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Origin of quantum chaos for two particles interacting by short-range potentials
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We address the problem of two confined one-dimensional particles of arbitrary masses interacting by general
short-range potentials. We study under what conditions quantum chaos emerges for the system by analyzing its
spectrum statistics. We show that these conditions are directly connected with a specific feature of the under-
lying classical dynamics, namely, the ergodicity in the changes of the particles momenta. Quantum mechani-
cally this prevents one from obtaining the exact wave function through the Bethe ansatz. Possible extensions
for many-body systems are also discussed.
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In general, the emergence of quantum chaos in a single-x,|) which vanishes if the distance between them is greater
particle system is a direct consequence of two factors, théhan d/2. We shall analyze two different types of confine-
spatial geometry and the form of the external potential. Foment for the particles, leading to the boundary conditions
N-body problems, however, the mutual interactions also play¥ (x;=0 or L,x,)=W¥(X;,X,=0 or L)=0 (box cas¢ and
a fundamental rol¢1]. In this respect we can cite the prop- ¥ (x,+L,x,) =¥ (X;,X,+L)=W¥(x;,X,) (torus casg The
erties of two-[2] and multielectron atomE3], chemical re-  particles have the wave numbeks and k, with E=7#2(k2
actions[4], quasiparticle dynamics in trapped Bose conden-, k%/y)/(z,u,). For y=1 the eigenfunctions of the system

sateq5], and ferm'oﬂ'c systen{sf_i]. It ha_s also been pointed ;0" gifh o symmetric or antisymmetric with respect to the
out that some chaotic features in semiconductor heteros””?ﬁterchange( —>X,, 50 we have bosons, fermions, or distin
1 ] ] ] -

tures and quantum dots are due to the Coulomb potentizﬁuishable particles simply by choositigr nob a particular

between the electrori§]. . . . symmetry of¥. In all the numerical calculations we will set
For a system of many interacting particles, one expects i —pu=L=1

e L 1 leTIne) ne SXact ey MECPa’ W starl iy (s ,). For y=1 the Beth ansat
9 99 provides the exact wave functions for both tofud] and

o e e e s o6 20¢ 12 cases. o1 we rumercaly sbe he Sevo
9 p j inger equation. From the eigenvalues we calculate the spec-

to say these are not questions of only theoretical interest; i R R
they can have practical importance. For instance, chaos cd4f#M level spacing distributiof?(s) and the rigidity As(l)
prevent a system being used as a quantum compéileso [13]. We have tested d|fferen.t v_alues )ofand y. Fory=1,
to understand what originates chaos in the system may &S it sh_ould be, the level statistics analysis show characteris-
fundamental to overcome the probldi®]. A simpler case tics of integrable systgms for all cas@der the box case see
where the above points may be answered isNet2. In- also[14]). The same is observed.for the torus case with
deed, some aspects of quantum chaos in two-particle proz - However, for the box case witp# 1 the spectrum sta-
lems have been analyz§2,10], but as far as we know, ques- tistics can have characterlsycs of. chaotic quaptum systems
tions (i)—(iii ) have not been addressed in the literature. ~ for A not too small(see the discussion lajeA typical result
In this contribution we discuss the problem of two par- S displayed in Fig. 1as is usual, we use only states with the
ticles that interact through repulsive short-range potentialsS@me spatial symmetry to make the level statistics, which
From numerical calculations and some analytical results wé&€re are the states symmetric undeq,k;) —(L—xy,L
characterize the situations where quantum chaos occurs. ByX2)]- So for ad interaction it seems that+1 is essential
comparing the quantum with the corresponding classical syd0 obtain chaotic behavior. Furthermore, the box type of
tems we find a direct connection between the chaotic behaoundary condition also plays an important role since there
ior in the former and a specific feature of the latter: the largdS N0 quantum chaos for the torus case. _
number of different momenta the classical particles can have We now analyze a general short-ranigeFor it we con-
(which is connected to the form of the interaction and thesider the center-of-mass and relative coordinates. In the two-
values of some parametgrVe argue that this proliferation dimensional configuration space-x,, the system is re-
of different momenta prevents one from obtaining in thestricted to a square region with corners,(x;) at A
quantum case the system wave function by the Bethe ansatz.(0.0), B=(L,0), C=(L,L), andD=(0L). For the box
Finally, we discuss possible implications of our findings forcase the four sides of this square are infinite walls, whereas
similar many-body problems. for the torus case we have the equivalent siiBs=DC and
We consider two spinless one-dimensiofiHD) particles AD=BC. We now setx=X;—X,, X=(X;+ yX5)/(1+ ),
of massesu and yu, interacting via a potentiaM(|x;  wreg=wp/(1+y 1), and pen=(1+y)u. The square be-
comes a rhombus, whose sides are either infinite walls or
equivalent two by two as above. The new boundary condi-
*Email address: luz@fisica.ufpr.br tions for the wave functions ar#| ;<=0 (box casg and
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FIG. 1. The level spacing distribution and the rigidiypsed ()]

