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Diffusion by extrinsic noise in a two-dimensional anisotropic web mapping
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Diffusion by an extrinsic noise is studied in a two-dimensional anisotropic web mapping where the intrinsic
web diffusion is negligible, diffusion in one direction is dominant over the other, and the extrinsic noise enters
in the dominant dimension only. It is found that the diffusion scaling is governed by the competition between
the extrinsic noise and the intrinsic rotation. If the extrinsic noise is weaker than the intrinsic rotation, diffusion
scales a3k 2 in the dominant direction and 4&°?2 in the nondominant direction, whetds the extrinsic
noise strength anH is the intrinsic perturbation parameter. If the extrinsic noise is stronger, diffusion behaves
as|?/2 in the dominant direction and d6%/4 in the nondominant direction. Diffusion in the nondominant
direction can be important if the equilibrium system is translationally invariant in the dominant direction.
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[. INTRODUCTION derstanding of the numerical findings. Their analytic calcu-

lation showed that the diffusion is proportional to the extrin-
Effect of extrinsic noise on global diffusion in nonlinear sic noise strength I, independent of the intrinsic
dynamical systems is an important problem. In the so-callegherturbation strength K)), while their numerical result

standard mapping, represented by showed an indisputablé dependence in the diffusion coef-
_ ficient. In Ref.[4] we have shown analytically that the dif-
Pn+1=Pa+Ksine, fusion has K *? dependence, which agrees with the numeri-

cal result. These results sum up the effect of extrinsic noise
on the isotropic web mapping.

When we add a toggle factor in the above standard map-
ping equationgwhich are anisotropjc

and

Ont1=@ntPniq,

for two variablesP and ¢ with the intrinsic perturbation

parametek, the basic structure of the phase space is aniso- Pni1=PptKsing, and
tropic. Below the stochasticity threshold, regions of intrinsic .
stochasticity and regions dominated by KAMol'mogorov- 1= ent(=1)"Ppya,

Arnol'd-Mosen curves are infinitely extended in thedirec- ) _ _
tion, but localized and alternate in tiiedirection[1]. The "€ mapping changes into another type of web mapping that
fast diffusion in theP direction by the intrinsic stochasticity S anisotropic in the phase spac. In Fig. 1 we show the

is then blocked by the KAM-dominant regions. In this case,Phase-space structure of this mapping. Owing to the
the extrinsic noise enhances the global diffusion by letting
the phase points “leak” across the KAM-dominant regions
[2]. Above the stochasticity threshold, on the other hand, the 20
region of intrinsic stochasticity extends infinitely in both di-
rections and provide global diffusion. In this case, the extrin-
sic noise reduces the global diffusion by moving the phase

25 T T T T T

points into and out of the KAM islands3]. s| g
When a linear oscillator is resonantly perturbed, we can

have an isotropic “web” mapping where the phase space is P °T 1

divided into infinitely periodic two-dimensional tiles. Within 5 q

the tiles, the phase points rotate along the KAM curves. The 10l 4

separatrix between the tiles usually forms a connected, sto-
chastic web structure, which yields a fast global diffusion for

phase points within the stochastic web. If the intrinsic per- 20 .
turbation is reasonably strong and the web diffusion is fast, 2 , , , , ,

the extrinsic noise slows down the global web diffusion by 45 -0 5 0 5 10 16
moving the phase points into and out of the KAM tile re-

gions. The reduction in the diffusion rate is given by the ratio ¢

of phase-space areas of intrinsic to extrinsic stochasf{i8ity

If the intrinsic web diffusion is weak then the diffusion can  FIG. 1. Phase-space structure of E2). with [=0 in the limit
be dominated by the extrinsic mechanism. Referef8le K—0, where connected separatrix network is given by ¢os
studied this mechanism, however, without a satisfactory un+cos+P)=0. P and ¢ are in radians.
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“toggle” factor (—1)" in the second equation, we call it the ' ' ' '

“toggle mapping.” This is an area preserving web mapping K =002513 ©
that is anisotropic inP and ¢. Properties of the intrinsic K=ot R
= K]

global web diffusion in the above anisotropic web mapping .
is not much different from the usual isotropic web mapping. rd
In this report, we study the effect of the extrinsic noise on the 3
anisotropic web mapping using the above toggle mapping
equations. The physical situation in RES] demands that the D,
unperturbed system is translationally invariant in theli-

rection and the external noise explicitly scatters oplyal-

ues. The variabl® then suffers scattering through coupling

with ¢:

