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Characteristics of a piecewise smooth area-preserving map
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We are reporting a study carried out in a system concatenated by two area-preserving maps. The system can
be viewed as a model of an electronic relaxation oscillator with over-voltage protection. We found that a
border-collision bifurcation may interrupt a period-doubling bifurcation cascade, and that some special fea-
tures, such as “quasicoexisting periodic orbits crossing border” as well as the transition between “quasitran-
sience” and chaotic orbits, accompany the process. These features belong to the so-called “quasidissipative”
properties. Here “quasitransience” denotes the behavior of iterations outside elliptic islands. They are “at-
tracted” to the islands. As soon as it reaches the islands, the iteration follows the conservative regulations
exactly. This induces a kind of escaping from strange sets. The scaling behavior of the escaping rate is obtained

numerically.
DOI: 10.1103/PhysReVvE.64.026202 PACS nunider05.45-a
[. INTRODUCTION KAM system exemplified by a particle in an infinite potential

well subject to a periodic kicking force. They found a kind of
Chaotic phenomena in nonintegrable systems have agliffusion in a stochastic web structure with special scaling
tracted much attention since the 17th century. Howeverpropertieg16].

physicists have concentrated on everywhere-smooth systems This paper discusses another characteristic behavior in

where the function and derivatives of mathematical model$iecewise smooth conservative systems. It is addressed as a

are everywhere continuous. Often ignored are the piecewis@luasidissipative property.” Its main feature is that elliptic

smooth mathematical models that can describe many practislands attract iterations from outside. The phenomenon and
cal systems; such systems display certain kinds of catastréome related behaviors accompany a process where a border-
phes, crises, or extreme events. These systems may inclugellision bifurcation[17] interrupts a period-doubling cas-
relaxation and impact oscillators, dripping faucets, models ofade.

nerve cells or cardiopathy, and many othgts-11]. Their The article is arranged as follows. Section Il introduces

dynamic behaviors are very different from those ofthe system; Sec. lll discusses the quasidissipative properties,

everywhere-smooth systems. He and co-workers have stu&ec. IV discusses the interruption of a period-doubling cas-
ied some relaxation oscillatorg5—10. They extensively cade by a border-collision bifurcation. The last section con-
studied an electronic relaxation oscillator and presented Eins a discussion and conclusion.

detailed description of the system in REJ]. The interesting

phenomena observed in the system included type V intermit-

tency[9,10], a kind of crisis induced by piecewise smooth Il. THE SYSTEM

characteristic$ 7], a multiple Devil's staircas¢8], and the

so-called “coexistence of attractors induced by mapping

holes” [5,6,9. The aforementioned electronic relaxation oscillator can be

Although most of the practical chaotic systems are dissibriefly described as follows: A capacitor in the circuit is re-

pative, the study on chaotic phenomena in conservative sygpeatedly charged and discharged, operated by two electronic
tems is also important in theoretical studies. There are mangontrol switches. The voltage across the capacifpraries
conservative mathematical models that describe practicaxponentially between a sine-modulated upper threshold and
systems such as quantum systems, the solar system, andaaconstant lower threshold. The upper threshold can be ex-
on. Therefore, it is important to study piecewise smooth conpressed abl (t) =U yax— Ugsin(wt) (Unyaxis a constant and
servative systems. To the authors’ knowledge, there are onlhe lower one asV(t)=U,,;, (constant At time t,, V de-

a few publications relating to this top[d2—-16. Of these, creases from an upper threshold vaMg=U(t,). It sud-

Hu et al. have reported a study on quantum chaos in a noneenly rises at* when reaching a lower threshold val\@
=W(t*). Then it suddenly drops again when reaching an-
other upper threshold valué, , ; at timet,, ;. In this wayV

*Corresponding author. Department of Physics, Yangzhou Univeroscillates continuously. From the ordinary differential equa-
sity, Yangzhou 225002, China. Email address: tions describing the circufi9], one can deduce the Poincare
drhe@mail.yzu.edu.cn mapping agsee the Appendix algo

