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Crossover parametric equation of state for Ising-like systems

V. A. Agayan, M. A. Anisimov, and J. V. Sengers
Institute for Physical Science and Technnology and Department of Chemical Engineering, University of Maryland,
College Park, Maryland 20742
(Received 19 March 2001; published 26 July 2001

We present a parametric equation for the thermodynamic properties in the critical region of three-
dimensional Ising-like systems which include fluids and fluid mixtures. The equation of state incorporates a
crossover from singular Ising behavior asymptotically close to the critical point to clageiesn-field
behavior further away from the critical point, characterized by two physical crossover parameters: a coupling
constant related to the strength and range of molecular interactions and a “cutoff” wave number for the critical
fluctuations. In the asymptotic Ising limit, the crossover equation reproduces the most recent theoretical
estimates for the universal ratios of the leading and correction-to-scaling critical amplitudes. The equation has
been tested by comparing it with recent experimental thermodynamic-property dateldanear its vapor-
liquid critical point.
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[. INTRODUCTION Hence, to deal with the effects of critical fluctuations on the
thermodynamic properties of systems one needs to formulate

Critical phenomena in fluids have been the subject ofa description of the effects of critical fluctuations that goes
many theoretical and experimental studies during the padieyond the asymptotic scaling behavior and includes cross-
thirty years. The most striking result of these studies ha®ver from fluctuation-dominated critical behavior in the near
been the discovery of critical-point universality: the micro- vicinity of the critical point to classical behavior far away
scopic structure of systems becomes unimportant in the vifrom the critical point where the effects of fluctuations can
cinity of a critical point[1-4]. be neglected.

The principle of critical-point universality finds its physi- For fluids a well-developed approach to this problem is
cal origin in the phenomenon that long-range fluctuations oprovided by a transformed Landau expansion for the
the order parametdmagnetization in spin systems, density Helmholtz-energy density, originally formulated by Chen
in one-component fluids, or density and concentration iret al.[5,6] and reviewed by Anisimoet al. [7]. This cross-
fluid mixture9 dominate in the critical region so that the over Landau model is based on a so-called renormalization-
range of these fluctuations becomes much larger than armyroup matching technique as earlier implemented by Nicoll
other microscopic scale. The spatial extent of these critica¢t al. [8,9]. The approach has been successful in representing
fluctuations is determined by a correlation length, which di-experimental thermodynamic-property data not only for mo-
verges at the critical point. As a consequence, at the criticdecular fluids, but recently also for complex fluids like poly-
point the behavior of the thermodynamic properties becomemer or aqueous electrolyte solutiofi].
singular and it can be characterized by scaling laws with While the crossover Landau model, formulated about ten
universal critical exponents. Every singularity is also characyears ago, incorporates a representation of the asymptotic
terized by an amplitude, and certain combinations of criticathermodynamic behavior that is realistic for many practical
amplitudes are universal. applications, strictly it does not reproduce the theoretical val-

Critical-point universality asserts that the thermodynamicues of the universal critical-amplitude ratios within the high
properties of systems with finite interaction ranges have critiaccuracy currently available for these ratios, as will be docu-
cal exponents that depend on only two physical parameterspented in Sec. Ill. The purpose of the present paper is to
namely, the spatial dimensionalityand the number of com- present an improved equation of state that incorporates the
ponentsn of the order parameter. Systems with the saime crossover from Ising-like to mean-field critical behavior,
andn are said to belong to the same universality class. Fowhile reproducing the known theoretical values for the uni-
example, fluids, fluid mixtures, and uniaxial ferromagnetsversal ratios of both the asymptotic critical amplitudes and
belong to the three-dimensional Ising universality class withthe correction-to-scaling amplitudes.
d=3 andn=1 and they can all be described by the same To accomplish this goal we start with an extended para-
scaled equation of state asymptotically close to the criticametric equation for the asymptotic scaling laws designed so
point [3]. as to reproduce the relevant critical-amplitude ratios by fol-

The range of asymptotic scaling behavior is usually quitdowing a procedure similar to the one recently adopted by
small. However, the correlation length of the critical fluctua- Fisher et al. [11]. As a next step we introduce into this
tions exceeds in practice the short-range molecular intera@symptotic parametric equation a crossover transformation
tion range in a sizable part of the phase diagram and onsimilar to the one deduced from the renormalization-group
must also consider the effects of critical fluctuations at temtheory for the crossover Landau model.
peratures and densities where the correlation length is still We shall proceed as follows. In Sec. Il we consider the
significantly larger than the average intermolecular distanceasymptotic thermodynamic critical behavior of Ising-like
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systems in terms of two relevant scaling fields. To discuss the o -
consequences of this general formulation we shall adopt X2=\ o =|ha| ~y(2), 2.7
physical variables appropriate for one-component fluids. 2/hy

However, the results can be applied to any Ising-like system .
by identifying the relationships between the scaling fieldsVith

and the appropriate physical fields. In Sec. Ill we review the —(1_ _ /

crossover Landau model and its predictions for the crossover Y2)=A=a) )= (B+7)2d'(2), 28
behavior of various thermodynamic properties. Section Myhere f”(z)=d?f/dz2 and ¢’ (zZ) =dy/dz. In addition, one
presents the improved parametric crossover equation inclugnay define a cross susceptibility as

ing a detailed comparison with theoretical predictions for

both the asymptotic and nonasymptotic behavior. In Sec. V deq dpy
we make a comparison with crossover parametric equations X127 X21™ (ﬂ_hz) = (5_hl
of state developed by other investigators. Sec. VI deals with h

an application of the crossover parametric equation to the I B~ pf’ (7 _ "
representation of experimental thermodynamic-property [l ™ LBT (2) = (B+ )2 (2)] 29

data. The paper concludes with a discussion of the results iihe exponentsy and y are related tog and & by a=2

h;

Section VII. —B(8+1) andy=B(5—1). We note that in the one-phase
region in zero ordering fieldh;=0) ¢;=0, ¢,=0, and
II. SCALING FIELDS, CRITICAL EXPONENTS, AND x12=0, sincez=0 andf’(z)=0.
CRITICAL AMPLITUDES The scaling law, given by Eq$2.1) and(2.2), represents

The near-critical behavior of Ising-like systems is charac-the thermodynamic behavior asymptotically close to the

. : : . ; critical point. The renormalization-groupRG) theory of
::(zr:];jda?g tt(;/vt(;]ereolf;e&/:rnt ;:;gggﬁf'e;zz aago?]rc()jr?jrelrr]i% ﬂﬁg d critical phenomena predicts that EQ.1) represents the first
JUYE P 1, . g ne term of the so-called Wegner expansion of the f¢dr#i,13

h, conjugate to the second scaling density. Asymptoti-

cally close to the critical point the crNiticaI pat® of the AD(hy,hy)=h3|h,| " “f(Z)[1+|hy|*sf1(2)+ - - -],
dimensionless thermodynamic potentia] whose character- (2.10
istic variables are the scaling fieltis andh,, then satisfies ) ] -
a scaling law of the forni3] whereAs=0.52+0.02 is another universal critical exponent
[14,19 and wheref,(z) is a universal correction-to-scaling
AD(hy,hy)=|h,|A0*Df(2), (2.1  function except for a multiplicative system-dependent con-
stant related to the strength of the first irrelevant scaling
with field.
To elucidate the consequences of the scaled equation
z=hy/|hy|#?, (22 (2.10 and to subsequently formulate a crossover equation of

state we shall adopt here physical variables appropriate to a

where g and & are two universal critical exponents, and one_component fluid near the vapor-liquid critical point. Let
wheref(z) is a universal scaling function except for the two p 1,4 the pressureT the temperaturep the density,. the

system-d_ependent constants related to the amplitudes of theamical potentiall) the internal energyA the Helmholtz

asymptotic power laws to be defined below. energy, andCy the isochoric heat capacity. The extensive
The scaling “densities” conjugate to, andh; are thermodynamic properties are considered per unit of volume

