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Effects of geometrical ray chaos on the electromagnetic eigenmodes
of a gradient index optical cavity
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Electromagnetic analogies of quantum chaos are investigated in two-dimensional optical cavities which have
reflective surfaces and contain a gradient refractive index medium. As the shape of the cavity is transformed
continuously from a rectangle to a parallelogram, the geometrical ray paths undergo a transition from stable to
chaotic dynamics. In the chaotic regime, the spectral statistics of the cavity are accurately described by random
matrix theory. In addition, the electromagnetic mode spectrum of the cavity is modulated by both real and
ghost periodic ray paths. These paths also “scar” the electric field intensity distributions of regular subsets of
cavity eigenmodes.
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I. INTRODUCTION We consider a 2D parallelogram cavity with perfectly re-
flecting walls, containing a dielectric material with a spa-
Several key advances in the understanding of quanturfially varying refractive index profilgFig. 1(a)]. Such a cav-
chaos have resulted from the study of billiard systems, ity could be made for planar “meridional” ray$6] by
which a particle is confined in a two-dimensior{@D) po- silvering the sides and angled ends of a commercially avail-
tential well. For example, wave functions which are able gradient index lenf5]. Based on a real leng], the
“scarred,” having a high concentration of probability density index profile of the cavity studied in this paper igy)
along an unstable but periodic classical orbit, were first iden="o(1— @?y?)? wheren,=1.5, «=608.84 m* andy is
tified in numerical studies of the stadium billiafd]. They ~ the radial distance from its axigtig. 1(b)]. Its length and
were subsequently detected in experiments on both 2[iameter areL=2.58<10"® m and W=10"° m, respec-
stadium-shaped microwave cavitif®] and semiconductor tively.
guantum dotg3]. Wave function scarring also has a pro-
nounced effect on the current—voltad®/) characteristics of IIl. GEOMETRICAL OPTICS

resonant tunneling diode®RTD’s) containing a wide quan-  The geometrical ray paths in an optical medium with an

tum well in a tilted magnetic fielf4]. In the RTD's, the hard  arhitrarily varying refractive index are determined by the ray
walls of the quantum well and the parabolic potentwhich  equation[8]

corresponds to the magnetic figltbrm an unusual 2D bil-

liard with chaotic electron dynamics. This type of billiard d/ dr

supports a hierarchy of unstable and stable periodic orbits. d_s<nd_s) =Vn, ()]
But the electron scattering rate due to longitudinal optical

phonon emission is so high thigly) measurements can only
resolve quantized states corresponding to a few of the short-
est periodic orbit$4].

In this paper, we analyze in detail the geometrical ray
dynamics and electromagnetic eigenmodes of a chaotic opti-
cal cavity. The cavity, a parallelogram with reflective sur-
faces and gradient refractive indé&RIN) interior, supports L
ray dynamics and eigenmodes analogous to those of an elec- (b) 1.50
tron in the RTD. In previous work5] we showed that these
properties of the cavity should be accessible to laser trans-
mission experiments, with the advantage that the long coher-
ence length of laser light will give very high resolution. In
particular, for a cavity with semisilveregartially transmit- -W/z : (') : W/z
ting) end surfaces, the transmission coefficient should exhibit
a series of sharp resonant peaks as a function of laser fre- y

quency. These peaks are associated with the eigenmodes ofF|G. 1. (a) Schematic diagram of the 2D closed gradient index
the closed cavityfully reflective surfacesand the underly-  cavity showing the tilt anglgg of the planar ends. The dashed line
ing dynamics of its geometrical ray paths. Here we present ghows the direction of the ray pathsat 0 (dotted ling relative to
detailed analysis of the spectral fluctuations and scarrethex andy axes. The gray-scale shading shows the refractive index
modes associated with the chaotic ray dynamics of the closedariation (gray high, white low. (b) The refractive index profile
cavity. n(y).
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FIG. 2. Typical geometrical ray paths {g) a stable GRIN cav-
ity with 8=0°; (b) a chaotic GRIN cavity with3=20°; and(c) a 0.25
pseudointegrable constant index cavity with 20°.