A. The system and its mathematical model
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K, Ky which is defined as=E/U,, to describe the phenomenon as
Po¥ges -0~ 0~ can be seen in Fig. 2. Now the form of the upper threshold
"""" can be expressed as
L ® Uo (¢ L ® URP=Upnax—Uosin(2mx,), X, F .
UaP=U paxtcUo, X eF,

whereF = (XFl'XFz) =[0.5+arcsin€)/2m,1—arcsin€)/27] is

FIG. 1. A schematic drawing showing the circuit of the elec- the phase region of over-voltage protection and the param-
tronic relaxation oscillator, which can be described by m@&pand  eter ¢ satisfies the condition ©c<1. As mentioned, the
@). lower threshold is modulated by the underlying phase
according to a certain rule. We define another varighlas

Xn+1_ Bz+A2|n[C2+ Uo(s|n 2’7TXn+l)]

1
=, +AqIN[Cy /By +(Ug/By)sin(2mx,)] (mod 1), Ynt1=Yn~ pSIN2mXn), Xn&F
(1 4 ©
Yn+1ZYn+b_UOXna XneF

wherex, (n is an integer is the normalized phase of the and suppose that the lower threshold is a linear function of it,
upper modulation signal corresponding tg,, while

A;,B;,C; (i=1,2) are constants determined by the param- Unmin(Yn) = Umax—aUp—by,Uo. 4
eters of the circuit. Their expressions can be found in the )
Appendix. The parameters satisf§>1 andb>0. Wheny,=0, one has

Most of the practical relaxation oscillators are more com-Umin=Umax—aUo, and wheny,=1, one has nin=Umax
plicated. Often a two-dimensional map is necessary for de= @Yo~ bUo. From the geometry shown in Fig. 2 one can
scribing them. In Ref[18] one may find an example. In easily understand that the lower threshold should be confined
order to simulate the cases we may reform rtBy letting N the range Upax—aUg,Una—aly—bUy), andy, should
one parameter, such as the lower threshold, become a vaf€ confined if0,1]. Also he can obtain
able. In some practical casesMftakes very large values in
a phase region, over-vqltage protection has to_be co_nsidered. CLU(Xy) = Upmin(Yn) 1=12
These two changes will make mdf) a two-dimensional
piecewise smooth version.

27m(Xp1— Xn)

®)

whereC is the capacitance of the charged capacitor arigd

A schematic drawing of the new circuit is shown in Fig. 1 the frequency of the modulating signal of the upper threshold
(wherel ;>15,), and the relaxation oscillation as well as both as mentioned in Sec. Il A. From Eq&)—(5) and with the

the thresholds are shown by Fig. 2. We suppose that for thgondition Cwl/l,=1 as well abUy/277=1, one can get the
capacitor, the charging curreit takes an infinitely large . e

. . . following map describing the current system,
value, and the discharging curreht remains constant. To
express the voltage protection we let the upper threshold a
equal a constarE in the phase regiofr whereV>E. We Xnt1=F1x=XntYni1t b (mod 1), (6)
feel it is more convenient to introduce a new parameter

sin 27X,
Yn+1™ fly:yn_ b (mod 1)

whenx, ¢ F,
atc
U, xn+1=f2X=xn+yn+T (mod 1), (7)
Uo
aU
’ yn+1:f2yZYn+2Xn (mod 1)
» whenx, e F. In the current study we take= 2.0, b and/orc
U " are chosen as the control parameters.
Unrl
Xy Xnat ] B. Some properties of the system

. . . _— 1. Noninvertibility of the ma|
FIG. 2. A drawing showing the relaxation oscillation of the volt- y P

age across the capacitor and both the upper and lower thresholds, aslt is easy to verify that the absolute value of the determi-
well as the over-voltage protection. nant of the Jacobian matrix of mafB) or (7) equals a unit.
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That means either Eq&) or (7) is a conservative mapping. arcsinb arcsinb arcsinb
The question is whether the nonsmooth concatenation map is ~ X* = om 0.5~ o 0.5+ o
still conservative. This question shall be answered later. Note
that there is no resistor in the circuit. It is supposed that in

