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Diffusion by extrinsic noise in a two-dimensional anisotropic web mapping
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Diffusion by an extrinsic noise is studied in a two-dimensional anisotropic web mapping where the intrinsic
web diffusion is negligible, diffusion in one direction is dominant over the other, and the extrinsic noise enters
in the dominant dimension only. It is found that the diffusion scaling is governed by the competition between
the extrinsic noise and the intrinsic rotation. If the extrinsic noise is weaker than the intrinsic rotation, diffusion
scales aslK 1/2 in the dominant direction and aslK 3/2 in the nondominant direction, wherel is the extrinsic
noise strength andK is the intrinsic perturbation parameter. If the extrinsic noise is stronger, diffusion behaves
as l 2/2 in the dominant direction and asK2/4 in the nondominant direction. Diffusion in the nondominant
direction can be important if the equilibrium system is translationally invariant in the dominant direction.
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I. INTRODUCTION

Effect of extrinsic noise on global diffusion in nonlinea
dynamical systems is an important problem. In the so-ca
standard mapping, represented by

Pn115Pn1K sinwn

and

wn115wn1Pn11 ,

for two variablesP and w with the intrinsic perturbation
parameterK, the basic structure of the phase space is an
tropic. Below the stochasticity threshold, regions of intrin
stochasticity and regions dominated by KAM~Kol’mogorov-
Arnol’d-Moser! curves are infinitely extended in thew direc-
tion, but localized and alternate in theP direction @1#. The
fast diffusion in theP direction by the intrinsic stochasticit
is then blocked by the KAM-dominant regions. In this ca
the extrinsic noise enhances the global diffusion by lett
the phase points ‘‘leak’’ across the KAM-dominant regio
@2#. Above the stochasticity threshold, on the other hand,
region of intrinsic stochasticity extends infinitely in both d
rections and provide global diffusion. In this case, the extr
sic noise reduces the global diffusion by moving the ph
points into and out of the KAM islands@3#.

When a linear oscillator is resonantly perturbed, we c
have an isotropic ‘‘web’’ mapping where the phase spac
divided into infinitely periodic two-dimensional tiles. Withi
the tiles, the phase points rotate along the KAM curves. T
separatrix between the tiles usually forms a connected,
chastic web structure, which yields a fast global diffusion
phase points within the stochastic web. If the intrinsic p
turbation is reasonably strong and the web diffusion is fa
the extrinsic noise slows down the global web diffusion
moving the phase points into and out of the KAM tile r
gions. The reduction in the diffusion rate is given by the ra
of phase-space areas of intrinsic to extrinsic stochasticity@3#.
If the intrinsic web diffusion is weak then the diffusion ca
be dominated by the extrinsic mechanism. Reference@3#
studied this mechanism, however, without a satisfactory
1063-651X/2001/64~2!/026211~10!/$20.00 64 0262
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derstanding of the numerical findings. Their analytic calc
lation showed that the diffusion is proportional to the extr
sic noise strength (l ), independent of the intrinsic
perturbation strength (K), while their numerical result
showed an indisputableK dependence in the diffusion coe
ficient. In Ref.@4# we have shown analytically that the di
fusion haslK 1/2 dependence, which agrees with the nume
cal result. These results sum up the effect of extrinsic no
on the isotropic web mapping.

When we add a toggle factor in the above standard m
ping equations~which are anisotropic!

Pn115Pn1K sinwn and

wn115wn1~21!nPn11 ,

the mapping changes into another type of web mapping
is anisotropic in the phase space@5#. In Fig. 1 we show the
phase-space structure of this mapping. Owing to

FIG. 1. Phase-space structure of Eq.~2! with l 50 in the limit
K→0, where connected separatrix network is given by cow
1cos(w1P)50. P and w are in radians.
©2001 The American Physical Society11-1
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‘‘toggle’’ factor (21)n in the second equation, we call it th
‘‘toggle mapping.’’ This is an area preserving web mappi
that is anisotropic inP and w. Properties of the intrinsic
global web diffusion in the above anisotropic web mapp
is not much different from the usual isotropic web mappin
In this report, we study the effect of the extrinsic noise on
anisotropic web mapping using the above toggle mapp
equations. The physical situation in Ref.@5# demands that the
unperturbed system is translationally invariant in thew di-
rection and the external noise explicitly scatters onlyw val-
ues. The variableP then suffers scattering through couplin
with w:

Pn115Pn1K sinwn ,

wn115wn1~21!nPn111 l j, ~1!

wherel j is the extrinsic noise,l is the noise strength, andj
is taken here to be a normal distribution of random varia
with variance5 1 and mean5 0. We note here that we ma
takej to be a uniformly distributed random variable, witho
changing the conclusion of the present work.

