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Quantum-classical correspondence in polygonal billiards
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We show that wave functions in planar rational polygonal billigalsangles rationally related t@) can be
expanded in a basis of quasistationary and spatially regular states. Unlike the energy eigenstates, these states
are directly related to the classical invariant surfaces in the semiclassical limit. This is illustrated for the barrier
billiard. We expect that these states are also present in integrable billiards with point scatterers or magnetic-flux
lines.
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[. INTRODUCTION classical pseudointegrability if only individual eigenfunc-
tions of the Hamiltoniartd =H(X,y,py,py) are considered. A
The relation between wave motion in the short-typical eigenfunction is hard to distinguish from eigenfunc-
wavelength regime and the corresponding ray dynamics is dfons in classically chaotic systenjg—10]. It is in general
fundamental importance in quantum mechanics, electromagiot an eigenfunction of the second operakor K(p,,py)
netics, and acoustics. It has been found in quantum mechaand has nonzero uncertaimyK = ((K?) —(K)2)2 since the
ics that the properties of the stationary solutions of thecommutatof H,K] does not vanish. Only a subtle signature
Schralinger equation, the eigenstatﬁ§j> of the Hamil- of pseudointegrability seems to be contained in individual
tonian, reflect the degree of order in the classical ray dynamenergy eigenfunctions, namely in the distribution of zeros of
ics. For example, energy eigenfunctiopsy|E;) of classi- the associated Husimi functiofil]. The closeness to the
cally integrable systems with quasiperiodic motion onduantum mechanics of chaotic systems on the one side and
invariant tori are regular, while eigenfunctions of classicallyt© the classical dynamics of integrable systems on the other
chaotic systems with ergodic motion on energy surfaces a ide is a first hint of an unusual quantum-classical correspon-
typically irregular. For generic systems, it has been conjec- ence.

. : : . A further indication pointing in this direction comes from
t_ur_ed [1] (see[2] for a rewevq that in the(semi) clas_s|cal an analogy with the metal-insulator transition of the Ander-
limit #—0, the averaged Wigner transforms of typical en-

. . ) . son model in three dimensions. Both kinds of systems have
ergy eigenfunctions “condense” uniformly onto the underly-

. . . : ; . energy-level statistics close to the semi-Poisson distribution
ing classical stationary objects in phase space, which arﬁZ]. In the Anderson model, at the transition point between