V and all thermodynamic fields and densities are made di-

©1= _(M) = h,|#'(2) (2.3 mensionless with the aid of the critical presskre the criti-
' dhy 2 ' cal temperaturd ., and the critical density, [16]:
h
~ ~ PT ~ T ~ ~ T
IAD B P=_ ¢ F=_—_° =P g=fPcc
2= | | T h,|h,| ~“¥(2), 2.4 TR, T Pe PcT
2/, (2.1
wheref’(z)=df/dz and ~ U ~ AT ~ CyT
@ U=Gp A=y7py Ov= VVPC' 2.12
W(2)=(2-a)f(2)—(B+y)zf'(2). (2.9 ¢ ¢ ¢
. . I We also introduce the variables
One may define the scaling susceptibilitigs (strongly
divergen} gndXZ (weakly divergentthat are associated with AF=(T-TYIT=T+1, 2.13
the densitiesp; and ¢,:
I¢1 Ap=(p—po)lp=p—1, (2.14
X1=\ Zhs =|hy| " 7f"(2), (2.6 o
L, Ap=p—po(T), (215

026125-2



CROSSOVER PARAMETRIC EQUATION OF STATE R®. .. PHYSICAL REVIEW E 64 026125

whereuo(T) is an analytic function of temperature equal to Where the plus sign correspondsgde- p. aboveT, and the
the chemical potentigk whenh,=0. minus sign top = p, below T.. Along the critical isotherm

For spin systems, as represented by the Ising model, théT=0, Au varies as
ordering fieldh; is to be identified with the magnetic field _ _
and the order parameter, is to be identified with the mag- Au=+Dg|Ap|[1+--]. (2.21
netization. It is commonly assumed that fluids asymptotically . . P
close to the critical point have the same symmetry as th&1 these equationsyy , A; , Bo, By, I'g, I'y , andD, are
lattice gas for which the ordering fielt; and the nonorder- System-dependent coefficients. The amplitudes, Bo,
ing field h, are[17,1§ I'g , andDy of the asymptotic power laws are related to the

scaling functionf(z) in Eq. (2.1) by

h,=An, h,=AT. (2.1

A7 =(2-a)(1-a)f-(0), (2.22

The corresponding scaling densities are Bo=f'(0), (2.23

¢1=A7), ‘PZZAUy (2.17 Fot:fl(o), (2.24)

whereAU =U — U, with U, being the(arbitrary value ofU Do=lim{Z[t'(2)]" ). (2.25
at the critical point. The corresponding thermodynamic po- 7

tential in Eqg.(2.1) becomes the density &#V/T, which in

dimensionless units equals Upon substituting the expres- Since the SC?‘".”Q functi_on contains_ o_nly_two system-
dependent coefficients, which are multiplicative factors of

sions(2.16) for the scaling fields into E¢2.1), we note that X ) ;
the critical part of the thermodynamic potential becomes asth® functionf and of the argumers, respectively, it follows

ymptotically close to the critical point a universal function of that the asymptotic critical amplitudég, , Bo, I'y , andD,

the physical variable&.T and A, except for two system- 210 TEREREE BY o ee ot O e O ection-to.
dependent coefficients. P P : Y,

Conventionally, one has used as the temperature variab%caIIng amplitudes, , By, andI'y” are related by universal

= ratios so that only one of them is independent.
T T‘? rather than th? vanabl@— —Tc/T adopted here. The Asymptotically close to the critical point the correlation
scaling fieldh, then is proportional to{—T.)/T,, while ¢,

I h¢ di
is then related to the entropy density. The two choices be-engt ¢ diverges as

come identical in the asymptotic limit but differ with regard
to nonasymptotic corrections. To include a treatment of non-
asymptotic critical behavior, use of the inverse temperatur
as the temperature variable appears to be more appropri

[5-7,13,16,19,2D related to the susceptibility exponent by y=(2—n)v,

The sqahng laws, given by Eq®2.) gnd (2.10, imply . where n is the exponent that characterizes the wave number
asymptotic power-law behavior of various thermOdynam'Cdependence of the structure fac{@l]. We note that the

properties along the critical isochope= pe, along the coex- correlation-length amplitudg; is related to the specific heat

istence curvep=p.., and along the critical isothermt . ) I o
=T,. For fluids the weak susceptibility, is proportional to capacity amplrguder. by the so-called principle of two-
scale-factor universalit{22],

C,/T?, which diverges ap=p, as

E= &5 AT, (2.26

Svhere the plus sign correspondsgde- p. aboveT, and the
EWﬁnus sign tgp = p¢yc belowT... The universal exponentis

o 5 B ahg (€5)°%1vo=0.0188-0.0001. (2.27
CylT?=Ay |AT| *[1+AT|AT|As+---], (2.18
Hereuv, is physically the molecular volume. However, since
where the plus and minus signs correspond\fo>0 and the Helmholtz energy in Eq. (2.12 has been made dimen-

= . : . sionless by dividing by .V rather tharR T, in this papew
AT<~0’ re.spectlvely. The oro!er parametey Is propo.rtlonal is actually the molecular volume divided by the critical com-
to Ap, which along the coexistence curge= p,. varies as pression factoZ,=P./p,RT,, so that[18]

Ap=*+Bo|AT|A[1+B,AT|*+ -],  (2.19 vo=kgTc/Pe, (2.28

where the plus and minus signs correspond to the liquid anWhereksg is Boltzmann's constant. The universal critical ex-
vapor branches of the coexistence curve. The strong susceBenents and the universal critical amplitudes have been cal-
tibilit is proportional toy = (dp/d)+, which diverges culated by many investigatof44,15,22—28 The values for

as Y X1 1S prop X profIT, 9 the universal critical exponents for three-dimensional Ising-

like systems, together with their classical values, are listed in
~ = =i Table I. Theoretical values currently available for the univer-
x=To AT 71+ [AT] s+ ], (220 sal critical-amplitude ratios are contained in Table II.
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TABLE 1. Universal critical exponents for three-dimensional AT ™
Ising systems and for the classical theory. ¢1=Ap—bzAU, (233
Critical exponent 3-dim. Ising systems Classical value €02ZAU- (2.39
@ 0.110-0.003 0 The order parametes, is not simply proportional ta\p but
B 0.3255-0.002 1/2 h tributi " L a0 A
y 1239+ 0.002 1 as a contribution proportiona .As a cgnsequence,
5 4.80+0.02 3 along the two branches of the phase boundspyvaries as
v 0.630+0.002 1/2 - - =
7 0.033+0.004 0 Ap=*Bo|AT|P+BJAT|* "%+ - (2.35
Aq 0.52+0.02 1 _
with
The simple Ising model and its equivalent, the lattice-gas Ba=b2(2—a)f_(0). (2.39

model, have a special symmetry with respect to the sign of

the ordering fielch;. Real fluids near the liquid-gas critical The second term in Eq2.35 causes a singular asymptotic
point, however, do not possess the symmetry of the lattic®ehavior of the coexistence curve diameft@2]. Most re-
gas[29]. The physical fields, which are the chemical poten-cently, Fisher and Orkoulas have also considered the possi-
tial and temperature, have no definite scaling dimensionalitpility of adding a pressure contribution to the expressions
and one should identify the scaling fields with the linear(2.31 and(2.32 for the scaling field$33].

combinationg30,31] In spite of the mixing of the physical fields defined by
Egs. (2.29 and (2.30, the main contribution to the com-
hy=a;A%+a,AT, (2.29 pressibility of a near-critical fluid is the strongly divergent

susceptibility y;, while the main contribution to the isoch-
oric heat capacity is the weakly divergent susceptibitity
For a description of the general procedure for specifying

. the scaling fields of fluid mixtures we refer to some other
wherea; andb; are system-dependent coefficients to be de- ublications{30,31].

termined from a comparison with experimental data. The’
scaling fields may be normalized in such a way that 1
andb;=1 as is done in Eq(2.16 by putting two system- Ill. CROSSOVER LANDAU MODEL

dependent coefficients in the scaling functibfz) in Eq. A. Renormalization of the Helmholtz free-energy density
(2.1). Takinga,=0 corresponds to the choice of the energy

U.=(dP/ ﬁ')i at the critical point, and we have for the scal-

h,=b,AT+b,Aw, (2.30

The modern theory of critical phenomena is based on the
renormalization-group theory applied to systems character-

ing fields ized by a Landau-Ginzburg Hamiltonidi]. To make the
- connection with this theory we note that the asymptotic Lan-
hi=Au, (23D dau expansion for the critical part of the classical local
Helmholtz free-energy densifyd4]
h,=AT+b,A%. (2.32 . . L
N — FAT)2 ~\4 ~\2
The densities conjugate to, andh, are AAq 2aOAT(Ap) T Uo(Ap) ™+ 2C0(Vp) 39

