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Effects of geometrical ray chaos on the electromagnetic eigenmodes
of a gradient index optical cavity
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Electromagnetic analogies of quantum chaos are investigated in two-dimensional optical cavities which have
reflective surfaces and contain a gradient refractive index medium. As the shape of the cavity is transformed
continuously from a rectangle to a parallelogram, the geometrical ray paths undergo a transition from stable to
chaotic dynamics. In the chaotic regime, the spectral statistics of the cavity are accurately described by random
matrix theory. In addition, the electromagnetic mode spectrum of the cavity is modulated by both real and
ghost periodic ray paths. These paths also ‘‘scar’’ the electric field intensity distributions of regular subsets of
cavity eigenmodes.
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I. INTRODUCTION

Several key advances in the understanding of quan
chaos have resulted from the study of billiard systems
which a particle is confined in a two-dimensional~2D! po-
tential well. For example, wave functions which a
‘‘scarred,’’ having a high concentration of probability densi
along an unstable but periodic classical orbit, were first id
tified in numerical studies of the stadium billiard@1#. They
were subsequently detected in experiments on both
stadium-shaped microwave cavities@2# and semiconducto
quantum dots@3#. Wave function scarring also has a pr
nounced effect on the current–voltageI (V) characteristics of
resonant tunneling diodes~RTD’s! containing a wide quan
tum well in a tilted magnetic field@4#. In the RTD’s, the hard
walls of the quantum well and the parabolic potential~which
corresponds to the magnetic field! form an unusual 2D bil-
liard with chaotic electron dynamics. This type of billiar
supports a hierarchy of unstable and stable periodic orb
But the electron scattering rate due to longitudinal opti
phonon emission is so high thatI (V) measurements can onl
resolve quantized states corresponding to a few of the sh
est periodic orbits@4#.

In this paper, we analyze in detail the geometrical r
dynamics and electromagnetic eigenmodes of a chaotic o
cal cavity. The cavity, a parallelogram with reflective su
faces and gradient refractive index~GRIN! interior, supports
ray dynamics and eigenmodes analogous to those of an
tron in the RTD. In previous work@5# we showed that thes
properties of the cavity should be accessible to laser tra
mission experiments, with the advantage that the long co
ence length of laser light will give very high resolution.
particular, for a cavity with semisilvered~partially transmit-
ting! end surfaces, the transmission coefficient should exh
a series of sharp resonant peaks as a function of laser
quency. These peaks are associated with the eigenmod
the closed cavity~fully reflective surfaces! and the underly-
ing dynamics of its geometrical ray paths. Here we prese
detailed analysis of the spectral fluctuations and sca
modes associated with the chaotic ray dynamics of the clo
cavity.
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We consider a 2D parallelogram cavity with perfectly r
flecting walls, containing a dielectric material with a sp
tially varying refractive index profile@Fig. 1~a!#. Such a cav-
ity could be made for planar ‘‘meridional’’ rays@6# by
silvering the sides and angled ends of a commercially av
able gradient index lens@5#. Based on a real lens@7#, the
index profile of the cavity studied in this paper isn(y)
5n0(12a2y2)1/2, wheren051.5, a5608.84 m21 andy is
the radial distance from its axis@Fig. 1~b!#. Its length and
diameter areL52.5831023 m and W51023 m, respec-
tively.

II. GEOMETRICAL OPTICS

The geometrical ray paths in an optical medium with
arbitrarily varying refractive index are determined by the r
equation@8#

d

dsS n
dr

dsD5¹n, ~1!