1.56 x HVK
0.01

Pnr1=PrtKsing,,
0.0001

0.01 0.1 1 5
wherel ¢ is the extrinsic noisd, is the noise strength, arél l

is taken here to be a normal distribution of random variable g5 5 piot of D (radiart/mapping step) vd. The marks
with variance= 1 and mean= 0. We note here that we may  (x—q.025 13),+(|2:0.1257), and] (K=0.2513) show nu-
take¢ to be a uniformly distributed random variable, without merical results. The solid lines are from formulR . =1.56
changing the conclusion of the present work. x (w/8)I K and the dotted line is fror® = 12/2. ’

(Pn+1:(Pn+(_1)nPn+l+|§v (1)

IIl. NUMERICAL RESULTS is proportional toK 2. The dependence @ onK is exam-

The discrete mapping Eql) are studied numerically. In ined in Fig. 5 for three different values of The slope is
order to measure the diffusion coefficient, a single orbit isabout K? at lower K, but aboutk®? at higherK. The K
broken intoN pieces and each of them h@isnapping steps. transition boundary between the two slopes increases in pro-
Thus, the total length of the single orbit T. Numerical  portion tol2. These observations again suggest two different
diffusion coefficient forP (or ¢) is then given by diffli/séion scalings with the transition boundary behaving like
/K2,

From extensive numerical investigations, including Figs.
2-5, it is observed that a normalized extrinsic noise strength

[oc1/K¥? is a meaningful parameter in the description of the

Here, T must be sufficiently large to insure that the transientdiffusion process. Numerical diffusion bt 1 scales differ-
behavior dies out, antl must be large enough to provide
meaningful statistics. These conditions are satisfied by 1
choosingT andN to be 2000000 and 1000, respectively, in
the present work.

We first examine the diffusio®,, in the dominant direc-
tion ¢. Figure 2 shows the dependencel®f on the noise
coefficient! for three different values of the intrinsic pertur-
bationK. It can be seen thdd, increases in proportion to
at lower| values and td? at higherl values with the curves
collapsing into one. The boundary between these two slopes D, 0.1
becomes lower at lowef value, being proportional t&*/2.
The dependence @, on K is examined in Fig. 3 for three
different values of. The slope is abouk® at lowerK, but
aboutK 2 at higherK. The boundary between the two slopes
increases in proportion t¢. These observations lead to two
different diffusion scalings with the transition boundary be-
having likel /K2, suggesting that the diffusions at each side
of the boundary are led by different physical processes.

We next examine the diffusioDp in the nondominant

1

1
_ 2
D=y ;1 57 (Pi=Pi-1)"

0.01 :
0.02 0.1 0.5

direction P. Figure 4 shows the dependence®§ on the

noise coefficient for three different values of the intrinsic

perturbationK. Dp increases in proportion tb at lower |
values, but shows plateau behavior at highealues. As in

K

FIG. 3. Plot owa(radiar?/mapping step) vK. The marks
& (1=0.2666),+(1=0.3325), and] (1=0.4443) show numeri-
cal results. The solid lines are from formul®,=1.56

the aboveD, case thd boundary between these two slopes x (#/8) VK and the dotted line is frord ,=1%/2.
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-rn/2 /2
Dp
Fy
-
0.0001 /
noiseless orbit noisy orbit
0.6 x %le FIG. 6. Cartoon sketch of the orbit trajectories with and without
noise effectsy indicates the mismatch of the orbit for the case
16-06 ) , ) |#0.
0.01 0.1 1
l ‘Pn+2:‘Pn_KSir[‘Pn+Pn+KSin(Pn+|§l]+l(§l+§2)1(
2

FIG. 4. Plot of Dp (radiarf/mapping step) vd. The marks
¢ (K=0.02513),+(K=0.1257), and] (K=0.2513) show nu- where¢; and ¢, are two independent random numbers and
merical results. The solid lines are from formulRp=0.6 the (n+1)th step is suppressed to remove the toggle factor
X (/8)IK*? and the dotted line is fror®p=K?/4. in the ¢ equation. A cartoon picture for phase-space structure
R of Eq. (2) is shown in Fig. 6. Th&k number is chosen to be
ently from that al >1. We now present a simplified analytic small enough to have a negligible internal separatrix stochas-
description of the noisy diffusion processes in the intrinsi-ticity. During one complete rotation along a KAM curve
cally quiescent toggle mapping, which can provide us a basiwithin the tile, the phase point experiences external noise
understanding of thé andK scaling, and the boundary pa- that scatters the phase point off the unperturbed orbit. The

rameter] oc| /K2, scattered phase point no longer has closed orbit, resulting in
a mismatch® in the ¢ direction after one complete rotation
II. ANALYTIC EVALUATION OF THE DIFFUSION motion. The size ok can be estimated from a random walk
COEFFICIENTS argument,
For an analytic evaluation, it is more convenient to con- 3 =INg?,

vert Eqg.(1) into the following equivalent form: _ )
whereN, is the number of mapping steps per complete ro-