II. NUMERICAL RESULTS

The discrete mapping Eq.~1! are studied numerically. In
order to measure the diffusion coefficient, a single orbit
broken intoN pieces and each of them hasT mapping steps.
Thus, the total length of the single orbit isNT. Numerical
diffusion coefficient forP ~or w) is then given by

DP5
1

N (
i 51

N
1

2T
~Pi2P( i 21)!

2.

Here,T must be sufficiently large to insure that the transie
behavior dies out, andN must be large enough to provid
meaningful statistics. These conditions are satisfied
choosingT andN to be 2 000 000 and 1000, respectively,
the present work.

We first examine the diffusionDw in the dominant direc-
tion w. Figure 2 shows the dependence ofDw on the noise
coefficientl for three different values of the intrinsic pertu
bationK. It can be seen thatDw increases in proportion tol
at lower l values and tol 2 at higherl values with the curves
collapsing into one. The boundary between these two slo
becomes lower at lowerK value, being proportional toK1/2.
The dependence ofDw on K is examined in Fig. 3 for three
different values ofl. The slope is aboutK0 at lower K, but
aboutK1/2 at higherK. The boundary between the two slop
increases in proportion tol 2. These observations lead to tw
different diffusion scalings with the transition boundary b
having likel /K1/2, suggesting that the diffusions at each si
of the boundary are led by different physical processes.

We next examine the diffusionDP in the nondominant
direction P. Figure 4 shows the dependence ofDP on the
noise coefficientl for three different values of the intrinsi
perturbationK. DP increases in proportion tol at lower l
values, but shows plateau behavior at higherl values. As in
the aboveDw case thel boundary between these two slop
02621
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is proportional toK1/2. The dependence ofDP on K is exam-
ined in Fig. 5 for three different values ofl. The slope is
about K2 at lower K, but aboutK3/2 at higher K. The K
transition boundary between the two slopes increases in
portion to l 2. These observations again suggest two differ
diffusion scalings with the transition boundary behaving li
l /K1/2.

From extensive numerical investigations, including Fig
2–5, it is observed that a normalized extrinsic noise stren
l̂ } l /K1/2 is a meaningful parameter in the description of t
diffusion process. Numerical diffusion atl̂ ,1 scales differ-

FIG. 2. Plot of Dw(radian2/mapping step) vsl. The marks
L (K50.025 13),1(K50.1257), andh (K50.2513) show nu-
merical results. The solid lines are from formulaDw51.56
3(p/8)lAK and the dotted line is fromDw5 l 2/2.

FIG. 3. Plot of Dw(radian2/mapping step) vsK. The marks
L ( l 50.2666),1( l 50.3325), andh ( l 50.4443) show numeri-
cal results. The solid lines are from formulaDw51.56
3(p/8)lAK and the dotted line is fromDw5 l 2/2.
1-2
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DIFFUSION BY EXTRINSIC NOISE IN A TWO- . . . PHYSICAL REVIEW E 64 026211
ently from that atl̂ .1. We now present a simplified analyt
description of the noisy diffusion processes in the intrin
cally quiescent toggle mapping, which can provide us a ba
understanding of thel and K scaling, and the boundary pa
rameterl̂ } l /K1/2.

III. ANALYTIC EVALUATION OF THE DIFFUSION
COEFFICIENTS

For an analytic evaluation, it is more convenient to co
vert Eq.~1! into the following equivalent form:

Pn125Pn1K sinwn1K sin@wn1Pn1K sinwn1 l j1#,

FIG. 4. Plot of DP (radian2/mapping step) vsl. The marks
L (K50.025 13),1(K50.1257), andh (K50.2513) show nu-
merical results. The solid lines are from formulaDP50.6
3(p/8)lK 3/2 and the dotted line is fromDP5K2/4.