FIG. 1. ~a! Schematic diagram of the 2D closed gradient ind
cavity showing the tilt angleb of the planar ends. The dashed lin
shows the direction of the ray path atx50 ~dotted line! relative to
thex andy axes. The gray-scale shading shows the refractive in
variation ~gray high, white low!. ~b! The refractive index profile
n(y).
©2001 The American Physical Society03-1
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wherer is a position vector ands is a displacement along th
ray path. This equation can be rewritten as

d2r

dq2
5n¹n, ~2!

where d/dq5nd/ds. For the refractive index profilen(y)
given above, thex andy components of Eq.~2! are

d2x

dq2
50 ~3!

and

d2y

dq2
52n0

2a2y, ~4!

respectively. The rays described by Eqs.~3! and ~4! follow
sinusoidal paths inside the cavity but undergo specular
flection at the silvered surfaces. The geometrical ray pa
therefore consist of sinusoidal path segments linked by
flections which occur at regular or irregular time interva
depending on the tilt angleb of the angled end surfaces@Fig.
1~a!#. When b50°, the cavity is rectangular and the ra
paths are reflected at regular intervals and are stable@Fig.
2~a!#. But whenbÞ0°, the angled end surfaces interrupt t
regular sinusoidal path segments at irregular times, gene
ing chaotic ray dynamics@Fig. 2~b!#. The combination of a
smooth refractive index profile~analogous to the effective
parabolic potential for an electron in a magnetic field@4#!
and an impenetrable boundary wall makes an interesting
brid system that has characteristics of both the RTD
more traditional flat-bottomed 2D billiards.

FIG. 2. Typical geometrical ray paths in~a! a stable GRIN cav-
ity with b50°; ~b! a chaotic GRIN cavity withb520°; and~c! a
pseudointegrable constant index cavity withb520°.
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In the parallelogram cavity, the GRIN material is essen
for creating the chaotic ray paths. This is in contrast w
previous studies of chaotic rays in deformed optical fib
with a constant refractive index@9#. Without the index varia-
tion, polygonal 2D billiards either belong to the class
‘‘pseudointegrable’’ systems~if at least one interior angle is a
rational multiple ofp, like our parallelogram! or ‘‘ergodic’’
systems~if all interior angles are irrational multiples ofp).
In general the characteristics of the classical dynamics
pseudointegrable systems are closer to those of integr
~stable! systems than chaotic systems. Figure 2~c! shows a
typical ray path in a pseudointegrable parallelogram cavity
is important to note that, in common with the stable ca
shown in Fig. 2~a!, neighboring paths do not exhibit expo
nential divergence. Therefore neither of these systems ge
ate chaotic dynamics@10#, instead both support nonisolate
families of stable ray paths. This is in contrast to the chao
and isolated periodic ray paths which exist in the GRIN ca
ity shown in Fig. 2~b!.

To quantify the transition from stable to chaotic dynamic
Fig. 3 shows Poincare´ sections~slices through phase spac!
for tilt angles 0°<b<20°. The sections are generated

FIG. 3. Poincare´ sections showing coordinates (u,y) for rays
crossing the planex50 traveling from left to right in Fig. 1~a!: ~a!
b50°, ~b! b55°, ~c! b510°, ~d! b515°, and~e! b520°.
3-2
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plotting the variablesu andy ~see Fig. 1! each time the ray
path intersects the linex50 with dx/dt.0. At b50°, the
points lie on concentric elliptical rings@Fig. 3~a!# showing
that the ray paths are stable. Asb is increased to 5°, 10° an
15° @Figs. 3~b!–3~d!# the phase space reveals progressiv
shrinking, isolated KAM islands of stability@11# embedded
in a chaotic sea. Whenb520° @Fig. 3~e!# the phase space i
almost completely chaotic, and contains very few stable
lands, which are too small to show up in the figure.