0.0}
wherer is a position vector andis a displacement along the -0.25
ray path. This equation can be rewritten as
025
d?r v @ A
——=nVn, 00F :
do?
025

whered/dg=nd/ds. For the refractive index profile(y)

: -90.0 -60.0 -30.0 0.0 30.0 60.0 90.0
given above, thexc andy components of Eq2) are

6 (degrees)
d2x FIG. 3. Poincaresections showing coordinate®,§) for rays
—— =0 3 crossing the plang=0 traveling from left to right in Fig. (@): (a)
dg? p=0°, (b) B=5°, (c) =10°, (d) B=15°, and(e) B=20°.

and In the parallelogram cavity, the GRIN material is essential

for creating the chaotic ray paths. This is in contrast with
d?y 2 5 previous studies of chaotic rays in deformed optical fibers
F =—Npay, 4 with a constant refractive indg®]. Without the index varia-
q tion, polygonal 2D billiards either belong to the class of
“pseudointegrable” systemf at least one interior angle is a
respectively. The rays described by E¢3). and (4) follow rational multiple of, like our parallelogramor “ergodic”
sinusoidal paths inside the cavity but undergo specular resystemg(if all interior angles are irrational multiples of).
flection at the silvered surfaces. The geometrical ray pathkr general the characteristics of the classical dynamics of
therefore consist of sinusoidal path segments linked by repseudointegrable systems are closer to those of integrable
flections which occur at regular or irregular time intervals (stablg systems than chaotic systems. Figufe) Zhows a
depending on the tilt anglg of the angled end surfacgsig.  typical ray path in a pseudointegrable parallelogram cavity. It
1(a)]. When B=0°, the cavity is rectangular and the ray is important to note that, in common with the stable case
paths are reflected at regular intervals and are stdbtg  shown in Fig. 2a), neighboring paths do not exhibit expo-
2(a)]. But whenB#0°, the angled end surfaces interrupt the nential divergence. Therefore neither of these systems gener-
regular sinusoidal path segments at irregular times, generaséte chaotic dynamicgL0], instead both support nonisolated
ing chaotic ray dynamicfFig. 2(b)]. The combination of a families of stable ray paths. This is in contrast to the chaotic
smooth refractive index profiléanalogous to the effective and isolated periodic ray paths which exist in the GRIN cav-
parabolic potential for an electron in a magnetic figdd) ity shown in Fig. Zb).
and an impenetrable boundary wall makes an interesting hy- To quantify the transition from stable to chaotic dynamics,
brid system that has characteristics of both the RTD andFig. 3 shows Poincarsections(slices through phase space
more traditional flat-bottomed 2D billiards. for tilt angles 0% B8=<20°. The sections are generated by
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plotting the variable® andy (see Fig. 1 each time the ray n2 92E
path intersects the line=0 with dx/dt>0. At 3=0°, the VZE- - >-V|E
points lie on concentric elliptical ringg-ig. 3(@] showing ¢ at
that the ray paths are stable. Ads increased to 5°, 10° and |, general, the term on the right-hand side of E3).couples
15° [Figs. 3b)-3(d)] the phase space reveals progressivelythe spatial components &, causing the polarization of the
shrinking, isolated KAM islands of stabilityl1] embedded \yave to change with time. However, for TM modes in the
in a chaotic sea. Whefi=20° [Fig. 3(e)] the phase space is 2p GRIN cavity, the coupling term is zero becauseand
almost completely chaotic, and contains very few stable isyp2 are orthogonal. For a time-harmonic field of angular
lands, which are too small to show up in the figure. frequencyw the nonzero field componer,(x,y) exactly
obeys the scalar wave equation

2

(€)

Vnz)
n

Ill. SOLVING THE WAVE EQUATION

In quantum chaos, there are strong connections between 9’E, °E, > 5
the eigenenergies and eigenstates of the quantum system and PN + (9_y2 +kn°E,=0, (10)
the periodic trajectories of its chaotic classical counterpart.
Experimental studies of quantum chaotic systems have been _
made using 2D microwave billiard cavities, which have ex-Wherek=w/c is the free-space wave number. Equatiaf)
ploited the formal identity of the Schdinger equation and IS @nalogous to the 2D Schiimger equation. Discrete eigen-
electromagnetic wave equatid@]. Similarly we consider Modes, analogous to quantum eigenstates, with wave num-
the effects of chaotic ray dynamics in the GRIN cavity on itsPersk=k; (j=1,2,3 ... ) form within the cavity becausg,
electromagnetic modes. In a 2D system, there are two mutnust vanish on its perfectly reflecting surfaces.
ally orthogonal polarizations of the electromagnetic waves; [N our previous work on this system, we used a fourth-
either the electric fieldE or the magnetic fieldH is perpen- ~ order accurate finite difference techniglis] to solve Eq.
dicular to the plane of the cavity. These field orientations ard10) for the refractive index profile of the GRIN lens. In this
called the transverse magnetiEM) and transverse electric Paper we use a different solution method which allows us to
polarizations, respectively. In this paper we consider TMcalculate eigenmodes at frequencies an order of magnitude
modes, since they obey Dirichlet boundary conditioiss ( higher than was possible using the finite difference method.
—0) on the perfectly reflecting cavity walls, identical to the This method is based on the plane wave decomposition
boundary conditions for wave functions in a hard-walled(PWD) technique developed in studies of quantum chaos in

quantum billiard. The modes obey the Maxwell equations DPilliard systems[14]. We write E,(x,y)=F(x)G(y) and
separate Eq(10) to yield

