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Crossover parametric equation of state for Ising-like systems

V. A. Agayan, M. A. Anisimov, and J. V. Sengers
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College Park, Maryland 20742
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We present a parametric equation for the thermodynamic properties in the critical region of three-
dimensional Ising-like systems which include fluids and fluid mixtures. The equation of state incorporates a
crossover from singular Ising behavior asymptotically close to the critical point to classical~mean-field!
behavior further away from the critical point, characterized by two physical crossover parameters: a coupling
constant related to the strength and range of molecular interactions and a ‘‘cutoff’’ wave number for the critical
fluctuations. In the asymptotic Ising limit, the crossover equation reproduces the most recent theoretical
estimates for the universal ratios of the leading and correction-to-scaling critical amplitudes. The equation has
been tested by comparing it with recent experimental thermodynamic-property data for3He near its vapor-
liquid critical point.
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I. INTRODUCTION

Critical phenomena in fluids have been the subject
many theoretical and experimental studies during the p
thirty years. The most striking result of these studies
been the discovery of critical-point universality: the micr
scopic structure of systems becomes unimportant in the
cinity of a critical point@1–4#.

The principle of critical-point universality finds its phys
cal origin in the phenomenon that long-range fluctuations
the order parameter~magnetization in spin systems, dens
in one-component fluids, or density and concentration
fluid mixtures! dominate in the critical region so that th
range of these fluctuations becomes much larger than
other microscopic scale. The spatial extent of these crit
fluctuations is determined by a correlation length, which
verges at the critical point. As a consequence, at the crit
point the behavior of the thermodynamic properties becom
singular and it can be characterized by scaling laws w
universal critical exponents. Every singularity is also char
terized by an amplitude, and certain combinations of criti
amplitudes are universal.

Critical-point universality asserts that the thermodynam
properties of systems with finite interaction ranges have c
cal exponents that depend on only two physical parame
namely, the spatial dimensionalityd and the number of com
ponentsn of the order parameter. Systems with the samd
andn are said to belong to the same universality class.
example, fluids, fluid mixtures, and uniaxial ferromagn
belong to the three-dimensional Ising universality class w
d53 andn51 and they can all be described by the sa
scaled equation of state asymptotically close to the crit
point @3#.

The range of asymptotic scaling behavior is usually qu
small. However, the correlation length of the critical fluctu
tions exceeds in practice the short-range molecular inte
tion range in a sizable part of the phase diagram and
must also consider the effects of critical fluctuations at te
peratures and densities where the correlation length is
significantly larger than the average intermolecular distan
1063-651X/2001/64~2!/026125~19!/$20.00 64 0261
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Hence, to deal with the effects of critical fluctuations on t
thermodynamic properties of systems one needs to formu
a description of the effects of critical fluctuations that go
beyond the asymptotic scaling behavior and includes cro
over from fluctuation-dominated critical behavior in the ne
vicinity of the critical point to classical behavior far awa
from the critical point where the effects of fluctuations c
be neglected.

For fluids a well-developed approach to this problem
provided by a transformed Landau expansion for
Helmholtz-energy density, originally formulated by Che
et al. @5,6# and reviewed by Anisimovet al. @7#. This cross-
over Landau model is based on a so-called renormalizat
group matching technique as earlier implemented by Nic
et al. @8,9#. The approach has been successful in represen
experimental thermodynamic-property data not only for m
lecular fluids, but recently also for complex fluids like pol
mer or aqueous electrolyte solutions@10#.

While the crossover Landau model, formulated about
years ago, incorporates a representation of the asymp
thermodynamic behavior that is realistic for many practi
applications, strictly it does not reproduce the theoretical v
ues of the universal critical-amplitude ratios within the hi
accuracy currently available for these ratios, as will be do
mented in Sec. III. The purpose of the present paper is
present an improved equation of state that incorporates
crossover from Ising-like to mean-field critical behavio
while reproducing the known theoretical values for the u
versal ratios of both the asymptotic critical amplitudes a
the correction-to-scaling amplitudes.

To accomplish this goal we start with an extended pa
metric equation for the asymptotic scaling laws designed
as to reproduce the relevant critical-amplitude ratios by f
lowing a procedure similar to the one recently adopted
Fisher et al. @11#. As a next step we introduce into thi
asymptotic parametric equation a crossover transforma
similar to the one deduced from the renormalization-gro
theory for the crossover Landau model.

We shall proceed as follows. In Sec. II we consider t
asymptotic thermodynamic critical behavior of Ising-lik
©2001 The American Physical Society25-1
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systems in terms of two relevant scaling fields. To discuss
consequences of this general formulation we shall ad
physical variables appropriate for one-component flui
However, the results can be applied to any Ising-like sys
by identifying the relationships between the scaling fie
and the appropriate physical fields. In Sec. III we review
crossover Landau model and its predictions for the crosso
behavior of various thermodynamic properties. Section
presents the improved parametric crossover equation inc
ing a detailed comparison with theoretical predictions
both the asymptotic and nonasymptotic behavior. In Sec
we make a comparison with crossover parametric equat
of state developed by other investigators. Sec. VI deals w
an application of the crossover parametric equation to
representation of experimental thermodynamic-prope
data. The paper concludes with a discussion of the resul
Section VII.

II. SCALING FIELDS, CRITICAL EXPONENTS, AND
CRITICAL AMPLITUDES

The near-critical behavior of Ising-like systems is char
terized by two relevant scaling fields, an ordering fieldh1
conjugate to the order parameterw1, and a nonordering field
h2 conjugate to the second scaling densityw2. Asymptoti-
cally close to the critical point the critical partDF̃ of the
dimensionless thermodynamic potentialF̃, whose character
istic variables are the scaling fieldsh1 andh2, then satisfies
a scaling law of the form@3#

DF̃~h1 ,h2!5uh2ub(d11)f ~z!, ~2.1!

with

z5h1 /uh2ubd, ~2.2!

where b and d are two universal critical exponents, an
wheref (z) is a universal scaling function except for the tw
system-dependent constants related to the amplitudes o
asymptotic power laws to be defined below.

The scaling ‘‘densities’’ conjugate toh1 andh2 are

w152S ]DF̃

]h1
D

h2

5uh2ub f 8~z!, ~2.3!

w252S ]DF̃

]h2
D

h1

5h2uh2u2ac~z!, ~2.4!

where f 8(z)5d f /dz and

c~z!5~22a! f ~z!2~b1g!z f8~z!. ~2.5!

One may define the scaling susceptibilitiesx1 ~strongly
divergent! andx2 ~weakly divergent! that are associated wit
the densitiesw1 andw2:

x15S ]w1

]h1
D

h2

5uh2u2g f 9~z!, ~2.6!
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x25S ]w2

]h2
D

h1

5uh2u2ay~z!, ~2.7!

with

y~z!5~12a!c~z!2~b1g!zc8~z!, ~2.8!

where f 9(z)5d2f /dz2 and c8(z)5dc/dz. In addition, one
may define a cross susceptibility as

x125x215S ]w1

]h2
D

h1

5S ]w2

]h1
D

h2

5uh2ub21@b f 8~z!2~b1g!z f9~z!#. ~2.9!

The exponentsa and g are related tob and d by a52
2b(d11) andg5b(d21). We note that in the one-phas
region in zero ordering field (h150) w150, w250, and
x1250, sincez50 and f 8(z)50.

The scaling law, given by Eqs.~2.1! and~2.2!, represents
the thermodynamic behavior asymptotically close to
critical point. The renormalization-group~RG! theory of
critical phenomena predicts that Eq.~2.1! represents the firs
term of the so-called Wegner expansion of the form@12,13#

DF̃~h1 ,h2!5h2
2uh2u2a f ~z!@11uh2uDsf 1~z!1•••#,

~2.10!

whereDs50.5260.02 is another universal critical expone
@14,15# and wheref 1(z) is a universal correction-to-scalin
function except for a multiplicative system-dependent co
stant related to the strength of the first irrelevant scal
field.