Phio=P,+Ksing,+Ksin ¢,+P,+Ksing,+1£&], tation within the tile in the absence of the extrinsic noise.
Since the length of the intrinsic rotation motion per one map-
0.2 - ' ' ping step isxK, Ng is proportional to 1. In generalNg
I =0.92666 © is a function of orbital position within the tile. For a quali-
ffS'ﬁZS : tative description, however, we use a simplifislg here,

No=\/K, where\ is a constant to be determined later when
we compare the analytic result with the numerical simula-
tion. Thus,> becomes

0.01 |

NV K2
Dp S=N\"1/ 3)

Since the half-width of the unit tile in the direction is
712 (See Fig. 6 there can be two different types of diffu-
] sions depending upon the magnitude>ofelative to/2. If
3> 7/2, the strong extrinsic noise can detrap a phase point
out of a tile before the completion of an internal rotation. If
> <m/2 then the phase point experiences rotations before
0.0001 = . , , detrapping by weak extrinsic noise. Let us first consider the
0.05 0.1 0.5 weak extrinsic noise cask,< /2. If we define a normalized

K extrinsic noise parametér 2\ Y4/ 7K Y2 then the weak ex-
FIG. 5. Plot of Dp (radiart/mapping step) v&k. The marks  trinsic noise regime is representedi asl . We partition a tile

¢ (1=0.2666),+ (1=0.3325), and] (I =0.4443) show numeri- N Fig. 6 alonge axis (P=0) from zero tow/2 into n dis-
cal results. The solid lines are from formubs,=0.6x (7/8)IK¥2  crete cells as shown in Fig. 7. The size of a cell is taken to be

and the dotted line is frordp=K?/4. 2. A phase point initially at thexth cell can scatter by the

0.6 x FIK?
0.001 |
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FIG. 7. Partitioning of a tile inta cells along the® =0 axis of
Fig. 6 betweenp=0 and /2. Tav
extrinsic noise either intok(+ 1)th or (k— 1)th cell after one 100§
rotation. In Fig. 7 the Oth cell corresponds to the center of the
unit tile, which is bounded by a perfectly reflecting bound-
ary. The fi—1)th cell represents the last one before detrap-
ping into the neighboring tiler(th cell): Thus, thenth cell is
an absorbing boundary.

10 |

We now evaluate the average detrapping time out of a tile. 0.01 0.1 1 10
The relevant quantity here is the mean number of rotations l
Cy before the phase point hits the absorbing boundary at the
nth cell starting from thekth cell. Transition probability to FIG. 8. Plot of average detrapping timg, in mapping steps as

the right(left) cell is denoted as pg). Let P(T|s=k) be the @ function ofl. K=0.1257 (+marks) and 0.02513 & marks)
probability for the phase point initially at tHeh cell to reach are chosen¢ and+ mark the numerical results and the solid lines
the absorbing boundary aftdr rotational steps. The recur- 2¢ 28218 Eq.(5) with \*=4. The arrows mark the location of
sion equation forC, (1<k=n-1) can, then, be obtained ~ " :

as follows: . . . .
lines. It is found that\'>=4 yields an excellent fit of the

* analytic formula to the numerical result in the small extrinsic
CkITZl P(T[s=k)T noise regime (< 1). The abrupt change of the numerieg]
behavior around =81/(7KY?) =1 supports the validity of
thel parameter.

Using this expression for,, we can obtain the diffusion
coefficientD , in the dominant directiorp from a random

o0 [’ ¢

walk formula,
=p>, TP(T—1|s=k+1)+q>, TP(T—1|s=k—1)
T=2 T=2

©

=S T[pP(T—1|s=k+1)+qP(T—1|s=k—1)]
=1

772 ko

=p[1+Cpr 1]+ a[1+C 1]=1+pCys1+aCi 1, (4) Dy=5,—=ghK ©

wherep+qg=1 and=7_,P(T|s=k=*1)=1 have been used. . : .
Since the extrinsic noise in the present work does not prefeVthereW Is the random walk step size, corresponding to the

i . o distance between the centers of the neighboring tiles ipthe
right or'Ieft transitions, we 'assurip—q— 1/2; Under the direction. At this point we would like to mention that the tile
appropriate boundary condition§,=0 andCy,=1+C,4, an