TABLE II. Universal ratios of the leading and correction-to- can be rewritten in the rescaled form
scaling amplitudes for three-dimensional Ising systems. To calcu-
late the universal amplitude ratios for the crossover Landau model ~ 1 2 uA 4 1_ 2
(CLM) and the crossover parametric mod€PM) we adoptedy AAd:EtM + HM + E(VM) , (3.2
=1.239,«=0.110, andA=0.51.

where we have introduced the following transformation of

Ratio Ising model Cim CPM variables and coefficients:

AglAg 0.523+0.009 0.50 0.524 B o

riiry 4.95+0.15 5.0 4.94 M=c,Ap, t=cAT, V=qg'V, (3.3
aAJT/BE 0.0581+0.0010 0.052 0.0580

IiDeBJ 1.57+0.23 1.73 1.71 cci=ag, UA=c,%uy, Co=0qp°Cl. (3.9

Al /B, 1.10+0.25 0.83 0.844

B./T'] 0.90+0.21 0.87 0.897 The system-dependent coefficieats ug, andcg in the Lan-
B./T; 0.29+0.08 0.175 dau expansior(3.1) have been replaced by the two scale
AIA] 1.12+0.29 1.20 factorsc, andc, and the coefficientiA in Eq. (3.2). In Egs.

(3.3 and (3.4 qo is a wave number associated with the
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microscopic structure of the system. For the Ising magel

=m/a, wherea is the lattice constanit35,36. Hence, for
fluids we conjecture that

(o= W/véls. (3.5

The parameteA in Eq. (3.2 is to be interpreted as a dimen-
sionless wave number related to an actual cutoff wave num-

ber qp for the critical fluctuations by

A=0dp/do=£p"/do. (3.6
The variableM represents the order parameter and the
variablet the scaling fielch, [cf. Eqs.(2.16) and(2.17)]. The
expression for the classical correlation lengthcan be writ-
ten as

=00 kg (3.7

with
_[ AR —tr Luam? 3.8
Ko=| | St zuAM? (3.9

t

From Eqgs.(3.7) and(3.9) it follows that atM =0 & satisfies
a power law of the fornj7]
Eq=&5 (AT) 12 (3.9

with & =0 ¢, ¥2=(co/ag) Y2

The rescaled expressig8.2) for AA can be related by a
Legendre transformation to the familiar Landau-Ginzburg-

Wilson Hamiltonian:

_1 2uA41Vzh 31
H—§t¢ +ﬁ¢ +§( ¢)°—hdo, (3.10

wheret is the temperaturelike field) is the fluctuating order

parameter whose average value yieldisu is the ¢*-theory

PHYSICAL REVIEW E 64 026125

where7, D, U, andK are rescaling functions defined by

T= Y(ZV*].)/AS, (312)

D=Y" ﬂV/AS, U= YV/AS,

and

K= 2 (Y- elbs_ 1),
aUA

(3.13
Here u=u/u* is a rescaled coupling constant witlh*
=0.472+0.001 being the fixed-point coupling constant for
Ising systemg41,42. Note that there is a factor of 3(
+8) difference between the fixed-point valg in Ref.[43]

(see als$25,28) andu* used here, witm being the number

of components of the order parameter. The crossover func-
tion Y is to be evaluated from the equatip®7]

1—(1—u)Y=u(1+ A% k?)l2yr/As (3.14

with « given by

1—
K2=tT+ Euu*AMZDu. (3.15

The classical limit corresponds to\/x—0 orY—1, the
logarithmic derivative ofY tends to 0, the rescaling functions
7, D, andl{ tend to unity while/C tends to zero, so that the
classical (mean-field expression(3.2) for the Helmholtz
free-energy densitywithout the gradient terins recovered:

lim AA=AA. (3.16
Alk—1
The critical limit corresponds td./x— o or
P Aglv (3 7)
Y—| = , A
uA

and one recovers from E(.11) the asymptotic scaled criti-

coupling constant rescaled by a dimensionless ultravioletal behavior in the form given by Eq2.10 including the

cutoff wave number\, andh is the ordering field. In imple-

leading Wegner correction terms. In this limit the crossover

menting the renormalization due to the presence of longfunctionY can be expanded in powers bfyielding in zero
range fluctuations asymptotically close to the critical point,field for t>0

one integrates{ over fluctuations with all wave numbers.
However, to account for nonasymptotic effects of the fluc-

tuations one must retain a lower nonzero limit=&"1/q,
and an upper limitA.

, (318

t |29 —[t\As
Yz(—) 1—2AS(1—U)<—) 4.

An approximate solution of the non-asymptotic renormal-wheret, =c,AT is an effective crossover temperature scale
ization procedure can be obtained with the aid of so-calleguch that

match-point methodg{8,37-39. Implementing a match-

point method proposed by Nicoll and co-worké¢g9,40,

AT, =g=(uA)%c,. (3.19

Chenet al. [5,6] have shown that the classical expression
(3.2 for AA, can be transformed into the following cross- We note that the crossover from Ising to mean-field critical

over expression for the singular paAtZ\S of the actual
Helmholtz-energy density:

Tk

~ 1 uu
AAS=§tM27D+ 7

A 1
M4D 2~ Et?lic, (3.11)

behavior is governed by two crossover parameters, naﬁely,
andg.
For simple fluids the physical cutoff length scalg will

be microscopically smallg(D:Eo) and we may consider the
infinite-cutoff approximationA — o, but u—0, so that the
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productuA remains finite[7,44). In this approximation one

can recover from the mean-field limit square-root corrections 1.0 T
to the classical behavior of susceptibility and heat capacity in .
the form /t,) 2 or (AT/g) 2 similar to results ob- 0.8 1
tained earlier by Vaket al. [45] and by Levan;gl{46]. In 06_‘
the infinite-cutoff crossover theorgfor A—~, u—0, but o
finite UA) the crossover behavior is controlled by a single ™ 044
crossover parametegjz(UA)Z/Ct which is related to the 1
Ginzburg numbeNg as[7] 0'2'_
T 0
Ne= 000 (208 25 e (20 103
with ny=0.0314. ]
While in the infinite-cutoff crossover theory the crossover 107 -
behavior can be madeiversalby rescaling of the variable 3
by tx or by AT and the Ginzburg number, in general the >
crossover behavior implied by E¢3.14) is cqntrolled by 102+
two independent parameters, namely, the Ginzburg number 3
and the rescaled coupling constant. This can be inferred from
the fact that the crossover E(R.14) allows one to describe
systems with positive< 1) and negativey>1) first Weg- 10° A D
ner correction amplitudggl7—49. Even foru=1, when the 10 10 10 10 10 10 10
Wegner correction amplitudes vanish, the crossover to mean- 1/ Ng

field behavior may still occur if/c}? is small. The behavior

of the crossover functiory, obtained as a solution to the as a function of the normalized temperature stél; (semiloga-
crossover Eq(3.14 in zero field, is shown in Fig. 1. The D g

12 .~ rithmic and log-log plots The solid curve corresponds to the

case of smallA/c;'“ corresponds to crossover to mean-field. . . . -

T infinite-cutoff limit whenu=0. The three other curves correspond
tricriticality [50,51.

N ) — A to the finite cutoffA=1 with u=0.3 (dashed curve with u=1
Close to the critical pointy —(«x/uA)®s""—0 and the

isochoric heat capacity, the order parameter, the susceptibiq(-jaSh'dOtted curyeand withu=2 (dotted curvg

ity, and the ordering field satisfy the asymptotic power-law s

expansions given by Eq&2.18—(2.21). The expressions for 0o=3.04bg", (3.23
the various critical amplitudes in terms of the coefficieits

andc, and the crossover parametersand A are given in  in good agreement with the conjecture given by E35).