To elucidate the consequences of the scaled equa
~2.10! and to subsequently formulate a crossover equatio
state we shall adopt here physical variables appropriate
one-component fluid near the vapor-liquid critical point. L
P be the pressure,T the temperature,r the density,m the
chemical potential,U the internal energy,A the Helmholtz
energy, andCV the isochoric heat capacity. The extensi
thermodynamic properties are considered per unit of volu
V and all thermodynamic fields and densities are made
mensionless with the aid of the critical pressurePc , the criti-
cal temperatureTc , and the critical densityrc @16#:

P̃5
PTc

TPc
, T̃52

Tc

T
, r̃5

r

rc
, m̃5

mrcTc

PcT
,

~2.11!

Ũ5
U

VPc
, Ã5

ATc

VTPc
, C̃V5

CVTc

VPc
. ~2.12!

We also introduce the variables

DT̃5~T2Tc!/T5T̃11, ~2.13!

Dr̃5~r2rc!/rc5 r̃21, ~2.14!

Dm̃5m̃2m̃0~T!, ~2.15!
5-2
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CROSSOVER PARAMETRIC EQUATION OF STATE FOR . . . PHYSICAL REVIEW E 64 026125
wherem̃0(T) is an analytic function of temperature equal
the chemical potentialm̃ whenh150.

For spin systems, as represented by the Ising model,
ordering fieldh1 is to be identified with the magnetic fiel
and the order parameterw1 is to be identified with the mag
netization. It is commonly assumed that fluids asymptotica
close to the critical point have the same symmetry as
lattice gas for which the ordering fieldh1 and the nonorder-
ing field h2 are @17,18#

h15Dm̃, h25DT̃. ~2.16!

The corresponding scaling densities are

w15Dr̃, w25DŨ, ~2.17!

whereDŨ5Ũ2Ũc with Ũc being the~arbitrary! value ofŨ
at the critical point. The corresponding thermodynamic p
tential in Eq.~2.1! becomes the density ofPV/T, which in
dimensionless units equalsP̃. Upon substituting the expres
sions~2.16! for the scaling fields into Eq.~2.1!, we note that
the critical part of the thermodynamic potential becomes
ymptotically close to the critical point a universal function
the physical variablesDT̃ and Dm̃, except for two system-
dependent coefficients.

Conventionally, one has used as the temperature vari
T/Tc rather than the variableT̃52Tc /T adopted here. The
scaling fieldh2 then is proportional to (T2Tc)/Tc , while w2
is then related to the entropy density. The two choices
come identical in the asymptotic limit but differ with rega
to nonasymptotic corrections. To include a treatment of n
asymptotic critical behavior, use of the inverse temperat
as the temperature variable appears to be more approp
@5–7,13,16,19,20#.

The scaling laws, given by Eqs.~2.1! and ~2.10!, imply
asymptotic power-law behavior of various thermodynam
properties along the critical isochorer5rc , along the coex-
istence curver5rcxc, and along the critical isothermT
5Tc . For fluids the weak susceptibilityx2 is proportional to
C̃V /T̃2, which diverges atr5rc as

C̃V /T̃25A0
6uDT̃u2a@11A1

6uDT̃uDs1•••#, ~2.18!

where the plus and minus signs correspond toDT̃.0 and
DT̃,0, respectively. The order parameterw1 is proportional
to Dr̃, which along the coexistence curver5rcxc varies as

Dr̃56B0uDT̃ub@11B1uDT̃uDs1•••#, ~2.19!

where the plus and minus signs correspond to the liquid
vapor branches of the coexistence curve. The strong sus
tibility x1 is proportional tox̃5(]r̃/]m̃)T , which diverges
as

x̃5G0
6uDT̃u2g@11G1

6uDT̃uDs1•••#, ~2.20!
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where the plus sign corresponds tor5rc aboveTc and the
minus sign tor5rcxc below Tc . Along the critical isotherm
DT̃50, Dm̃ varies as

Dm̃56D0uDr̃ud@11•••#. ~2.21!

In these equations,A0
6 , A1

6 , B0 , B1 , G0
6 , G1

6 , andD0 are
system-dependent coefficients. The amplitudesA0

6 , B0 ,
G0

6 , andD0 of the asymptotic power laws are related to t
scaling functionf (z) in Eq. ~2.1! by

A0
65~22a!~12a! f 6~0!, ~2.22!

B05 f 28 ~0!, ~2.23!

G0
65 f 69 ~0!, ~2.24!

D05 lim
z→`

$z@ f 8~z!#2d%. ~2.25!

Since the scaling function contains only two syste
dependent coefficients, which are multiplicative factors
the functionf and of the argumentz, respectively, it follows
that the asymptotic critical amplitudesA0

6 , B0 , G0
6 , andD0

are interrelated by universal ratios so that only two of the
amplitudes are independent. Similarly, the correction-
scaling amplitudesA1

6 , B1, andG1
6 are related by universa

ratios so that only one of them is independent.
Asymptotically close to the critical point the correlatio

lengthj diverges as

j5j0
6uDT̃u2n, ~2.26!

where the plus sign corresponds tor5rc aboveTc and the
minus sign tor5rcxc belowTc . The universal exponentn is
related to the susceptibility exponentg by g5(22h)n,
whereh is the exponent that characterizes the wave num
dependence of the structure factor@21#. We note that the
correlation-length amplitudej0

1 is related to the specific hea
capacity amplitudeA0

1 by the so-called principle of two-
scale-factor universality@22#,

aA0
1~j0

1!3/v050.018860.0001. ~2.27!

Herev0 is physically the molecular volume. However, sin
the Helmholtz energyA in Eq. ~2.12! has been made dimen
sionless by dividing byPcV rather thanRTc , in this paperv0
is actually the molecular volume divided by the critical com
pression factorZc5Pc /rcRTc , so that@18#

v05kBTc /Pc , ~2.28!

wherekB is Boltzmann’s constant. The universal critical e
ponents and the universal critical amplitudes have been
culated by many investigators@14,15,22–28#. The values for
the universal critical exponents for three-dimensional Isin
like systems, together with their classical values, are liste
Table I. Theoretical values currently available for the univ
sal critical-amplitude ratios are contained in Table II.
5-3
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The simple Ising model and its equivalent, the lattice-g
model, have a special symmetry with respect to the sign
the ordering fieldh1. Real fluids near the liquid-gas critica
point, however, do not possess the symmetry of the lat
gas@29#. The physical fields, which are the chemical pote
tial and temperature, have no definite scaling dimensiona
and one should identify the scaling fields with the line
combinations@30,31#

h15a1Dm̃1a2DT̃, ~2.29!

h25b1DT̃1b2Dm̃, ~2.30!

whereai andbi are system-dependent coefficients to be
termined from a comparison with experimental data. T
scaling fields may be normalized in such a way thata151
and b151 as is done in Eq.~2.16! by putting two system-
dependent coefficients in the scaling functionf (z) in Eq.
~2.1!. Takinga250 corresponds to the choice of the ener
Ũc5(] P̃/]T̃) m̃

c at the critical point, and we have for the sca
ing fields

h15Dm̃, ~2.31!

h25DT̃1b2Dm̃. ~2.32!

The densities conjugate toh1 andh2 are

TABLE I. Universal critical exponents for three-dimension
Ising systems and for the classical theory.

Critical exponent 3-dim. Ising systems Classical valu

a 0.11060.003 0
b 0.325560.002 1/2
g 1.23960.002 1
d 4.8060.02 3
n 0.63060.002 1/2
h 0.03360.004 0
Ds 0.5260.02 1

TABLE II. Universal ratios of the leading and correction-to
scaling amplitudes for three-dimensional Ising systems. To ca
late the universal amplitude ratios for the crossover Landau m
~CLM! and the crossover parametric model~CPM! we adoptedg
51.239,a50.110, andDs50.51.