FIG. 5. Plot of DP (radian2/mapping step) vsK. The marks
L ( l 50.2666),1( l 50.3325), andh ( l 50.4443) show numeri-
cal results. The solid lines are from formulaDP50.63(p/8)lK 3/2

and the dotted line is fromDP5K2/4.
02621
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wn125wn2K sin@wn1Pn1K sinwn1 l j1#1 l ~j11j2!,
~2!

wherej1 and j2 are two independent random numbers a
the (n11)th step is suppressed to remove the toggle fac
in thew equation. A cartoon picture for phase-space struct
of Eq. ~2! is shown in Fig. 6. TheK number is chosen to be
small enough to have a negligible internal separatrix stoch
ticity. During one complete rotation along a KAM curv
within the tile, the phase point experiences external no
that scatters the phase point off the unperturbed orbit.
scattered phase point no longer has closed orbit, resultin
a mismatchS in the w direction after one complete rotatio
motion. The size ofS can be estimated from a random wa
argument,

S. lN0
1/2,

whereN0 is the number of mapping steps per complete
tation within the tile in the absence of the extrinsic nois
Since the length of the intrinsic rotation motion per one ma
ping step is}K, N0 is proportional to 1/K. In generalN0
is a function of orbital position within the tile. For a qual
tative description, however, we use a simplifiedN0 here,
N0.l/K, wherel is a constant to be determined later wh
we compare the analytic result with the numerical simu
tion. Thus,S becomes

S.l1/2l /K1/2. ~3!

Since the half-width of the unit tile in thew direction is
p/2 ~See Fig. 6!, there can be two different types of diffu
sions depending upon the magnitude ofS relative top/2. If
S@p/2, the strong extrinsic noise can detrap a phase p
out of a tile before the completion of an internal rotation.
S!p/2 then the phase point experiences rotations be
detrapping by weak extrinsic noise. Let us first consider
weak extrinsic noise case,S!p/2. If we define a normalized
extrinsic noise parameterl̂ 52l1/2l /pK1/2, then the weak ex-
trinsic noise regime is represented asl̂ !1. We partition a tile
in Fig. 6 alongw axis (P50) from zero top/2 into n dis-
crete cells as shown in Fig. 7. The size of a cell is taken to
S. A phase point initially at thekth cell can scatter by the

FIG. 6. Cartoon sketch of the orbit trajectories with and witho
noise effects.S indicates the mismatch of the orbit for the ca
lÞ0.
1-3
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GUNYOUNG PARK AND C. S. CHANG PHYSICAL REVIEW E64 026211
extrinsic noise either into (k11)th or (k21)th cell after one
rotation. In Fig. 7 the 0th cell corresponds to the center of
unit tile, which is bounded by a perfectly reflecting boun
ary. The (n21)th cell represents the last one before detr
ping into the neighboring tile (nth cell!: Thus, thenth cell is
an absorbing boundary.

We now evaluate the average detrapping time out of a
The relevant quantity here is the mean number of rotati
Ck before the phase point hits the absorbing boundary at
nth cell starting from thekth cell. Transition probability to
the right~left! cell is denoted as p (q). Let P(Tus5k) be the
probability for the phase point initially at thekth cell to reach
the absorbing boundary afterT rotational steps. The recur
sion equation forCk (1<k<n21) can, then, be obtaine
as follows:

Ck5 (
T51

`

P~Tus5k!T

5 (
T51

`

T@pP~T21us5k11!1qP~T21us5k21!#

5p(
T52

`

TP~T21us5k11!1q(
T52

`

TP~T21us5k21!

5p@11Ck11#1q@11Ck21#511pCk111qCk21 , ~4!

wherep1q51 and(T51
` P(Tus5k61)51 have been used

Since the extrinsic noise in the present work does not pr
right or left transitions, we assumep5q51/2. Under the
appropriate boundary conditions,Cn50 andC0511C1, an
appropriate solution to Eq.~4! is obtained as~see Ref.@4#!

Ck5n22k2.

For a time asymptotic behavior we need to consider
average detrapping time of a newly migrated phase p
starting its activity within the tile at the (n21)th cell. Thus,
k is n21 and Cn2152n21.2n.p/S. The average de
trapping timetav in a tile is, therefore, given as

tav5Cn21N0.
p

S
N0.

p

l S l

K D 1/2

. ~5!

Before proceeding to the evaluation of the diffusion coe
cient, a numerical calculation of thetav is performed in or-
der to compare with the analytic expression~5!. The result is
shown in Fig. 8. The1 andL marks are numerical simula
tion results forK50.1257 and 0.025 13, respectively. Th
simple analytic prediction of Eq.~5! is shown as straigh

FIG. 7. Partitioning of a tile inton cells along theP50 axis of
Fig. 6 betweenw50 andp/2.
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lines. It is found thatl1/254 yields an excellent fit of the
analytic formula to the numerical result in the small extrins
noise regime (l̂ ,1). The abrupt change of the numericaltav

behavior aroundl̂ 58l /(pK1/2)51 supports the validity of
the l̂ parameter.