III. SOLVING THE WAVE EQUATION

In quantum chaos, there are strong connections betw
the eigenenergies and eigenstates of the quantum system
the periodic trajectories of its chaotic classical counterp
Experimental studies of quantum chaotic systems have b
made using 2D microwave billiard cavities, which have e
ploited the formal identity of the Schro¨dinger equation and
electromagnetic wave equation@2#. Similarly we consider
the effects of chaotic ray dynamics in the GRIN cavity on
electromagnetic modes. In a 2D system, there are two m
ally orthogonal polarizations of the electromagnetic wav
either the electric fieldE or the magnetic fieldH is perpen-
dicular to the plane of the cavity. These field orientations
called the transverse magnetic~TM! and transverse electri
polarizations, respectively. In this paper we consider T
modes, since they obey Dirichlet boundary conditionsE
50) on the perfectly reflecting cavity walls, identical to th
boundary conditions for wave functions in a hard-wall
quantum billiard. The modes obey the Maxwell equation

¹3E52
]B

]t
~5!

and

¹3H5
]D

]t
, ~6!

whereB5m rm0H andD5e re0E. We assume that the cavit
material is nonmagnetic (m r51) and has a refractive inde
profile n2(y)5e r(y) @12#. We take the curl of Eq.~5! and
substitute for¹3H from Eq. ~6! to obtain

¹3¹3E52
n2

c2

]2E

]t2
. ~7!

By expanding the vector triple product in Eq.~7! and substi-
tuting

¹•E52E•
¹n2

n2
, ~8!

~which is derived from¹•D50) we obtain the wave equa
tion
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¹2E2
n2

c2

]2E

]t2
52¹S E•

¹n2

n2 D . ~9!

In general, the term on the right-hand side of Eq.~9! couples
the spatial components ofE, causing the polarization of the
wave to change with time. However, for TM modes in t
2D GRIN cavity, the coupling term is zero becauseE and
¹n2 are orthogonal. For a time-harmonic field of angu
frequencyv the nonzero field componentEz(x,y) exactly
obeys the scalar wave equation

]2Ez

]x2
1

]2Ez

]y2
1k2n2Ez50, ~10!

wherek5v/c is the free-space wave number. Equation~10!
is analogous to the 2D Schro¨dinger equation. Discrete eigen
modes, analogous to quantum eigenstates, with wave n
bersk5kj ( j 51,2,3, . . . ) form within the cavity becauseEz
must vanish on its perfectly reflecting surfaces.

In our previous work on this system, we used a four
order accurate finite difference technique@13# to solve Eq.
~10! for the refractive index profile of the GRIN lens. In th
paper we use a different solution method which allows us
calculate eigenmodes at frequencies an order of magni
higher than was possible using the finite difference meth
This method is based on the plane wave decomposi
~PWD! technique developed in studies of quantum chaos
billiard systems@14#. We write Ez(x,y)5F(x)G(y) and
separate Eq.~10! to yield

d2F

dx2
1n0

2kx
2F50 ~11!

and

d2G

dy2
1@n0

2ky
22n0

2k2a2y2#G50, ~12!

wherekx
21ky

25k2. The even and odd parity particular solu
tions of Eq.~11! are

Fe~x!5 cos~n0kxx! ~13!

and

Fo~x!5 sin~n0kxx!, ~14!

respectively. Less trivially, the even and odd parity solutio
of Eq. ~12! are

Ge~y!5 expS 2
n0ka

2
y2DFF1

4
2

n0ky
2

4ka
;
1

2
;n0kay2G ,

~15!
3-3
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and

Go~y!5y expS 2
n0ka

2
y2DFF3

4
2

n0ky
2

4ka
;
3

2
;n0kay2G ,

~16!

whereF is any general solution of Kummer’s equation@15#.
A convenient particular solution is the confluent hyperge
metric function 1F1 which has the series expansion

1F1@a;b;z#5 (
n50

`
~a!nzn

~b!nn!
, ~17!

where (a)n5a(a11)(a12) . . . (a1n21).
The rotational symmetry of the cavity@see Fig. 1~a!# re-

quires that its eigenmodes have one of two parit
E6(x,y)56E(2x,2y). Following the PWD method, we
write these independent modes as expansions over com
tions of Eqs.~13!–~16!:

E1~x,y!5(
i 51

N

@uiFe~x!Ge~y!1v iFo~x!Go~y!#, ~18!