Ratio Ising model CLM CPM

A0
1/A0

2 0.52360.009 0.50 0.524
G0

1/G0
2 4.9560.15 5.0 4.94

aA0
1G0

1/B0
2 0.058160.0010 0.052 0.0580

G0
1D0B0

d21 1.5760.23 1.73 1.71
A1

1/B1 1.1060.25 0.83 0.844
B1 /G1

1 0.9060.21 0.87 0.897
B1 /G1

2 0.2960.08 0.175
A1

1/A1
2 1.1260.29 1.20
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w15Dr̃2b2DŨ, ~2.33!

w25DŨ. ~2.34!

The order parameterw1 is not simply proportional toDr̃ but
has a contribution proportional toDŨ. As a consequence
along the two branches of the phase boundaryDr̃ varies as

Dr̃56B0uDT̃ub1BauDT̃u12a1••• ~2.35!

with

Ba5b2~22a! f 2~0!. ~2.36!

The second term in Eq.~2.35! causes a singular asymptot
behavior of the coexistence curve diameter@32#. Most re-
cently, Fisher and Orkoulas have also considered the po
bility of adding a pressure contribution to the expressio
~2.31! and ~2.32! for the scaling fields@33#.

In spite of the mixing of the physical fields defined b
Eqs. ~2.29! and ~2.30!, the main contribution to the com
pressibility of a near-critical fluid is the strongly diverge
susceptibilityx1, while the main contribution to the isoch
oric heat capacity is the weakly divergent susceptibilityx2.

For a description of the general procedure for specify
the scaling fields of fluid mixtures we refer to some oth
publications@30,31#.

III. CROSSOVER LANDAU MODEL

A. Renormalization of the Helmholtz free-energy density

The modern theory of critical phenomena is based on
renormalization-group theory applied to systems charac
ized by a Landau-Ginzburg Hamiltonian@1#. To make the
connection with this theory we note that the asymptotic La
dau expansion for the critical part of the classical loc
Helmholtz free-energy density@34#

DÃcl5
1

2
a0DT̃~Dr̃!21

1

4!
u0~Dr̃!41

1

2
c0~¹r̃!2 ~3.1!

can be rewritten in the rescaled form

DÃcl5
1

2
tM21

uL

4!
M41

1

2
~¹̃M !2, ~3.2!

where we have introduced the following transformation
variables and coefficients:

M5crDr̃, t5ctDT̃, ¹̃5q0
21¹, ~3.3!

ctcr
25a0 , uL5cr

24u0 , c05q0
22cr

2 . ~3.4!

The system-dependent coefficientsa0 , u0, andc0 in the Lan-
dau expansion~3.1! have been replaced by the two sca
factorscr andct and the coefficientuL in Eq. ~3.2!. In Eqs.
~3.3! and ~3.4! q0 is a wave number associated with th

u-
el
5-4
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microscopic structure of the system. For the Ising modelq0
5p/a, wherea is the lattice constant@35,36#. Hence, for
fluids we conjecture that

q0.p/v0
1/3. ~3.5!

The parameterL in Eq. ~3.2! is to be interpreted as a dimen
sionless wave number related to an actual cutoff wave n
ber qD for the critical fluctuations by

L5qD /q05jD
21/q0 . ~3.6!

The variableM represents the order parameterw1 and the
variablet the scaling fieldh2 @cf. Eqs.~2.16! and~2.17!#. The
expression for the classical correlation lengthjcl can be writ-
ten as

jcl5q0
21kcl

21 ~3.7!

with

kcl
2 5S ]2DÃcl

]M2 D
t

5t1
1

2
uLM2. ~3.8!

From Eqs.~3.7! and~3.8! it follows that atM50 jcl satisfies
a power law of the form@7#

jcl5 j̄0
1~DT̃!21/2 ~3.9!

with j̄0
15q0

21ct
21/25(c0 /a0)1/2.

The rescaled expression~3.2! for DÃcl can be related by a
Legendre transformation to the familiar Landau-Ginzbu
Wilson HamiltonianH:

H5
1

2
tf21

uL

4!
f41

1

2
~¹f!22hf, ~3.10!

wheret is the temperaturelike field,f is the fluctuating order
parameter whose average value yieldsM, u is thef4-theory
coupling constant rescaled by a dimensionless ultravi
cutoff wave numberL, andh is the ordering field. In imple-
menting the renormalization due to the presence of lo
range fluctuations asymptotically close to the critical poi
one integratesH over fluctuations with all wave numbers
However, to account for nonasymptotic effects of the flu
tuations one must retain a lower nonzero limitL15j21/q0
and an upper limitL.

An approximate solution of the non-asymptotic renorm
ization procedure can be obtained with the aid of so-ca
match-point methods@8,37–39#. Implementing a match-
point method proposed by Nicoll and co-workers@8,9,40#,
Chen et al. @5,6# have shown that the classical express
~3.2! for DÃcl can be transformed into the following cros
over expression for the singular partDÃs of the actual
Helmholtz-energy density:

DÃs5
1

2
tM2TD1

ūu* L

4!
M4D 2U2

1

2
t2K, ~3.11!
02612
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whereT, D, U, andK are rescaling functions defined by

T5Y(2n21)/Ds, D5Y2hn/Ds, U5Yn/Ds, ~3.12!

and

K5
n

aūL
~Y2a/Ds21!. ~3.13!

Here ū5u/u* is a rescaled coupling constant withu*
50.47260.001 being the fixed-point coupling constant f
Ising systems@41,42#. Note that there is a factor of 3/(n
18) difference between the fixed-point valueg* in Ref. @43#
~see also@25,28#! andu* used here, withn being the number
of components of the order parameter. The crossover fu
tion Y is to be evaluated from the equation@6,7#

12~12ū!Y5ū~11L2/k2!1/2Yn/Ds ~3.14!

with k given by

k25tT1
1

2
ūu* LM2DU. ~3.15!

The classical limit corresponds toūL/k→0 or Y→1, the
logarithmic derivative ofY tends to 0, the rescaling function
T, D, andU tend to unity whileK tends to zero, so that th
classical ~mean-field! expression~3.2! for the Helmholtz
free-energy density~without the gradient term! is recovered:

lim
L/k→1

DÃs5DÃcl. ~3.16!

The critical limit corresponds toL/k→` or

Y→S k

ūL
D Ds /n

, ~3.17!

and one recovers from Eq.~3.11! the asymptotic scaled criti
cal behavior in the form given by Eq.~2.10! including the
leading Wegner correction terms. In this limit the crossov
function Y can be expanded in powers oft, yielding in zero
field for t.0

Y.S t

t3
D DsF122Ds~12ū!S t

t3
D Ds

1•••G , ~3.18!

wheret35ctDT̃3 is an effective crossover temperature sc
such that

DT̃35g5~ ūL!2/ct . ~3.19!

We note that the crossover from Ising to mean-field criti
behavior is governed by two crossover parameters, nameū
andg.

For simple fluids the physical cutoff length scalejD will
be microscopically small (jD. j̄0) and we may consider the
infinite-cutoff approximationL→`, but ū→0, so that the
5-5
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productūL remains finite@7,44#. In this approximation one
can recover from the mean-field limit square-root correctio
to the classical behavior of susceptibility and heat capacit
the form (t/t3)21/2 or (DT̃/g)21/2, similar to results ob-
tained earlier by Vakset al. @45# and by Levanyuk@46#. In
the infinite-cutoff crossover theory~for L→`, ū→0, but
finite ūL) the crossover behavior is controlled by a sing
crossover parameterg5(ūL)2/ct which is related to the
Ginzburg numberNG as @7#

NG5n0g5n0

u0
2v0

2

~u* !2a0
4~ j̄0

1!6
, ~3.20!

with n0.0.0314.
While in the infinite-cutoff crossover theory the crossov

behavior can be madeuniversalby rescaling of the variablet
by t3 or by DT̃ and the Ginzburg number, in general th
crossover behavior implied by Eq.~3.14! is controlled by
two independent parameters, namely, the Ginzburg num
and the rescaled coupling constant. This can be inferred f
the fact that the crossover Eq.~3.14! allows one to describe
systems with positive (ū,1) and negative (ū.1) first Weg-
ner correction amplitudes@47–49#. Even forū51, when the
Wegner correction amplitudes vanish, the crossover to me
field behavior may still occur ifL/ct

1/2 is small. The behavior
of the crossover functionY, obtained as a solution to th
crossover Eq.~3.14! in zero field, is shown in Fig. 1. The
case of smallL/ct

1/2 corresponds to crossover to mean-fie
tricriticality @50,51#.