calculated with the first 1000 levels of a particular spatial symmetry
(see texx of the box case withS interaction andy+# 1. The dotted
and dashed curves represent, respectively, the theoretically expecte
spectrum statistics for regular and chaotic systems. The numerica
results show very good agreement with the GOE predictions.

. )

“\B)

V(x,X)=W(x+L,X+L/(1+7y)=P(x—L,X+yL/(1+7y)) :
=W (x,X+L) (torus casg Defining k=(k;—ky/vy)/ :
(1+y 1Y) and K=k;+k, then E=22k?/(2u 1eq) + 12K/
(21 cm)- \/

Let us discuss the torus case wigh=1, for which the
boundary conditions simplify toW¥(x,X)="(x=L,X FIG. 2. (a) For the circle case, two vertical and two horizontal
+L/2)=V(x,X+L). This problem can be separated into representative orbits in the center-of-mass and relative coordinates
two one-dimensional systems. To solve them we use #&r y=1. The shadows represent the regions of action of the poten-
Green's function approach, based on a sum over scatteriri@!. (b) Examples of SP’s in the system associated with the vertical
paths[15], which will be very instructive for our later dis- orbits.(c) A set of equivalent pointéby the wave function boundary
cussions. Figure () displays a few examples of what we conditiong represented in a sequence of replicas of the rhombus
call vertical (parallel to thex axis) and horizontalparallel to ~ region. We see that alongthe periodicity isL, justifying the peri-
the X axis) orbits. The verticalhorizonta) orbits are com- odicity L of the one-dimensional systems(in). (d) Some branches
posed of two branches, whose total length is alwayg2). of av_ertlcal _orblt in the case of# 1 anq ad |nteractloq.(e) Par_t of
If a particle is in one of the branches, say the left, of a giverf: F2Ylike trajectory for the box case witp=1 and as interaction.

. . e = Observe that there are no longer independent vertical and
vertical orbit and goes ufdlown), hitting the sideAB (AD), horizontal orbits.
then it comes out in the corresponding second branch from
DC (BC). Any of these trajectories can be mapped into th
one-dimensional systems shown in Figb)2 which differ
from each other only by the relative location of the potential
V in the periodic region { L/2,+L/2); see Fig. &). Thus,
they are all equiyalent. Similarly, if _a particlt_aﬁint_he u_ppertimes that a given trajectory crosses the borderat2=
branch of a horizontal orbit and hits the siél (BC), it | /2 After classifying and summing over all the possible
comes out fronDC (AD) in the lower branch. For the hori- trajectories we find (¢=k(L—d), g = (15t exdid])?
zontal orbits, neither of the two branches is in the region of_ (y ex{i¢])?)
action ofV (recall that the dynamics of the center of mass is
free). All these orbits can be associated with a 1D rigid ro-

eIength of the particle’s trajectoryoutside the potential re-
gion) andWsgp is the product of all the usual reflectiorand
transmissiont quantum amplitudes that the particle goes
through along the scattering path.is the total number of

+ Mred 1 .

tator. G o (X5, X K) = — (g~ exdik(xf—x;+L)]

