section!.

When using a Gaussian for the probability distributi
function of a set of variances, we need to account for
possibility of unphysical negative variances. We account
this by integrating from 0→V, truncating the negative vari
ances, and by modifying the normalization constant. If
mean of the distribution is far from 0, thenf→2. On the
other hand, as the mean of the distribution approache
thenf→1. To find the normalization constant, we set

FIG. 4. We evaluate the Gaussian from 0→V to determine a
value for the significance of the variance and therefore the func
statistic. The normalization of the integration will depend on t
mean of the distribution.A is the area beneath the curve.
02622
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f E
0

V

expS 2
N

4 S s2

s221D 2Dds251 as V→` ~3!

to find thatf511Ef(AN/2), Ef is the error function. This
expression for the normalization constant accounts for
truncation of negative variance values.

B. Scale determination

One strength of this analysis is that we calculate a len
scale from the data themselves without making any assu
tions about the dynamics. The attractors allow us to de
mine a scales directly from the data. Here is the procedur
Select a randomly determined pointyc ~the center! on the
target attractor$yuy0 ,y1 ,y2 ,y3 ,...%. Gather theN nearest
neighbors of centeryc and calculate the variance of thes
points,

V5
1

N21 (
j 51

N

~yj2 ȳ!2, ~4!

where ȳ is the mean. A Theiler exclusion@14# is used to
avoid counting points that are very close in time as nea
neighbors. Each cluster of points will contain a specifi
number of points, large enough to achieve good statistics
small enough to produce a minimum length scale. The nu
ber of pointsN has ranged from 20 to 50 points to 1–2 %
the total number of points, depending on the nature of
data~considering factors such as noise and the total num
of points!.

To determine a value fors, we insert this variance into
the equation for the significance of the variance, set the
nificance equal to 0.95, and determine the correspondins.
Repeat for a number of randomly determined centersNc and
average the values to produce an attractor-wide scales,

s5
1

Nc
(
i 51

Nc

s~yi !. ~5!

The resulting value is based solely on the data without ana
priori assumptions about the system dynamics. We now
this scale to calculate the function statistic. For the ca
described here we have used 100 points and therefore c
lated 100 variance values, which allows us to be confid
that our probability distribution function for the variance is
normal distribution@15#.

C. Calculation of function statistic

Given scales on the target attractor, we now turn to th
source attractor$xux0 ,x1 ,x2 ,x3 ,...%. To begin the function
statistic calculation, we gather all of the points within som
radiusd of some randomly selected center on this attrac
x0 , $x0ux1 ,x2 ,x3 ,...%. ~In this case the indices of thes
points refer to the spatial neighbors ofx0 , not the temporal
order of the time series.! The variance and significance of th
corresponding points on the target attractor$y0uy1 ,y2 ,y3 ,...%
are then calculated.d is then varied on the source attract
~Fig. 5! to maximize theP(V) for this center,

n

1-3
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GOODRIDGE, PECORA, CARROLL, AND RACHFORD PHYSICAL REVIEW E64 026221
Qc0~x0!5d
max$P~x0!%. ~6!

This is roughly a measure of the percentage of points on
first attractor whose corresponding points fall withins
aroundy0 on the target attractor. The function statisticQc0 is
defined as the average ofQc0(x0) for a number of clusters
across the attractor:

Qc05
1

Nc
(
i 51

Nc

Qc0~xi !, ~7!

whereNc is the number of centers. Again, we use at le
100 points to achieve good statistics@15#. High values for the
function statistic indicate that good predictability and stro
functionality exist; low values indicate that it is unlikely th
the two time series are related by a function.

FIG. 5. The radius is varied around a given center and the v
ance of each collection of points is calculated. The number of po
used to determine the length scales varies depending on the natur
of data.
om
s

t
e
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D. Function statistic beyond linear

Another application of this analysis is to use this statis
to test for nonlinearity in the functional relationship betwe
two time series. The function statistic beyond linear is a m
sure of how much more accurate a nonlinear prediction
than a strictly linear prediction. The procedure for this app
cation is this:

~1! Fit the attractors to a linear model:Y5AX. We have
used a least squares fit model in the analysis presented

~2! Determine the variance of the residues

h5( „yi2Axi…
2. ~8!