usually invariant tori, chaotic components, or entire energy,yiended states with Wigner statistics and localized states
surfaces. In this paper, however, we consider a class of Sygjith poisson distributed energy levels, this intermediate sta-
tems with exotic classical invariant surfaces for which it isistics has its origin in the multifractal character of the wave
not cleara priori whether such a condensation scenario eXfynctions, which are neither extended nor localifad].
ISts. Analogously, a typical energy state in a rational polygon is
The classical free motion inside a planar dom@mwith  expected to be a fractal in momentum spgt2)], localized
elastic reflection at the boundary has a constant of motionground an energy surface but neither extended nor localized
Hamilton's function H=pZ+p;+V(x,y). The particle’s within this surface; condensation onto a lower-dimensional
mass is 1/2, an¥(x,y) =0 if (x,y) € Q andx otherwise. A invariant surface is ruled out.
billiard with polygonal boundary has a second constant of As a final indication, we will present a numerical study on
motion K(py,py) if all angles «; between sides are ratio- a particular system, the barrier billiard. Instead of Wigner
nally related tow, i.e., «j=m;z/n;, wherem;,n;>0 are transforms in four-dimensional phase space, we study distri-
relatively prime integer§3,4]. However, this does not imply butions in the two-dimensionalH,K)-space, where each
integrability in the sense of Arnol'fb]. The Poisson bracket point represents a classical invariant surface. In this context,
{H,K} vanishes identically only ifm;=1 for all j  we define condensation @H/(H)—0 andAK/(K)—0 in
=1,2,..., so only rectangles, equilateral triangles, the semiclassical limit. This ensures that mean values of the
wl2,ml4,m/4 triangles, andm/2,m/3,m/6 triangles are inte- quantum operators in highly excited states can be interpreted
grable. Critical corners withn;>1 destroy the integrability as well-defined values of the classical constants of motion.
in a singular way{H,K} is zero everywhere in phase space Our central issue is to demonstrate that even though the en-
except at a measure-zero set corresponding to the criticgrgy states presumably do not show such a condensation,
corners; the phase space is foliated by two-dimensional inthere is an alternative basis of states that do so up to classi-
variant surfaces!,K =constant as in integrable systems, butcally long times.
they do not have the topology of tori. The motion is not The paper is organized as follows. In Sec. Il, we construct
quasiperiodic and characterized as pseudointegiéhle the basis for general rational polygons. Its time evolution is
The quantum-mechanical free wave motion with Dirichletdiscussed in Sec. Ill. In Sec. IV, we illustrate our statements
boundary conditions on a rational polygon barely reflects théor the barrier billiard. We conclude with a brief summary in
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Sec. V and an Appendix with details on the numerical com- (AHQ\C)2+(AKQ\C)2=<i[H,K]>Q\C, (5)
putations.
with (AHQ\C)2:<(H_<H>)2>Q\C1 etc. (NOte that <1>Q\C
1I. CONSTRUCTION OF THE BASIS <1.) The smallness of the left-hand side of Ed]). carries
. - ) ) over to both sides of Eq5). From this we conclude that a
In the f0||OWIng, we will introduce states with reIaUVer functi0n<xly||_> in region Q\C is |Oca||y either very small or
small AK at the expense of a nonzero but also small energy.an be approximated by a joint eigenfunction of both opera-
uncertaintyAH. As for coherent states in the harmonic 0s-tors H and K. Such a joint eigenfunction cannot fulfill the
cillator [14], we will minimize the product of the uncertain- poundary conditions globally, otherwise the billiard would be
ties involved. To do so, we consider the uncertainty relationntegrable. Loosely speaking, regiaD\C must be divided
into subregions in each of which a joint eigenfuncti@an a
AHAK>E|<[H,K]>|_ (1) va_nishin_g functiom fulfills the poundqry conditions locally.
2 Joint eigenfunctions of neighboring subregions match
_ o smoothly, so they must have roughly the same number of
Itis an easy matter to show that the equality in Bg.holds  nodal lines. HencelL) states have features of energy states

in a state|L) satisfying of integrable systemgi) the functions(x,y|L) are in some
. regions regular while in other regions, separated by “caus-
(H=(H)IL)=ia(K—(K))|L), (2 tics,” vanishing: (ii) they can be labeled by two “quantum
wherei?=—1, a is an arbitrary real number ang...) numbers” (1;,n,); (iii) the eigenvalues. =(H) —i(K) are

regularly distributed in the complex plane. The last property
holds becauséH) (all arguments are also valid for quantities
derived fromK) is asymptotically equal toH) o, which is
L=H—iaK. 3 approximately a homogeneous function of the quantum num-
bers of degree two due to the homogeneityHofThe non-

L does not commute with its adjoint. It therefore does not€levance ofH)c can be understood with a renormalization
belong to the class of normal operators, which contains HeProcedure. Going fromr(,n) to (2n1,2n), we get a new
mitian and unitary operators as special cases. In general, tgave function with slightly larger regiom\C containing
right eigenvectors of a nonnormal operator cannot be used 48ur times more nodal lines, and regicrbeing a four times

a basis. Instead, right and left eigenvectors together form @maller copy of the old regiod. Hence,(H)gc roughly
biorthogonal basis; see, e.d15]. In our case, however, increases by a factor of four, whilél). stays constant: Th_ls
(E/|L|E;) is a complex-symmetric matrix due to the fact that!€ads to(H)—(H)q as more and more renormalization
the Hermitian matriceE;|H|E;) andK;; = (E;|K|E;) can be  Steps bring us towards the semiclassical limit.

made real. Left and right eigenvectors are therefore identical The approximate homogeneity 6H)o,c with respect to
and form separately a nonorthogonal basis. Furthermore, {fi€ quantum numbers ensures that the local transitions be-
can be shown thaAH=|a|AK. In order to have equal un- tween different joint eigenfunctions induce only a small un-
certainties we choosa=1 (states witha=—1 are identi- certainty &Ho,)? of order (H)<(H?), increasing roughly
cal). The real and imaginary parts of the complex eigenvalby a factor of four _under the action of the renor_mahzatlon.
uesL have a physical interpretation as mean energigs 1€ same factor is an upper bound for the increase of
and —(K), respectively. Note that the classical functibn ~ (AHc)*, corresponding to 4H°) scaling weighted with the