and

E2~x,y!5(
i 51

N

@uiFe~x!Go~y!1v iFo~x!Ge~y!#, ~19!

where$ui% and$v i% are expansion coefficients relating tokxi

and kyi
, respectively. For a givenk and parity,N arbitrarily

selectedkxi
andkyi

pairs are chosen subject to the conditi

kxi

2 1kyi

2 5k2, giving a total of 2N expansion coefficients. To

find these coefficients we construct a matrix equation by c
sidering 2N21 points around one rotationally symmetr
half of the cavity perimeter@on which the Dirichlet boundary
condition ensuresE(x,y)50] and one point within the cav
ity @where we chooseE(x,y)51]. The matrix is close to
singular for useful values ofN, so we solve the matrix equa
tion by singular value decomposition@16#. The frequencies
of the eigenmodes are found by calculating the ‘‘tensio
T5( j uE(xj ,yj )u2 @2,14# as a function of frequency atinter-
mediatepoints (xj ,yj ) between the 2N21 points used in the
matrix equation. The eigenfrequencies are found by sea
ing for minima inT (T50 at an exact eigenfrequency!.

IV. ANALOGIES WITH QUANTUM CHAOS

To investigate the connections between the chaotic g
metrical ray paths and the eigenmodes of the cavity, we h
calculated the first 1000 modes using the above techni
The density of the eigenmodesr(k) can be written
02620
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r~k!5(
j

d~k2kj !

5 r̄~k!1 r̃~k!, ~20!

where r̄(k) is a smooth, monotonically increasing avera
density andr̃(k) is the remaining fluctuating contribution
The average density is given by the Weyl formula@11# and,
by analogy with quantum billiards containing a spatia
varying potential@17#, is given by

r̄~k!5
An̄2

2p
k2

Pn̄

4p
, ~21!

where A and P are the area and perimeter of the cavi
respectively,n̄2 is the mean ofn2 over A, andn̄ is the mean
of n overP. As with quantum chaotic systems, the frequen
spacings between adjacent cavity eigenmodes are affecte
the underlying dynamics of the geometrical ray paths. If
frequencies are scaled so thatr̄(k)51 for all k then, for
stable nonchaotic dynamics, random matrix theory pred
that the probabilityP(s)ds of finding a scaled frequency
spacing betweens ands1ds is given by the Poisson distri
bution. For time-reversible strongly chaotic dynamics, t
scaled frequency spacings have a Gaussian orthogona
semble~GOE! distribution @11# given by

P~s!5
p

2
s exp~2s2p/4!. ~22!

The solid curve in Fig. 4~a! shows the probabilityN(S)
5*0

SP(s)ds of finding a scaled level spacing<S for the cha-
otic GRIN cavity withb520°. The distribution closely fol-
lows the GOE prediction~dashed curve! for strongly chaotic
systems. For comparison,N(S) for the Poisson distribution
is also shown~dot-dashed curve!.

We have also calculated the first 1000 eigenmodes o
pseudointegrable cavity of the same dimensions but wit
constant refractive index ofn51.480 07~this value was cho-
sen such thatr̄(k) for the pseudointegrable and chaotic ca
ties matched as closely as possible!. The frequency spacing
of pseudointegrable systems are not so well understoo
those of strongly chaotic systems. Numerical studies@10#
have shown thatP(s) in pseudointegrable systems follows
probability distribution intermediate between the integra
~Poisson statistics! and strongly chaotic~GOE statistics!
cases. To quantify the level statistics of the pseudointegra
cavity we fit the observed distribution to the phenomenolo
cal distribution

P~s!5~d11!C~d!sd exp@2C~d!sd11# ~23!

proposed by Brody@18#. The distribution parameterd can
vary continuously betweend50 ~Poisson statistics! and d
51 ~GOE statistics!, whereC(d)5†G(@d12#/@d11#)‡d11.
3-4
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A least-squares fit ofN(S) for the pseudointegrable cavity t
a Brody distribution @dotted curve in Fig. 4~b!# gives d
50.736. This indicates that without the GRIN material, t
statistics of frequency spacings differ significantly fro
those associated with strongly chaotic systems (d51).