Table 111 [41,52. Note that the correction-to-scaling ampli- ~ Upon increasing the distance from the critical point, the
tudesA; , By, and['s are proportional to 1 u: hence. the Crossover model provides a continuous transformation from

leading Wi . itive Tor 1 and Ising-like critical behavior to mean-field critical behavior.
ga ing Wegner CO"?C lons are. positive i an 'neg'a- The transformation is controlled by the rat\d « or, equiva-
tive for u>1. Negative correction-to-scaling contributions |ently, by £/¢, the ratio of the correlation lengté to the
have been found experimentally for polymer soluti¢6] cutoff lengthé,=qg*, and by the coupling constant Due

and for aqueous electrolyte solutiof7-49,53. The ex- to the critical fluctuations, the position of the actual critical

p“(.:'t vaIues. |_mpI|ed by the crossover La_mdau model for thetemperaturérc is shifted with respect to the mean-field criti-
universal critical amplitudes are shown in Table II.

In analogy to Eq(3.7) the (crossover correlation length cal temperature. The critical-temperature shift can be evalu-
: = ' T ated by extrapolation of the inverse susceptibility to zero at
in zero field in the one-phase region is relatedctoy ~ . .
Ap=0 from the one-phase region far away from the critical
E=qtk L. (3.20  point[54]. ~
Expression(3.11) refers to the critical pariAg of the
The expression for the universal relationship between th¢ielmholtz free-energy density. The total Helmholtz free-
isochoric heat-capacity amplitude; and the correlation- energy density is given bj,6]
length amplitude, then becomes

FIG. 1. The crossover functiovi as calculated from Eq3.14)

1 A=AAs+pruo(T)+Ao(T), (3.24
aAg(gar)?’/vO:EV(l—a)(Z—a)qaglvo. (3.22 N ~
where uo(T) andAyg(T) are analytic functions of tempera-

On comparing Eq(3.22 with Eq. (2.27 we conclude that  ture. From Eq.(3.24 we note thaty '=d?A/(JAp)?
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TABLE Ill. Leading and correction-to-scaling amplitudes for the crossover Landau ni@t®) and for
the crossover parametric mod@PM). Hereg= (uA)?/c,.

CLM CPM
A =2.279%(a3/up) Ag =1.68210n,l o= 1.6821@ M, ,

Ay =4.559%(a3/up) Ay =3.2119Tgl y=3.21197“Mo |
I'g=0.879" *ay* ' =3.3831M/l,=3.38317" my /T,

Iy =0.174" ta,* 'y =0.684262n,/1,=0.6842677 *m, /T,
Bo=2.059"*"#(ap/ug) Bo=3.28613n,= 3.28613 2 fmj
Do=0.1293~ 2ay(ug/ay) >~ 1" Do=0.00544597, /m{=0.0054459g 3~ 97 , /m?d
A; =0.439 7 25(1—u) A =0.446"2s(1-u)

I'f=0.61Q *(1-u) I =0.590 *s(1-u)

B,=0.531g 21— ) B,=0.529 *(1-u)

A7 =0.53%"25(1—u)
I';=3.03"%1-u)

=PAR/(9AD)2. Thus AA, is the part ofA related to the From Eg. (3.27)A it is evident that if the correction-to-
susceptibilityy and, hence, to the critical fluctuations. scaling amplitudel'; is positive thenyg; approaches the
The crossover Landau modéCLM), specified by Ed.  asymptotic valuey=1.239 frombelow while if I'; is nega-
(3.11), involves a transformation of the first two terms in the je the asymptotic value is approached frabove In Fig. 2
Landau expansior{3.2). This two-term crossover Landau we show the effective susceptibility exponeyf; as a func-

model prpwdes a crossover from Ism_g critical behavior totion of the reduced temperatut&Ng for various values of
asymptotic mean-field critical behavior. A procedure for

dealing with crossover from Ising critical behavior to nonas-the normalized coupling constant demonstrating the be-
ymptotic mean-field critical behavior by including higher- havior of y; for the cases thaf; >0, I'; <0 , andI'}
order terms in the Landau expansion has also been developedy. The normalized crossover scale is characterized by the
[6,7,55,56. However, in the present paper we shall deal onlycrossover temperatute = 10N which can be inferred from
with crossover from Ising critical behavior to asymptotic {,o position of an inflection point in the dependenceyd

mean-field critical behavior. ont
In a similar fashion, an effective order-parameter expo-
B. Effective exponents nent B can be defined by

Consider the inverse reduced susceptibiliﬁ(‘l
=(0*°AA{/dM?),, where AA, is the renormalized free-
energy density as given by the crossover two-term Landa
model. One can define an effective exponegg that char-
acterizes the singular behavior of the zero-field susceptibility
by [47,57-59

1.20

. ~ 1.15
Yer=—dIn x/d In|t|. (3.29 .5
110

Asymptotically close to the critical poiniyeiﬁ—w= 1.239, ]
while far away y.¢ tends to its classical value of 1. If we 1.05 1
write the asymptotic expansid@.20 in terms of the Landau

variablet rather than the physical variableT, 1.00 1
~ A L 10° 10* 10® 10% 10" 10° 10" 10° 10° 10° 10° 10° 10
x=Tg [t Y(L+TTt]4s+ ), (3.26 N
G
we can deduce a useful asymptotic relation betwggrand FIG. 2. The effective exponenty defined by Eq( 3.25 for the

the value of the correction-to-scaling amplitu%jﬁ, namely, crossover Landau model as a function of the normalized tempera-
ture scalet/Ng. The solid curve corresponds to the infinite-cutoff

f~-_*-|t|ASA limit when u=0. The three other curves correspond to the finite
yeiﬁ: y— 1A_+AS. (3.2 cutoff A=1 with u=0.3 (dashed curvg with u=1 (dash-dotted
1+t curve, and withu=2 (dotted curvg
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FIG. 3. The effective exponeil.+ defined by Eq(3.28) for the . N )
crossover Landau model as a function of the normalized tempera- /G- 4. The effective exponent.; defined by Eq( 3.30 for the
ture scalet/Ng. The solid curve corresponds to the infinite-cutoff cr0SSOVer Landau model as a function of the normalized tempera-
limit when u=0. The three other curves correspond to the finitet,u“_e scalet/Ng . The solid curve corresponds to the |nf|n|te-choff
cutoff A—1 with u=0.3 (dashed curve with u=1 (dash-dotted limit when u='0. Ihe three other curves.co[espond to the finite
curve, and withu=2 (dotted curve cutoff A=1 WIth_u=O.3 (dashed curve with u=1 (dash-dotted
curve, and withu=2 (dotted curve

Beir=d In|M|/d In[t]. (3.28  use, in particular, if one needs to obtain caloric properties by
integration. In fact, an accurate closed form of the scaling
functions has not been formulated for the three-dimensional
Ising model. Moreover, the change from positive to negative
values ofh, involves the mathematical difficulty of passing

N across the singular critical poifif8,60. Instead, phenom-
B, is positive thenB.; approaches its asymptotic valge  enological parametric representations of an asymptotic
=0.3255 from above, while igl is negative the asymptotic Scaled equation of state, which operate with a positive vari-
value is approached from below. able characterizing the distance from the critical point, have

Finally, an effective zero-field heat-capacity exponefj ~ Pecome populafl8,61-63. One of the simplest parametric

can also be defined. Here one must be cautious because thé?grgstent?tiqtrr\]si;he so—caltletc_i “geeair:ndﬁeﬂt' appearz to ge .
are two contributions to the critical part of the heat capacity'cOnSIS ent wi € asymptotic eory 10 second order in

. PO i ‘e=4—d, whered is the dimensionality66]. Various revi-
one part is singular and behavesAgs|t|”* asymptotically  gjons of the asymptotic parametric representations have been

If in the expansion

M= = By|t|P(1+By[t|*s+- ) (3.29

+ By
M

close to the critical point and the other part is constant angyroposed to include Wegner correction-to-scaling terms
represents an analytiC fluctuation-induced critical baCk'[16,67’68 However, such revisions of the asymptotic equa-
ground termB,,. The effective exponeni; is pertinent to  tion are often inconsistent with the current theoretical predic-
the diverging term: tions for the correction-to-scaling amplitude ratios, and the
range of validity of such revised asymptotic equations is still
. PAA, limited [16].
agg=—dlIn| — 5 /d Injt]. (3.30 Recently, Fisheet al. [11] proposed an asymptotic para-
at metric model that complies with the most recent theoretical
estimates for the universal amplitude ratios. We shall use an
As in the case of the susceptibility, for positive values of theapproach similar to that used by Fishatral. to construct a
correction-to-scaling amplitudd; the asymptotic valuer crg;s?ver pararlget?c equdatlor; of state tVa|(|jd o:n the ept;re
. . o critical region. First, we develop an extended asymptotic
=0.110 IS approa_ched from below, while for negaTAflethe arametrig model. Then, startingpwith this asymptoét/ic F|c)Jara-
asymptotic value is approached from above. In Figs. 3 and fetric model as a basis, we shall develop a crossover para-
we show the effective exponeng and ey, respectively,  metric model(CPM) that reproduces almost exactly all rel-
for various values of the normalized coupling constant evant asymptotic amplitude ratios and is in good agreement
with the estimates for the correction-to-scaling amplitude ra-
IV. CROSSOVER PARAMETRIC MODEL tios. This crossover model is advocated for practical use as
an alternative to the crossover Landau model.