. : . ) to tile transition dynamics is not completely random, as
appropriate solution to Ed4) is obtained agsee Ref{4]) pointed out in Refs[4] and [6], but the correlation over

Cp= n2— k2. consecutive transition steps exists because the exit direction
to the next tile is likely to be affected by the entrance direc-
For a time asymptotic behavior we need to consider thdion into the present tile. This point can be easily understood
average detrapping time of a newly migrated phase poindy using Fig. 9, wherer denotes the forward transition prob-
starting its activity within the tile at then— 1)th cell. Thus, ability (parallel to the entering directiorand 8 does the
kisn—1 andC,_;=2n—1=2n=mx/3. The average de- backward transition probabilityopposite to the entering di-

trapping timer,, in a tile is, therefore, given as rection. Due to the natural convective rotation within a tile,
a newly immigrated phase point across a separatrix meets the
T ARG opposite separatrixwhere a forward transition is possible
Tay = Cn-1No= ENO:T(R (5 pefore it comes back to the entry side separatrix. Tdats

greater tharB. Here we note that the transition probability in
Before proceeding to the evaluation of the diffusion coeffi-the P direction is small compared to that in tiedirection in
cient, a numerical calculation of the,, is performed in or- the smallK limit as can be easily understood from the form
der to compare with the analytic expressi®h The resultis  of Egs. (1) or (2). This correlation effect usually enhances
shown in Fig. 8. Thet and & marks are numerical simula- the numerical coefficient with a correction coefficient of or-
tion results forK=0.1257 and 0.025 13, respectively. The der unity [7], but does not alter the diffusion scaling with
simple analytic prediction of Eq(5) is shown as straight respecttdK andl. Considering that the present analytic work
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. . . Ul The relative transition probabilityp=AP/(2A ¢) is, then,
B iy K/4. The diffusion in theP direction in the limitl <1, which
) v 1 i takes the random walk size ofi2per detrapping, becomes
T i - 2m? =
—L - Dp=fp — =7 32, ®
P U

which is smaller tharD, by a factorK as can be qualita-
tively anticipated from the structure of the mapping equation

P+2¢ (1) or (2). Note here that the regirﬁeél may be regarded as

the spatial correlation regime because, although extrinsic

FIG. 9. Diagram defining cell to cell transition probabilites  noise modifies the unperturbed orbit trajectory, the overall
and 8. Dotted arrow indicates entrance and solid arrows do exifform of orbit trajectories maintains the rotational structure.

direction. Direction of natural convective motions is also indicated. In the extrinsically noisy regim§>1 (or equivalentlys,

. T L > 1r/2), the above analysis based upon the existence of rota-
is rather qualitative in nature, such an elaboration is not N€Gional orbits, does not apply since the orbits are destroyed

essary and Wi". not be.purgued. We now analyze the diffusiofetq e completion of a rotation. However, a theory based
n Te nondommaé)nt d'rr]eCt'g'DP .I . babilfy of upon the complete decorrelation may not guarantee the cor-
_Let us remember that the relative proba 'ﬁ?' oftran- ract result here because the time series of the mapping tra-
sm_on in theP direction compared to thatin thﬁ_dlrectlon IS jectory may be temporally correlated as long asltieless
quite weak. The quantityf, may be defined asfp  ihan ynity. Two alternative methods have been developed
=AP/(2A¢), where_AP(Acp) is the size of the _dlsplace' previously to include the time correlation effec{]:
ment per two mapping steps to n+2 in Eq.(2) ] induced  Fqyrier-space paths and characteristic function methods. In
by the extrinsic nois¢in the P(¢) direction. The factor 21is ¢ present discussion we choose the Fourier-space paths

multiplied in the denominator to compensate for the differ-yethod to derive the diffusion coefficient in the extrinsically
ence (27 vs ) in the tile size between the and ¢ direc- noisy regime.

tions (see Fig. 6. It is trivial to obtain Ae= V21 from Eq. The Fourier-space paths method was originally introduced
(2). To find AP we express the differend®,, ,— P, of Eq.  in Ref.[8] and a general description of its methodology has
(2) in the following form: appeared in Ref2]. Application of this method to the prob-

. . lem of diffusive heating by lower hybrid waves has appeared
Pni2=Pn=Ksingn]+ K sien+Pn.q] in Refs.[9] and[10]. Ingthig methodywe define a distriFt;Etion
+K cog @+ Py ]sin 1 €;] function W(P, ¢,n|Pg,¢q,0) of the phase points as a func-
tion of the position P, ¢) at the mapping tima for a given
+Ksi e, +PpiiJ{codlé]=1 (7)) initial position (Py,¢@,) at time 0, and define its Fourier
transforma,,(m,,q,):

We then calculate the effect of the extrinsic noise on
P,.,— P, along the unperturbed orbit, which E®) speci-

1 ) )
i = —impe—iqP
fies as | | an(mn,qn)—WJ dedPe 'Mne—1d
Ksin¢,]+KsiM¢,+P,.1]=0.