—iK is a constant of motion whose constant-level surface§ize of C. The sum QH)?=(AHg0)?+(AH()? therefore
are the invariant surfaces. increases by a factor of four. Hence,

We derive now the properties of tiie) states in the limit
h—0. Without loss of generality, we stipulate thatand K
are homogeneous functions of the momenta of degree tw
like H andH. Starting from the expansidisee, e.9.,16,17])

=(L|...|L) with (L|LY=1. |L) has to be a right eigenvec-
tor of the operator

(AH)Zec(H),  (AK)Ze(K) (6)

% the semiclassical limit. Consequently,

(PP iTH KIx.Y)(x.Y[px . Py) = A{H,K} +O(42), im 2 0, lim k.o, @
4 5o (H) 50 (K)
we will exploit only the fact that the Poisson bracket,K}  i.e., the|L) states condense onto the invariant surfaces.
is everywhere zero except at isolated critical points in posi-
tion space. The following line of reasoning is therefore also Ill. TIME EVOLUTION
true for integrable billiards with a finite number of magnetic-
flux lines or point scatterersve have checked this foreba’s The time dependence ¢E) states is nontrivial sincé

billiard [18]). In the semiclassical regime, both sides of Eq.does not commute with the Hamiltonigi;(t)) is in general

(4) are very small in the regio@\C excluding the unioif of  not an eigenstate of for t>0. Let us define three time
neighborhoods of the critical corners, the area of whichscales associated with a given stéte at timet=0: the
shrinks to zero a8 — 0. Manipulating Eq(2) and restricting quantum mean period, the lifetime and the classical mean
the integration over aflL) state to regiorQ\C gives free time
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Q™ <H> ) .= AH ' TcT 2<H>1 ( ) region 2
whereA is the area of the billiard. From E@6) we getrq ) Iy
<7 ~7¢, i€, the state is quasistationary with a lifetime of "y T
order of the classical mean free time. <52 | regiond

At first glance, it seems that the state fails to condense
onto an invariant surface for classical long times . -
= I, a — L/2—

However, the requirements for condensation, small relative
uncertainties and constant mean values-Hofnd K, may FIG. 1. (a) Barrier billiard, rectangle with a barrier between the
persist beyond the lifetime of the state. Clearly, this is trueygints ,y)=(1,/2,0) and (/21,/2). (b) Symmetry reduced sys-
for the relative uncertainty and the mean valuetbince  tem. The nontrivial wave functions fulfill DirichletNeumani
this operator commutes with the evolution operator eXpbhoundary conditions on solitHashed lines.

(—iHt/%). Keeping in mind tha{i[H,K]) is relatively small,
we may expect that the relative uncertainty and the mea
value ofK change slower than the state itself. To see this, w
define the time scale associated with

Peady known resul{i[ H,K])<(K) we finally get the upper
%ound(i[H,K2])c(K?). Hence, the time scale that governs
(K?)(t) is of the same or of larger order ag. From this we
o can conclude that for times smaller thapn, AK(t) remains
(KY(t)=(L(D)|KIL(t))= > <|_|Ej>Kjkei(Ej_Ek)t/h<Ek||_>' small if compared wit{K)(t). Hence, Eq(7) holds not only
j.k=1 for times of orderr ~ 7 but also for times much larger than
) 7c and well belowry . The condensation dt.) states onto
invariant surfaces outlives the lifetime of the states up to

in the same way as the lifetime in EJ8) as 7¢ ; .
classically long times.