VxE=- 2 (5) 2
=—— d?F
ot 2 TnikiF=0 (11)
and
and
VXH= D (6)
S gt 42G
¥ +[ngkZ—ngk?a?y?]G=0, (12)

whereB= u, ugH andD= ¢, egE. We assume that the cavity
material is nonmagnetici{; =1) and has a refractive index . _ .
profile n?(y)=¢,(y) [12]. We take the curl of Eq(5) and  Wherek;+ ky=k2. The even and odd parity particular solu-

substitute forV X H from Eqg. (6) to obtain tions of Eq.(11) are
n2 52E Fo(X) = cogngkyx) (13
VXVXE=—-— —. (7)
c? ot?
and
By expanding the vector triple product in EF) and substi- .
tuting Fo(x) = sin(ngk,x), (14)
vr? respectively. Less trivially, the even and odd parity solutions
n
V-E=—E —, ) of Eq. (12) are
n

k2
Go(y)= ex _ Noker , E_M-E-n kav?
(which is derived fromV-D=0) we obtain the wave equa- ety 2 7 4 aka 2"
tion (15
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and

p0=2. o(k=k)

k 3 K2 3 -
Go(y)=y exp( - n°2 - yz) 7{4 2?( L. = nokay? =p(k)+p(k), (20)
(16)

where;(k) is a smooth, monotonically increasing average

density andp(k) is the remaining fluctuating contribution.
The average density is given by the Weyl form{d4d] and,

by analogy with quantum billiards containing a spatially
varying potentia[17], is given by

whereF is any general solution of Kummer’s equatidb].
A convenient particular solution is the confluent hypergeo-,
metric function;F,; which has the series expansion

n

An®  Pn

Fila;b;z , 1 = -
1Falash;z]= 2 (b) o (17) p(0=5—k= 2, (21)
where @),=a(a+1)(@+2)...@+n—1). where A and P are the area and perimeter of the cavity,

The rotational symmetry of the cavifgee Fig. 1a)] re-  respectivelyn? is the mean oh? overA, andn is the mean
quires that its eigenmodes have one of two paritief noverP. As with quantum chaotic systems, the frequency
E.(x,y)=*E(—x,—Yy). Following the PWD method, we Spacings between adjacent cavity eigenmodes are affected by
write these independent modes as expansions over combinde underlying dynamics of the geometrical ray paths. If the
tions of Eqs.(13)—(16): frequencies are scaled so thatk)=1 for all k then, for

stable nonchaotic dynamics, random matrix theory predicts
N that the probabilityP(s)ds of finding a scaled frequency
_ , . spacing betwees ands+ds is given by the Poisson distri-
E+(X'y)_§1 [UF )Gy ToiFdx)Coy) ], (18 bution. For time-reversible strongly chaotic dynamics, the
scaled frequency spacings have a Gaussian orthogonal en-

g semble(GOE) distribution[11] given by
an

N P(s)= gs expl — s2ml4). 22)
E_<x,y>=§l[uiFe<x>Go<y>+viFo(x>Ge(y>], (19)

The solid curve in Fig. @) shows the probabilityN(S)

) o i =[5P(s)ds of finding a scaled level spacingS for the cha-
where{u;} and{v;} are expansion coefficients relatingte  otic GRIN cavity with 5=20°. The distribution closely fol-
andk, , respectively. For a givek and parity,N arbitrarily  lows the GOE predictioridashed curvefor strongly chaotic
selected< andk,. pairs are chosen subject to the condition Systems. For comparisohl(S) for the Poisson distribution

k2 + k2 k2 g|V|ng a total of N expansion coefficients. To 'S @ISO showr(dot-dashed curye

We have also calculated the first 1000 eigenmodes of a
flnd these coefficients we construct a matrix equation by CONzseudointegrable cavity of the same dimensions but with a
sidering 2N—1 points around one rotationally symmetric