Using this expression fortav we can obtain the diffusion
coefficientDw in the dominant directionw from a random
walk formula,

Dw.
p2

2tav
.

p

8
lAK, ~6!

wherep is the random walk step size, corresponding to
distance between the centers of the neighboring tiles in thw
direction. At this point we would like to mention that the til
to tile transition dynamics is not completely random,
pointed out in Refs.@4# and @6#, but the correlation over
consecutive transition steps exists because the exit direc
to the next tile is likely to be affected by the entrance dire
tion into the present tile. This point can be easily understo
by using Fig. 9, wherea denotes the forward transition prob
ability ~parallel to the entering direction! and b does the
backward transition probability~opposite to the entering di
rection!. Due to the natural convective rotation within a til
a newly immigrated phase point across a separatrix meets
opposite separatrix~where a forward transition is possible!
before it comes back to the entry side separatrix. Thusa is
greater thanb. Here we note that the transition probability
theP direction is small compared to that in thew direction in
the smallK limit as can be easily understood from the for
of Eqs. ~1! or ~2!. This correlation effect usually enhance
the numerical coefficient with a correction coefficient of o
der unity @7#, but does not alter the diffusion scaling wit
respect toK andl. Considering that the present analytic wo

FIG. 8. Plot of average detrapping timetav in mapping steps as
a function of l. K50.1257 (1marks) and 0.025 13 (L marks)
are chosen.L and1 mark the numerical results and the solid lin
are from Eq.~5! with l1/254. The arrows mark the location ofl
5pK1/2/8.
1-4
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DIFFUSION BY EXTRINSIC NOISE IN A TWO- . . . PHYSICAL REVIEW E 64 026211
is rather qualitative in nature, such an elaboration is not n
essary and will not be pursued. We now analyze the diffus
in the nondominant direction,DP .

Let us remember that the relative probabilityf P of tran-
sition in theP direction compared to that in thew direction is
quite weak. The quantityf P may be defined asf P
[DP/(2Dw), whereDP(Dw) is the size of the displace
ment per two mapping steps@n to n12 in Eq. ~2! # induced
by the extrinsic noisel in the P(w) direction. The factor 2 is
multiplied in the denominator to compensate for the diff
ence (2p vs p) in the tile size between theP andw direc-
tions ~see Fig. 6!. It is trivial to obtainDw5A2l from Eq.
~2!. To find DP we express the differencePn122Pn of Eq.
~2! in the following form:

Pn122Pn5K sin@wn#1K sin@wn1Pn11#

1K cos@wn1Pn11#sin@ l j1#

1K sin@wn1Pn11#$cos@ l j1#21%. ~7!

We then calculate the effect of the extrinsic noise
Pn122Pn along the unperturbed orbit, which Eq.~2! speci-
fies as

K sin@wn#1K sin@wn1Pn11#.0.

Using this relationship, Eq.~7! becomes

Pn122Pn.2K coswn sin@ l j1#2K sinwn$cos@ l j1#21%.

We square both sides and take average overw andj1. From
the relationship̂ cos2(w)&w5^sin2(w)&w51

2 and^sin(lj1)&j1
50,

and ^cos(lj1)&j1
5exp@2l2/2# where ^•••&x means average

over x, we find

^~Pn122Pn!2&w,j1
5K2~12^cos@ l j1#&j1

!

5K2~12exp@2 l 2/2# !

.
K2

2
l 2, for l !1.

Thus,DP becomes

DP5A^~Pn122Pn!2&w,j1
5 lK /A2.

FIG. 9. Diagram defining cell to cell transition probabilitiesa
and b. Dotted arrow indicates entrance and solid arrows do e
direction. Direction of natural convective motions is also indicat
02621
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n
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The relative transition probabilityf P5DP/(2Dw) is, then,
K/4. The diffusion in theP direction in the limitl̂ !1, which
takes the random walk size of 2p per detrapping, becomes

DP5 f P

~2p!2

2tav
5

p

8
lK 3/2, ~8!

which is smaller thanDw by a factorK as can be qualita-
tively anticipated from the structure of the mapping equat
~1! or ~2!. Note here that the regimel̂ !1 may be regarded a
the spatial correlation regime because, although extrin
noise modifies the unperturbed orbit trajectory, the ove
form of orbit trajectories maintains the rotational structure

In the extrinsically noisy regimel̂ @1 ~or equivalentlyS
@p/2), the above analysis based upon the existence of r
tional orbits, does not apply since the orbits are destro
before completion of a rotation. However, a theory bas
upon the complete decorrelation may not guarantee the
rect result here because the time series of the mapping
jectory may be temporally correlated as long as thel is less
than unity. Two alternative methods have been develo
previously to include the time correlation effects@2#:
Fourier-space paths and characteristic function methods
the present discussion we choose the Fourier-space p
method to derive the diffusion coefficient in the extrinsica
noisy regime.