Based on[15] we can write the exact Green’s function el in%k g= ro
for the first one-dimensional problem a&*(x¢,X;, k) . .
= jtrea! (117K) S sp(* 1) W sp expliSsp(xs , X1 K) /1], F(=1mtexdighiexdikx—x+L)]
wherex; andx; are outside the region of action of the po- +exd —ik(x;—x;+L)]}=r exdi¢]
tential. The sum is performed over all the scattering paths _ _
(SP’s which are generated by multiple scattering due to the x{expik(xs+x) ]+ exd —ik(xs+x)1}).

localizedV. Figure Zb) shows some of these paths schemati-
cally. For a given SP, the actio8sp is k times the total For the rigid-rotator-like problem the Green's function is
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G em (X1, X1 K) = (1 om /17 2K) {expiK[X; — Xi[1+ expliK (L

— X=X THw, with w=1— exgiKL]. PEL POISSON 0.9

The energy eigenvalues are obtained from the poles of the || = =~ Go® T oo
Green’s functions, which are given by the roots df ( . T
+r)exdik(L—d)]=1 for G, (t=r)exdik(L—d)]=—1 for 0.8l '
G, » and KL=2n7 (with n being an integgrfor Gy, . =

(=)

Since for separable systems the total energy is just the sura 0.6}
of the energies of each degree of freedom, we can \#ite
=E,q +E.y. By calculating the residues of the Green's 0.4
functions at the energy eigenvalues one obtains(x) and
¥ em(X), and thusW(x,X)= ¢ o) (X) ¥em (X). Here, how- 0.2¢
ever, some care is in order due to the particular form of the

boundary condition imposed o¥. In fact, the total wave 0 . 1 s N a5 N 35
function must obey Urel (X_)Jﬂ cm(x) = el (th-) l//cm(x

+L/2). Itis easy to see that,, (coming fromG ) is such 8

that o (x+L) == (x). Furthermore, y{) (X+L/2) FIG. 3. The same plots as in Fig. 1, but now for the box case

=(—1)"y"(X). Therefore, ¥ must be written either as with a rectangular barrier interaction ane= 1. The spectrum sta-
Pl pn=even) with energies E=E’, +EN"" or as fistics are made with the first 450 energy levels of the eigenstates
P oo 09D with E=E o + ET0% . These results give us symmetric under bothk;—x, (boson$ and (¢;,Xz) < (L—Xy,L
the exact Solut|on for the torus case W')th: 1 and a general 7X1). Here we also see a fair agreement with the GOE pl’ediCtionS.
short-range potential.

To verify the above expressions we have considered theegular and fory# 1 it can present chadfig. 1). Moreover,
case of aé-function potential, whered=0, t,=ik/(ik  for a general short-range potentigl e.g., a rectangular bar-
—0), rs=ol(ik—0), and o= u ;n\/%2. After simple cal-  Tier, the box case may have chaotic spectrum statistics even

culations we obtained all the exact solutions previously defor y=1.
rived in the literaturg 11]. We have also considered other  Inorder to seek a connection between all the above results
types ofV, for instance, rectangular and triangular barriers.2nd the corresponding classical dynamics we turn to the clas-
We computed the eigenenergies with these potentials numegical system of two impenetrable particles in 1D which has
cally and compared them with the energies obtained fronPeen analyzed in different aspects such as ergodicity, mixing,
our solution; we found a perfect agreement, as it should bedistributions of momenta transfer, ef@0]. Here we just list

For the torus case witl# 1, in general the vertical orbits Some results that are important for our purposes. If the clas-
do not all have the same total length and do not close peisical particles interact only via elastic collisions, we have the
fectly [see Fig. 2d)]. However, we can still solve this case relation between the momenta before and after the collision
exactly. Here we just write down the equations that give thd?y simple laws of conservation. Furthermore, the confine-
correct eigenvaluegdetails will appear elsewherflg]), —ment of the particles, within a circlén the torus caseor
exdi(ktk)L]=1 and ¢—exdik,L])(t—expli[(1—y)k, inside a box, gives rise to infinitely many collisions, leading
+2k,]L/(1+7)}) =r?, which reduce to our previous formulas t0 @ whole set of differenp’s for them. Thus, we have the
for y=1. following [20]. For the torus casdj) the particles recover