. . . o constant refractive index af=1.480 07(this value was cho-
half of the cavity perimetgion which the Dirichlet boundary h thao (k) for th doint bl d chaoti .
condition ensure&(x,y)=0] and one point within the cav- sen such thap (k) for the pseudointegrable and chaotic cavi-

ity [where we choos&(x,y)=1]. The matrix is close to 'gtfas srj;itggﬁgeasracti?esiys?esn?s zsggr?:oet quxgncgnz%?gggz as
singular for useful values dfl, so we solve the matrix equa- thoge of strong | cha)(;tic systems. Numerical studie]
tion by singular value decompositigd6]. The frequencies have shown tthy(s) in seu)c/iointe Irable systems follows a
of the eigenmodes are found by calculating the “tension” own thal’(s) In p ey y \

_ 2 . . probability distribution intermediate between the integrable
T=3|E(X;,Y)|° [2,14] as a function of frequency atter- ; . . e

7] 127 . . (Poisson statistigsand strongly chaotid GOE statistics

mediatepoints (jy;) between the R~ 1 points used in the cases. To quantify the level statistics of the pseudointegrable
matrix equation. The eigenfrequencies are found by searc d P 9

ing for minima inT (T=0 at an exact eigenfrequency cavity we fit the observed distribution to the phenomenologi-
cal distribution

IV. ANALOGIES WITH QUANTUM CHAOS P(s)=(d+ 1)C(d)Sd exqd — C(d)sd+ 1] (23

To investigate the connections between the chaotic geo-
metrical ray paths and the eigenmodes of the cavity, we haveroposed by Brody18]. The distribution parameted can
calculated the first 1000 modes using the above techniqueary continuously betweed=0 (Poisson statistigsand d
The density of the eigenmodggk) can be written =1 (GOE statisticy whereC(d)=[I"([d+2]/[d+1])]¢"™.
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N ngcéy FIG. 5. Top: Fourier power spectrum ptk) as a function of
] T/ Poisson i optical path lengthA, showing numbered peaks. Inset box shows
peak 3 vertically magnified by factor of 20. Bottom: Résblid)

0.0k , , , , and ghost(dashed periodic ray paths which correspond to the
0.0 05 1.0 15 2.0 25 peaks indicated by the numbers to the left of each path.

S

the lower part of the figure. The numbers to the left of each
path specify the indices of the associated peaks in the Fourier
power spectrum. In most quantum chaotic systems, the peri-
ods of the relevant unstable periodic orbits change with en-
ergy, broadening the peaks in the Fourier transform. By con-
trast, as the GRIN cavity is an optical system, the periods
(path lengths of the geometrical ray paths are independent

A least-squares fit dfl(S) for the pseudointegrable cavity to Of @. This means that the widths of the peaksffA )| are

a Brody distribution[dotted curve in Fig. )] givesd  limited only by the finiteky. This allows us to match the
=0.736. This indicates that without the GRIN material, thef@y paths to the peaks very precisdlyie discrepancy is
statistics of frequency spacings differ significantly from =1% for all peaks Peaks 1 and 2 correspond, respectively,
those associated with strongly chaotic systes {). to single and double traversals of a simple “bouncing-ball”

The energy level spectra of quantum chaotic systems als@®y path across the cavity. There is a nonisolated family of
exhibit long rangecorrelations associated with the unstablethese marginally stable paths which have previously been
periodic orbits of the corresponding classical system. Thédentified in chaotic stadium billiardgl9]. Peaks 4-8 are
fluctuating part of the energy level density is given by the@ssociated with progressively more complicated unstable pe-
semiclassical trace formuldF) for a quantum chaotic sys- Tiodic ray paths involving multiple reflections from the cav-
tem[11]. By analogy with the TF, it follows that the contri- ity walls. Peak 9 corresponds to a stable periodic path. There
bution top(k) from an unstable periodic ray of optical path IS also.an addltlor)al .small_, but |solat_ed and.dlstmct, peak 3
length A has a period ofAw=2mc/A and an amplitude for which no“ penqdm trajectory exists. Thl§ peak corre-
F(A) given by the Fourier transform sponds to a “ghost]20] of the stable periodic ray path 3

which is found in the pseudointegrable cavity of the same
shape with constant refractive index=1.480 07.

In addition to periodic fluctuations in the density of levels
of a quantum chaotic system, unstable periodic orbits also
cause enhancements of probability densfiscars”) along
) ) _ the orbit in groups of eigenstatEs—4]. An analogous effect,
where ko, is the wave number of the highest eigenmodey concentration of electric field intensity along an unstable
considered andJ(k) is the Bartlett window functiorf16]  periodic ray path, occurs in many of the eigenmodes of the
which is used to suppress ringing in the Fourier transformGRrIN cavity. The frequency spacing between successive
The power spectrum qi(k) shown in the upper part of Fig. groups of eigenmodes scarred by a particular unstable peri-
5 is calculated for the first 21000 modes of the GRIN cavityodic ray path of optical path length equals the periodicity
and reveals a series of numbered peaka ablues equal to of the corresponding fluctuations in the density of modes
the optical path lengths of the periodic ray paths shown i w=2mc/A.