Close to the critical pointY→(k/ūL)Ds /n→0 and the
isochoric heat capacity, the order parameter, the suscep
ity, and the ordering field satisfy the asymptotic power-la
expansions given by Eqs.~2.18!–~2.21!. The expressions fo
the various critical amplitudes in terms of the coefficientsct

and cr and the crossover parametersū and L are given in
Table III @41,52#. Note that the correction-to-scaling amp
tudesA1

6 , B1, andG1
6 are proportional to 12ū; hence, the

leading Wegner corrections are positive forū,1 and nega-
tive for ū.1. Negative correction-to-scaling contribution
have been found experimentally for polymer solutions@50#
and for aqueous electrolyte solutions@47–49,53#. The ex-
plicit values implied by the crossover Landau model for t
universal critical amplitudes are shown in Table II.

In analogy to Eq.~3.7! the~crossover! correlation lengthj
in zero field in the one-phase region is related tok by

j5q0
21k21. ~3.21!

The expression for the universal relationship between
isochoric heat-capacity amplitudeA0

1 and the correlation-
length amplitudej0

1 then becomes

aA0
1~j0

1!3/v05
1

2
n~12a!~22a!q0

23/v0 . ~3.22!

On comparing Eq.~3.22! with Eq. ~2.27! we conclude that
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q053.04/v0
1/3, ~3.23!

in good agreement with the conjecture given by Eq.~3.5!.
Upon increasing the distance from the critical point, t

crossover model provides a continuous transformation fr
Ising-like critical behavior to mean-field critical behavio
The transformation is controlled by the ratioL/k or, equiva-
lently, by j/jD , the ratio of the correlation lengthj to the
cutoff lengthjD5qD

21 , and by the coupling constantū. Due
to the critical fluctuations, the position of the actual critic
temperatureTc is shifted with respect to the mean-field crit
cal temperature. The critical-temperature shift can be ev
ated by extrapolation of the inverse susceptibility to zero
Dr̃50 from the one-phase region far away from the critic
point @54#.

Expression~3.11! refers to the critical partDÃs of the
Helmholtz free-energy density. The total Helmholtz fre
energy density is given by@5,6#

Ã5DÃs1 r̃m̃0~T!1Ã0~T!, ~3.24!

wherem̃0(T) and Ã0(T) are analytic functions of tempera
ture. From Eq. ~3.24! we note that x̃215]2Ã/(]Dr̃)2

FIG. 1. The crossover functionY as calculated from Eq.~3.14!
as a function of the normalized temperature scalet/NG ~semiloga-
rithmic and log-log plots!. The solid curve corresponds to th

infinite-cutoff limit when ū50. The three other curves correspon

to the finite cutoffL51 with ū50.3 ~dashed curve!, with ū51

~dash-dotted curve!, and withū52 ~dotted curve!.
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TABLE III. Leading and correction-to-scaling amplitudes for the crossover Landau model~CLM! and for

the crossover parametric model~CPM!. Hereg5(ūL)2/ct .

CLM CPM

A0
152.27ga(a0

2/u0) A0
151.68210m0l 051.68210gam̃0 l̃ 0

A0
254.55ga(a0

2/u0) A0
253.21197m0l 053.21197gam̃0 l̃ 0

G0
150.871gg21a0

21
G0

153.38317m0 / l 053.38317gg21m̃0 / l̃ 0

G0
250.174gg21a0

21
G0

250.684262m0 / l 050.684262gg21m̃0 / l̃ 0

B052.05g1/22b(a0 /u0)1/2
B053.28613m053.28613g1/22bm̃0

D050.129g(32d)/2a0(u0 /a0)(d21)/2
D050.00544597l 0 /m0

d50.00544597g(32d)/2l̃ 0 /m̃0
d

A1
150.439g2Ds(12ū) A1

150.446g2Ds(12ū)

G1
150.610g2Ds(12ū) G1

150.590g2Ds(12ū)

B150.531g2Ds(12ū) B150.529g2Ds(12ū)

A1
250.539g2Ds(12ū)

G1
253.03g2Ds(12ū)
e
u
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5]2DÃs/(]Dr̃)2. Thus DÃs is the part ofÃ related to the
susceptibilityx̃ and, hence, to the critical fluctuations.

The crossover Landau model~CLM!, specified by Eq.
~3.11!, involves a transformation of the first two terms in th
Landau expansion~3.2!. This two-term crossover Landa
model provides a crossover from Ising critical behavior
asymptotic mean-field critical behavior. A procedure f
dealing with crossover from Ising critical behavior to nona
ymptotic mean-field critical behavior by including highe
order terms in the Landau expansion has also been devel
@6,7,55,56#. However, in the present paper we shall deal o
with crossover from Ising critical behavior to asympto
mean-field critical behavior.

B. Effective exponents

Consider the inverse reduced susceptibilityx̃21

5(]2DÃs/]M2) t , where DÃs is the renormalized free
energy density as given by the crossover two-term Lan
model. One can define an effective exponentgeff

6 that char-
acterizes the singular behavior of the zero-field susceptib
by @47,57–59#

geff
6 52d ln x̃/d lnutu. ~3.25!

Asymptotically close to the critical pointgeff
6 →g51.239,

while far awaygeff
6 tends to its classical value of 1. If w

write the asymptotic expansion~2.20! in terms of the Landau
variablet rather than the physical variableDT̃,

x̃5Ĝ0
6utu2g~11Ĝ1

6utuDs1••• !, ~3.26!

we can deduce a useful asymptotic relation betweengeff
6 and

the value of the correction-to-scaling amplitudeĜ1
6 , namely,

geff
6 .g2

Ĝ1
6utuDsDs

11Ĝ1
6utuDs

. ~3.27!
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From Eq. ~3.27! it is evident that if the correction-to

scaling amplitudeĜ1
6 is positive thengeff

6 approaches the

asymptotic valueg51.239 frombelow, while if Ĝ1
6 is nega-

tive the asymptotic value is approached fromabove. In Fig. 2
we show the effective susceptibility exponentgeff

1 as a func-
tion of the reduced temperaturet/NG for various values of

the normalized coupling constantū, demonstrating the be

havior of geff
1 for the cases thatĜ1

1.0, Ĝ1
1,0 , and Ĝ1

1

50. The normalized crossover scale is characterized by
crossover temperaturet3.10NG which can be inferred from
the position of an inflection point in the dependence ofgeff

1

on t.
In a similar fashion, an effective order-parameter exp

nentbeff can be defined by

FIG. 2. The effective exponentgeff
1 defined by Eq.~ 3.25! for the

crossover Landau model as a function of the normalized temp
ture scalet/NG . The solid curve corresponds to the infinite-cuto

limit when ū50. The three other curves correspond to the fin

cutoff L51 with ū50.3 ~dashed curve!, with ū51 ~dash-dotted

curve!, and withū52 ~dotted curve!.
5-7
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beff5d lnuM u/d lnutu. ~3.28!

If in the expansion

M56B̂0utub~11B̂1utuDs1••• ! ~3.29!

B̂1 is positive thenbeff approaches its asymptotic valueb
50.3255 from above, while ifB̂1 is negative the asymptoti
value is approached from below.

Finally, an effective zero-field heat-capacity exponentaeff
6

can also be defined. Here one must be cautious because
are two contributions to the critical part of the heat capac
one part is singular and behaves asÂ0

6utu2a asymptotically
close to the critical point and the other part is constant
represents an analytic fluctuation-induced critical ba
ground termB̂cr . The effective exponentaeff

6 is pertinent to
the diverging term:

aeff
6 52d lnF2S ]2DÃs

]t2 D
M

1B̂crGYd lnutu. ~3.30!