! arcsinb
such a case the current sources can work without supply or 1.0— : (12
expense of energy. This can be approximately realized in an 2m
experiment by using some modern devices.
The backward maps of Eq&) and(7) are y*=— a
b

Xn:fle:XnJrl_YnJrl_a/ba
(8) Similarly, one can find that two of them, (arc&it2sr,

yn=f1‘y1=yn+1+sin(27rxn)/b, —al/b) and (1-arcsib/27,—a/b), are elliptic when the
condition be (w/\J4+w2,1) is satisfied. The other two
whenx, ¢ F, points at (0.5 arcsirb/27,—a/b) and (0.5+arcsirb/27,

—alb) are always hyperbolic.
We can discuss a period-2 orbit in a similar way. The two
(9)  periodic points X;,y;) and (,,y,) satisfy the following

Xn= o= —Xps1+Yns1+(a+c)/b,

Yn= fgylzyn+1_ 2Xp equations:
whenx, e F. It tells us that either ma(B) or (7) is invertible. a
However, due to the fact that the condition of selecting so- Xo=X1+Yot E+m1,
lutions in backward map$8) and (9) is determined byx,
instead ofx,,;, one can still find two X,,y,) values for (13

each &,.1,Yn:1) according to either the functiofy or f,.
That means the concatenation map is noninvertible. This be-
havior may be addressed as noninvertibility induced by the
piecewise smooth property.

1.
Yo=Y1— 55|n(27TX1),

a
X1:X2+y1+ B"F mz,
2. Some properties of the map without protection (14)

If there is no voltage protection, mdjg) does not appeatr. i
The remaining ma6) can be viewed as a kind of standard Y1=Y2~ pSiN(2mXy),
map[19]. The main characteristics of it have been discussed
already in many references. We shall only briefly discuss thguherem;,m, are integers. From the equations one knows

fixed points, the period-2 orbits, and the critical parametethat there are two possible relationships betwegand x,.
value where the system is going to be globally chaotic, ashey are
well as the period-doubling bifurcation of a fixed point.

The fixed-point equation of maf®) can be expressed as X1= — Xy
1 or
Bsm(277x*)=0,i 1,+2,...,
(10) X1=0.5-X%,.
y*=— E, We shall only discuss the first case here. In this simple case
b the periodic points satisfy
whenx, ¢ F. As is well known, their stability can be deter- 1
mined by 4x1=65in(277x1)+m2—m1,
2 .

Tr(Jae)=2— FCOS(ZWX ), (11 Xo=—X1,
where J,5 is the Jacobian matrix of maf6) at the fixed oy _ a
point. When|Tr(J,6)| <2, it is an elliptic point; it becomes y1=2X~ j— Mg, (15

hyperbolic if | Tr(J,6)|>2. Therefore, taking singx*)=0,
one has a fixed point ak{ ,y7)=(0,—a/b). It is elliptic if

b> /2. Also, another fixed point located atx}(,y3) Y2= = 2% =~ My
=(0.5,—a/b). It is always hyperbolic.

There is another group of fixed points. WheriB<1, In the current study we shall only discuss the cage=m,
from sin(27x*)==b, one can get the following four fixed =0. The stability condition of this orbit ig§Tr(Jag°Jasl
points: <2,i.e.,
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2 tem with voltage protection can show other interesting
0<—,cos2mxy) <4. (16)  properties. Two of them will be discussed in the next two
sections.