=2mhl/AHy, where

2 |<L|Ej>Kjk(Ej_Ek)<Ek||—>|2 IV. EXAMPLE: THE BARRIER BILLIARD
(AHy)?= o (10) We illustrate all statements for the barrier billiafti9—
22 |<L|Ej>Kjk<Ek|L>|2 21],_a rectangle with widtH, and heightl, and.a vertical
jk barrier of lengthl,/2 placed on the symmetry lire=1,/2;

_ _ _ _ see Fig. 18). The billiard is not only pseudointegrable, it is
is the mean energy difference, i.e., mean frequency differy|so almost integrablg22], i.e., it is composed of several
ence, of the energy states involved, but in contragtitbthe  ¢opies of a single integrable sub-billiard, here the rectangle
states are weighted according to their relevance(¥9(t).  shown in Fig. 1b). The functionk = p? is a second constant
Two extreme cases show that definiti0) is reasonable: @ o motion. The general formula for the genus of the invariant
diagonal matrixK;, gives AHx=0 whereas a uniform ma- grfaceq6] gives 2, i.e., the surfaces have the topology of
trix Kj=constant gives\H,=AH. , two-handled spheres and not that of té¢single-handled
The serieg9) can be expanded in orderstpfvith t much spheres
smaller thanr, but with the possibility of being larger than * The energy eigenfunctions are solutions of the Helmholtz
the quantum mean period and even the lifetime. Clearly, thequation with Dirichlet boundary conditions on the polygon.
zeroth-order term i¢K). The next terms are roughly of order The functions are odd or even with respect to the symmetry
(K)YAHt, (K)(AHgt)?, and so on. If we compare this to  line. The odd ones are trivial eigenfunctions of the integrable
) 5 sub-billiard. We therefore deal only with the even ones,
(K)(t)=(K)+(i[H,K])t/Ai+O(t"), (1D which fulfill mixed boundary conditions on the symmetry
reduced polygon; see Fig(ld. We have calculated the solu-
tions numerically with the mode-matching method for the
parametersi=1, |,=m\/8x/3, and|,=3\87/7 as de-
scribed in Sec. A in the Appendix. The statistical properties
of the energy levels are found to be close to the semi-Poisson

Following the same line of reasoning shows that the time?'smtpunonf[tlﬁ]' The ilj"lfigyz ellgr:anfunctmns lare nott et|gen-
below which(K?)(t) relative to its initial value is constant ufn?] lons ot the opera _?X.' de.numerlca. corr]npu ation
scales a¢K2)/(i[H,K?]). Starting from Eq/(2), the follow- of t e uncertaintyAK is exp ained in Sec. B in the App'en'-

; ; ; dix. Figure 2 shows that there is no trend towards vanishing
ing equation can be derived . - o
relative uncertainties. This indicates that energy states of the
(i[H,K2]) = 2(K){(i[H,K])=2((K—(K))3). (12 barrier billiard do not condense onto the invariant surfaces.
The nontrivial |L) states are also calculated with the

With the renormalization procedure, it can be shown that thenode-matching method. As explained in Sec. C in the Ap-
asymptotic behavior of the right-hand si@tls) of this equa- pendix we cannot compute as many of these states as energy
tion is bounded from above b§K)2. Together with the al- states. However, even in the accessible low-energy regime

we find that the order ofrx can be estimated as
27(K)/(i[H,K]). It follows that in the semiclassical limit
(K)(t) does not change relative to its initial value for classi-
cally long timest below 7> 7, even thoughL(t)) may
differ strongly from the initial statéL ).
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our theoretical results on the semiclassical behavior of these . .
states will be well confirmed in the following. in region B with n;,n;=0,1,... . Forexample, we have
The regular pattern of the eigenvalues (H)—i(K) can  (Ix:1y)=(6.75,37} for the eigenfunction of typeA and

be most clearly seen when transformed into the real actioflx:!y) ~(21,9.7 ) for the function of typeB in Fig. 4. Both
variables of the integrable sub-billiard types have relatively small uncertaintiesee Sec. D in the
Appendix for numerical detailsand look rather regular.

L While typeA functions cover the billiard uniformly, apart
(Ix,1y)= 27’(\/<K>,l\/ H)—(K)]. (13)  from a localization around the critical corner, the type-
m 77 functions are restricted to the lowen,( odd) or upper @4
even half of the billiard, bounded by a causticlike curve.