Using this relationship, Eq.7) becomes

XW(P,QD,”|P0,(P(),O). (9)

It is shown in Refs[2] and[8], using a standard mapping

Pni2—Ph=—Kcose,siml&]—Ksing,{cogl&]—1}. equation, that the time asymptotic diffusion coefficient
We square both sides and take average gvand&;. From _  {(P,—Pg)?)
the relationshig cos(¢)),=(sin(¢)), =3 and(sin(£&y)),, =0, Dp=lim Dpy= lim —————
and (cos(§1)>§1=exp[—I2/2] where (- - -), means average " "
overx, we find can be expressed in terms of the second derivativa, Git

the origin of the Fourier spacen=0,0=0+):
(Posa—Po)?)ore = K2(1—(co§1£),.) ¢ pacert=04-0+)

4m? 9°[a,(0,0)€'Po]

=K?(1—exd —1%/2 -
( d 1) Dpn o pe (10)
K2 q=0+
=—12, for I<1. . . .
2 Hereq=0+ is used here for convenience only. This method

requires the sign of| at all times, as will become obvious
soon (see Appendicgs It is also shown that the function

_ ~ _ a,(m,q) at the origin is obtained from the recursion relation
AP_\/((PH‘FZ_PH) ><p,§l_|K/\/§ for an(mn,qn)7

Thus,AP becomes
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0.04 . .
_m2
an(mnaqn)ZE ‘Jjn(|qnfl|K)an71(mnflvqnfl)e myl /2
n 11 1=002r © °
by iterating backward in time using the selection rules 0031 |
M, 1=My+j,SgMd,-1),
fpoo2} —
On-1=0n+(—1)"my, (12
0.15K
to choose the proper paths in the Fourier space. Basic meth-
ods to derive the diffusion formulél0), recursion relation 0.01 | |
(11), and selection rule€l?2) are the same as those in Refs. £
[2] and[8], which developed the methods for the standard
mapping[without the toggle factor-€1)" in our mapping.
For the sake of completeness, we present these derivations in 0 ' :
Appendix A. 0 0.1 0.2 0.3
In the Appendix A, it is also shown that the diffusion K

coefficient in the dominant directiop can be expressed in

. FIG. 10. The relative transition probabilify, as a function oK
the symmetric way to Eq.10): ' y

for I =0.027. The points are numerical values, whereas the line is

fp=0.1%K.
. _ {(en—¢0)°) "
D,=lim D, = lim——————,
¢ n—o “n n— o 2n 1 2
D¢:§<(§Dn+1_‘Pn) >§
and
1 o 2 1

. — |2§2€—§/2d§:_|2

472 9[a,(m,0+)eM#o e 2
D, =~ o [an( = N 13 2\2m
m=0 where (- - -)x means average ovef. The only difference

between the present derivation in the Appendix B and that in

There are countless proper Fourier paths satisfying thefs [2] and[8] is in the modification of the Fourier paths
selection rules. Each Fourier path is associated with the cogy,e to the toggle factor. However, this minor difference

responding set ofj;}. All these Fourier-space paths must be yrings out a major difference in the result: The present result
summed up to obtain accuragg(0,0+), which is practi- (15 turns out to be equivalent to the diffusion coefficient
cally impossible. Instead, we obtain an approximate expresnder the random phase assumption, while the corresponding
sion for a,(0,0+) by taking the dominant Fourier-space yegy|t without the toggle factor is nf,8]. It may be impor-
paths that gives the lowest-order contributions. It is showngnt tg realize that, although we have 1, it is found here

in Appendix B that the dominant contribution to that the toggle factor can wipe out the temporal correlation,
an(M,4)|m-0q-+0 cOmes from the paths staying at the ori- making the diffusion obey the random phase dynamics.

gin of the Fourier space forever, to yield The analytic results are compared with the numerical
simulation results. Earlier in this report, comparison of the
analytic detrapping timer,, with the numerical result was
presented in Fig. 8, where an excellent agreement inl the
dependence allowed us to determine the proportionality con-
stant\ in the weak extrinsic noise regime. Figure 10 com-
pares the transition probability ratif,. Numerical result
shows fp=0.1%, while the analytic result ifp=0.2%K.