As in the case of the susceptibility, for positive values of t
correction-to-scaling amplitudeÂ1

6 the asymptotic valuea

50.110 is approached from below, while for negativeÂ1
6 the

asymptotic value is approached from above. In Figs. 3 an
we show the effective exponentsbeff andaeff

1 , respectively,

for various values of the normalized coupling constantū.

IV. CROSSOVER PARAMETRIC MODEL

A. Introduction

Expressions~2.5! and~2.8! for the scaling functionsc(z)
and y(z), as given by various approximations of the R
theory, are very cumbersome and inconvenient for pract

FIG. 3. The effective exponentbeff defined by Eq.~3.28! for the
crossover Landau model as a function of the normalized temp
ture scalet/NG . The solid curve corresponds to the infinite-cuto

limit when ū50. The three other curves correspond to the fin

cutoff L51 with ū50.3 ~dashed curve!, with ū51 ~dash-dotted

curve!, and withū52 ~dotted curve!.
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use, in particular, if one needs to obtain caloric properties
integration. In fact, an accurate closed form of the scal
functions has not been formulated for the three-dimensio
Ising model. Moreover, the change from positive to negat
values ofh2 involves the mathematical difficulty of passin
across the singular critical point@18,60#. Instead, phenom-
enological parametric representations of an asympt
scaled equation of state, which operate with a positive v
able characterizing the distance from the critical point, ha
become popular@18,61–65#. One of the simplest parametri
representations, the so-called linear model@63#, appears to be
consistent with the asymptotic RG theory to second orde
e542d, whered is the dimensionality@66#. Various revi-
sions of the asymptotic parametric representations have b
proposed to include Wegner correction-to-scaling ter
@16,67,68#. However, such revisions of the asymptotic equ
tion are often inconsistent with the current theoretical pred
tions for the correction-to-scaling amplitude ratios, and
range of validity of such revised asymptotic equations is s
limited @16#.

Recently, Fisheret al. @11# proposed an asymptotic para
metric model that complies with the most recent theoreti
estimates for the universal amplitude ratios. We shall use
approach similar to that used by Fisheret al. to construct a
crossover parametric equation of state valid in the en
critical region. First, we develop an extended asympto
parametric model. Then, starting with this asymptotic pa
metric model as a basis, we shall develop a crossover p
metric model~CPM! that reproduces almost exactly all re
evant asymptotic amplitude ratios and is in good agreem
with the estimates for the correction-to-scaling amplitude
tios. This crossover model is advocated for practical use
an alternative to the crossover Landau model.

B. Asymptotic parametric equation of state

A general asymptotic parametric model for the equat
of state can be defined by a set of functionsk(u), l (u), and

a- FIG. 4. The effective exponentaeff
1 defined by Eq.~ 3.30! for the

crossover Landau model as a function of the normalized temp
ture scalet/NG . The solid curve corresponds to the infinite-cuto

limit when ū50. The three other curves correspond to the fin

cutoff L51 with ū50.3 ~dashed curve!, with ū51 ~dash-dotted

curve!, and withū52 ~dotted curve!.
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m(u) @65#, which specify the relation between the orderi
field h1, the scaling fieldh2, and the order parameterw1 as
follows:

h15r bdl ~u!, ~4.1!

h25rk~u!, ~4.2!

and

w15r bm1~u!, ~4.3!

where r and u are parametric variables. The variabler is
non-negative and represents the distance to the critical p
Critical singularities in the form of power laws are incorp
rated into the parametric form through ther variable, while
the parameteru specifies a location on a contour of consta
r. The sign ofu is taken to be the same as that of the ord
parameterw1. Assuming symmetry in terms of6u, we can
formulate the requirements to be imposed on the ang
functionsk(u), l (u) andm1(u). Specifically,k(u) must be
symmetric with respect tou, while l (u), andm1(u) must be
antisymmetric with respect tou. The locusu50 corresponds
to zero-field ordering (h15w150) aboveTc , wherer 5h2.
The locush250 ~corresponding to the critical isotherm! is
specified byu5uc , which corresponds tok(6uc)50. To fix
the overall factor ofk(u) we impose the conditionk(0)51.
On the coexistence boundary the angleu takes the values
6u1, so that the one-phase region is described byuuu,u1.
Since r is always positive,k(u) must change sign atu5
6uc and be positive for 0,uuu,uc and negative foruc
,uuu,u1. In the same way, solutions ofl (u)50 specify the
zero-field line aboveTc and6u1 below Tc with l (u) being
positive for positiveu and negative for negativeu. As is
commonly done in the literature, these conditions are sa
fied by the following transformation:

h15r bdl ~u!, h25rk~u! ~4.4!

with

l ~u!5 l 0u~12u2!, k~u!512b2u2, ~4.5!

where l 0 is a system-dependent constant and whereb2 is a
universal constant. A parametric scaled equation of state
be obtained by specifying the functionm1(u) in Eq. ~4.3! for
the order parameterw1. However, rather than specifying th
function directly, we prefer to consider the potent
DF(h1 ,h2), which has the scaling fieldsh1 and h2 as its
characteristic variables@cf. Eq.~2.1!#. ExpressingF in terms
of dimensionless units by introducingF̃5(Tc /Pc)(F/VT),
we write DF̃ in the form

DF̃~h1 ,h2!5r 22aw~u!1
1

2
Bcrr

2k2~u!, ~4.6!

where the angular functionw(u) is represented by a polyno
mial of the form

w~u!5m0l 0@w01w1u21w2u41w3u61w4u8#, ~4.7!
02612
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and wherem0 is a second system-dependent coefficie
while w0521. The second term on the right-hand side
Eq. ~4.6! represents an additive fluctuation contributio
@8,69# with a coefficientBcr that is actually related to the
crossover parameters, as will be specified by Eq.~4.25! in
Sec. III C.

Equations ~4.4!–~4.7! define an extended parametr
model with five universal coefficientsb2, w1 , w2 , w3, and
w4 which are chosen in such a way that the amplitudes of
critical power laws implied by this parametric model satis
the theoretically predicted universal amplitude ratios. T
actual values assigned to these universal coefficients
given in Table IV. Our extended parametric model has so
similarities with an extended cubic model recently propos
by Fisheret al. @11#, but has the following advantages. Firs
upon substitutingw450 we recover the cubic model, an
upon substitutingw35w450 we recover the linear mode
Second, for our extended parametric model we can de
explicit expressions for all critical-amplitude ratios, while fo
the extended cubic model of Fisheret al. @11# the valueu
5u1 on the coexistence boundary can be obtained only
solving the nonlinear equationl (u)50 numerically (u151
in our extended parametric model!.

In order to obtain corresponding expressions for ot
thermodynamic properties we note that one can write q
generally for the scaling densities and susceptibilities

w15r bm1~u!, ~4.8!

w25r 12am2~u!2Bcrrk~u!, ~4.9!

x15r 2gq1~u!, ~4.10!

x25r 2aq2~u!2Bcr , ~4.11!

x125r b21q12~u!. ~4.12!

We can write the higher field derivatives of the susceptibil
x1 as

~]nx1 /]h1
n!h2

5r 2g2nbdsn~u! ~4.13!

with n51,2, . . . . Theexplicit expressions for the angula
functions mi(u), qi(u), and si(u) in terms of l (u), k(u),
and w(u) are specified in Appendix A. Equations~4.8!–
~4.13! are general and do not depend on the particular fo
of the functionsk(u), l (u), andw(u). From considerations
of symmetry,m2(u), q1(u), andq2(u) are even functions of
u, while m1(u) andq12(u) are odd functions ofu. Forsn(u)
we deducesn(2u)5(21)nsn(u). From Eqs.~4.8!–~4.12!
we deduce the following expressions for the leading criti
amplitudes:

TABLE IV. Universal parameters in the crossover paramet
model.

b251.691 047 w0521 w151.504 493
w2521.321 901 w3520.189 833 6 w450.057 533 47
5-9
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G0
15q1~0!, G0

25uk~u1!ugq1~u1!, ~4.14!