~3! Use this valueh for the scales in the significance
calculation.

If there is only a linear relationship between the two attra
tors, h and s are on the same order and the values for
function statistic beyond linear are low. If there are nonline
components to the relationship between the time series,
h.s and the values for the function statistic are high. Ca
must be taken when using this analysis and it should only
utilized when a relationship is believed to exist between
two time series. Two completely stochastic time series w
produce a large value for the variance of the residues and
calculated statistic may also be high, indicating functiona
when none exists. We now present results from several
perimental systems.

II. ROSSLER FORCED LORENZ SIMULATION

We will first apply this technique to data from a comput
simulation to verify that we generate the expected resu
We will use a six-dimensional system consisting of a Lore
system driven by a Rossler system:

i-
ts
Rossler drive H ẊR52~YR1ZR!

ẎR5XR1aYR

ŻR5b1ZR~XR2c!,

~9!

Lorenz response H ẊL52s~XL2YL!

ẎL52XLZL1rXL2YL1K~gYR2YL!

ŻL5XLYL2bZL ,

, K5coupling constant ~10!
the

t has

(
ic,
tes
wherea5b50.2, c50.7, s510, b58/3, andr560. In or-
der to make the two systems comparable we selectg53.0 as
the gain constant, which makes the Rossler amplitude c
parable to the Lorenz amplitude and tune the time step
make the two time scales comparable.

We present three sets of data where we determine
predictability from the Ro¨ssler time series to the Lorenz tim
-
to

he

series. The data are simultaneous measurements of
RosslerX coordinate and the LorenzX coordinate. The first
set has no additive noise and no coupling, the second se
no additive noise and strong coupling (K50.4), and the
third set has 5% additive noise and strong couplingK
50.4). Values for the cross correlation, function statist
and function statistic beyond linear for each of these sta
1-4
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DETECTING FUNCTIONAL RELATIONSHIPS BETWEEN . . . PHYSICAL REVIEW E64 026221
are shown in Fig. 6. The cross-correlation and the funct
statistic are low for the uncoupled case, which is consis
for two independent systems. The lack of any linear relati
ship implies a large value for the variance of the residues
explains the higher value for the function statistic beyo
linear.

The high values for the three statistics indicate that
two time series have strong predictability and are stron
related by a function for the two coupled cases. The addi
of 5% noise has a very slight~1% or 2% change! effect on
the two statistics. The high value for the function statis
beyond linear for both coupled cases indicate that the fu
tion relating the two time series may have nonlinear com
nents.

III. SPIN WAVES IN YTTRIUM IRON GARNET FILMS

A solid state system that exhibits spatial-temporal cha
dynamics is spin wave modulation of resonant modes in
trium iron garnet~YIG! films. YIG is a technologically use
ful ferrimagnetic material used in microwave devices such
limiters, resonators, and filters and many aspects of its n
linear behavior have been studied and exploited@16#. A
number of previous experiments performed by several of
authors@17–20# have investigated the global temporal d
namics of YIG structures. In our experiments, we analyze
magnetic response at two positions on the surface of a
film to investigate the spatial dynamics across the film.