This is a reasonable agreement considering the qualitative
nature of the present analytic theory.

Diffusion coefficients in the dominant directiopa are
compared in Figs. 2 and 3 as function loand K, respec-
tively, where the correction coefficient, as mentioned before,
is found numerically to be given as 1.56. The agreement

1 _ .
an(m’q) = _Z[JO(qK)87 mzlzlz]neiquOe*Im(po
4

for m—0g—+0. (14
Equations(10) and (13) then yield
Dp=K?4 and D,=1%2. (15)

Surprisingly, these are what we would obtain from the ran
dom phase assumption in EQ)):

2 between the simulation and analytic diffusion is excellent in
1 1 (em K S e Co : )
Dp=={(Ppy1—Pp)?), = _f K2 sifede= — ¢ direction. Diffusion coefficient in the nondominant direc-
2 4 4 tion Dp is compared in Figs. 4 and 5. Except for a minor
adjustment in the proportionality constant in the analytic for-
and mula due to the difference between the numerical

026211-6
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fp (0.1K) and the analyticfp (0.2%), an excellent (—1)"in Eq.(1). We first derive the diffusion formuléL0),
agreement with the simulation results in thandK depen- by substituting

dences is verified in the both weak and strong extrinsic noise

regimes. Two distinctive scalings Bfy with respect td and

K, which are separated around the pdirt8l/(7K¥3)=1,

are verified both numerically and analytically. In fact, all the .
features of the analytic understanding agree with the numerl
cal observations.

W(P, (P,n| Po,¢0,0)= f dmndqneimnqﬁiqnpan(mn +dn)
nto

1
DPFEJdeng(P,cp,n|P0,go0,O)P*2, and
IV. CONCLUSION

In the present work we have studied diffusion phenomena D = ! f dPdeW(P,¢,n|Py,¢0,0)¢*2,

driven by extrinsic noise in a two-dimensional anisotropic o 2n
web mapping in which the two-dimensional variables play
different roles with respect to each other. The first variable i¢Vhere
changed by a small intrinsic perturbatién and the second 1
variable is varied by the changes in the first variable with a DPn:J dmndqn—eimn%““npoj dP*de* P*2
toggle factor and an extrinsic noise with the strenigtithe 2n

phase of the intrinsic perturbation is determined by the
changes in the second variable. The mapping is different

from the standard mapping due to the presence of the toggle 1
factor. A dominant diffusion then occurs in the extrinsically D :j dmndqn—eimn%“qnpoj dP*de* ¢*2
noisy, second directioidominant direction The intrinsic “n 2n

stochastic web diffusion is assumed to be negligible. It is
found that the diffusion mechanism is governed by the com-
petition between the extrinsic noise frequency and the intrin;

sic rotation frequency. If the extrinsic frequency is slowerIn Eq. (A1), integration overp® annihilates them, contri-
i ; _ . ; *
than the intrinsic frequency, diffusion scales|&s’? in the butions except fom,=0. In Eq.(A2) integration overP

dominant direction and ak *? in the nondominant direc- annihilates theq,, contributions except for,=0. Using

24iqP 2_ _ p2n,iqP H H ;
tion. If the extrinsic frequency is stronger, diffusion behave{aee loq P*e™" and integrating by parts twice, we

asl?/2 in the dominant direction and &/4 in the nondomi-
nant direction. - 52
We understand the numerical results analytically: The DPn:_%J' dP*dq,e'dnP F[an(o-%)e'qnpo],

P*=P—P, and ¢* = ¢o— ¢,, We obtain

x emMe" +ianP a (m..q,), (A1)

X eMne* 9P g (my,q,). (A2)

simulation results agree well with the analytic results. One dn

particularly interesting result is that the toggle factor changes

the fundamental nature of the mapping: The temporal corre- 2 9P ,
lation, which exists without the toggle factor, is destroyed. D, =— ﬁf de*dm,e™? —[a,(m,0+)eMno].
Thus, when the spatial correlation is destroyed by a stronger Iy

extrinsic noise frequency than the rotation frequency, the dif-
fusion obeys the random phase dynamics due to the destruc-
tion of the temporal correlation by the toggle factor. The
results presented here for the nondominant directional diffu- Dp,=
sion can be important in the case when the dominant direc- 2n aq
tion is translationally invariant in equilibrium. In this case

the diffusion in the nondominant direction determines the 4W2&2[an(m,0+)eim¢o]

loss process of a physical system. D, = > .
om

Since [dye¥Y=2m8(X), these equations become

472 5’[a,(0,)e'9Po]