So, the stable range of the orbit is<b<r/2.
Shenker and Kadanoff20] studied the typical standard Ill. THE QUASIDISSIPATIVE PROPERTIES

map, which was expressed b . . . .
P P y There is a discontinuous set in the current system

Xn+1=XntYns1 (Mod 1), 17) n —(m-1) i -
T=U ™ VEo0yx=xe D1 (i=1,2j=12),

(19

which may play an important role. Herg is the periodic

They analytically proved that the last remaining KAM torus humber of the studied elliptic orbif,=1 or 2 depending on
that stretches from=0 tox=1.0 is going to be broken at a Which definition range the point on the considered backward
critical parameter valuk =K.=0.9716354. ... Thesys- image of the borderlinénot the borderline itselffalls in. It
tem  becomes globally chaotic when K>K. should be noted that the backward images are almost always
=0.9716354 . .. Referring to their work and the function double due to the aforementioned noninvertibility, and that
forms of map(6), one can learn that in maf6) the last after the stretching and turning by a backward iteration, the
remaining KAM torus is going to be broken a=b, Points on following backward images of the borderlines will
=6.466 8 . ... Whenb<h, the system is globally chaotic. usually fall in the definition ranges of both ma(ts and (7).

Now we can discuss the bifurcation of the fixed point!tis easy to see that any KAM cycle that collides with Bet
(x* ,y¥)=(0,—a/b). From the above discussion one knows Should dissolve. This set divides the phase plane into re-
that it is stable whe>/2=1.57 . ... It bifurcates ab  9i0NS, which may be addressed as "KAM regions.” The
= /2 and produces a period-2 orbit. This period-2 orbit KAM _theorem now is correct onl)_/ inside each KAM region.
loses stability ab=1. Whenb<1, the system produces a '€ iterations across KAM regions may not obey KAM
period-4 orbit as well as the two elliptic fixed points ex- theorem. For example, iterations from some initial points

pressed by Eq$12). This entire process happens beneath th&utside an elliptic island may cross some borders of KAM
thresholdb,, i.e., inside the globally chaotic region. regions and go into the islands will be shown beloy

K .
Yn+1=Yn— ESIn(wan)(mod 1.

3. Some properties of the map with protection A. The quasidissipative properties

Starting from an initial value near an elliptic point, the  Now we discuss the case when the parameters are chosen
iterations draw a commensurate or incommensurate cyclas a=2.0, b=0.9335641, ce[0.7,0.9. As mentioned
They are addressed as KAM cycles. According to famougbelow Eq.(12)], if there is no voltage protection, two stable
KAM theorem, there is the largest KAM cycle, which is elliptic points are located a;, = (0.191659,0.857 671) and
incommensurate and separates the periodic or quasiperiodég, =(0.808 341,0.857 671). There should be a period-4 el-
motion inside it and the chaotic motion outside it. Usually liptic orbit produced by the period-doubling bifurcation of
the part of phase space inside the largest KAM cycle is adthe ordinary elliptic point X} ,y%). The corresponding

dressed as an elliptic island. period-1 hyperbolic points are located athg,
Referring to Sec. Il A we denote the two borderlines be-=(0.0,0.857 671), h,, =(0.5,0.857 671), hs,

tween the definition ranges of maf® and(7) by {(x,y)x  =(0.308341,0.857 671), arfty, = (0.691 659,0.857 671).

=Xg,} and{(x,y)[x=xg,}. When voltage protection is ap-  In the current systenfwith protection we address the

plied they may hit some KAM cycles in an island and de-elliptic island around the elliptic poiné;, ase; and the
stroy them. Another new feature is the possibility of the ap-island around the poirg,, ase,. At the parameter value
pearance of “periodic orbits crossing border.” It is easy to =cy=0.933564,e,, collides With{(x,y)|x=xF2}, the right
realize that a periodic orbit of ma(¥) cannot show periodic  poundary of regiorF. Whenc decreases furtheg,, falls
points only in its own definition range. The points shouldjnto the protection region and vanishes. In the next section