Note that the topology of the invariant surfaces in the full  The eigenvalue pattern in Fig. 3 resembles strongly that of
system rules out action-angle variab[€g. As can be seen integrable systems with separatrid@8—25. It is therefore
from Fig. 3 the “action space” is split into two regio#sand  not surprising that the statistical properties of the mean en-
B separated by a transition region. Away from this transitionergies ofi L) states are similar to those of the energy levels of
region, and the line$,=0 andl,=0, the eigenvalues are ntegrable systems. For example, Fig. 5 confirms that the
approximately located on regular lattices that are given byearest-neighbor statistics is in agreement with the Poisson
(EBK)-like quantization rules: distribution.

The scaling lawg6) for the uncertainties are verified in
the following way. First note that lines of constant mean
energy (H) are circles in the scaled action space
(214 /15,1, /1), This plane can therefore be conveniently pa-
in regionA and rametrized by the radial coordlna&i) an_d the polar angl_e

¢=arcta(l,/,)/(2I,/1,)]. The first scaling law holds if
30 ‘ S (AH)? divided by (H) is a function of¢ alone. Figure 6
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FIG. 3. Eigenvalues =(H)—i(K) transformed into the action

space of the sub-billiard according to E@.3). The dotted line FIG. 5. Probability densityP(s) of the spacing between adja-
marks the center of the transition region. The solid lines indicatecent values of the first 800 mean energieéf). The data is well
parts of the EBK lattices defined in Eq4.4)—(15). fitted by the Poisson distributioftlotted ling.
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FIG. 8. State of typd with L=670.95-i630.52, cf. Fig. 4, at
time t=10rq (left) andt= 7, ~26.7rq (right).

merical evidence for a particular system, the barrier billiard,
that the energy states do not show such a condensation. We
have then introduced an alternative basis of states for which
we have explicitly shown thafi) they are quasistationary;
(u) they condense onto the invariant surfaces up to classi-
(H). qally ang times even exceeding their I|fet|mé3:.) in con-

The main features of the time dependencd Lof states flguratt)llon s;;]ace thelykshbow a(ljregular nodf;l]l -line struciture,
can be observed in Figs. 7 and 8; see Sec. E in the AppendPOSSI y with causticlike boundaries; afit) the eigenval-
for the numerical aspects. For small timearound o<t tes form a regular pattern in the complex plane. . .
~26.7r0, the time evolved stath () and the |n|t|e?l staLte Whether these states condense unn‘ormly.onto thg invari-
L) arer:|m|Iar the overla(L(t)|L){? is close to one. For ant surfacgs in phase space is an.othe'r'questlon. At fllrst'5|ght,
times t~ both states differ considerably: the overlap is O numerical results on the barrier blIIl_ard seem to |nd_|cate

L Y VErlap IS, at there cannot be uniform condensation since a fraction of

close to zero. The state has lost some of its regularity, b e states cover only one half of the configuration space.
<.K>(t) and AK(t) stay constant up to prdéK) for longer However, each such state becomes more uniformly distrib-
times well beIOWTK%27.36TQ' Int.ere_stmgly,. the states .Of uted on the invariant surface for times beyond the lifetime
type B become more uniformly distributed in configuration but remains in the neighborhood of the surface for classically

FIG. 6. (AH)?/(H) vs ¢ with 400<(H)=<800. The maximum
lies in the transition region of action space; cf. Fig. 3.

shows that this condition is well satisfied. This confirms also
the second scaling law sinceK=AH and (K) scales as

space in the course of time, cf. Figgb#t 8(a), and &b). long times, i.e., there can be uniform condensation after
some transient time.
V. CONCLUSION It is important to note that the condensation scenario

holds for general rational polygonal billiards and also if the
time-dependent Schdinger equation is replaced by the

wave equation used in acoustics and electromagnetics, even
Hwough the individual time scales are different.