The box case is not separable into the center-of-mass artgeir initial momenta after two successive collisions for any
relative coordinatefsee Fig. 2e)], but can still be solved by Vvalue of y. For the box caselii) when y=1 the particle-
the Bethe ansatz fop=1 and ad interaction[12]. To ana-  Particle and the wall-particle collisions lead p§¥=p$”,
lyze this same problem but for a short-rangeve have nu- pP=p and pj(a)= - p,(b) , SO in total each particle can
merically calculated the spectrum considering a rectangulaassume only four different values of momentum. ket 1
barrier, i.e.V =V, for |x; —X,|<d/2 and zero otherwise. An and = 6/ (cog 6]=(1—17)/(1+v)), (iii) for rational 5 just
example of the level statistics for bosons is shown in Fig. 3a finite set of distinct momentum pairp4(,p,) can occur
indicating chaotic behavioffermions present similar level and, (iv) for irrational #, although all the possiblep(,p-)
statistic$. These results are not at all a surprise because thiare generated very slowlj20], they can assume infinitely
system is equivalent to a two-dimensional billiard problemmany different values.
[17], where the particle experiences different potentials in If the particles interact by a short-rangé and scatter
different regions of the billiard. In fact, it has been imple- elastically we have thatv) in both torus(any y) and box
mented experimentally by microwave cavities loaded with ay# 1) cases the results are similar (io and (iv). For the
different dielectric mediuni18] and shows the so called phe- box case withy=1, (vi) contrary to(ii), proliferation ofp’s
nomenon of ray splitting, much studied in the context ofcan occur. To see this consider as interaction a rectangular
quantum chaofl19]. barrier (see aboveand initially particles with kinetic ener-

At this point it is worth summarizing our findings so far. gies greater thaiv,. Assume the particles are less thai2
For the torus case, regardless of the valuer aind the form  apart and close to the right wall, going toward it. If particle 1
of the interaction, we never see quantum chaos. For the bosollides with the wall first, reverses its motion, and then hits
case and & interaction, we have that foy=1 the system is particle 2, simple calculations show that when their distance
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apart is greater thad/2 their momenta will not be given 0.08 ‘ ‘ 03 ‘ ‘
simply by an exchange as ifi). Both particles will have box case, state No. 1182 box case, state No. 857
new momenta values, resembling what happens in the cas y=16 y=38

of y# 1. Repetitions of this process, which dependsifin,

then generate a large set of differgris. 0.04 02

By putting all the previous results together we can estab-
lish adirect correspondencbetween the origin of chaos in 5
the quantum case and the ergodicity of the momenta in the ™
classical case. In fact, we see that when classically the sys 0. 04
tem has a finitginfinite) number of possible values for the
p’s the quantum system is always regu{ahaotig. To un-
derstand the origin of this correspondence let us consider th

scattering wave function of two particles interacting by a o L] ol U
general short-range potential. If particle 1 is initially on the 1000 e 10 1875 650 e 1025
left of particle 2, we havésymmetrization considerations for
boson and fermions, whep=1, are not relevant here FIG. 4. Typicalc, distributions for chaotic = 1.6) and regular
(y=3) W’s. Here the two states have their energies differing by
P(xo— x> dI2) = (2m) " Yexd i (kPx,+ kPx,)] only 0.1%.
+r(k)exp i (K@x, +K@x,) T, t(K))exli (KPx + ko) 1+ B(r (K), t(k)Jexpli(kx + k%),

valid for d/2<x;—X,<L, and a similar expression fat/2
. ) ) <Xp—X;<L. Thek;j’'s in the exponentials are not just per-
P(Xy—Xp>dI2)=(2m)  “t(K)exdi(ky'x;+K57X2) ], mutations of the initial set of momenta, they also include all
the newk;’'s generated by the collisionsd and B depend
with k@ =[(1-9)/(1+y) kP +[2/(1+ 7)1k and k2 explicitly on the transmission and reflection amplitudes\for
=[(y—1)/(1+ y) kP +[2y/(1+ )1k . It is easy to see [16]- This exact wave function is then a generalization of the

