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Explosion of limit cycles and chaotic waves in a simple nonlinear chemical system
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We consider a simple model of an autocatalytic chemical reaction where a limit cycle rapidly increases to
infinite period and amplitude, and disappears under variation of a parameter. We show that this bifurcation can
be understood from seeing the system as a singular perturbation problem, and we find the bifurcation point by
an asymptotic analysis. Scaling laws for period and amplitude are derived. The unphysical bifurcation to
infinity disappears under generic modifications of the model, and for a simple example we show is replaced by
a canard explosion, that is, a narrow parameter interval with an explosive growth of the amplitude. The
bifurcation to infinity introduces a strong sensitivity that may result in chaotic dynamics if diffusion is added.
We show that this behavior persists even if the kinetics is modified to preclude the bifurcation to infinity.
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[. INTRODUCTION cluded in a model the transient behavior will for a long time
Reaction schemes based on the cubic autocatalator as desemble the dynamics of the syst€Bn closely.
fined in Eqg.(1) below have been widely used as prototypes The system(3) has been studied in detail by Merkin,
for investigations into nonlinear dynamics of chemical reac-Needham, and Scoff]. It was shown that the limit cycles
tions. The central part of the scheme is a cubic autocatalyticapidly increase to infinite amplitude and period @sap-

step and a first-order decay of the catalyst, proaches a critical valug,, from above. Clearly, this un-
physical bifurcation to infinity limits the applicability of the
A+2B—3B (with ratek;ab’), B—C (with ratekyb), model (3), and it becomes interesting to establish whether

(1) the reaction scheme can be modified to avoid this bifurcation
while still retaining the simplicity of the pooled approxima-

wherea,b are the concentrations of the reactaAt® and  tjon. To this end, Merkin, Needham, and Sd@t added the
ki, k; are the rate constants. Here we are interested in studymcatalyzed reaction

ing reactions in closed systems where the reachaist pro-

duced by a slow first-order decay of a precurBor A—B (ratek;a) (4)
P—A (ratekop). (2)  yielding the differential equations

Clearly, the reaction based on the schertigsand (2) will du 5 dv )

eventually stop aP is consumed. However, if the reactadnt gt _pouetoru, e =uvt oA, ®

is initially present in a large amount, it is customary to in-
voke thepooled chemical approximatioand assume th&®  yiih r=kg/k,. It was shown that, as long as=0, an inter-

retains its initial concentratiop, throughout the reaction. 5 close toj., with rapid growth of amplitude and period
Introducing dimensionless variables, the differential equayesisted. However, the bifurcation to infinity did not occur

tions for the reaction scheme assuming the reactor is wellg ihe amplitude of the limit cycles remains bounded. Gray,

stirred become Roberts, and Merkifi3] further added a quadratic autocata-
lytic reaction,
du oy dv . 3
dt MU g Tw Y A+B—2B (ratek,ab) (6)
where u=k;/k,a, v=+k;/k,b, t is the dimensionless resulting in
time scaled from physical time byk; and u
= Jkq /K;Kopo/K,. This system allows limit cycles, corre- du ) dv
sponding to an oscillating reaction, for certain valuesuof at pTUrtorussw,  ge=uvtoutrut s,
The oscillations are, of course, artefacts from the pooled ap- 7

proximation, but even if the slow consumption Bfis in-
with s=Kk,/\k.k, and again obtained bounded trajectories

only.
*Electronic address: m.brons@mat.dtu.dk The rapid but bounded growth of limit cycles over a short
TElectronic address: jstu@novo.dk parameter interval as it occurs in the systefisand (7) is
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known as acanard explosionThis is mathematically well fied system5) and give a simple geometric explanation why
understood in singular perturbation systems of the form  modifications of the original systef3), such as Eqg5) and
(7), behave as they do.