The Fourier-space paths method was originally introdu
in Ref. @8# and a general description of its methodology h
appeared in Ref.@2#. Application of this method to the prob
lem of diffusive heating by lower hybrid waves has appea
in Refs.@9# and@10#. In this method we define a distributio
function W(P,w,nuP0 ,w0 ,0) of the phase points as a func
tion of the position (P,w) at the mapping timen for a given
initial position (P0 ,w0) at time 0, and define its Fourie
transforman(mn ,qn):

an~mn ,qn!5
1

~2p!2E dwdPe2 imnw2 iqnP

3W~P,w,nuP0 ,w0 ,0!. ~9!

It is shown in Refs.@2# and @8#, using a standard mappin
equation, that the time asymptotic diffusion coefficient

DP5 lim
n→`

DPn5 lim
n→`

^~Pn2P0!2&
2n

can be expressed in terms of the second derivative ofan at
the origin of the Fourier space (m50,q501):

DPn52
4p2

2n

]2@an~0,q!eiqP0#

]q2 U
q501

. ~10!

Hereq501 is used here for convenience only. This meth
requires the sign ofq at all times, as will become obviou
soon ~see Appendices!. It is also shown that the function
an(m,q) at the origin is obtained from the recursion relatio
for an(mn ,qn),

it
.

1-5
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GUNYOUNG PARK AND C. S. CHANG PHYSICAL REVIEW E64 026211
an~mn ,qn!5(
j n

Jj n
~ uqn21uK !an21~mn21 ,qn21!e2mn

2l 2/2

~11!

by iterating backward in time using the selection rules

mn215mn1 j n sgn~qn21!,

qn215qn1~21!nmn , ~12!

to choose the proper paths in the Fourier space. Basic m
ods to derive the diffusion formula~10!, recursion relation
~11!, and selection rules~12! are the same as those in Re
@2# and @8#, which developed the methods for the standa
mapping@without the toggle factor (21)n in our mapping#.
For the sake of completeness, we present these derivatio
Appendix A.

In the Appendix A, it is also shown that the diffusio
coefficient in the dominant directionw can be expressed i
the symmetric way to Eq.~10!:

Dw5 lim
n→`

Dwn
5 lim

n→`

^~wn2w0!2&
2n

,

and

Dwn
52

4p2

2n

]2@an~m,01 !eimw0#

]m2 U
m50

. ~13!

There are countless proper Fourier paths satisfying
selection rules. Each Fourier path is associated with the
responding set of$ j i%. All these Fourier-space paths must
summed up to obtain accuratean(0,01), which is practi-
cally impossible. Instead, we obtain an approximate exp
sion for an(0,01) by taking the dominant Fourier-spac
paths that gives the lowest-order contributions. It is sho
in Appendix B that the dominant contribution t
an(m,q)um50,q510 comes from the paths staying at the o
gin of the Fourier space forever, to yield

an~m,q!5
1

4p2
@J0~qK!e2m2l 2/2#ne2 iqP0e2 imw0

for m→0,q→10. ~14!

Equations~10! and ~13! then yield

DP5K2/4 and Dw5 l 2/2. ~15!

Surprisingly, these are what we would obtain from the ra
dom phase assumption in Eq.~1!:

DP5
1

2
^~Pn112Pn!2&wn

5
1

4pE0

2p

K2 sin2wdw5
K2

4
,

and
02621
th-
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Dw5
1

2
^~wn112wn!2&j

5
1

2A2p
E

2`

`

l 2j2e2 j2/2dj5
1

2
l 2,

where ^•••&X means average overX. The only difference
between the present derivation in the Appendix B and tha
Refs. @2# and @8# is in the modification of the Fourier path
due to the toggle factor. However, this minor differen
brings out a major difference in the result: The present re
~15! turns out to be equivalent to the diffusion coefficie
under the random phase assumption, while the correspon
result without the toggle factor is not@2,8#. It may be impor-
tant to realize that, although we havel ,1, it is found here
that the toggle factor can wipe out the temporal correlati
making the diffusion obey the random phase dynamics.

The analytic results are compared with the numeri
simulation results. Earlier in this report, comparison of t
analytic detrapping timetav with the numerical result was
presented in Fig. 8, where an excellent agreement in thl
dependence allowed us to determine the proportionality c
stantl in the weak extrinsic noise regime. Figure 10 com
pares the transition probability ratiof P . Numerical result
shows f P50.15K, while the analytic result isf P50.25K.
This is a reasonable agreement considering the qualita
nature of the present analytic theory.