We have formulated the quantum-classical correspon:
dence in rational polygonal billiards in the following way:
there exists a basis of quantum states with each state co
densing individually onto a classical invariant surfadeK
=constant up to classically long times in the sense that the
relative uncertaintiesAH/(H) and AK/(K) vanish in the ACKNOWLEDGMENTS
semiclassical limit. We have presented some hints, like the | would like to thank M. Sieber and J. kel for discus-

analogy to the Anderson metal-insulator transition, and nu-sions

APPENDIX: NUMERICAL COMPUTATIONS
ON THE BARRIER BILLIARD

A. Energy states

We compute the energy eigenvalues and eigenfunctions
with the mode-matching method; see, €[§,26,27. Let us
first seth =1 and then divide the symmetry-reduced barrier
billiard in two regions as shown in Fig.(d): region 1 with
y=<I and region 2 withy>1. The length of the barridris in
our case fixed td,/2, but the following derivations hold also

0 020 30 40 S0 60 for general B<I<I, . In region 1 we expand the wave func-
Viq tion as
FIG. 7. Overlap|{L(t)|L}|? (solid), (K)(t)/(K) (dotted and
AK(t)/{K)(t) (dashed for the state of typeB with L=670.95 D,= 2 ap, sin(2marx/1,) Sin(gomy) (A1)
—i630.52; cf. Fig. 4. m=1
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with

jm\?

gf(E)=E—(|— (A2)

This kind of expansion is nontrivial sinag can be imagi-
nary anda,, complex. By construction, the functiofAl)

fulfills the Helmholtz equation- V2d, = Ed, with Dirichlet

boundary condition ox=0, y=0, andx=1,/2. In region 2
we take an analog function,

®p= 2 bysin(2m—1)mx/l,Jsi gom-1(1y=Y)],
(A3)
which satisfies Dirichlet boundary condition ais=0 andy
=I, but Neumann boundary condition en=1,/2. We stipu-

late that both functions match smoothly a1, i.e., for O
=x=lI,/2 we require

Dy (X, 1) =Dy(x,1) (Ad)
and

oD oD

— == . (A5)

N oy Y
Inserting the identity

sin2nz)= >, A, sin(2k—1)z] (AB)
k=1

for 0=<z= /2 with the orthogonal matrix

~2(sin(2n—2k+1)w/2] sin(2n+2k—1) /2]
k™o 2n—2k+1 a 2n+2k—1

(A7)

into the first matching conditioiA4) and solving for the
coefficients of sipf2n—1)wx/l,], n=1, ..., gives

mE:1 am SIN(Goml ) Amn=bn SiN gon_1(I,— 1.  (A8)

Similarly, we get from the second matching conditi@b)

mE:l amd2m O Joml ) Amn= —bnG2n-1 COS{an—l(Iy_ 1].
(A9)

We now rewrite the relation6A8)—(A9) by using the defi-
nitions

am:amQZm cogdzml), (A10)
bm=bmGzm- 1604 Gzm 1(ly=1)], (AL1)

and the real function
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FIG. 9. Determinant of matris in Eq. (A16).

ta [
f(E.l)= g (A12)
m
as
le amme(Evl)Amn:ananl(Eyly_l) (A13)
and
2 5‘mAmn: _Bn . (A14)
m=1
The last two equations are combined to
E 'é'-man:O (A15)
m=1

with the real matrix
an(E):[me(Ea|)+f2n—1(E1|y_|)]Amn- (Al6)

Equation(A15) has a solution provided dbt(E)=0. Find-

ing the energy eigenvalués is therefore equivalent to find-
ing the zeros of the determinant . We approximatévi by

a 500< 500 matrix that is sufficient for calculating the first
100 000 zeros. Figure 9 shows the determinant as a function
of the energy. It is convenient to search roots numerically
only between two consecutive poles. We therefore rewrite
Eq. (A12) using the identity 28]

o

7Tt Tz 1 (AL7)
— —tan;-=
4z 2 i=172—(2n—1)2
as
p 1
fm(ED==7 2 (A18)

n=1 E mar 2 nr 2
[y 2l

where the summation is only over odd From this expres-

sion the poles can be easily read off. Note that the poles are

not degenerate If/1% and (,—1)/1% are irrational numbers.
The interval between two given consecutive poles is divided
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into 400 subintervals, each assumed to contain at most a o
single change of sign of d&t. The bisection method is then jk=ZX E alamhom
employed in order to find each zero with an accuraci0™* -