We have previously7,8] analyzed bifurcations to infinity
du dv in models from mathematical economics and biochemistry.
grfuv,pe),  gr=eg(uu,ue), ® i those studies we have, as[it, introduced critical points

at infinity and seen the bifurcation as being associated with
heteroclinic connections of the separatrices of these critical
in the limit e—0 [4]. Canard explosions in chemical systemspoints. The present analysis is simpler in that it only involves
have been identified in the Oregonaf6il and the Edblom-  objects in the Euclidean plane.
Orban-Epstein(EOE) reaction[6]. If the reactor is not well mixed, diffusion must be taken in
In the present paper we show that it is possible to rewriteaccount. If the reactor is spatially one dimensional the

the system3) as a singular perturbation system. This pointpooled kinetics of Eq(3) leads to the reaction-diffusion sys-
of view gives rise to a simple geometric interpretation of thetem

bifurcation to infinity and allows an asymptotic determina-

tion of u... We also obtain scaling laws for amplitude and au 92U , v v )

period of the limit cycle as the bifurcation to infinity is ap- E:)‘ugﬂ“_uv ' E:)‘UE“LUU —u, (9
proached that deviate from the result§ 1, and we confirm

our results by numerical computations. The singular perturwhere\, ,\, are diffusion coefficients. The basic pattern for-
bation analysis is basically the same as is applied in thenation from local bifurcations subject to the no-flux bound-
analysis of the canard explosion. We also analyze the modary conditions

(a) q (b) q

S 2 S 2
Mg
My

51 Sl

=

P

FIG. 2. Sketches of thp andq phase plane(a) For the systent3), the branches; andS, of the slow manifold with stable manifold
Mg and the unstable manifold ; , both in the boundary layer &,. The configuration shown witM 5 aboveM ; allows a limit cycle.(b)
The slow manifold for the systeitb) with turning pointT where the brancheS; andS, meet.
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TABLE |. Results of the asymptotic calculation ¢f, for e
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motion. A formulation as a singular perturbation problem can

=1 be achieved by following the analysis 8] for the EOE
reaction. The key is the fact that the right hand sides of the
Order Contribution ~ Approximation Relative error  (jfferential equations are almost identical, except for a sign.
k M p=38_oun 8 ol e Indeed, the system can be written in the form
0 1.00000000 1.00000000 0.11072139 du dv
1 —0.12500000 0.87500000 0.02811877 G- fuo) oo, G=-fuv), 12
2 0.03125000 0.90625000 0.00659126
3 —0.00488281 0.90136718 0.00116781 with
4 —0.00449970 0.89666748 0.00405224
5 0.0757980 0.90424728 0.00436680 f(uv)=v—uv? g(uv,pu)=p—uv. (13
6 —0.00622034 0.89802694 0.00254226
7 0.00072032 0.89874726 0.00174218 If g is replaced by 0in EC(lZ) the isolated critical point
8 0.00958743 0.90833470 0.00890678 is replaced by two curves of critical pOintS,
9 —0.02425103 0.88408367 0.01802935 v=0 and = up=0. (14)
10 0.03671743 0.092080109 0.02275347
Hence, if we modify(12) to include an auxiliary parameter
as
Jdu  Jdv
i &X—O for x=0,1, (10 du

dv
—=f(u,v)+eg(u,o,u), —-—=-—Ff(u,v), (15

dt dt
has been studied in some det@l10]. In [11] it was noted

that the amplitude of limit CyCIes born in a HOpf bifurcation we obtain a Singu|ar perturbation prob|em in the limit 0,
may obtain large amplitudes asis decreased. We analyze and we recover the original problem wher-1. With the
this behavior for a case where both the diffusion constantghange of variables

are small and show that the bifurcation to infinity introduces

a sensitivity that may result in chaotic dynamics. Finally, we u—vu u+u
show that this behavior is basically linked to the singular P=—— 47—
perturbation nature of the problem, as it persists even if the

kinetics is modified to the forn). we obtain the system in the standard singular perturbation