cross the border. Such an orbit may be expressed as we shall show that the period-4 orbit also disappeared via a
j collision with a borderline. Only elliptic islané; remains.
[T t%¢*D)=D (18) Whenc=0.89, we choose 500500 initial values evenly in
izo 21 ' the rangexe[0,1] andy [0,1] and compute iterations of

maps(6) and (7). The iterations do not obey KAM theorem
wherep;,q;,i, andj are integersD denotes a point in the since they are trapped inte, island as shown in Fig. 3.
periodic orbit, andf; andf, are mapping functions listed in However, as soon as they enter the island, they perform the
Egs.(6) and (7). The criterion of the stability of the orbit is typical conservative behavior. Let us explain this behavior.
the same as mentioned before. In the current study we The noted noninvertibility induced by the piecewise
mainly discuss such orbits numerically due to the compli-smooth property produces double images for each (it
cated form of the mapping function. Some analytical calcu-; island as shown in Fig. 4. One of the backward images,
lation has been made with a simplified mof21]. The sys- fl’l(D), is inside the island. Another onbz’l(D), is outside
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0.93/ 1.0
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0.0 Lt s e
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FIG. 3. The crosses show the chosen initial values. The first G he fi d b di 0000 i .
10 000 iterations from these initial values were ignored to avoid the FIG. 5'| T ﬁ |gure0\évago rawr: yl reco_:_hlng L |tera|t|ons
quasitransience, and the following 1000 iterations were recorded fgom e\t/]en ye oieg 859 5_2 g"t'a d\:)a_ugsé.g 3 5e62a_rra;1metehr_ values
obtain the dotted lines, which show elliptic islaad The parameter were chosen as=0.69,a=2.9, andb=1. - The white re-
values were chosen as=2.0, b=0.933 564, anat=0.89. gion indicated byJ was explained in the text.

points evenly chosen on the phase plane wtwel®.89. One
the island and located inside the protection region. The firsinay note the strange pattern there formed by white regions.
backward image leads to the iterations following conservaThe pattern should indicate the regions where the visit of
tion laws. The second backward image leads to behaviaiterations is almost prohibited. We may denote the regions as
simulating transience in dissipative systems, since they crosguasigaps.” The largest quasigap is the white band indi-
a border of KAM regions. Therefore, the island may becated byJ in the figure. It becomes a gap because its back-
called a quasi-attractor. The iterations outside the island mayard images do not exit as shown by Fig. 6. As can be seen,
be addressed as quasitransief©d). The set of the initial 1 *(J) falls in the definition region of 5, while f;*(J) falls
values, from which iterations tend to quasiattractors, may bé the definition region of ;. We found that the other white
called a quasibasin. This kind of dynamic behavior may bgegions are mainly occupied by the first forward imageJ of
addressed as quasidissipativity. It seems that the concatergs shown by the black regions in Fig. 7. These regions are
tion map is neither dissipative nor conservative. It simulategvell consistent with the curly quasigap regions shown in Fig.
a dissipative one out of some regiofie elliptic islandy ~ 5. Thus it is easy to understand that the visit to the region is
but simulates a conservative one inside these regions. Theymost prohibited. There may be some very small “white”

phenomenon may be interesting and important in soméegions occupied by further forward imagesJbut, obvi-
cases, as will be discussed in the last section. ously, they can be visited with more and more possibilities.

B. The quasigaps inside the quasitransient iterations C. Escaping from a strange set induced by quasidissipative
property

Here, we show that all the chaotic orbits in the chaotic sea
outsidee; island become QT. This can be viewed as a kind

Figure 5 shows the QT recording from 50600 initial

1.0 — — . —
1 . s o " 1.0
o8] ., ﬂ . < ] \
e r : 0.81 §
0.6 R P DR L
1. A, 4 A . = B Ny §
>_ 0.4_ - . A‘ & ‘ a ] 06' §
] B 2 a2 ,\ s x \
0.2 . f2'1.(e1)/1_ 1 0.41
0.0 p S i B ‘. ‘ o 0.2 \
0.0 0.2 0.4 0.6 0.8 1.0
X 0.0 \