that these relations between tkis are exactly the ones for BA 10 our case. Extending this idea we should writefor

the exchange of momenta in a collision of two classical im—the box,caseéln the erg“od|c regimeas asum 0’\,/er an infinite
set ofk’s due to the “quantum proliferation” of momenta

penetrable particlegrecall that p=#%k). Thus, when the 7. )
quantum particles tunnel throudheflect from) each other, discussed above. Thus we cannot haven a closed form
and the system must present chaotic features as a conse-

i i 2 2
with _probability [t(k)|* ([r(k)|%), they do not change guence of the Berry hypothesi&3], which states that the

(Cha_nge exactly as in the class[cal Qaﬁ:mw momenta. By ave function of a chaotic system has the same statistical
confining our quantum system, its eigenstate€an be ex- roperties as a sum of random waves. In our caleis

pressed as the superposition of all these scattering solutioh&itten as a random sum of an infinite number of plane

[21], analogous to our construction for the Green’s function,yayes where the randomness is caused by the ergodicity in
written as a sum over scattering paths. In this sense, thge p’s.

proliferation of momenta in the classical system does also Avery simple way to verify the above ideas is to write the
occur in the quantum case. Here it also becomes cleanwhy system staten as ¥ == ., én, Whered, are the eigen-

(or Vg in the case of a rectangular barrier interaclioannot  giates of two noninteracting confined particfesich for the
be too small for the syst_em to be chaotic. This is because thgyy case are sine functionswith n=(n,,n,) the momen-
exchange of momenta in the quantum case _takezs place onfym quantum numberén order of increasing energyyFrom
in the reflections, which occur with probability |, thus  the previous discussions one would expect to have a much
being small forA small. _ o . broader distribution ot,’s for a chaotic than for an inte-
For N identical particles with pairwise interactions, we grable case. The spread of momenta due to the successive
have the following.(a) For & potentials the Bethe ansatz cyjjisions implies a much larger number of unperturbed
(BA) leads toW(xy, . .. xy) =ZpC(P)exdiZikpx], where  gjgenstates necessary to describeaccurately. We have
the sum runs over all the permutations of the initial settested this for a large number of cases and a typical situation
{k1, ... kn}. TheC(P)’s take care of both the form of the is shown in Fig. 4. For the box case withsanteraction we
interactions and the correct symmetries of the wave functioncompare thdc,|? distribution for y=1.6 (see Fig. 1 with
(b) For long-range decaying potentials, Sutherlasele, for =3, which is regulafthe number of different momenta the
instance, [22] and references therginintroduced the particles can have in this case is finjd]). To have a cri-
asymptotic BA, applied when the many-bo&ymatrix can  terion when comparing different systems we have chosen the
be decomposed into two-body matrices in the asymptotigtate quantum numbers in such a way that their energy
regionx; <x,<xs- - -. (€) For short-rang&/’s this decompo- values are very close. We should mention that for a chaotic
sition occurs in the regions outside the actions of the potensystem thec,’s are more or less distributed dependingnn
tial and the Schidinger equation has as solution a linear But their distribution is always much broader than those of a
combination of plane waves. So the asymptotic BA methodegular case.
does give the exact¥ in such regions. In our torus Based on all the above results we conjecture thatNfor
case (short-rangeV, any y) we have[16] V= A(r(k), confined particles of arbitrary masses and interacting pair-
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wise by short-range potentialg; , the total¥ outside the We finally mention that some of our results can be inter-
regions of interaction is a linear combination of plane wavesreted in terms of analogies with triangular and rhombus
whose coefficients are related to the quantyyis andt;;’s,  billiards [24]. However, those analogies do not work in all
and thek’s in the exponentials are the same as the onesases, as will be the subject of a future contributieee also

generated by collisions in the classical case. Obviously, wg17]).

can obtain¥ in a closed form only if the total number &fs
is finite. Thus one can affirm that fdé=3 both the torus and
the box cases present quantum ch@ssept for some values
of ) since classically they are ergodi20].
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