The energy level spectra of quantum chaotic systems
exhibit long rangecorrelations associated with the unstab
periodic orbits of the corresponding classical system. T
fluctuating part of the energy level density is given by t
semiclassical trace formula~TF! for a quantum chaotic sys
tem @11#. By analogy with the TF, it follows that the contr
bution to r̃(k) from an unstable periodic ray of optical pa
length L has a period ofDv52pc/L and an amplitude
F(L) given by the Fourier transform

F~L!'E
0

kmax
r̃~k!U~k!exp~2 ikL!dk, ~24!

where kmax is the wave number of the highest eigenmo
considered andU(k) is the Bartlett window function@16#
which is used to suppress ringing in the Fourier transfo
The power spectrum ofr̃(k) shown in the upper part of Fig
5 is calculated for the first 1000 modes of the GRIN cav
and reveals a series of numbered peaks atL values equal to
the optical path lengths of the periodic ray paths shown

FIG. 4. Cumulative probability distributionsN(S) ~solid curves!
of finding a scaled frequency spacing<S for: ~a! the chaotic GRIN
cavity and~b! the pseudointegrable constant index cavity. In~a! and
~b! the GOE~dashed curve! and Poisson~dot-dashed curve! distri-
butions are shown for comparison. In~b! the Brody distribution
with d50.736~dotted curve! is also shown.
02620
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the lower part of the figure. The numbers to the left of ea
path specify the indices of the associated peaks in the Fou
power spectrum. In most quantum chaotic systems, the p
ods of the relevant unstable periodic orbits change with
ergy, broadening the peaks in the Fourier transform. By c
trast, as the GRIN cavity is an optical system, the perio
~path lengths! of the geometrical ray paths are independe
of v. This means that the widths of the peaks inuF(L)u2 are
limited only by the finitekmax. This allows us to match the
ray paths to the peaks very precisely~the discrepancy is
&1% for all peaks!. Peaks 1 and 2 correspond, respective
to single and double traversals of a simple ‘‘bouncing-ba
ray path across the cavity. There is a nonisolated family
these marginally stable paths which have previously b
identified in chaotic stadium billiards@19#. Peaks 4–8 are
associated with progressively more complicated unstable
riodic ray paths involving multiple reflections from the ca
ity walls. Peak 9 corresponds to a stable periodic path. Th
is also an additional small, but isolated and distinct, pea
for which no periodic trajectory exists. This peak corr
sponds to a ‘‘ghost’’@20# of the stable periodic ray path
which is found in the pseudointegrable cavity of the sa
shape with constant refractive indexn51.480 07.

In addition to periodic fluctuations in the density of leve
of a quantum chaotic system, unstable periodic orbits a
cause enhancements of probability density~‘‘scars’’! along
the orbit in groups of eigenstates@1–4#. An analogous effect,
a concentration of electric field intensity along an unsta
periodic ray path, occurs in many of the eigenmodes of
GRIN cavity. The frequency spacing between success
groups of eigenmodes scarred by a particular unstable p
odic ray path of optical path lengthL equals the periodicity
of the corresponding fluctuations in the density of mod
Dv52pc/L.

FIG. 5. Top: Fourier power spectrum ofr̃(k) as a function of
optical path lengthL, showing numbered peaks. Inset box sho
peak 3 vertically magnified by factor of 20. Bottom: Real~solid!
and ghost~dashed! periodic ray paths which correspond to th
peaks indicated by the numbers to the left of each path.
3-5
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To illustrate this, Fig. 6 shows a sequence of eigenmo
which are scarred by the unstable periodic ray path labele
in Fig. 5. For comparison, a nearby mode~marked with an
asterisk! is also shown which reveals no trace of the scarr
effect. The frequency spacing between each group of sca
modes, Dv52.1431011 rad s-1, agrees closely with the
spacing ofDv52.1731011 rad s-1 predicted from the opti-
cal path length ofL58.67 mm.