When YIG films are placed in saturating dc magne
fields, the atomic spins initially align and precess around
direction of the dc field. Unless the spins are excited by an
magnetic field, the spin precessions will damp out. Whe
resonant ac magnetic field is applied perpendicularly to

FIG. 6. A plot showing three different statistics, the cross c
relation ~gray fill!, the function statistic~black!, and the function
statistic beyond linear~crosshatch!, for the Rossler driven Lorenz
system. The three cases are~a! no coupling, no noise,~b! 40%
coupling, no noise, and~c! 40% coupling, 5% noise. The high va
ues for the cases with coupling indicate that there is a functio
relationship between the two time series, likely nonlinear in nat
considering the high values for the nonlinear statistic.
02622
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dc field, the spins will precess around the dc field direction
the resonant frequency@21#. Phase modulations in the pro
cessions of neighboring spins produce traveling spin wa
which, when reflected at the film boundaries, result in sta
ing waves corresponding to the magnetostatic modes of
film. At low applied ac powers, these modes are linear at
resonant frequency but are coupled to initially negligib
nonlinear modes. As the excitation power is increased ab
a threshold power~the Suhl instability! @16#, the linear
modes begin to interact with continuum half-frequency s
waves in the film. The nonlinear interaction of the stationa
modes and the half-frequency spin wave manifold prod
nonlinearities that eventually dominate the dynamics. Th
interactions lead to low frequency~kHz! modulations of the
amplitude of the~GHz! magnetostatic mode resonance
These modulations have been observed in both small sph
and thin films of YIG. These modulations are measured
our experiments and can exhibit periodic~called auto-
oscillations!, quasiperiodic, and chaotic behavior.

A diagram of the experiment can be seen in Fig. 7. O
sample is a rectangular film cut from a single YIG crys
with dimensions 0.8530.72 cm2 and is 37mm thick. The
modulations of the magnetostatic modes are detected by
ing a pair of coaxial probes mounted near the film surfa
The film is mounted in a waveguide and is excited by a 2
GHz microwave field. The probes are oriented to pick up
resonant oscillation of the magnetization in the film. T
probe microwave field is amplified and detected using st
dard diode detectors. The kHz auto-oscillation modulation

-

al
e

FIG. 7. Coaxial probes measure the magnetic moment of
YIG film at two positions. A pair of diode detectors then measu
the modulation of the spin waves.
1-5
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GOODRIDGE, PECORA, CARROLL, AND RACHFORD PHYSICAL REVIEW E64 026221
then digitized and processed. Both periodic and cha
states have been observed over a wide parameter range.
data set consists of a time series of the voltage signal f
each probe. We investigate the relationship between the
time series by initially performing cross-correlation analy
to quantify the linear aspects of the relationship and th
investigating the nonlinear aspects using the function sta
tics.

Figure 8 shows the linear correlation and nonlinear fu
tion statistic as a function of microwave excitation power
a power sweep performed at 460.1 Oe and 3.0251 GHz.
tially the signal-to-noise ratio is low but eventually the sy
tem evolves into a region of periodic states where both
cross-correlation and function statistic values are high. B
measures drop off as the states lose periodic structure
become more chaotic. We also show a plot of the funct
statistic beyond linear~Fig. 9!, calculated using a leas
squares approximation for the linear model. The high va
for the function statistic beyond linear indicates that the er
in the linear model is greater than the attractor-wide no
scales. These results imply that there is a nonlinear com
nent to the relationship in this parameter range.

We present results from another power sweep~performed
at 2.9747 GHz and 449.9 Oe! in Fig. 10. The states in this
power sweep produce periodic signals with similar spec
except in the region between 5.4 and 7.4 dBm. Here,
measured time series are quasiperiodic with two nonc
mensurate frequencies. The individual probes measure
frequencies but the relative intensities of the individual f
quencies are different for each probe. The higher frequen
are more intense at the position monitored by the first pro
while the lower frequencies dominate the dynamics at
position monitored by the second probe. The linear cr

FIG. 8. This plot shows the maximum value for the cross c
relation ~s! and the function statistic~l! for a power sweep per
formed at dc field 460.1 G and excitation frequency 3.0251 G
plotted against radio frequency powerPrf . The linear cross corre
lation and the nonlinear function statistic exhibit similar behavi
indicating that there is strong functionality in a region of period
behavior. This functionality drops off as the power is increased
02622
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correlation is much lower than the values for either of t
nonlinear statistics at these powers. These results imply
there is some functionality in the power range that is hig
nonlinear in nature. This is also an example of a system w
functionality that cannot be characterized by the linear cr
correlation and demonstrates the utility of the function s
tistic analysis. In order to further explore the behavior in th
power range, we calculated both the function statistic a
function statistic beyond linear for these states, interchang