Diffusion coefficients in the dominant directionw are
compared in Figs. 2 and 3 as function ofl and K, respec-
tively, where the correction coefficient, as mentioned befo
is found numerically to be given as 1.56. The agreem
between the simulation and analytic diffusion is excellent
w direction. Diffusion coefficient in the nondominant dire
tion DP is compared in Figs. 4 and 5. Except for a min
adjustment in the proportionality constant in the analytic f
mula due to the difference between the numeri

FIG. 10. The relative transition probabilityf P as a function ofK
for l 50.02p. The points are numerical values, whereas the line
f P50.15K.
1-6
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DIFFUSION BY EXTRINSIC NOISE IN A TWO- . . . PHYSICAL REVIEW E 64 026211
f P (0.15K) and the analytic f P (0.25K), an excellent
agreement with the simulation results in thel andK depen-
dences is verified in the both weak and strong extrinsic no
regimes. Two distinctive scalings ofDP with respect tol and
K, which are separated around the pointl̂ 58l /(pK1/2).1,
are verified both numerically and analytically. In fact, all t
features of the analytic understanding agree with the num
cal observations.

IV. CONCLUSION

In the present work we have studied diffusion phenom
driven by extrinsic noise in a two-dimensional anisotrop
web mapping in which the two-dimensional variables p
different roles with respect to each other. The first variable
changed by a small intrinsic perturbationK, and the second
variable is varied by the changes in the first variable wit
toggle factor and an extrinsic noise with the strengthl. The
phase of the intrinsic perturbation is determined by
changes in the second variable. The mapping is differ
from the standard mapping due to the presence of the to
factor. A dominant diffusion then occurs in the extrinsica
noisy, second direction~dominant direction!. The intrinsic
stochastic web diffusion is assumed to be negligible. It
found that the diffusion mechanism is governed by the co
petition between the extrinsic noise frequency and the int
sic rotation frequency. If the extrinsic frequency is slow
than the intrinsic frequency, diffusion scales aslK 1/2 in the
dominant direction and aslK 3/2 in the nondominant direc
tion. If the extrinsic frequency is stronger, diffusion behav
asl 2/2 in the dominant direction and asK2/4 in the nondomi-
nant direction.

We understand the numerical results analytically: T
simulation results agree well with the analytic results. O
particularly interesting result is that the toggle factor chan
the fundamental nature of the mapping: The temporal co
lation, which exists without the toggle factor, is destroye
Thus, when the spatial correlation is destroyed by a stron
extrinsic noise frequency than the rotation frequency, the
fusion obeys the random phase dynamics due to the des
tion of the temporal correlation by the toggle factor. T
results presented here for the nondominant directional di
sion can be important in the case when the dominant di
tion is translationally invariant in equilibrium. In this cas
the diffusion in the nondominant direction determines
loss process of a physical system.
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APPENDIX A: DIFFUSION FORMULA, RECURSION
RELATION, AND SELECTION RULE
FOR THE FOURIER-PATH METHOD

The derivations given here are parallel to those in Ref.@2#
except for the minor modification caused by the toggle fac
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(21)n in Eq. ~1!. We first derive the diffusion formula~10!,
by substituting

W~P,w,nuP0 ,w0 ,0!5E dmndqneimnw1 iqnPan~mn ,qn!

into

DPn5
1

2nE dPdwW~P,w,nuP0 ,w0 ,0!P* 2, and

Dwn
5

1

2nE dPdwW~P,w,nuP0 ,w0 ,0!w* 2,

whereP* 5P2P0 andw* 5w2w0, we obtain

DPn5E dmndqn

1

2n
eimnw01 iqnP0E dP* dw* P* 2

3eimnw* 1 iqnP* an~mn ,qn!, ~A1!

Dwn
5E dmndqn

1

2n
eimnw01 iqnP0E dP* dw* w* 2

3eimnw* 1 iqnP* an~mn ,qn!. ~A2!

In Eq. ~A1!, integration overw* annihilates themn contri-
butions except formn50. In Eq. ~A2! integration overP*
annihilates theqn contributions except forqn50. Using
]2eiqP/]q252P2eiqP and integrating by parts twice, w
have

DPn52
2p

2nE dP* dqneiqnP* ]2

]qn
2 @an~0,qn!eiqnP0#,

Dwn
52

2p

2nE dw* dmneimnw* ]2

]mn
2 @an~m,01 !eimnw0#.