> , and

q=0+

m=0
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partment of Energy. Next, we derive the recursion relation fag(m,,q,) and
the selection rules fornj,,q,). We start with the inverse

APPENDIX A: DIFFUSION FORMULA, RECURSION Fourier transform, Ed(9),

RELATION, AND SELECTION RULE 1
FOR THE FOURIER-PATH METHOD apn(My,,0,) = ( )Zf ded P imne—ianP

The derivations given here are parallel to those in R&f.
except for the minor modification caused by the toggle factor XW(P,¢,n|Pg,¢0,0). (A3)
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Using the identity relations
W(P,¢,n|P",¢’ ,n—1)=8(P—P'—Ksing')d ¢— ¢’
—(=D)P"+Ksing")—1¢'],

W(P,(,D,n|P0,qDo,0)

=J dP'de’
XW(P,@,n|P’, ¢’ ,n=1)W(P',¢',n—1|Pgy,¢q,0),

where the first relation is from the mapping equation, Eq
(A3) becomes,

1 . .
- —impe—iq,P ’ ’
2u(my )= 3 dedpermear [ aprdg
XS(P—P'—=Ksing')
X6(p—@' —(—1)"(P'+Ksing')—1¢&")
><Jdmnfldqnfleim”*lw’Jriq”’lpran—l

X(mn—laqn—l)- (A4)
Delta function integration ovep andP’ leads to

an(mnyqn) fdmn 1dqn 1de(P

(2m)?
w @~ imgle’ +(~1)"P+1¢']~ig,P

x @iMn-1¢ +idy—1(P—K Sin‘P/)an,l
X(Mp-1,0n-1)- (A5)

Averaging over the random variab¥¢ of normal distri-
bution of mear0 and variancel, we get the factor

eV, Averaging overP produces a factor
2775[qn71_(_1)nmn_qn]- (AG)

The q,,_; integration is then easily performed using this
delta function to yield

an(mn,qn jdmn lf dQD e'(mn 1 mn)‘P —idp- lKSln‘P

Xan_1(My_1,Gy_1)e" ™72 (A7)

whereq,,_;=0q,+(—1)"m,. Because of the identity

oo

eiQH—lK sing’ _ - E Jjn(|anl| K)eij n‘P’Sgn(Qn—l),
In=—*

a subsequent integration ovef gives anothe® function

PHYSICAL REVIEW B4 026211

é\(mn—l_mn_jnSgr{qn—l))- (AB)

We then have

—mi2
an(mnvqn):jz ‘Jjn(|qn—1|K)an—l(mn—laQn—l)e Ml*/2
with the selection rules Eq12) given by the two delta func-
tions (A6) and (A8).

APPENDIX B: DERIVATION OF EQ. (14)

In this section we derive Eq(14), the expression for

'an(m,q)lmzoquw, by tracing the steps backward in time

starting from the originih=0,q=0) using the paths defined
by Eqg.(12). We show that the dominant contribution comes
from the Fourier Paths staying at the origin of the Fourier-
space forever. The other significant contributions cancel each
other. The procedure described here is originated from the
standard mapping analysis of RE8], but the actual Fourier
paths construction and counting are different due to the ex-
istence of the toggle factor in the present work. Naturally, the
result is different.

The selection rule$12) demand a sign foq at all times
includingg=0. As long as the second derivativea}(m,q)
with respect tagy is continuous atj=0, we can assign either
sign toq=0. We chooseg=0+. The selection rulegl2)
send the first backward path frorm(q)=(0,0+) to either
(m,q)=(1,0+) or (m,q)=(—1,0+). We can easily see that
these two alternative choices produce symmetric results with
respect to then=0 axis. It is, thus, sufficient to analyze the
backward paths with the first step ton(g) =(1,0+) only.
The recursion equatiofll) requires that at every step along
a Fourier-space path, the Fourier componantdecays by
the factorJ; (|qi 1/K). SinceK<1 in the present problem

for a negl|g|ble intrinsic stochasticity, we ha\[L?(q, 1K)
~(gi—1K)'<1 andJo(q;_;K)=1—(q;_,K)?4. It is obvi-

ous that the lowest order contribution &,(0,0+) comes
from the Fourier-space paths that stay at the origin the whole
time. Since the initial backward path out of the origin is
either (m,q)=(1,0+) or (m,q)=(—1,0+), which requires
j==1, the path back to the origin needs at least one more
step with j=%1: Thus, the next order contribution to
a,(0,0) is of orderk?. It can be easily seen from a similar
argument that any path going out |of|<1 region can only
contribute toa,(0,0+) at most to ordei*. We, thus, ne-
glect any path going out of then|<1 region.