(16)

form,
II. DYNAMICS OF THE WELL-STIRRED REACTOR
. _ dp dg  9(q+p.,g—p,u)
A. Singular perturbation of the pooled model rTa f(q+p,qa—p), 9 ¢ 2 (17)
The system3) has a critical pointi§,v) = (1/x, ) which o
is stable foru>1 and loses stability in a Hopf bifurcation at ~ The curves of equilibrid14) become
n=1. By standard procedur¢4] one finds the bifurcation
Sl:pZQa SZ:q:\/p +11 (18)

to be supercritical, so stable limit cycles exist for< 1. As
wu is decreased the amplitude and period grows rapidly, and

when u is decreased beyond the numerically obtained valuand are denoted bslow manifoldsIn the limit =0 itis not
K y y Qifficult to see that the critical points dB; are stable and the

critical points onS, are stable whep<0 and unstable when
p>0. Whene is sufficiently small and nonzero, there are
the limit cycle disappears and only unbounded trajectorieboundary layers close to the slow manifolds with slow dy-
remain. See Fig. 1. namics. Close to a stable part there is an attracting trajectory
The limit cycles display the characterstics of relaxationand close to an unstable part there is a repelling trajectory.
oscillations: a slow phase is followed by fast, almost linearThis is the content of Tikhonov's theorefsee, e.g.[4] or

M=0.9003157807722; (12)

(a) (b)
30 40
35 _\o\* FIG. 3. Scaling of amplitudé and periodT
30 "“‘*\* close to the bifurcation to infinity. The markers
- o B ’\a\* show numerical simulations. The lines show
20 S least-squares fit from the data with In€ ..
15 P ] <-5 yielding A=—0.9189 Infu— u..)—0.0506,
10 Hd T=—1.120 Infu— 1., +5.547.
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[12] for a geometric version based on center manifpldibe 8 - - . - .
separating trajectories, denoted stable and unstable manifold
respectively, are shown for the boundary layeiSefin Fig.

2(a). sty ]
The explosion of the limit cycle can now be understood \/——j
from the relative position ol andM . When the configu-

ration is as shown in Fig.(3d), the limit cycle is attracted to
Ms on the stable side 08, in a slow motion. Asp=0 is
passed it is repelled up and away frdvh, and moves rap-
idly back towardsM g as can be seen ifa) and (b) of the N
bottom row of Fig. 1. If the distance betwedhs and M
(measured, e.g., @=0) is decreased, the limit cycle comes
closer toM and spends longer time in the unstable bound- . . . . .
ary layer before it is repelled. Hence the amplitude and pe- o 02 04 0.6 0.8 1 12
riod increases. IMg moves to the other side d¥l, the
trajectories coming from the stable boundary layer enters the

unstable boundary layer beloM, for a while and are then line is the steady stat@ull line stable, dashed line unstabldhe

repelled downwards |r_1to the stable b_oundary Iayeﬁgf heavy line is the limit cycle. The veritcal line is the asymptotic
where unbounded motion occurs. In this case no limit Cyde%anard point from Table lly.~0.875
.~0.875.

can exist. This is shown ifc) in the bottom row of Fig. 1.

M H::gﬁ/i th:g"}fg?;%‘;i:;g@?;a”;\pnl't:semha}[gﬁgnesxwrngecomes poor if too many terms in the series are included. If
.S u == J Y. Symp PT€S%he series foru is truncated when the absolute value of the

sion for.th|s trajectory and the cprrespondlng yalue;uoc[an contribution is minimal at order 4, the error is only about

be obtained as follows. Expansions of the trajectory '

Il
'
L

......