Sin(g,pl) sm(g m)
gZ_m me

of the mean level spacing. o P -
Having determined the energy levels, we get for each of _X E b -1 Sin9am-1(ly— 1]
them the real quantities,,, and b,, from Egs. (A14) and T 92m-1
(A15) and then the wavefunctiofAl) and (A3), which we N |
finally normalize to unity for the full billiard. _sw[me,l( y— 1] (A22)
n
92m-1
B. Uncertainties of energy states with aT =an(Ej)), am=an(Ey, bJr br(Ej)), bp

We here determine the uncertainyi)2= (K2 —(K)2in ~ =bm(Ex), 9m= gm(E )+9m(EW), 9m=9m(E}) — Im(EW),
a given |E;)-state. We takeb,=®4(E;), g=9g(E,), and andh,,=(mm/l,)?. A LAPACK routine is used to diagonal-
®,=d,(E) from Egs. (A1)-(A3) to compute K;; ize the complex matriXE; |L|E.k> with j k<1000, giving a
—(E;|K|E;)=(K) from rough approximation to the first 800 e|genvaluesll_of\Ne
’ ) use them as initial guesses for Newton’s method in order to
12 (1 find reliable approximations to the eigenvalues. Finally, we
Kij =2f0 Jodf{ dxdy compute for each determined eigenvalue the complex quan-
/2
f f (——(Dz)dxdy (A19)
A straightforward calculation gives

192
— _q)l
NG

tities a,,, and b,,, from Egs.(A14) and (A15) and then the
normalized wave functionéAl) and(A3).

D. Uncertainties of |L) states

The main advantage of using the mode-matching method
for the|L) states is that we get the uncertaintiel§ andAH
as accurately as for the energy states in Sec. B in the Appen-
dix. We take®,=®,(L;), P,=d,(L;), andg=g(L;) from
Egs.(Al), (A3), and(A21) to compute firstK) starting from
Eg. (A19). A straightforward calculation shows th&K) is
given by theTrhs of EQg.(A22) with aT =a (L ), am
. an(L),  Dh=bA(L), bu=bn(L), On=gh(L)
-1y 28 a0 (L)), 6= G3(0L5) ~ (L), and B (). Simi-
2Q2m-1 larly, we get for(K2> (py) the same equation but with,,
(A20) =(mm/l,)% for (H) we usehy,=ga(L;) +(ma/l,)? and for
(H?) we usehy,=|gZ(L;)+ (ma/1,)?]2.

Sin(2gznl)
207m

X
jj 4mE_am2m

Iy <
2

+= > bmhom-1
m=1

with ap=am(Ej), bn=bn(Ej), gm= gm(E) and hy, E. Time dependence ofL) states
=(m/1,)?. Analogously, we get fofK?)= <px) again Eq. Here we compute(x,y|L(t)), (L(t)[L), (K)(t), and

4
(A20) but with hyy=(m/1,)". (K?)(t). These expressions can be written in terms of energy
states as

C.|L) states

Eigenvalues and eigenfunctions bf can be computed (x,y|L(t)>=j§1 e EEIL)(xYIE), (A23)
with the procedure described in Sec. Ain the Appendix if Eq.
(A2) is replaced by *
2 {2 DlL)=2, eSKEIL) (A24)
gj<L>=L—(1—i>(U) (A21)

and as in Eq(9). The first 1400 energy states are incorpo-
rated in these sums. As in the previous sections it can be

with complex numbet.. M in Eq. (A16) is then a complex Shown that(Ej[L) is given by the rhs of Eq(A22) W'th

al=at(E)), am=am(L), bl=b%(Ej), bp=bn(L),
matrix. Finding the complex roots of det is much more m m~ Am m Im
cumbersome than finding real roots as in the case of thegm(E )+gm(L),  Im=9m(E)) —9m(L), and hy=1.
energy states. Because of this, we first comywie energy-  (Ej|K? |Ek> is also given by the rhs of E¢A22) if j# K with
state representation, i.e., we calculate the matrix elemengh=ax(E;), an=amn(Ey), bl =b%(E;), by=bn(Ey), on
<E |L|Ek> Ej 5Jk |K]k Wlth Kjk <E |K|Ek> glven by Eq. _gm(E )+gm(Ek) gm gm(E) gm(Ek) and hm
(A20) if j:k, otherwise —(ma-r/lx) For j=k, one has to use E¢A20).
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