-

,

,

FIG. 9. This plot shows the value of the function statistic b
yond linear ~j! for the power sweep performed at 460.1 G a
3.0251 GHz, plotted against radio frequency powerPrf . The high
values even where both the cross correlation and function stat
values are low~such as those above 10 dBm! indicate that there is
some functionality in these states and that it is nonlinear in nat

FIG. 10. A plot of the cross correlation~s!, function statistic
~l!, and function statistic beyond linear~gray j! for a power
sweep at 2.9747 GHz and 449.9 Oe, plotted against radio frequ
power Prf . In the region between 5.4–7.4 dBm, the two nonline
statistics are higher than the linear cross correlation, indicating
the functionality in this region is nonlinear.
1-6
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DETECTING FUNCTIONAL RELATIONSHIPS BETWEEN . . . PHYSICAL REVIEW E64 026221
the source and target attractors. These values were very
to those previously determined~both for the function statistic
and the function statistic beyond linear! and support the ex
istence of an invertible function relating the time series.

We would like to determine if the results in Fig. 10 a
caused by differences in the dynamics as driving powe
increased or by different noise levels in the time series u
to calculate the statistics. We use the Gamma statistic@22# as
a test of the noise level. To find the Gamma statistic,
calculate the mean square distance from an arbitrary re
ence point to thepth nearest neighbor in theX attractor
@D(p)# and the mean square distance from an arbitrary
erence point to thepth nearest neighbor in theY attractor
@g(p)#. We then plotg(p) as a function ofD(p). As p
→0, Steffansson, Konear, and Jones@22# show thatg(p)
approaches the variance of the noise level in theg time se-

FIG. 11. Two different noise levels,g ~a measure of the stochas
tic noise level of the time series data! ~grayd! ands ~found during
the calculation of function statistic! ~h!, are plotted withh ~the
variance of the residues from a least squares linear model! ~d!,
against radio frequency powerPrf . s is upper bounded byg but the
two noise statistics are close in value.h has more variation and is
dependent on the strength of a linear fit between the attractors

FIG. 12. Simple diagram of the driven magnetic ribbon expe
ment. The laser illuminates two spots on the ribbon, and the mo
of these spots is used to detect the motion of the ribbon at
location of the spot.
02622
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ries. We can estimate the variance of the noise level from
y intercept of theg(p) vs D(p) plot.

We plot two noise measures,g ands, and the variance of
the residues for a least squares linear model in Fig. 11.
plot the value of theg statistic as defined above, which is
measure of the noise variance in theg time series. We also
plot s, which is a measure of the variance of a group
nearest neighbors on theY attractor ~calculated when we
determine the function statistic!. The g statistic remains
roughly the same size over the range of powers in Fig.
indicating that the noise levels in the different time series
roughly the same relative to the signal size. The differen
seen between the statistics in Fig. 10 are not caused by
fering noise levels. It is interesting to note thats is roughly
the same size asg; the two different methods of determinin
a minimum length scale on the attractorY give similar re-
sults.s ~calculated in the determination of the function st
tistic! is upper bounded byg, indicating that this noise sta
tistic is smaller than the underlying noise level in the dat

-
n
e

FIG. 13. Power spectrumS of the signal from the center of the
ribbon when the ac driving field is 1.4 Oe. The time series has b
sampled once per cycle of the driving frequency of 113 Hz.