A. Introduction

Expressiong2.5) and(2.8) for the scaling functions(z) B. Asymptotic parametric equation of state

and y(z), as given by various approximations of the RG A general asymptotic parametric model for the equation
theory, are very cumbersome and inconvenient for practicabf state can be defined by a set of functid{®), 1(6), and

026125-8



CROSSOVER PARAMETRIC EQUATION OF STATE R®. .. PHYSICAL REVIEW E 64 026125

m( ) [65], which specify the relation between the ordering  TABLE IV. Universal parameters in the crossover parametric
field hy, the scaling fielch,, and the order parameter;, as ~ model.

follows:
b?=1.691 047 wo=—1 w,=1.504 493
h,=r?(9), (4.)  w,=-1.321901 wz=—0.1898336  w,=0.057 53347
h,=rk(9), 4.2
and wherem, is a second system-dependent coefficient,
and while wo=—1. The second term on the right-hand side of
Eq. (4.6) represents an additive fluctuation contribution
@1=r"my(6), (4.3 [8,69 with a coefficientB,, that is actually related to the

. . L crossover parameters, as will be specified b in
wherer and 6 are parametric variables. The variabldés Sec. llIC. P P y €@5

non-negative and represents the distance to the critical point. Equations (4.4—(4.7) define an extended parametric
Critical singularities in the form of power laws are incorpo- model with five universal coefficients?, w,, w,, Ws, and

rated into the paramgtric form t_hrough theariable, while w, which are chosen in such a way that the amplitudes of the
the parameted specifies a location on a contour of constant yyisica| nower laws implied by this parametric model satisfy
r. The sign ofé is taken to be the same as that of the ordefe theoretically predicted universal amplitude ratios. The
parameterp,. ASsuming symmetry in terms of ¢, we can  ,0q,a) values assigned to these universal coefficients are
formulate the requirements to be imposed on the angulaiyen in Table IV. Our extended parametric model has some
functionsk(6), 1(6) andm,(6). Specifically,k(6) must be  ginijarities with an extended cubic model recently proposed
symmetric with respect t6, while [(6), andm, (#) must be Fisheret al.[11], but has the following advantages. First,
antlsymmemc Wlth respect t@. The locus#=0 corresponds upon substitutingv,=0 we recover the cubic model, and
to zero-field orderinglf; = ¢,=0) aboveT., wherer=h,. 560 substitutingvs=w,=0 we recover the linear model.
The locush,=0 (corresponding to the critical isotheJr’s  gecond, for our extended parametric model we can derive
specified by6= 6., which corresponds th(+ 6;) =0. To fix  axpjicit expressions for all critical-amplitude ratios, while for
the overall factor ok(6) we impose the conditioR(0)=1.  he extended cubic model of Fishet al. [11] the valued

On the coexistence boundary the angl@akes the values _ g on the coexistence boundary can be obtained only by
* 6,1, so that the one-phase region is described@y-61.  golving the nonlinear equatior{6) =0 numerically ¢,=1
Sincer is always positivek(6) must change sign af= in our extended parametric moglel

+ 0. and be positive for €&6|<6; and negative ford, In order to obtain corresponding expressions for other
<|6| < 6,. In the same way, solutions bf¢) =0 specify the  thermodynamic properties we note that one can write quite

zero-field line abovelc and * 6, below T, with () being  generally for the scaling densities and susceptibilities
positive for positived and negative for negativé. As is

commonly done in the literature, these conditions are satis- e1=r"my(0), (4.9
fied by the following transformation:

—rl-a _
hlzrﬂﬁl(e), h2=rk(0) (4'4) Po2=Tr mz( 0) Bcrrk(a)y (49)
with X1=""791(0), (4.10
1(8)=100(1—-6%), k(6)=1—-b?¢? (4.9 X2=1 “02(60) =By, (4.1
wherel, is a system-dependent constant and wherés a X12=1P71q, 0). (4.12

universal constant. A parametric scaled equation of state can

be obtained by specifying the functiom () in Eq. (4.3 for  We can write the higher field derivatives of the susceptibility
the order parametes,. However, rather than specifying this y; as

function directly, we prefer to consider the potential

A®(hy,h,), which has the scaling fields; andh, as its (a”Xllﬁhrl‘)hfr’V’”Bﬁsn( 0) (4.13
characteristic variabldef. Eq.(2.1)]. Expressingb in terms

of dimensionless units by introducing= (T./P)(®/VT), with n=1,2,.... Theexplicit expressions for the angular
we write A® in the form functionsm;(6), ;(6), ands;(6) in terms ofl(6), k(6),

and w(6) are specified in Appendix A. Equatior(g.8)—
~ . 1 - (4.13 are general and do not depend on the particular forms
A®(hy,hp)=r""W(0) + 5Brk(6), (4.6  of the functionsk(6), (6), andw(6). From considerations
of symmetry,m,(6), q.(0), andg,(6) are even functions of
where the angular functiow(6) is represented by a polyno- @, while my(¢) andq,5( ) are odd functions ob. Fors,(6)
mial of the form we deduces,(—60)=(—1)"s,(#). From Eqs.(4.8)-(4.12
we deduce the following expressions for the leading critical
W(0)=mgl o[ Wo+w; 82+ W,0*+ws0%+w,6%], (4.7  amplitudes:
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T'g=0.(0), Tgy=1k(61)|7q:(6y), (4.14 of 4. From Eqs.(4.18 and(4.19 we note that the crossover
function depends on two crossover variables, namefnd
As=02(0), Ag=lk(0)|ax(61), (415  Alci”
To completely define the crossover parametric equation of
Bo=m(6,)/|k(6,)|?, (4.16 state we need to specify the equations for the scaling fields
h, and h, and the thermodynamic potentidl®. For this
Do=1(8c)/[my(60)]°, (4.17  purpose we rescale the field as
where .= 1/b and 6;=1. Using the values of the universal hl=r3’2Y(2ﬁ5‘3)’2As~l(6), (4.20

coefficients listed in Table 1V, one readily deduces from Egs.
(4.14—(4.17) the values for the universal ratios of the which replaces Eq4.1) and where
asymptotic amplitudes listed in the last column of Table II. 5 5
[(0)=To0(1— 6%, (4.21

C. Crossover parametric equation of state . . .
P a while the dependence of the field, onr and @ is left un-

The asymptotic parametric equation of state formulated inthanged:
Sec. IVB is valid only in the near vicinity of the critical
point. In Sec. lll we discussed how we can formulate a cross- h,=rk(#6). (4.22
over equation of state that incorporates both Ising critical
behavior with the Wegner corrections and mean-field criticalThe critical part of the thermodynamic potentﬁaﬁ)(hl,hz)
behavior by applying a transformation to the critical part ofis now given by
the Helmholtz free-energy density or, more generally, to the
thermodynamic potential that has the ordering fikldand
the order parametes; as characteristic variables. Our cross-
over parametric equation of state will be based on the critical

part A®(h,,h,) of the thermodynamic potential that hag ~ With
andh, as characteristic variables, which is the potential for _ o
which the asymptotic parametric equation of state was for-  W(68)= Mgl o[ Wo+ w1 6%+ W, 6% +w36°+w,6°].
mulated in Sec. IVB. (4.24
In the crossover Landau model, developed from the RG . .
theory of critical phenomena, the parameteplays the role The term3B.r ?k?(0) in Eq. (4.23 with
of the distance from the critical point and contains two sin-
gular contributions, namely, one associated with the tempera-
turelike variablet and the other with the order paramehér should not be rescaled. since it represents an analvtic
[see Eq(3.15]. In the parametric equation of state it is the fl ion-induced b k, d % . h %’
variabler that serves as a measure of the distance to thegctuajmn-mﬁquc;e ackground contribution. The - coeffi-
critical point. We incorporate the crossover from asymptoticCientsmo andlq in Egs.(4.21), (4.24, and(4.29 are related
Ising-like critical behavior to classicéinean-field behavior 0 Mo andlo by
by applying a proper rescaling transformation to this variable - po-a2 s-112
r, while preserving the existing analytic dependence on the lo=10g9 , Me=meg”™ ™%, (4.26
angular variables. _
To formulate a crossover parametric equation of state wavhereg=(uA)?/c, is again the system-dependent parameter