0.0 0.2
FIG. 4. For the computation, 560600 initial values were cho-

sen evenly on the phase plane. The small triangles show the initial

values for which the iteration spent 2500 steps or more to reach ~ FIG. 6. The dotted regions show the backward images of the
island. The parameter values were choses-a$.89,a=2.0, and quasigap regiod as indicated by the solid oblique lines. The two
b=0.933564. The two vertical linear lines denote the borderlinesyertical solid lines indicate the borderlinef(x,y)|x=xg } and
{(x,y)|x=xF1} and {(x,y)|x=xF2} , of the voltage protection re- {(x,y)|x=xF2}, of protection regior. The parameter values are
gionF. c=0.89,a=2.0, andb=0.933 564.
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1.0
55
0.8 x50
<
0.6 E 42
> 4.0 . . , . ,
0.4 38 36 3.4 32 30 28 26

In(c-ck)
0.2-

FIG. 9. Scaling behavior of mean transient tiN). The
J d . ¢ . squares denote the computed data. The linear line was obtained by
00 02 04 06 08 1.0 the least square fitting. The parameter values were chosen as
X c,=0.7419,a=2.0, andb=0.933 564.

FIG. 7. The figure was computed with the parameter vaes N order to give a quantitative description of the escaping,
=0.89,a2=2.0, andb=0.933 564. The black regions show the first We define the mean transient tinihi) for the ensemble of
forward image of the quasigap regidh J is indicated by solid initial points as follows:

oblique lines. N

of escaping from a strange set via a leaking H@2]. The 241 N

hole H can be defined as follows. (N)=lim , (21)
Let us denote the intersection bjl(el) andF, the set of nooe N

points inside the protection regidsee Fig. 4, by | and the ) o )
set of the quasigag and its first forward image b@. The wheren is the number of initial points of the ensemble and
hole is then defined as the difference set between setd i iS the length of QT from each initial point. The validity of

the intersection of andG, i.e., the definition should rely on the fact théN) tends to a
constant whem—cc. To prove this in the underlying system,
H=I\(ING), a numerical investigation has been made. The results certify
that the definition is valid when sét the intersection be-
= Fﬂfz‘l(el), tweenfz’l(el) andF, is not an empty set. Our computation
also shows that the leaking hole size decreases(Bidn-
F={(X,Y)|Xp1 <X<Xgo}, (200  creases as is getting smaller obeying a power lafi) !
x(c—cy)”. This is also in agreement with the conclusion
G=JU(f;(J)), reported in Ref.[22]. The critical value ¢,=0.74190

+0.000 02 indicates the vanishing point of &t is also the
wherej equals 1 or 2 depending on which definition rangevanishing point of the leaking hold. The good scaling be-
the point ofJ falls in. Figure 8 shows a magnification of the havior shown in Fig. 9 convinced us of the scaling property
part of phase space around the leaking hole wtre®.89.  and the exponent=1.353+0.025.
According to the definition oH, only the first image of is

shown in the figure. IV. PERIOD-DOUBLING BIFURCATION

0.421— ; i : For an investigation on period-doubling bifurcation, we

ai] choose the parameter valuas-2.0 andc=0.933564. Pa-
rameterb serves as the driving parameter. In this situation

0.381 the voltage protection regioR becomes a fixed one, i.&,

0.361 = (X¢,.Xg,) =(0.691 659 371 92,0.808 340 628 07).