Since*dyeixy52pd(x), these equations become

DPn52
4p2

2n

]2@an~0,q!eiqP0#

]q2 U
q501

, and

Dwn
52

4p2

2n

]2@an~m,01 !eimw0#

]m2 U
m50

,

which is Eqs.~10! and ~13!. Settingq501 is for conve-
nience in applying the selection rule as shown
Appendix B.

Next, we derive the recursion relation foran(mn ,qn) and
the selection rules for (mn ,qn). We start with the inverse
Fourier transform, Eq.~9!,

an~mn ,qn!5
1

~2p!2E dwdPe2 imnw2 iqnP

3W~P,w,nuP0 ,w0 ,0!. ~A3!
1-7
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Using the identity relations

W~P,w,nuP8,w8,n21!5d~P2P82K sinw8!d@w2w8

2~21!n~P81K sinw8!2 l j8#,

W~P,w,nuP0 ,w0 ,0!

5E dP8dw8

3W~P,w,nuP8,w8,n21!W~P8,w8,n21uP0 ,w0 ,0!,

where the first relation is from the mapping equation, E
~A3! becomes,

an~mn ,qn!5
1

~2p!2E dwdPe2 imnw2 iqnPE dP8dw8

3d~P2P82K sinw8!

3d~w2w82~21!n~P81K sinw8!2 l j8!

3E dmn21dqn21eimn21w81 iqn21P8an21

3~mn21 ,qn21!. ~A4!

Delta function integration overw andP8 leads to

an~mn ,qn!5
1

~2p!2E dmn21dqn21dPdw8

3e2 imn[w81(21)nP1 l j8] 2 iqnP

3eimn21w81 iqn21(P2K sin w8)an21

3~mn21 ,qn21!. ~A5!

Averaging over the random variablej8 of normal distri-
bution of mean50 and variance51, we get the factor

e21/2mn
2l 2. Averaging overP produces a factor

2pd@qn212~21!nmn2qn#. ~A6!

The qn21 integration is then easily performed using th
delta function to yield

an~mn ,qn!5
1

2pE dmn21E dw8ei (mn212mn)w82 iqn21K sin w8

3an21~mn21 ,qn21!e2mn
2l 2/2, ~A7!

whereqn215qn1(21)nmn . Because of the identity

eiqn21K sin w85 (
j n52`

`

Jj n
~ uqn21uK !ei j nw8sgn(qn21),

a subsequent integration overw8 gives anotherd function
02621
.

d„mn212mn2 j n sgn~qn21!…. ~A8!

We then have

an~mn ,qn!5(
j n

Jj n
~ uqn21uK !an21~mn21 ,qn21!e2mn

2l 2/2

with the selection rules Eq.~12! given by the two delta func-
tions ~A6! and ~A8!.

APPENDIX B: DERIVATION OF EQ. „14…

In this section we derive Eq.~14!, the expression for
an(m,q)um50,q501 , by tracing the steps backward in tim
starting from the origin (m50,q50) using the paths define
by Eq. ~12!. We show that the dominant contribution com
from the Fourier Paths staying at the origin of the Fouri
space forever. The other significant contributions cancel e
other. The procedure described here is originated from
standard mapping analysis of Ref.@8#, but the actual Fourier
paths construction and counting are different due to the
istence of the toggle factor in the present work. Naturally,
result is different.

The selection rules~12! demand a sign forq at all times
includingq50. As long as the second derivative ofan(m,q)
with respect toq is continuous atq50, we can assign eithe
sign to q50. We chooseq501. The selection rules~12!
send the first backward path from (m,q)5(0,01) to either
(m,q)5(1,01) or (m,q)5(21,01). We can easily see tha
these two alternative choices produce symmetric results w
respect to them50 axis. It is, thus, sufficient to analyze th
backward paths with the first step to (m,q)5(1,01) only.
The recursion equation~11! requires that at every step alon
a Fourier-space path, the Fourier componentan decays by
the factorJj i

(uqi 21uK). SinceK!1 in the present problem

for a negligible intrinsic stochasticity, we haveJj (qi 21K)
;(qi 21K) j!1 andJ0(qi 21K).12(qi 21K)2/4. It is obvi-
ous that the lowest order contribution toan(0,01) comes
from the Fourier-space paths that stay at the origin the wh
time. Since the initial backward path out of the origin
either (m,q)5(1,01) or (m,q)5(21,01), which requires
j 561, the path back to the origin needs at least one m
step with j 571: Thus, the next order contribution t
an(0,0) is of orderK2. It can be easily seen from a simila
argument that any path going out ofumu<1 region can only
contribute toan(0,01) at most to orderK4. We, thus, ne-
glect any path going out of theumu<1 region.