Within the region|m|=<1, we can describe a general pat-
tern for the path. From a point on tlgeaxis (m=0), the next
path can only be to itselfjf& 0) or vertically up and down in
the m direction (j|=1). From a point away from theg axis
(m==1) the next path can only be horizontgl<0) or
diagonal (= =*1).

One significant fact contained in Eq12) is that the
Fourier-space path can remain stationary for any number of
steps at any point on the q aximmE0), accumulating per
every step the multiplication factdg(|q|K). With these due
considerations we can generate ¥#&h order contributions

026211-8
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(b)

FIG. 11. Three different Fourier-space paths providingkih
order contributions ta,(0,q). Arrows indicate path direction back-
ward in time. Thej values are for Eq(12). The filled circles at
(m,q)=(0,—1) indicate stationary point.

to an(m,q)lmzovq:o+ as shown in Fig. 11. Hereafter it is
assumed, without loss of generality, that the infinitely lamge
is an even number. In Figs. ) and 1Xc¢) it is arranged in
such a way that a part of the Fourier-space paths stay statio
ary at (m,q)=(0,—1) for an arbitrary number of stepp=

—1 is chosen in Fig. 1(b) after an odd number of stationary
steps and =1 in Fig. 11(c) after an even number of station-

ary steps. These choices are necessary to have the paths to go

PHYSICAL REVIEW E 64 026211

(a)

(c)

FIG. 12. Fourier-space paths extended from Fig. 11. The num-
bers indicate traversing order.

3 (AK) 3 (K) I HK)I 1 (K) I a(q Kye "

n- JB(Kye "

=J%(qK)Jo(K) ——5—
J1(aK) Jo( )1_J§(K)

JP(gK)e " for

5 K<1.

(B1)

back to the origin on the second step after the stationary

point. Otherwise the Fourier-space path will turn into the
negativeq direction at (n,q)=(1,—1) in Fig. 1Xb) and at
(m,g)=(—1,—1) in Fig. 11c). One can directly calculate
the contributions t@,(0,0+) from the three paths depicted
in Fig. 11. For Fig. 11b) we have, after summing over all the

Note here that the summation over the number of stationary
steps raises the magnitude fromK* to ~K2. The same
contribution can also be obtained for the path in Figcl1

On the other hand for Fig. 18) it is

possible odd numbered choices of steps at the stationary
point,

026211-9
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Therefore we can assert that the three paths from Fig. 1that the contributions sum up to zero in the same way as for
must be summed to zero, thus give null contribution toFig. 11 if we note that these paths after turning to the nega-
an(0,0+). tive g direction must also come back to the stationary point

The remaining Fourier-space paths staying within the re{m=0,0=—1) in order to contribute ta,(0,0+) to the
gion [m|<1 are obtained by modifying the last backward orderK?. Definitely it must be emphasized that all the domi-
step before returning to the origin for each path shown imating Fourier-space paths come back to the origin certainly.
Fig. 11. In Figs. 1(a) and 11b) the modification occurs at Instead of returning to the origin, if the path is halted at a
(m,q)=(1,—1) as shown in Figs. 13 and 12b), and in  certain point (Q;) alongq axis, then the multiplying factor
Fig. 11(c) at (m,q)=(—1,—1) as shown in Fig. 12). From  Jg(|r|K) is attached to the corresponding path’s contribution,
the same argument as above it is trivial to see that the conhus becomes negligiblg8] in the limit of n>1/(|r|K)2.
tribution to a,(0,0) from the paths in Fig. 1B) and 12c)  Thus, to the ordeK?, the only contribution ta,(0,0+) is
cancel exactly with those from Fig. (. We note here that, from the paths staying at the origin forever,
since the paths go through the stationary point twice, the
total contribution is enhanced by K~ #. In this way it can
be ascertained that all the Fourier-space paths confineoﬁn(m'Q)|m:o,q:o+=4—2[Jo(qK)
within the region—1<q<0 and|m|<1, ending at the ori- m
gin through the position r,q)=(1,0+), are summed to +O(K%,
zero to theK? order.

The above logic can be extended to the paths turning tavhich is the Eq.(14). We note here that evaluation of
the negativey direction at fn,q) =(1,—1) in Figs. 11a) and an(qu)lm:O,q=O+ to theK? order has been necessary since
11(b), or (m,q)=(—1,—1) in Fig. 1Xc). It is trivial to see  the second derivative i is of orderK?.
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