>5.34- As discussed in Sec. Il, if there is no voltage protection,
fixed point &3 ,y7)=(0,—a/b) is stable wherb> /2. It

e period doubles first ab=7/2=1.570. The period-2 orbit

0.30 loses stability abb=1. Whenb<1, the system produces a

- period-4 orbit as well as the four fixed points expressed by

068 072 076 080 084 Eq. (12). This entire process happens below the threshold
b., i.e., inside the globally chaotic region. The period
FIG. 8. A magnification of the part of phase space around théloubling bifurcation cascade will become complete. How-
leaking hole. The black region shows the $gthe intersection €Ver the situation becomes very different in the underlying
betweent, (e,), andF. The dotted regions show s the set of ~ Systeém as will be discussed in this section.

quasigapJ, and its first image. The leaking hol¢ was defined as Figure 1@a) shows the phase plane after the first period-
H=I\(ING). The parameter values were chosen @s0.89, dOUbllng bifurcation whenb=7/2.1=1.4959965. The
a=2.0, andb=0.933 564. original elliptic point, &7 ,y3), now becomes hyperbolic at
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1.0-
0.8-
0.6-
S=
0.4-
0.2-
0.0 - . T 0.0 Lt gy
00 02 04 06 08 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
(@) X X
0.261 ) .
FIG. 11. The figure was computed with the parameter values
0.260+ b=1.3, a=2.0, andc=0.933564. 1&40 initial values were
evenly chosen inside regidfy which was indicated by two vertical
02381 solid lines. The following initial values inside the remaining elliptic
0.258 islands were also taken: x(y)=(0.81621153,0.12546),
(0.821527 4,0.126 1026 (0.8222,0.126 102)6
0.257 (0.825,0.126 102% (0.827,0.126102% (0.831,0.126 102)%
(0.838,0.126 102)6 The first 4< 10° iterations from the initial val-
0.256 ==\ ues were ignored, and then the following 1000 iterations were re-
0.255 S | corded to obtain the figure.
0.760 0.764 0.768_ 0.772 0.776 comes a tangent to the borderline. WHes 1.324, the es-
(b) X caping hole vanishes via a similar mechanism as discussed in

. . ~ the last section so that the QTs become chaotic orbits again.
FIG. 10. (8 The phase plane after the first period-doubling bi- \We can determine the similar scaling behavior for the mean
furcation. The parameter values were selected basw/2.1,  transient time as in the last section. The obtained rule is

a=2.0, andc=0.933 564. 2 20 evenly distributed initial values (N)~Lx(b—b,)". Here the critical valud,= 1.3245 and the
were chosen. The first410° iterations from the initial values were scaling exponent is~1.39.

ignored to avoid the quasitransience. Then the following 1000 itera- One of the period-2 elliptic points collides with the

tions were recorded to obtain the elliptic islands as shown by dottei _ . _ .
lines. A period-6 orbit that crosses the border is denoted by thre (X’y)|X_XF2} borderline aib=~1.21774 and then vanishes

dashed squares. The two solid vertical lines show the over-voltagi®gether with the elliptic island. Therefore n t.he parameter
protection regiorF. (b) A magnification of the part irfa) occupied ~ rangebe (1.0,1.217 74) a chaotic sea occupies the whole
by the dashed square inside regien phase plane. It may be interesting that in parameter region
1.217 74 b<1.324 there is an almost forbidden region and
(0.0,0.6631 The new period-2 elliptic points are located at a region with high visiting probability around the remaining
(0.085 690 9,0.834 48) and (0.914 309,0.491 717). All the orelliptic island, as shown in Fig. 11. The almost forbidden
bits inside the chaotic sea around their islands become QT, d€gion is apparently due to both the quasigap and the dissolv-
discussed before. The “periodic orbit crossing border” is de-ing of some KAM cycles via the collision with the border.
noted by three squares in the figure. Figurébl@hows the The iterations along these cycles will soon reach the protec-
magpnification of the square inside regiBnthe over-voltage tion region and then move along the chaotic orbits shown by
protection region. It tells us that the new orbit is a period-6dotted patterns. We have numerically certified that the region

orbit and can be expressed as of high visiting probability situates along the homoclinic
stable and unstable manifolds of a hyperbolic orbit. When
fof 1 fofyfe (D)=D, (220 b<1, the new elliptic point addressed By in the last sec-