FIG. 4. Bifurcation diagram of Eq5) for r=0.005. The light

0.4%.
q(p)=do(P) + €qs(p) + €*dz(p) + - - -, (19
. . . B. Scaling
and the bifurcation point From the geometric analysis it is also possible to under-
_ 2 stand the scaling close to the bifurcation. As the bifurcation
Poo= ot €py T €prpt - -, 20 s approached, the limit cycle spends more and more time in

the unstable boundary layer 85. Returning to the original
(u,v) variables, we have here that=1/u, and from the first
equation of Eq(3) we getu(t)~K+ ut for some constant
K. Let »=v — 1/u denote the deviation of the trajectory from
he slow manifold. We get

are inserted in the Eq$17), and terms of the same order in
e are collected. To ordee, this gives rise to an algebraic
equation forq,(p). In general, this has a singularity pt
=0, but x4 can be chosen in a unique way to remove the
singularity and hence makes the trajectory well defined fof
all p.

Implementing this procedure in a computer algebra pro- (&) (b)

gram yields the results in Table I, where the expansion of the 14 14
parameter is shown foe=1. The asymptotic nature of the }(2) }(2)
series is apparent, as the agreement with the numerical resu, g s 8

6 6

TABLE II. Asymptotic calculation ofu, for Eq. (5) for r ‘2‘ C\ ‘2‘ t
20005 0 — 0
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14

Order Basic term Correction term  u. for r=0.005 uo ug
k e i) - o(d+ uir) (© ()
0 1.00000000 —1.50000000 0.99250000 14 14
1 —0.12500000  1.81250000 0.85843750 i iy
2 0.03125000 —1.23437500 0.88351563 s 8 s 8
3 —0.00488281 —0.11767578 0.87804443 2 \ 46;
4 —0.00469971 0.25778198 0.87463364 ) }k\ s
5 0.00757980 —0.12494087 0.88158874 0 0 S
6 —0.00622034 —0.04510999 0.87514284 0 2 46 8101214 0 246 8101214
7 0.00072032 0.17333773 0.87672986
8 0.00958744  —0.21272633 0.88525366 FIG. 5. Solutions of Eg.(9) showing [u(x=0.5f),v(x
9 —0.02425103 0.11999141 0.86160259 =0.51)]. (@) u=0.904, simple limit cycle(b) u=0.9001, period-2
10 0.03671743  —2310.22742 —10.6528170 limit cycle. (c) w=0.90007, period-4 limit cycle.(d) n

=0.900 055, chaos.
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FIG. 6. Solution of Eq(9) at «=0.900 055,
corresponding to Fig.(d). The top part shows,
the lower showsi. The concentrations are shown
in a scale from blacklow) to white (high).

t

dy these two kinds of limit cycles occur again exactly when
T 7+ (K+ ut) 9+ > (21) Ms=My . The parameter value where this occurs has previ-
(K+put) ously been denoted theanard pointu. [6]. This may be

determined asymptotically with the method we used before,
gsince the procedure depends only on the system in a neigh-
borhood ofp=0. By this we have computed the canard point
e {(1+5K—du)|* for small values of by further expanding each term of Eq.
() =|K+ut—pu- 5 o (22 0 inr asu=pP+uPr+ - - .. The results of the com-
putations are shown in Table II. Again the series is clearly
where 5= 7(0). Forsmall 5, that is, for trajectories close to asymptotic, and breaking &t=4 where the contribution

For larget the last term becomes negligible, and disregardin
this term the solution of Eq21) becomes

S, this is is minimal we obtainu.~0.875. The numerically obtained
bifurcation diagram in Fig. 4 confirms the interpretation of
n(t)=8e'+0(5?%). 23 4.