~ - 1
AD(r,0)=r2Y " Asw(0)+ EBurzkz( 0) (4.23

Be= —2Mpl oWo>0 (4.25

relate x? to the distance variableas related to the Ginzburg number defined by E820.
Equations(4.20, (4.22), and (4.23) completely specify
K2(r)=crT=c,rY @D/ (4.19  the crossover parametric equation of state, to be referred to

as the crossover parametric model. Using Eg5), we can
to be compared with the corresponding expresg®m5 in write Eq.(4.23 also as
the crossover Landau model, whete-c,AT. From Eq. 5 o
(4.18) it follows that in the asymptotic critical limik will ADr,0)/mgl g=r2Y " “2d w,; 62+ w,0*+wz6%+w,6°]
vary asr”, while far away from the critical poink will vary

2y~ alAg__
asr*2 Sincex depends only on the variabte contours of FWors(Y =1

constantr coincide with contours of constant distance vari- +Wor2(2b262—b*6%). (4.27
able x. The crossover functiotY is again defined by Eg.
(3.14: In this form Eq.(4.27) can be compared with E¢3.11) for
L the Helmholtz free-energy density in the crossover Landau
1—(1—u)Y=u(1+A? k?)Y2yvAs (4.19  model. The last term in Eq4.27) can be incorporated into

the background part of the thermodynamic potential and is of
but with «? given by Eq.(4.18. Hence, the crossover func- no importance here. The termor2(Y ™~ ““s—1) is respon-
tion Y, like 2, is also only a function of and independent sible for the singular behavior of the critical part of the heat-
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capacity asymptotically close to the critical point and forfor the leading and correction-to-scaling amplitudes of the
vanishing of the critical part of the heat-capacity far awaypower-law expressions defined in Sec. Il, as shown in Ap-
from the critical point. pendix A. The final expressions for these amplitudes are
Recalling the definitions, Eq$2.3)—(2.9) for the scaling given in the second column of Table Ill. The values of the
densities and susceptibilities and calculating the correspondesulting amplitude ratios are presented in the last column of
ing derivatives in the crossover parametric equation of statelable II. From the information in Table Il we conclude that

we obtain all universal amplitude ratios of the crossover parametric
_ model agree with the theoretical values for the three-
o =r2yCE=12Asm (9Y,), (4.28  dimensional Ising model within their estimated accuracies.
Far away from the critical point the crossover functién
©=1Y " ¥sm,(6,Y,) —Bgrk(6), (4.29  and its logarithmic derivativey; behave as
——ly(1-NAG uA?
X1=r Y 0,(0,Y1), (4.30 Y=1-— . f(u) (4.39
X2=Y " “%05(6,Y1) ~ Ber, 430
XlZZrille(zﬁil)IZASalz( 0,Y1), (432 v UAZ/ASf - 43
to be compared with Eq$4.8)—(4.12. In these equations = (W) (4.39
vu() diny 1 rdy with
r = —_ -
! dinrds AgY dr _ 1
f( )=§[1+u(v/AS—1)]‘1, (4.40

and the explicit expressions for the functioms(6,Y;) and

0i(6,Y,) are presented in Appendix A. In the asymptotic so that forr—co one hasY—1 andY;—0. In this limit,
critical limit Y— (r/g)“s and we recover the original expres- expression$4.8)—(4.11) for the scaling densities and suscep-
sions(4.8—(4.12) for the asymptotic parametric equation of tibilities reduce to

state. The total thermodynamic potentied (h;,h,) is ob-

~ _ 12
tained by adding to the crossover expresgi923 for Ad, P1=r""my(6), (4.41
a background contribution that depends analytically on the —
physical field variables. Po=rmy(6) —Bcrk(6), (4.42
D. Critical amplitudes and effective critical exponents xi=1 " ta.(0), (4.43

In the asymptotic critical limitr — 0, the crossover func- =
tion Y(r) can be expanded as X2=02(6) — B, (4.49

Y(r)=(r/g) 1= Y g s+ O(r229)] (433  where the functionsn;(6) andg;(6) are also given in Ap-
pendix A. Thus, for large we recover classicamean-field
and the corresponding expansion ¥f(r) is obtained by power laws with the amplitudes
differentiation as L o
Ag =02(0)—Bg, Ay=0y(1)—By, 4.4
Yj_(r):l_YlorAs"'O(rZAs), (434) 0 qz( ) cr 0 q2( ) cr ( 5)

where Bo=(b2—1)¥2m,(1), (4.46

Y10=2Ag (1—u). (4.39 Tg=0:(0), To=(b?-1)qy(1), (4.47)

Asymptotically close to the critical point the crossover and
function Y, and the corresponding expressions for the func-

tionsm; andq; can be expanded in power series jmamely, Do=T(6)/[my(8)1°. (4.48

mi(6,Y)=m(9)[1+ m; 4 O)Y fis+---], (439 We findaz(0)=BCr SO thatKg=0, as it should be in the
classical theory. The classical jump of the heat capacity is
Gi(0,Y1)<q(O[1+0; 1(0) Yoo *s+---], (437  recovered as

wherei=1, 2, and 12. The angular functioms; ,(§) and ACy=0,(1)—Byg. (4.49

0i 1(0) are given in Appendix A. Using the expressions o
(4.36 and(4.37) one can readily derive explicit expressions The ratiol'y /T, is universal and in the CPM it is given by
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FJ/F5:2.056, (4.50 numerical critical-exponent values both as a function of tem-

perature and as a function of the interaction rajitjg. Since
which differs from the theoretical value of 2 by 2.8%. The the difference between the effective critical exponents of the
ratioECEFJAEV/EZ) is also universal in the classical theory CLM and of_the CPM is small, ar_ld certalnl_y smaller than the
and plays the same role as the universal raRg accuracy with which the numerical effective exponents can
— AT /B2 in the asymptotic scaling theory. Calculating be calculated, we conclude that the crossover parametric
this rgtioo wg find ' model is also consistent with the effective critical exponents
' for Ising lattices.

R.~0.5109, (4.51)
V. COMPARISON WITH OTHER PARAMETRIC
which differs by 2.1% from the theoretical value & FORMULATIONS
= 1/2. For the ratid"; DoB§ we obtain A previous attempt to transform the crossover Landau
——— model into a parametric representation has been made by
I'g DoBg=1.015, (452 Luettmer-Strathmanet al.[72] , and it has been applied to

, ) . represent the thermodynamic properties of ethigte-74
to be compared with the exact value of 1 in the classicalq of argor{75] in the critical region. Since the variable

theory. _ _ given by Eq.(3.15, plays a role similar to the distance pa-
Finally, we consider the crossover behavior of the effecy;meterr in parametric models, one can setr” and iden-

tive critical exponents implied by the crossover parametrictify the ratio '

model. As an illustration, we have plotted in Fig. 5 the ef-

fective exponents as calculated from the CPM and from the

CLM for u=0.3. The curves are almost identical, especially

in the vicinity of the critical temperature, which is reasonable K

because the correction-to-scaling amplitudes and their ratios

in the CPM are very close to those in the CLM. The critical With the angular variabl® [9,72]. The parametric crossover

exponenta ; of the CPM coincides identically with that of model of Luettmer-Strathmanret al. is mathematically

the CLM and is not shown. equivalent to a variant of the crossover Landau model de-
Numerical values for the effective critical exponents of Scfibed in Sec. Il in which the implicit Eq(3.14 for the

three-dimensional Ising lattices with a variety of interaction¢rossover functiorY is approximated by an explicit equation

ranges have recently been obtained by Luijten and Binde®f the form

[70]. In a previous publication we demonstrated that the .