A0
15q2~0!, A0

25uk~u1!uaq2~u1!, ~4.15!

B05m1~u1!/uk~u1!ub, ~4.16!

D05 l ~uc!/@m1~uc!#
d, ~4.17!

whereuc51/b andu151. Using the values of the universa
coefficients listed in Table IV, one readily deduces from E
~4.14!–~4.17! the values for the universal ratios of th
asymptotic amplitudes listed in the last column of Table

C. Crossover parametric equation of state

The asymptotic parametric equation of state formulated
Sec. IV B is valid only in the near vicinity of the critica
point. In Sec. III we discussed how we can formulate a cro
over equation of state that incorporates both Ising criti
behavior with the Wegner corrections and mean-field criti
behavior by applying a transformation to the critical part
the Helmholtz free-energy density or, more generally, to
thermodynamic potential that has the ordering fieldh1 and
the order parameterw1 as characteristic variables. Our cros
over parametric equation of state will be based on the crit
part DF̃(h1 ,h2) of the thermodynamic potential that hash1
andh2 as characteristic variables, which is the potential
which the asymptotic parametric equation of state was
mulated in Sec. IV B.

In the crossover Landau model, developed from the
theory of critical phenomena, the parameterk plays the role
of the distance from the critical point and contains two s
gular contributions, namely, one associated with the temp
turelike variablet and the other with the order parameterM
@see Eq.~3.15!#. In the parametric equation of state it is th
variable r that serves as a measure of the distance to
critical point. We incorporate the crossover from asympto
Ising-like critical behavior to classical~mean-field! behavior
by applying a proper rescaling transformation to this varia
r, while preserving the existing analytic dependence on
angular variableu.

To formulate a crossover parametric equation of state
relatek2 to the distance variabler as

k2~r !5ctrT5ctrY
(2n21)/Ds, ~4.18!

to be compared with the corresponding expression~3.15! in
the crossover Landau model, wheret5ctDT̃. From Eq.
~4.18! it follows that in the asymptotic critical limitk will
vary asr n, while far away from the critical pointk will vary
as r 1/2. Sincek depends only on the variabler, contours of
constantr coincide with contours of constant distance va
able k. The crossover functionY is again defined by Eq
~3.14!:

12~12ū!Y5ū~11L2/k2!1/2Yn/Ds, ~4.19!

but with k2 given by Eq.~4.18!. Hence, the crossover func
tion Y, like k2, is also only a function ofr and independen
02612
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of u. From Eqs.~4.18! and~4.19! we note that the crossove
function depends on two crossover variables, namely,ū and
L/ct

1/2.
To completely define the crossover parametric equation

state we need to specify the equations for the scaling fie
h1 and h2 and the thermodynamic potentialDF̃. For this
purpose we rescale the fieldh1 as

h15r 3/2Y(2bd23)/2Dsl̃ ~u!, ~4.20!

which replaces Eq.~4.1! and where

l̃ ~u!5 l̃ 0u~12u2!, ~4.21!

while the dependence of the fieldh2 on r and u is left un-
changed:

h25rk~u!. ~4.22!

The critical part of the thermodynamic potentialDF̃(h1 ,h2)
is now given by

DF̃s~r ,u!5r 2Y2a/Dsw̃~u!1
1

2
Bcrr

2k2~u! ~4.23!

with

w̃~u!5m̃0 l̃ 0@w01w1u21w2u41w3u61w4u8#.
~4.24!

The term1
2 Bcrr

2k2(u) in Eq. ~4.23! with

Bcr522m̃0 l̃ 0w0.0 ~4.25!

should not be rescaled, since it represents an ana
fluctuation-induced background contribution. The coe
cientsm̃0 and l̃ 0 in Eqs.~4.21!, ~4.24!, and~4.25! are related
to m0 and l 0 by

l̃ 05 l 0gbd23/2, m̃05m0gb21/2, ~4.26!

whereg5(ūL)2/ct is again the system-dependent parame
related to the Ginzburg number defined by Eq.~3.20!.

Equations~4.20!, ~4.22!, and ~4.23! completely specify
the crossover parametric equation of state, to be referre
as the crossover parametric model. Using Eq.~4.5!, we can
write Eq. ~4.23! also as

DF̃s~r ,u!/m̃0 l̃ 05r 2Y2a/Ds@w1u21w2u41w3u61w4u8#

1w0r 2~Y2a/Ds21!

1w0r 2~2b2u22b4u4!. ~4.27!

In this form Eq.~4.27! can be compared with Eq.~3.11! for
the Helmholtz free-energy density in the crossover Land
model. The last term in Eq.~4.27! can be incorporated into
the background part of the thermodynamic potential and is
no importance here. The termw0r 2(Y2a/Ds21) is respon-
sible for the singular behavior of the critical part of the he
5-10
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capacity asymptotically close to the critical point and f
vanishing of the critical part of the heat-capacity far aw
from the critical point.

Recalling the definitions, Eqs.~2.3!–~2.9! for the scaling
densities and susceptibilities and calculating the correspo
ing derivatives in the crossover parametric equation of st
we obtain

w15r 1/2Y(2b21)/2Dsm̃1~u,Y1!, ~4.28!

w25rY2a/Dsm̃2~u,Y1!2Bcrrk~u!, ~4.29!

x15r 21Y(12g)/Dsq̃1~u,Y1!, ~4.30!

x25Y2a/Dsq̃2~u,Y1!2Bcr , ~4.31!

x125r 21/2Y(2b21)/2Dsq̃12~u,Y1!, ~4.32!

to be compared with Eqs.~4.8!–~4.12!. In these equations

Y1~r ![
d ln Y

d ln r Ds
5

1

Ds

r

Y

dY

dr

and the explicit expressions for the functionsm̃i(u,Y1) and
q̃i(u,Y1) are presented in Appendix A. In the asympto
critical limit Y→(r /g)Ds and we recover the original expre
sions~4.8!–~4.12! for the asymptotic parametric equation
state. The total thermodynamic potentialDF̃(h1 ,h2) is ob-
tained by adding to the crossover expression~4.23! for DF̃s
a background contribution that depends analytically on
physical field variables.

D. Critical amplitudes and effective critical exponents

In the asymptotic critical limitr→0, the crossover func
tion Y(r ) can be expanded as

Y~r !5~r /g!Ds@12Y10r
Ds1O~r 2Ds!# ~4.33!

and the corresponding expansion ofY1(r ) is obtained by
differentiation as

Y1~r !512Y10r
Ds1O~r 2Ds!, ~4.34!

where

Y1052Dsg
2Ds~12ū!. ~4.35!

Asymptotically close to the critical point the crossov
function Y1 and the corresponding expressions for the fu
tionsm̃i andq̃i can be expanded in power series inr, namely,

m̃i~u,Y1!}mi~u!@11mi ,1~u!Y10r
Ds1•••#, ~4.36!

q̃i~u,Y1!}qi~u!@11qi ,1~u!Y10r
Ds1•••#, ~4.37!

where i 51, 2, and 12. The angular functionsmi ,1(u) and
qi ,1(u) are given in Appendix A. Using the expressio
~4.36! and~4.37! one can readily derive explicit expressio
02612
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for the leading and correction-to-scaling amplitudes of
power-law expressions defined in Sec. II, as shown in A
pendix A. The final expressions for these amplitudes
given in the second column of Table III. The values of t
resulting amplitude ratios are presented in the last colum
Table II. From the information in Table II we conclude th
all universal amplitude ratios of the crossover parame
model agree with the theoretical values for the thre
dimensional Ising model within their estimated accuracie

Far away from the critical point the crossover functionY
and its logarithmic derivativeY1 behave as

Y.12
ūL2

r
f ~ ū! ~4.38!

and

Y1.
ūL2/Ds

r
f ~ ū! ~4.39!

with

f ~ ū!5
1

2
@11ū~n/Ds21!#21, ~4.40!

so that forr→` one hasY→1 and Y1→0. In this limit,
expressions~4.8!–~4.11! for the scaling densities and susce
tibilities reduce to

w15r 1/2m̄1~u!, ~4.41!

w25rm̄2~u!2Bcrrk~u!, ~4.42!

x15r 21q̄1~u!, ~4.43!

x25q̄2~u!2Bcr , ~4.44!

where the functionsm̄i(u) and q̄i(u) are also given in Ap-
pendix A. Thus, for larger we recover classical~mean-field!
power laws with the amplitudes

Ā0
15q̄2~0!2Bcr , Ā0

25q̄2~1!2Bcr , ~4.45!