FIG. 4. Cumulative probability distributiord(S) (solid curve$
of finding a scaled frequency spacisgS for: (a) the chaotic GRIN
cavity and(b) the pseudointegrable constant index cavitydnand
(b) the GOE(dashed curveand Poissor{dot-dashed curyedistri-
butions are shown for comparison. (b) the Brody distribution
with d=0.736(dotted curveis also shown.

F(A)~fokma’“,;(k)U(k)exp(—ikA)dk, (24)
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FIG. 6. Horizontal lines: eigenfrequencies of the chaotic cavity
with 8=20°. The solid lines mark the frequencies of the scarred
eigenmodes shown on the right of the figure. The scarring ray path
is shown overlaid on the electric field intensity pldtshite = 0,
black = high) of each scarred mode. The spacing between each
group of scarred modes Aw=2.14x 10" rads'. The electric
field intensity variation of an unscarred eigenmddrked with an
asterisk is shown for comparison.

To illustrate this, Fig. 6 shows a sequence of eigenmodes
which are scarred by the unstable periodic ray path labeled 4 £, 7. (Left) Electric field intensity(white = 0) in x-y plane
in Fig. 5. For comparison, a nearby mo@tearked with an  [axes shown belowg)] for eigenmodes of thg=20° cavity. Scar-
asterisk is also shown which reveals no trace of the scarringing ray paths are overlaigRight) Corresponding Wigner functions
effect. The frequency spacing between each group of scarregy, 6) (black < 0, gray = 0, white > 0) with coordinate axes
modes, Aw=2.14x 10" rads’, agrees closely with the overlaid on(a). The coordinate ranges are0.5 mm<y< 0.5 mm
spacing ofAw=2.17x 10" rads! predicted from the opti- and 0°< #<90°, as in Fig. 3. Crosses indicate initial coordinates of

cal path length ofA=8.67 mm. the scarring ray paths. The angular frequencies €ae:22.0426
To better identify scarred eigenmodes, we have calculatedt 10 rads*, (b))  2.0658<10" rads®, ()  2.0200
the Wigner function x10% rads?, (d) 2.0904x10' rads !, and (e) 2.0708
X 10" radst.
'y(y,a)ocj E,(r+)E,(r—hexd — 2ikn(r)s-1]dl, (v, 0) (marked by crosse®f the corresponding scarring ray
paths on the left of Fig. 7. This provides clear evidence that

(29) the scar patterns originate from these ray paths.

which, for each mode, gives a phase space representation of

the electric field distribution analogous to the classical Poin- V. CONCLUSION

caresection[21]. In Eq. (25), r=(x,y), | is a displacement We have shown that effects analogous to quantum chaos
fromr in the (x,y) plane ands=(cosé,siné). The plots on occur in a 2D parallelogram-shaped cavity with an approxi-
the left-hand side of Fig. 7 show the electric field intensitymately parabolic refractive index profile and reflective walls.
distributions of five different eigenmodes. Each of these disSuch cavities could be made from commercially available
tributions is scarred by the unstable periodic ray path showiGRIN lenseq 7], which support 2D planar ray pathé] as
overlaid. The plots on the right-hand side show the Wignesstudied in this paper, as well as more complicated 3D paths.
functions of each scarred mode, which are calculatedkfor In our previous wor5] we have shown that, by partially
=0 like the Poincaresections in Fig. 3. The large positive silvering the end facets of the cavity, it is possible to probe
values ofy (white) are centered on the initial coordinates the mode spectrum by observing Fabrysdedike reso-
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nances in transmission. In addition, we speculated that, bgls are well developed and widely used in optoelectronics
doping the GRIN material with luminescent erbium ions, itand telecommunications, they could provide a natural route
might be possible to image scarred modes directly at neao the technological exploitation of ray and wave chaos. For
optical frequencies. The major advantages of using opticagxample, we have shown that the exponential sensitivity of
as opposed to semiconductor, systems to study quanturay paths in this system have the potential for applications as

PHYSICAL REVIEW E 64 026203

chaos-like effects are that they operate at room temperaturdtrafast optical switches or sensg&3].
and that lasers have extremely long coherence lengths, offer-

ing the potential for very high-resolution experimental stud-
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