Let the thickness of the boundary layer be denotedAby
Then a trajectory leaves the boundary layer whgh) = A,

that is when Ill. THE REACTION-DIFFUSION SYSTEM

The homogeneous branch of steady solutions
tzlné and u=K+p Iné. (24) [u(x,t),v(x,t)]1= (1w, ) for_ _the_ reaction_-diffusion system
é é (9) and (10) can loose stability in both pitchfork and Hopf
) o bifurcations. Further, the bifurcating steady branches has sec-
Assuming that the entry of the limit cycle to the unsteadyongary bifurcations, and a very rich set of possible structures
boundary layer is proportional tp—u.., that is,6=a(u  exists, as described [9,10]. Here we consider the complex
— i), We get that the amplitude of the limit cycles scales  gynamics associated with the bifurcation to infinity in a case

as the logarithm ofu— ., but in contrast to the \with small diffusion coefficients
— w..) Y2 scaling proposed ifi2] on the basis of several

local expansions of the limit cycle. Our result is confirmed

by numerical computations shown in Fig. 3. ) ®

14 14
_ 12 12
C. Canard explosion 10 10
The bifurcation to infinity is structurally unstable in the = % -
sense that a generic modification of the equations will de- 4 1N
stroy the behavior. However, an explosive change of ampli- 3 B 3 N
tude will still occur, as we will demonstrate for the system 0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14

(5). Using again the transformatiqi6) the system still has w0 @
the form(17), now with

f(uv)=v—uv?-ru, g(u,v)=p—v. (25) 14

Introducing a small parameter as before, we now obtain a,
single slow manifoldu=uv/(v?+r), as sketched in Fig.(B).

This is no longer unbounded in theedirection, and trajecto-
ries in the boundary layer &, must leave it as the turning
point T is reached. Here trajectories go rapidly at nearly con-
stant q to the stable part ofS,, and are not unbounded.
Hence, ifMg is below M, limit cycles of large but finite FIG. 7. Solutions of Eq(5) with diffusion added for =104
amplitude will occur. IfMg is aboveM, there are smaller showing [u(x=0.5%),v(x=0.5t)]. (@ w=0.905. (b) u
limit cycles that never reacB;, and the boundary between =0.89969.(c) «=0.899 60.(d) x=0.899 587.

/

0 2 4 6 8 1012 14 0 2 4 6 8 1012 14

o o
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0.009 9 neous, and the system essentially behaves as if no diffusion
N=—— =0.0091189065, )\U:R))\UZO.OOB 2070159. was present with slow changes of concentrations. However,
77 as u becomes sulfficiently large and becomes sufficiently
(26) small a fast wave moves across the domaibgecomes small

We have performed simulations with the program reactiorRndv becomes large, and an almost homogeneous state is
diffusion system solver{13], which employs a Crank- reestablished. This is repeated in an irregular pattern, and the
Nicholson scheme with a Runge-Kutta method for the timeslow/fast behavior again confirms the singular perturbation
integrations. We have used 50 spatial grid points and verifielature of the system.
the computations by making sample runs with 100 points The unbounded solutions allowed by the reaction-
that yielded almost identical results. The Galerkin methodliffusion system will again disappear if the reaction scheme
used in[11] turned out to give incorrect result®egative is modified. However, the chaotic dynamics may persist, as it
concentrations for the present choice of diffusion coeffi- stems from the sensitivity of the system to the relative posi-
cients. tions of Mg and M. To demonstrate that we have per-
Results from the simulations are shown in Fig. 5. For aformed simulations with the reaction-diffusion system where
high value of u a simple limit cycle exists, but ag is  the kinetics is given by Eq5). Results are shown in Fig. 7,
decreased, period doubling bifurcations leading to chaos oavhere essentially the same behavior as without the modifi-
cur. Further decreasing yield chaotic transients, with a cation is found. Hence, the chaotic dynamics is not related to
long time behavior as in Fig.(8), but with solutions even- the bifurcation to infinity itself, but is rather associated with
tually havingu—oo,v—0. the sensitivity of trajectories in a parameter region where a
The spatial structure of the solutions in the chaotic regimestable and an unstable boundary layer are close and interact
can be seen from Fig. 6, where a few oscillations are showrstrongly, and may as well occur in a system that exhibits a
Most of the time the concentrations are almost homogeeanard explosion.
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