crossover Landau model gives a good representation of these Y={1+u[(1+ A%/ k?)*2-1]} "1 (5.2

U*UAM?DU

5 02 (5.1
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wherew= A4/ v. This version of the crossover Landau model Ag/Aa =0.52, rg/ra =4.87,
has been designated as crossover model | by €aagj [41].
Parametrization of the temperaturelike variablend the aAJFSlBﬁz0.0SG, FgDoBg’1=1.69, (5.6

densitylike variableM follows as

and

t=rz(=2lo1-02?/2), (5.3
A;/B;=0.53, B,/T'} =1.23. (5.7

M=(u*uA) Yr2v+ A2)(A-)4Bz(n-w)20@ (54  The asymptotic amplitude ratid$.6) are identical to those

of the linear model and comparison with the information

provided in Table Il shows that these ratios are quite satis-

factory. However, the ratio.7) of the correction-to-scaling

amplitudes differ significantly from the theoretical estimates

z(r):[(1_U)rwv+U(r2v+A2)w/2]*l, (5.5 in Table Il. The temperature dependence of the effective
critical exponents of the phenomenological crossover model

) . . ) of Kiselev is different from that implied by the crossover
The parametrized variablésindM are to be substituted into | 5n4au model as discussed by Anisimetval. [7].

Eq. (3.1) for the crossover free-energy density, yielding

AA, as a function of and® [72]. It should be noted that in
applying this transformation Luettmer-Strathmagtral. also

retained higher-order terms in the expansi8rlLl for the The crossover model developed in Sec. IV yields a set of
crossover Helmholtz-energy density so as to increase thgarametric equations for the thermodynamic potential

range of applicability of the crossover model in the actualpad(h,,h,) . The crossover parametric model can be applied
representation of thermodynamic-property data of fluids ing one-component fluids; and h, with the expressions as
the critical region[72,79. The numerical values for the given by Eqs(2.29 and(2.30 or, equivalently, Eqs(2.31)
asymptotic amplitude ratios are identical with the valuesand( 2.32. The appropriate thermodynamic relations needed
listed in Table Il for the crossover Landau model, whileto deduce the various thermodynamic properties from the
A;/B;=1.25andB, /I'; =0.60 as quoted by Targf al.for  ,osaniialad(h, ,h,) are presented in Appendix B.

crossover model [41]. As an illustration, we show here how the crossover para-
Another parametric crossover model has been proposederic model can be applied to represent susceptibility data

by Belyakovet al.[76]. This parametric crossover model is a 54 heat-capacity data recently obtained by Barneatal.
generalization of a theoretical solution obtained earlier by[84,85| for 3He at the critical density as a function of tem-
Belyakov and Kiselev[77] from renormalization-group peratyre. Because of the high degree of vapor-liquid symme-
theory to first order ie=4—d, whered is the dimensional- v iy the case ofHe, we neglect the effect of any mixing of
ity of the system. This solution corresponds to the infinite- . . A~ L = T~
cutoff approximation[7] and, hence, as discussed in sec.the physical fields, so th‘ﬂl__A'U“’ hz__AT’ (Pl_A_p’ and
Il A, the crossover model of Belyakov and Kiselev contains $2=AU. The thermodynamic expression for the isothermal
only one system-dependent crossover parameter related gysceptibilityy then becomes
the Ginzburg numbeK;. In the asymptotic critical limit the 5
crossover model of Belyakov and Kiselev reduces to the X_( t?P) _peTe
; P T

whereZ is a function ofr:

VI. APPLICATION TO ONE-COMPONENT FLUIDS

_ pch
Pc

ap

linear-model parametric equation of stte;=w,=0 in Eq. ou (xa/T), 6.1

I
(4.7)] with b?=1.3766[76]. No detailed information about

the values implied for the ratios of the correction-to-scaling, . . . . . -
amplitudes or about the behavior of effective critical expog-lwIth X1 given by Eq.(4.30. For the isochoric specific heat

nents was provided by the authors. However, an analysi(s:apaC'tyCV we obtain
made by Anisimovet al. [7] of an earlier version of the
crossover model of Belyakov and Kisel¢V7] indicated Cy=
good agreement of the temperature dependence of the effec-

tive critical exponents with those implied by the crossover

Landau model. h L by Eq.(4.31) and wh th itical
A more phenomenological parametric crossover mode]'€r€ X2 IS given Dy £@.(%.54 and where the noncritical
was formulated by Kiselev and co-workeiz8—82. In the analytic background to the isochoric specific hgat capacity
most recent version, the expressid. (2.17) in Ref.[82]] has been represented by a truncated Taylor series with coef-
ST P : . _ficientsC; .
for the crossover function in the model of Kiselev contains a We have fitted the experimental data obtained by Barmatz

universal constant),. For qy=1 the crossover model of . i
Kiselev reduces tt(])O an ag?mptotic equation of state wit al.[84] to Egs.(6.1) and(6.2) using the critical tempera-

. . . 12
correction-to-scaling terms derived by Beres{®3] up to  tureTc, the CPM parameteily, mo, u, andA/c;™, and the
second order ire=4—d. The values implied by this cross- background coefficient§; as adjustable constants. Since the

over model for the universal amplitude ratios 4] parametersT and A/ctl’2 for a molecular fluid like®*He are

ol

(X2l T2+ Co+CiAT+CoAT2+C5ATS,
C
(6.2
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TABLE V. Parameters forHe deduced from the experimental

susceptibility and heat capacity of Barmaitzal. [84].
Critical parameters 10° 3 T>T,
P.=114.657 kPdfixed) 3
pc=13.7598 mol/L(fixed)
T.=3.315581 K ,
Asymptotic scaling parameters 1073
l,=6.89+0.12 =2
my=0.306+0.01
Crossover parametér 10" 5
uA/cl?=0.528+0.003 E
Caloric background parameters
Cy=3.69+0.02
C,=10.9+0.5 10°
C,=—299+11 10° 10? 10"
C,=3570+323 10
aA1c2= 1 (fixed). S °
~ a
_ 2 o = 5o S0ogH o =
strongly correlated, we only fitted fag=(uA)?/c,, adopt- -% & o R . H
ing somewhat arbitrarily\/ctl’zz 7. The values obtained for g 54 oU
the system-dependent parameters are presented in Table V A
The resulting value of the Ginzburg number e is 10+4= L A D AL
10° 10° 10°
Ng=8.75x10 3. (6.3 (T-T)/T,

A comparison with the experimental susceptibility data k|G, 6. Susceptibilityy (in dimensionless unijsof 3He as a
(in the one-phase region aboVg) is shown in Fig. 6 and a function of (T—T.)/T.. The symbols represent the experimental
comparison with the experiment&l, data above and below data and the solid curves the values calculated from the crossover
T. is shown in Figs. 7 and 8 on a linear and double-parametric model.
logarithmic scale, respectively. It is seen that the crossover

parametric model yields an excellent representation of thesgtical behavior away from the critical point, recovering the

experimental data. Wit_h the_ values obtained for the_ systemg|assical amplitude ratios to within a few percent. Usfitte
dependent constants listed in Table V, we can readily calcusg g example, we have demonstrated how the crossover

» - N + 3 . . :
late the critical amplituded, , A;, T'g , andl’y for "He  parametric equation can be used to represent experimental
using the expressions given in Table III: thermodynamic-property data of fluids in the critical region.

Ag=3.548-0.031, A;=0.712:0.006, (6.4)

I'g=0.150+0.002, I'; =0.941+0.007. (6.5

15

With the aid of Eq.(2.27) we calculate |
&, =0.268+0.004 nm, (6.6 124

which is consistent with the estimag§ =0.26 nm reported ~'©
by previous investigator86—8§.