Within the regionumu<1, we can describe a general pa
tern for the path. From a point on theq axis (m50), the next
path can only be to itself (j 50) or vertically up and down in
the m direction (u j u51). From a point away from theq axis
(m561) the next path can only be horizontal (j 50) or
diagonal (j 561).

One significant fact contained in Eq.~12! is that the
Fourier-space path can remain stationary for any numbe
steps at any point on the q axis (m50), accumulating per
every step the multiplication factorJ0(uquK). With these due
considerations we can generate theK2th order contributions
1-8
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to an(m,q)um50,q501 as shown in Fig. 11. Hereafter it i
assumed, without loss of generality, that the infinitely largn
is an even number. In Figs. 11~b! and 11~c! it is arranged in
such a way that a part of the Fourier-space paths stay sta
ary at (m,q)5(0,21) for an arbitrary number of steps.j 5
21 is chosen in Fig. 11~b! after an odd number of stationar
steps andj 51 in Fig. 11~c! after an even number of station
ary steps. These choices are necessary to have the paths
back to the origin on the second step after the station
point. Otherwise the Fourier-space path will turn into t
negativeq direction at (m,q)5(1,21) in Fig. 11~b! and at
(m,q)5(21,21) in Fig. 11~c!. One can directly calculate
the contributions toan(0,01) from the three paths depicte
in Fig. 11. For Fig. 11~b! we have, after summing over all th
possible odd numbered choices of steps at the statio
point,

FIG. 11. Three different Fourier-space paths providing theK2th
order contributions toan(0,q). Arrows indicate path direction back
ward in time. Thej values are for Eq.~12!. The filled circles at
(m,q)5(0,21) indicate stationary point.
02621
n-

go
ry

ry

(
n50

`

J1~qK!J1~K !J0
2n11~K !J21~K !J21~qK!e2 l 2

5J1
2~qK!J0~K !

J1
2~K !e2 l 2

12J0
2~K !

.
1

2
J1

2~qK!e2 l 2 for K!1. ~B1!

Note here that the summation over the number of station
steps raises the magnitude from;K4 to ;K2. The same
contribution can also be obtained for the path in Fig. 11~c!.
On the other hand for Fig. 11~a! it is

J1~qK!J0~K !J21~qK!e2 l 2.2J1
2~qK!e2 l 2. ~B2!

FIG. 12. Fourier-space paths extended from Fig. 11. The n
bers indicate traversing order.
1-9
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Therefore we can assert that the three paths from Fig
must be summed to zero, thus give null contribution
an(0,01).

The remaining Fourier-space paths staying within the
gion umu<1 are obtained by modifying the last backwa
step before returning to the origin for each path shown
Fig. 11. In Figs. 11~a! and 11~b! the modification occurs a
(m,q)5(1,21) as shown in Figs. 12~a! and 12~b!, and in
Fig. 11~c! at (m,q)5(21,21) as shown in Fig. 12~c!. From
the same argument as above it is trivial to see that the c
tribution to an(0,0) from the paths in Fig. 12~b! and 12~c!
cancel exactly with those from Fig. 12~a!. We note here that
since the paths go through the stationary point twice,
total contribution is enhanced by;K24. In this way it can
be ascertained that all the Fourier-space paths confi
within the region21<q<0 andumu<1, ending at the ori-
gin through the position (m,q)5(1,01), are summed to
zero to theK2 order.

The above logic can be extended to the paths turning
the negativeq direction at (m,q)5(1,21) in Figs. 11~a! and
11~b!, or (m,q)5(21,21) in Fig. 11~c!. It is trivial to see
ett

02621
11
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n-
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that the contributions sum up to zero in the same way as
Fig. 11 if we note that these paths after turning to the ne
tive q direction must also come back to the stationary po
(m50,q521) in order to contribute toan(0,01) to the
orderK2. Definitely it must be emphasized that all the dom
nating Fourier-space paths come back to the origin certai
Instead of returning to the origin, if the path is halted a
certain point (0,r ) alongq axis, then the multiplying factor
J0

n(ur uK) is attached to the corresponding path’s contributio
thus becomes negligible@8# in the limit of n@1/(ur uK)2.
Thus, to the orderK2, the only contribution toan(0,01) is
from the paths staying at the origin forever,

an~m,q!um50,q5015
1

4p2
@J0~qK!e2m2l 2/2#ne2 iqP0e2 imw0

1O~K4!,

which is the Eq.~14!. We note here that evaluation o
an(m,q)um50,q501 to theK2 order has been necessary sin
the second derivative inq is of orderK2.
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