FIG. 14. Plot of one strobed time series@x(n)# vs another
strobed time series@y(n)# taken with both laser spots at the cent
of the ribbon when the driving amplitude is 1.4 Oe. The two la
beams are at different angles, so the two time series are no
same.
1-7
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IV. MAGNETOSTRICTIVE RIBBON EXPERIMENT

We also applied the statistics described above to d
from an experiment involving a magnetostrictive metal r
bon. We suspended a ribbon of Metglass 2605 sc betwe
pair of Helmholtz coils. The top of the ribbon was rigid
clamped, while a 1.6 g mass was clamped across the bo
of the ribbon, allowing the bottom of the ribbon to swin
freely. The ribbon was 25 mm wide, 60 mm long, and 1 m
thick. The Helmholtz coils produced a magnetic field in t
plane of the ribbon. The magnetic field consisted of a 6.5
dc field and an ac field that could be set to different mag
tude and frequencies. The ac magnetic field couples to
domain walls in the ribbon to exert a time varying force
the ribbon. Figure 12 is a simple diagram of the experime

Two small spots~about 1 mm2! on the ribbon were illu-
minated by a He-Ne laser. The ribbon surface was
smooth, so the spots produced diffuse reflections. The

FIG. 15. ~a! Plot of the function statistic beyond linearQc0 over
the surface of the ribbon, where one of the time series is meas
at the center of the ribbon~when the drive amplitude is 1.4 Oe!.
White is equal to 1, while black is equal to 0.~b! Plot of the
function statisticQc0 over the surface of the ribbon.~c! Plot of the
maximum value of the cross-correlation between detected time
ries from the ribbon.
02622
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flected light was focused on two small-area differential dio
detectors, which compared the reflected beams to refere
beams straight out of the laser in order to reduce noise f
laser intensity modulations. Movement of the reflected be
across the detector produced a time varying signal prop
tional to the deflection of the ribbon at the spot illuminat
by that spot. One laser spot was kept fixed in the cente
the ribbon, while the other spot was scanned over the
face, so that two different signals were produced by the t
detectors. Because each of the beams hit the ribbon
different angle, different signals were produced even wh
both beams illuminated the same position.

The magnetization of the ribbon was coupled to its str
because the ribbon had a large magnetostriction. A magn
field applied to the ribbon would alter the stiffness of t
ribbon, as well as change its shape. The stiffness of the
bon affected its mechanical response, so driving the rib
with an ac magnetic field produced a highly nonlinear s
tem.

We applied the function statistic, the function statistic b
yond linear, and linear cross correlation to pairs of time
ries from the ribbon. Because the motion of the ribbon w
highly nonlinear, it was not possible to tell by eye what t
relation was~if any! between the two time series. Instead, w
applied the statistics to determine what sort of relationsh
there might be. We drove the ribbon at an ac frequency
113 Hz, which corresponds to a bending mode of the ribb
We then sampled the time series signals from the two de
tors every time the driving signal crossed zero in the posit
direction. We then applied the statistics to these strobed t
series.

A. Driving at 1.4 Oe

Figure 13 shows the power spectrum of one of the
strobed time series when the ac magnetic field rms amplit
was 1.4 Oe. Figure 14 is a Poincare section obtained
plotting the strobed time series from one detector against
strobed time series from the other detector. The respons
the ribbon appears to be quasiperiodic, responding at
quencies of 113 Hz, 4.5 Hz, and combinations of these
quencies.

ed

e-

FIG. 16. Power spectrumS of the signal from the center of the
ribbon when the ac driving field is 6.1 Oe. The time series has b
sampled once per cycle of the driving frequency of 113 Hz.
1-8
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DETECTING FUNCTIONAL RELATIONSHIPS BETWEEN . . . PHYSICAL REVIEW E64 026221
In order to determine statistics, the laser spot that ge
ated the time series labeled ‘‘y’’ was fixed at the center of the
ribbon, while the time series labeled ‘‘x’’ was scanned over
the ribbon. There were eight scans recorded along the na
dimension of the ribbon and 32 scans recorded along
long dimension, for a total of 256 scans.