B̄05~b221!1/2m̄1~1!, ~4.46!

Ḡ0
15q̄1~0!, Ḡ0

25~b221!q̄1~1!, ~4.47!

and

D̄05 l̃ ~uc!/@m̄1~uc!#
3. ~4.48!

We find q̄2(0)5Bcr so thatĀ0
150, as it should be in the

classical theory. The classical jump of the heat capacity
recovered as

DC̄V5q̄2~1!2Bcr . ~4.49!

The ratioḠ0
1/Ḡ0

2 is universal and in the CPM it is given b
5-11
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FIG. 5. Effective critical expo-
nents for the crossover parametr
model ~solid curves! and for the
crossover Landau model~dashed

curves! calculated for the caseū
50.3 andL51: ~a! aeff

2 , ~b! beff ,
~c! geff

1 , and~d! geff
2 . The effective

exponent aeff
1 for the crossover

parametric model coincides iden
tically with that for the crossover
Landau model for any value of the

coupling constantū and reduced
temperaturet and is not shown.
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Ḡ0
1/Ḡ0

2.2.056, ~4.50!

which differs from the theoretical value of 2 by 2.8%. Th
ratio R̄c[Ḡ0

1DC̄V /B̄0
2 is also universal in the classical theo

and plays the same role as the universal ratioRc

5aA0
1G0

1/B0
2 in the asymptotic scaling theory. Calculatin

this ratio, we find

R̄c.0.5109, ~4.51!

which differs by 2.1% from the theoretical value ofR̄c

51/2. For the ratioḠ0
1D̄0B̄0

2 we obtain

Ḡ0
1D̄0B̄0

2.1.015, ~4.52!

to be compared with the exact value of 1 in the class
theory.

Finally, we consider the crossover behavior of the eff
tive critical exponents implied by the crossover parame
model. As an illustration, we have plotted in Fig. 5 the e
fective exponents as calculated from the CPM and from
CLM for ū50.3. The curves are almost identical, especia
in the vicinity of the critical temperature, which is reasonab
because the correction-to-scaling amplitudes and their ra
in the CPM are very close to those in the CLM. The critic
exponentaeff

1 of the CPM coincides identically with that o
the CLM and is not shown.

Numerical values for the effective critical exponents
three-dimensional Ising lattices with a variety of interacti
ranges have recently been obtained by Luijten and Bin
@70#. In a previous publication we demonstrated that
crossover Landau model gives a good representation of t
02612
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numerical critical-exponent values both as a function of te
perature and as a function of the interaction range@71#. Since
the difference between the effective critical exponents of
CLM and of the CPM is small, and certainly smaller than t
accuracy with which the numerical effective exponents c
be calculated, we conclude that the crossover parame
model is also consistent with the effective critical expone
for Ising lattices.

V. COMPARISON WITH OTHER PARAMETRIC
FORMULATIONS

A previous attempt to transform the crossover Land
model into a parametric representation has been made
Luettmer-Strathmannet al. @72# , and it has been applied t
represent the thermodynamic properties of ethane@72–74#
and of argon@75# in the critical region. Since the variablek,
given by Eq.~3.15!, plays a role similar to the distance pa
rameterr in parametric models, one can setk5r n and iden-
tify the ratio

u* ūLM2DU

k2
[Q2 ~5.1!

with the angular variableQ @9,72#. The parametric crossove
model of Luettmer-Strathmannet al. is mathematically
equivalent to a variant of the crossover Landau model
scribed in Sec. III in which the implicit Eq.~3.14! for the
crossover functionY is approximated by an explicit equatio
of the form

Y5$11ū@~11L2/k2!v/221#%21, ~5.2!
5-12
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wherev5Ds/n. This version of the crossover Landau mod
has been designated as crossover model I by Tanget al. @41#.
Parametrization of the temperaturelike variablet and the
densitylike variableM follows as

t5rZ (1/n22)/v~12Q2/2!, ~5.3!

M5~u* ūL!21/2~r 2n1L2!(12v)/4r bZ(h2v)/2vQ, ~5.4!

whereZ is a function ofr:

Z~r !5@~12ū!r vn1ū~r 2n1L2!v/2#21. ~5.5!

The parametrized variablest andM are to be substituted into
Eq. ~3.11! for the crossover free-energy density, yieldin
DÃs as a function ofr andQ @72#. It should be noted that in
applying this transformation Luettmer-Strathmannet al. also
retained higher-order terms in the expansion~3.11! for the
crossover Helmholtz-energy density so as to increase
range of applicability of the crossover model in the act
representation of thermodynamic-property data of fluids
the critical region @72,75#. The numerical values for the
asymptotic amplitude ratios are identical with the valu
listed in Table II for the crossover Landau model, wh
A1

1/B151.25 andB1 /G1
150.60 as quoted by Tanget al. for

crossover model I@41#.
Another parametric crossover model has been propo

by Belyakovet al. @76#. This parametric crossover model is
generalization of a theoretical solution obtained earlier
Belyakov and Kiselev @77# from renormalization-group
theory to first order ine542d, whered is the dimensional-
ity of the system. This solution corresponds to the infini
cutoff approximation@7# and, hence, as discussed in Se
III A, the crossover model of Belyakov and Kiselev contai
only one system-dependent crossover parameter relate
the Ginzburg numberNG. In the asymptotic critical limit the
crossover model of Belyakov and Kiselev reduces to
linear-model parametric equation of state@w35w450 in Eq.
~4.7!# with b251.3766@76#. No detailed information abou
the values implied for the ratios of the correction-to-scal
amplitudes or about the behavior of effective critical exp
nents was provided by the authors. However, an anal
made by Anisimovet al. @7# of an earlier version of the
crossover model of Belyakov and Kiselev@77# indicated
good agreement of the temperature dependence of the e
tive critical exponents with those implied by the crossov
Landau model.

A more phenomenological parametric crossover mo
was formulated by Kiselev and co-workers@78–82#. In the
most recent version, the expression@Eq. ~2.17! in Ref. @82##
for the crossover function in the model of Kiselev contain
universal constantq0. For q051 the crossover model o
Kiselev reduces to an asymptotic equation of state w
correction-to-scaling terms derived by Berestov@83# up to
second order ine542d. The values implied by this cross
over model for the universal amplitude ratios are@41#
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A0
1/A0

250.52, G0
1/G0

254.87,

aA0
1G0

1/B0
250.056, G0

1D0B0
d2151.69, ~5.6!

and

A1
1/B150.53, B1 /G1

151.23. ~5.7!

The asymptotic amplitude ratios~5.6! are identical to those
of the linear model and comparison with the informati
provided in Table II shows that these ratios are quite sa
factory. However, the ratios~5.7! of the correction-to-scaling
amplitudes differ significantly from the theoretical estimat
in Table II. The temperature dependence of the effect
critical exponents of the phenomenological crossover mo
of Kiselev is different from that implied by the crossov
Landau model as discussed by Anisimovet al. @7#.

VI. APPLICATION TO ONE-COMPONENT FLUIDS

The crossover model developed in Sec. IV yields a se
parametric equations for the thermodynamic poten
DF̃(h1 ,h2) . The crossover parametric model can be appl
to one-component fluidsh1 and h2 with the expressions a
given by Eqs.~2.29! and ~2.30! or, equivalently, Eqs.~2.31!
and~ 2.32!. The appropriate thermodynamic relations need
to deduce the various thermodynamic properties from
potentialDF̃(h1 ,h2) are presented in Appendix B.