tion and one of the period-4 elliptic points fall in regiBnso

where D denotes any point inside the period-6 elliptic is- thate; remains the only elliptic point.
lands, andf, or f;, denotes the mapping functidf) in its The whole bifurcation diagram is shown in Fig. 12. As
left or right half of the definition region, respectively. The can be seen the period-doubling bifurcation cascade is nor-
criterion for the stability of the orbit i$Tr(J,)<2| where  mal before line 2, that is, di=1.37. Between lines 2 and 3
Ja=J37°da6°da6°Ja7°Jas°Jas- This orbit is “quasicoexist- more and more KAM cycles vanish via collisions with the
ing” with the period-2 orbit. Each of them has its quasibasin.border and become parts of the QT. All the QTs become
Our numerical results show that this period-6 orbit existsstable chaotic orbits at line @Gt b=1.324) due to the van-
only in a very small rangé e (7/2.1—10 3, 7/2.1+ 10 ?). ishing of the leaking hole, but there is still a remaining part

Whenb becomes even smaller, the period-2 elliptic islandof the period-2 elliptic island. The main period-doubling bi-
moves toward borderliné(x,y)|x=xF2}. At b=1.37 it be-  furcation cascade is interrupted by a border-collision bifur-
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b As stated in Ref[9], the differential equations describing

FIG. 12. The bifurcation diagram. Line 1 iskt /2. Line 2 is ~ Vvariation ofV are
atb=1.37. Line 3 is ab=1.324. Line 4 is ab=1.217 74. Line 5

is atb=1. CurveP, denotes the fixed point (0-86a/b). CurveP, dvy _ E-V, (A1)
denotes the period-2 orbit produced after its first period-doubling dt R,C "’
bifurcation. Curve P, denotes the elliptic pointe; at
1
(arcsinb/27,—al/b). Other things are explained in the text. dVy _ RE-R;Vy
dt R;RC '’

cation at line 4(located inb=1.217 74), so that the system ) i . ) )

enters a complete chaotic sea. After line 5, a new ellipti?vhereR; or R; is charging or discharging resistance, respec-
pointe; appears. It should be noted that the parameter rangé/€ly. E is the output voltage of a dc sourcR. satisfies

of the coexisting period-6 orbit crossing the border is tool/R=1/R;+1/R,. After integrating the falling branch from

small to be shown in this bifurcation diagram. t, to t*, and the rising branch frort¥ to t,,; in equation
(A1), one has
V. DISCUSSION RE-R,V,
. . e o RCINn—————=t"—t,, (A2)
We have discovered some “quasidissipative properties RE-R,V*

in a system that is a concatenation of two area-preserving

maps. These properties make the system behave partly dissi- E—V,.1
pative and partly conservative. What is the physical or prac- R,C In—* =
tical meaning of this discovery? In this circuit system it E-V
means that with the jumping changes induced by overvoltagget V*=U
protection some chaotic motion transfers to regyteriodic

or quasiperiodig motion, and that some regular motion can

=t

min:X=owt, and notice that V,,;=Uax
—Upsin(wtyy 1) andV,=U 2~ UpSin(wt,), one has

be changed to chaotic, as the special period-doubling bifur- E—U paxt UoSinX, 41

cation shows. Also, some phase regions may become prohib- Xn+1TR1CwIn E—U._.

ited or protected for iterations. These conclusions may be min

trivial. RE—R1U paxt RiUgsinx,
However, we argue that in some types of concatenation =X, +RCwln RE—R,U . (A3

systems this discovery may have much more interesting im-
plications. For example, if some quantum systems can show Eq. (A3) let A;=wRC/27, B;=(R/R))E—Uin, Cy
the quasidissipative properties, their natures will be very in=(R/R;)E—U ax, A= wR;C/27, B,=(wR,C/27)In(E

teresting to research. —Unin), Co=E—U,ax; Mapping(1) can be obtained.
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