Figure 15~a! is a plot of the function statistic beyond lin
earQc0 obtained by comparing the strobed time series fr
the center of the ribbon to the strobed time series at o
points at the ribbon. Each time series contained 2000 po
embedded in five dimensions. White on the plot indicate
value of 1, while black indicates a value of 0.Qc0 is near 1
over the entire surface of the ribbon, indicating that the
lationship between the two embedded time series is not
plained by a linear map. Either the relationship is nonlin
or there is no relation between the time series.

Figure 15~b! shows the value of the function statisticQc0

over the surface of the ribbon~where one of the time series
taken at the center of the ribbon!. Qc0 is slightly larger near
the middle of the ribbon than near the ends, which sugg
that it is easier to predict the motion at a point on the ribb
from a nearby point than from a distant point. We expect t
we should be able to predict the motion of one point on
ribbon from the motion at another point because the ribbo
undergoing quasiperiodic motion, but noise can reduce
value ofQc0.

Figure 15~c! shows the maximum value of the cross co
relation between the time series from the center of the rib
and time series at other points. The cross correlation m
sures whether or not two signals are linearly related and
allows for a shift in time. The cross correlation between
time series is not very large for most points on the ribbon,
while Qc0 shows that there is some predictability betwe
time series from different points on the ribbon, the relatio
ship between these time series is not simply linear. The c

FIG. 17. Plot of one strobed time series@x(n)# vs another
strobed time series@y(n)# taken with both laser spots at the cent
of the ribbon when the driving amplitude is 6.1 Oe. The two la
beams are at different angles, so the two time series are no
same.
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correlation agrees with the function statistic beyond line
Qc0, which shows that any relation between time series
nonlinear.

B. Driving at 6.1 Oe

Figure 16 shows a power spectrum from a strobed ti
series when the ac magnetic field had an rms amplitude
6.1 Oe. Spectral lines at multiples of 5 Hz are still prese
but there is now also a large broadband background sig
In Fig. 17, the Poincare section for this data no longer
pears to be quasiperiodic. The statistics for pairs of ti
series were computed as before, with an embedding dim
sion of 5.

The function statistic beyond linearQc0 in Fig. 18~a! is
near 1 everywhere, suggesting that any relation between
tion on different points on the ribbon is nonlinear. The fun
tion statisticQc0 in Fig. 18~b! appears to show two separa
regions.Qc0 is near 0 for regions near the top of the ribbo

r
he

FIG. 18. ~a! Plot of the function statistic beyond linearQc0 over
the surface of the ribbon, where one of the time series is meas
at the center of the ribbon~when the drive amplitude is 6.1 Oe!.
White is equal to 1, while black is equal to 0.~b! Plot of the
function statisticQc0 over the surface of the ribbon.~c! Plot of the
maximum value of the cross-correlation between detected time
ries from the ribbon.
1-9
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and larger for regions near the bottom. The motion of the
half of the ribbon is not very predictable from the motion
the bottom half. The cross-correlation plot in Fig. 18~c!
shows that the relation between motion on different parts
the ribbon is very nonlinear, except when the two parts of
ribbon are very close together.

This magnetic ribbon is being driven very hard, so it
unlikely that modeling of the motion of the ribbon for suc
large driving fields would be possible. All the informatio
we can gain about the ribbon will come from statistics su
as those used above. It is tempting to speculate whethe
not the motion seen when the driving field is at 6.1 Oe
chaotic, but in our experience, attempting to calculate in
cators of chaos such as Lyapunov exponents from exp
mental data is not yet very reliable at distinguishing chao
motion from other complicated types of motion.
s
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V. CONCLUSIONS

We have described a new way of quantifying the relatio
ship between two time series and applied this technique
several experimental systems. This technique allows for
computation of a statistic that describes the strength of
relationship between two time series and also the intensit
the nonlinearity of any such relationship. Using this tec
nique along with other linear and nonlinear techniques
help elucidate the relationship between time series and
underlying dynamics. Results from a variety of experime
show the utility of this analysis.
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