To better identify scarred eigenmodes, we have calcula
the Wigner function

g~y,u!}E Ez~r1 l!Ez~r2 l!exp@22ikn~r !s• l#dl,

~25!

which, for each mode, gives a phase space representatio
the electric field distribution analogous to the classical Po
carésection@21#. In Eq. ~25!, r5(x,y), l is a displacemen
from r in the (x,y) plane ands5(cosu,sinu). The plots on
the left-hand side of Fig. 7 show the electric field intens
distributions of five different eigenmodes. Each of these d
tributions is scarred by the unstable periodic ray path sho
overlaid. The plots on the right-hand side show the Wig
functions of each scarred mode, which are calculated fox
50 like the Poincare´ sections in Fig. 3. The large positiv
values ofg ~white! are centered on the initial coordinate

FIG. 6. Horizontal lines: eigenfrequencies of the chaotic cav
with b520°. The solid lines mark the frequencies of the scar
eigenmodes shown on the right of the figure. The scarring ray p
is shown overlaid on the electric field intensity plots~white 5 0,
black 5 high! of each scarred mode. The spacing between e
group of scarred modes isDv52.1431011 rad s-1. The electric
field intensity variation of an unscarred eigenmode~marked with an
asterisk! is shown for comparison.
02620
s
4

g
ed

d

of
-

-
n
r

(y,u) ~marked by crosses! of the corresponding scarring ra
paths on the left of Fig. 7. This provides clear evidence t
the scar patterns originate from these ray paths.

V. CONCLUSION

We have shown that effects analogous to quantum ch
occur in a 2D parallelogram-shaped cavity with an appro
mately parabolic refractive index profile and reflective wal
Such cavities could be made from commercially availa
GRIN lenses@7#, which support 2D planar ray paths@6# as
studied in this paper, as well as more complicated 3D pa
In our previous work@5# we have shown that, by partially
silvering the end facets of the cavity, it is possible to pro
the mode spectrum by observing Fabry–Pe´rot-like reso-

y
d
th

h

FIG. 7. ~Left! Electric field intensity~white 5 0! in x-y plane
@axes shown below~a!# for eigenmodes of theb520° cavity. Scar-
ring ray paths are overlaid.~Right! Corresponding Wigner functions
g(y,u) ~black ! 0, gray 5 0, white @ 0! with coordinate axes
overlaid on~a!. The coordinate ranges are20.5 mm,y, 0.5 mm
and 0°,u,90°, as in Fig. 3. Crosses indicate initial coordinates
the scarring ray paths. The angular frequencies are:~a! 2.0426
31013 rad s21, ~b! 2.065831013 rad s21, ~c! 2.0200
31013 rad s21, ~d! 2.090431013 rad s21, and ~e! 2.0708
31013 rad s21.
3-6
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nances in transmission. In addition, we speculated that
doping the GRIN material with luminescent erbium ions,
might be possible to image scarred modes directly at n
optical frequencies. The major advantages of using opti
as opposed to semiconductor, systems to study quan
chaos-like effects are that they operate at room tempera
and that lasers have extremely long coherence lengths, o
ing the potential for very high-resolution experimental stu
ies. Such experiments could provide insights for understa
ing the properties of analogous quantum systems with mi
stable/chaotic dynamics which are of topical interest and
yond the scope of current theories@22#. Since GRIN materi-
om
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als are well developed and widely used in optoelectron
and telecommunications, they could provide a natural ro
to the technological exploitation of ray and wave chaos. F
example, we have shown that the exponential sensitivity
ray paths in this system have the potential for applications
ultrafast optical switches or sensors@23#.
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