VIIl. DISCUSSION 61

In this paper we have developed a crossover parametric
equation of state that satisfies the most recent theoretical es 33_15 T 220 | 325 380 355 340 345 350
timates for the universal ratios of the critical amplitudes and T K)
of the correction-to-scaling amplitudes. The crossover be-
havior |mp||ed for the effective critical exponents is in gOOd FIG. 7. Specific isochoric heat capaci§, (in dimensionless
agreement with that previously obtained from aunits) of *He as a function off. The symbols indicate the experi-

renormalization-group matching techniqu@. The paramet- mental data and the solid curve represents the values calculated
ric equation incorporates crossover to classical mean-fieletlom the crossover parametric model.
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APPENDIX A: EQUATIONS FOR THE PARAMETRIC
MODEL

The definition of the asymptotic parametric model is
h,=rA%(6), h,=rk(0), (A1)

~ 1
ACD(hl,hz)=r2’“w(¢9)+EBcrrzkz(a), (A2)

with
1(0)=1,0(1—6%), k(6)=1—Db?¢?, (A3)
w(6)=mgl o[ Wo+W; 6%+ W,0*+wz65+w,6%]. (A4)

The auxiliary asymptotic angular functions are given by

Deviations (%)

I T-T.|/T,

FIG. 8. Specific isochoric heat capaci§, (in dimensionless
unit) of 3He as a function of T—T|/T.. The symbols represent
the experimental data and the solid curves the values calculated
from the crossover parametric model.

The crossover parametric equation of state can be readily
extended to a description of thermodynamic-property data of
fluid mixtures including crossover from vapor-liquid critical
behavior to consolute critical behavior by applying the prin-
ciple of isomorphism of critical phenomefa0,31.
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42(0)= —lomg(2—a)(1— a)wy, (A14)
2-a)(1l-a)o,
a2(1)= —|omo(b2_—1)2 (A15)
(2—a)b?oy
m1(1)=m0 UZ_W ’ (A16)
where
3 3
01:_2 Wi, 0=, Jwj, 03=2 (2] =1)jw;
j=0 ]=0 j=0
(A17)
The critical amplitudes are given by
Ag =02(0), (A18)
Ag =(b*=1)*qy(1), (A19)
Bo=(b*—1) #my(1), (A20)
'y =04(0), (A21)
[ =(b?=1)70y(1), (A22)
Do=l(b™Hmy(b™1) 7. (A23)

The definition of the crossover parametric model is

hy=r¥2y@R-3AJ (g), h,=rk(§), (A24)

- - 1
ACI)S(r,G)erY’“’ASW(BHEBcrerz(e), (A25)

with
T(0)=To0(1—6%), k(6)=1—b%6?  (A26)
W(6) =Myl o[ Wo+Wq 62+ W, 6%+ w368+ w,68],
(A27)
Bg= —2Mpl oWo, (A28)
where
To=10g"""%%  mo=meg? 12 (A29)
and
g=(uA)?/c;. (A30)
The radial crossover functions are given by
1—(1—u)Y(r)=u(1+ A% >y 24r), (A31)
yn=sldY_1 e
AJY dr A l+fyf,

with

PHYSICAL REVIEW E64 026125

k2=cyry (r)rmDits, (A33)
A2 ANy a-wyr |
fi=—\ 1+ — e e
2k k%] [As 1—-(1-u)Y(r)
(A34)
S e A35
2 As K. ( )
The auxiliary angular crossover functions are
- (2—aY{)wk’ —w'k
my(6,Y1)= . (A36)

T'k—[3/2+(B8—3/2)Y,]TK’'

(2—aY)WI' —[3/2+(BS5—3/2)Y,Iw'T
T'k—[3/2+(B6—-3/2)Y,]TK'

my(8,Y1)=—
(A37)

91(6,Y1)

- {m[1/2+(B—1/2)Y{]+r(amy/ar) k' —mik
T'k—[3/2+(B8—3/2)Y,]Tk’

(A38)
- mMo(1—aY,)+r(am,/ar) 1’
q2(0,Y1)={~,2( a 1) ( 2 )~a},
["k—[3/2+(B6—3/2) Y, Tk
312+ (B6—3/2)Y,{]mil

[3/2+(B )Y 1]m; . (A39)

CT'k—[3/2+(B6—312)Y,[TK'

{ma[1/2+(B—12) Y ]+r(dmylar) JT"
T'k—[3/2+(B6—32)Y,]Tk’

QuA 0,Y1)=

~

[3/2+(B6—3/2)Y,Im]]
T'k—[3/2+(B6—-3/2)Y,]Tk"

(A40)

The angular correction-to-scaling functions are

e (6= awk’ (Bs-312)IK’ (a4
YT 2—awk —w'k  1'k—Balk’
awl’ +(B8—32w’'l  (B5—3/2)Ik’
my4(0)= - =,
2—a)wl’—gow’l  1'k—pdslk
(A42)
(6)= [(1+A9my1—(B— 1/ ]mK’
G Bm; k' —mzk
B (mgmy ;+mym; )k . (BS5—3/2)Ik’
Bmk’ —mik I'k— B8k’
(A43)
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[(A+A9my +almyl’  (B6—3/2)IK’

(1—a)myl —Bomyl  1'k—Bolk’

024(0)=

N [(B6—3/2)m;— (mymy 1+ mym; y) ]I
(1— a)myl’ — Bomyl '

(A44)

The correction-to-scaling amplitudes are given by
Aj =[alAs+d4(0)]Y10, (A45)
A;=(b*=1) " alActdp(1)]Y 10, (A46)

By=(b?—1) 2 (1-28)/2A¢+ My 1(1)]Y1q, (A4T)
Iy =[(y—1)/As+d1.4(0)]Y1, (A48)

F1=(b?—1)"2(y—1)/Ag+q11(1)]Y10.

The angular functions in the classical limit are given by

(A49)

2wk’ —w’k

my(0)=my(6,00= ————, A50

1(8)=my(6,0) Tk (32K (A50)

o (O)=Tr(0.0) 2wl —(312w'T (A5
m =m V="—""—"—,

2 2 ["k—(3/2)Tk’
T(0)=31(0.0 (1/2)m;k’ —mjk as2)
T T'k—(3/2Tk"

S0 =T(6.0)= myl " —(3/2)mgk a5

A=A 0= " Tk

APPENDIX B: THERMODYNAMIC RELATIONS
The differential relations are
dP=0dT+pdu, (B1)
dA=—0dT+ udp, (B2)
d®=—¢,dh,— ¢;dhy, (B3)
dW¥ =—¢,dh,+h;de; (B4)
with
A=pu—P, (B5)
T =¢h+D. (B6)

Decomposition into critical and regular parts gives
A(T,p)=AAAT, Ap) +puo(M+Ao(T), (B

P, T)=AP(AR,AT)—Ay(T). (B8)

PHYSICAL REVIEW E 64 026125

The relationship between the critical part of the pressure
P and the critical part of the field-dependent potendial

dAP(A, AT)=AUd(AT) +Apd(AR)
=AUd(AT+b,An)+(Ap—b,AU)d(AR)
=@ dhy+ @ dhy, (B9)

so that

AP(A,AT)=—AD (A, AT+b,An)=—Ad(hy,h,).
(B10)

The Helmholtz free-energy densifyand the potential
are related by a Legendre transformation

A=T +b,h;¢,, (B11)
as can be seen from
dAA(AT,Ap)—b,d(ArAUD)
=—AUd(AT+b,An)+And(Ap—b,AU)
:_QDzdh2+ hldQDl, (B].Z)
so that
AA(AT,Ap)=AT (h,, 1) +bohie, (B13)
with
AT [ PAA) (aA@) B ©14
RPN T
P 1
AT dAA _(aATP) h 615
#= (?A; :|; a‘Pl h2_ Lt

From Eqs(B10), (B14), and(B15) it follows that the expres-
sions for the internal-energy density; the external fieldu,

and the pressur® are invariant under mixing transforma-
tions, while for the Helmholtz free-energy density one has

|

Derived thermodynamic quantities are given by

AT
doq

AA(AT,Ap)=AT(hy,¢1)—b,

aATIf)
ony |,

(B16)

JpP

P\ P\ [an
at aT

aT

+

(B17)

po VORIRVIT)S

dp
- JT
P

p

&—f , (B18)

T

"
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ap 1/ dp
2=z 2], (B19)
o= 28] Z[ZR) 51 Z2) g0
v 572) -\ ave). Pl -
- [dp P )
x=|=| =| =3| Txatbaxa+2byx1,, (B21)
o= \du)=

T

PHYSICAL REVIEW E64 026125

Ju| [P dZZO(T)Jr @22
P Y PRV PR
(Oﬁ) _(aU =y, +b (B23)
P o’*ﬁ B X127 P2X2-
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