As an illustration, we show here how the crossover pa
metric model can be applied to represent susceptibility d
and heat-capacity data recently obtained by Barmatzet al.
@84,85# for 3He at the critical density as a function of tem
perature. Because of the high degree of vapor-liquid sym
try in the case of3He, we neglect the effect of any mixing o
the physical fields, so thath15Dm̃, h25DT̃, w15Dr̃, and
w25DŨ. The thermodynamic expression for the isotherm
susceptibilityx then becomes

x5S ]r

]m D
T

5
rc

2

Pc

Tc

T S ]r̃

]m̃
D

T̃

5
rc

2Tc

Pc
~x1 /T!, ~6.1!

with x1 given by Eq.~4.30!. For the isochoric specific hea
capacityCV we obtain

CV5
PcTc

rc
~x2 /T2!1C01C1DT̃1C2DT̃21C3DT̃3,

~6.2!

wherex2 is given by Eq.~4.31! and where the noncritica
analytic background to the isochoric specific heat capa
has been represented by a truncated Taylor series with c
ficientsCi .

We have fitted the experimental data obtained by Barm
et al. @84# to Eqs.~6.1! and ~6.2! using the critical tempera
tureTc , the CPM parametersl 0 , m0 , ū, andL/ct

1/2, and the
background coefficientsCi as adjustable constants. Since t
parametersū and L/ct

1/2 for a molecular fluid like3He are
5-13
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strongly correlated, we only fitted forg5(ūL)2/ct , adopt-
ing somewhat arbitrarilyL/ct

1/25p. The values obtained fo
the system-dependent parameters are presented in Tab
The resulting value of the Ginzburg number of3He is

NG58.7531023. ~6.3!

A comparison with the experimental susceptibility da
~in the one-phase region aboveTc) is shown in Fig. 6 and a
comparison with the experimentalCV data above and below
Tc is shown in Figs. 7 and 8 on a linear and doub
logarithmic scale, respectively. It is seen that the crosso
parametric model yields an excellent representation of th
experimental data. With the values obtained for the syst
dependent constants listed in Table V, we can readily ca
late the critical amplitudesA0

1 , A1
1 , G0

1 , andG1
1 for 3He

using the expressions given in Table III:

A0
153.54860.031, A1

150.71260.006, ~6.4!

G0
150.15060.002, G1

150.94160.007. ~6.5!

With the aid of Eq.~2.27! we calculate

j0
150.26860.004 nm, ~6.6!

which is consistent with the estimatej0
150.26 nm reported

by previous investigators@86–88#.

VII. DISCUSSION

In this paper we have developed a crossover param
equation of state that satisfies the most recent theoretica
timates for the universal ratios of the critical amplitudes a
of the correction-to-scaling amplitudes. The crossover
havior implied for the effective critical exponents is in goo
agreement with that previously obtained from
renormalization-group matching technique@7#. The paramet-
ric equation incorporates crossover to classical mean-fi

TABLE V. Parameters for3He deduced from the experiment
susceptibility and heat capacity of Barmatzet al. @84#.

Critical parameters
Pc5114.657 kPa~fixed!

rc513.7598 mol/L~fixed!

Tc53.315581 K
Asymptotic scaling parameters

l 056.8960.12
m050.30660.01

Crossover parametera

ūL/ct
1/250.52860.003

Caloric background parameters
C053.6960.02
C1510.960.5
C252299611
C3535706323

aL/ct
1/25p ~fixed!.
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critical behavior away from the critical point, recovering th
classical amplitude ratios to within a few percent. Using3He
as an example, we have demonstrated how the cross
parametric equation can be used to represent experime
thermodynamic-property data of fluids in the critical regio

FIG. 6. Susceptibilityx ~in dimensionless units! of 3He as a
function of (T2Tc)/Tc . The symbols represent the experimen
data and the solid curves the values calculated from the cross
parametric model.

FIG. 7. Specific isochoric heat capacityCV ~in dimensionless
units! of 3He as a function ofT. The symbols indicate the exper
mental data and the solid curve represents the values calcu
from the crossover parametric model.
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CROSSOVER PARAMETRIC EQUATION OF STATE FOR . . . PHYSICAL REVIEW E 64 026125
The crossover parametric equation of state can be rea
extended to a description of thermodynamic-property dat
fluid mixtures including crossover from vapor-liquid critic
behavior to consolute critical behavior by applying the pr
ciple of isomorphism of critical phenomena@30,31#.
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APPENDIX A: EQUATIONS FOR THE PARAMETRIC
MODEL

The definition of the asymptotic parametric model is

h15r bdl ~u!, h25rk~u!, ~A1!

DF̃~h1 ,h2!5r 22aw~u!1
1

2
Bcrr

2k2~u!, ~A2!

with

l ~u!5 l 0u~12u2!, k~u!512b2u2, ~A3!

w~u!5m0l 0@w01w1u21w2u41w3u61w4u8#. ~A4!

The auxiliary asymptotic angular functions are given b

m1~u!5
~22a!wk82w8k

l 8k2bd lk8
, ~A5!

m2~u!52
~22a!wl82bdw8l

l 8k2bd lk8
, ~A6!

q1~u!52
bm1k82m18k

l 8k2bd lk8
, ~A7!

q2~u!5
~12a!m2l 82bdm28l

l 8k2bd lk8
, ~A8!

q12~u!5
b~m1l 82dm18l !

l 8k2bd lk8
, ~A9!

s1~u!5
gq1k81q18k

l 8k2bd lk8
, ~A10!

sn11~u!5
~g1nbd!snk81sn8k

l 8k2bd lk8
. ~A11!

In this appendix quantities with a prime indicate the deriv
tive with respect tou ~at constantr!.

Expressions for the auxiliary angular functions atu50
andu51 are

q1~0!5
m0

l 0
@4w122~22a!b2w0#, ~A12!

ed
q1~1!5
m0

l 0
H @2bb2~12d!15b223#@~b221!s22~22a!b2s1#

2~b221!2
1

~22a!b2~s112s2!2~b221!s322b2s2

2~b221!
J ,

~A13!
5-15
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q2~0!52 l 0m0~22a!~12a!w0 , ~A14!

q2~1!52 l 0m0

~22a!~12a!s1

~b221!2
, ~A15!

m1~1!5m0Fs22
~22a!b2s1

~b221!
G , ~A16!

where

s15(
j 50

3

wj , s25(
j 50

3

jw j , s35(
j 50

3

~2 j 21! jw j .

~A17!

The critical amplitudes are given by

A0
15q2~0!, ~A18!

A0
25~b221!aq2~1!, ~A19!

B05~b221!2bm1~1!, ~A20!

G0
15q1~0!, ~A21!

G0
25~b221!gq1~1!, ~A22!

D05 l ~b21!m1~b21!2d. ~A23!

The definition of the crossover parametric model is

h15r 3/2Y(2bd23)/2Dsl̃ ~u!, h25rk~u!, ~A24!

DF̃s~r ,u!5r 2Y2a/Dsw̃~u!1
1

2
Bcrr

2k2~u!, ~A25!

with

l̃ ~u!5 l̃ 0u~12u2!, k~u!512b2u2, ~A26!

w̃~u!5m̃0 l̃ 0@w01w1u21w2u41w3u61w4u8#,
~A27!

Bcr522m̃0 l̃ 0w0 , ~A28!

where

l̃ 05 l 0gbd23/2, m̃05m0gb21/2, ~A29!

and

g5~ ūL!2/ct . ~A30!

The radial crossover functions are given by

12~12ū!Y~r !5ū~11L2/k2!1/2Yn/Ds~r !, ~A31!

Y1~r ![
1

Ds

r

Y

dY

dr
5

1

Ds

f 1k2

11 f 1f 2
~A32!

with
02612
k25ctrY~r !(2n21)/Ds, ~A33!

f 15
L2

2k4 S 11
L2

k2 D 21F n

Ds
1

~12ū!Y~r !

12~12ū!Y~r !
G21

,

~A34!

f 252S 2n21

Ds
Dk2. ~A35!

The auxiliary angular crossover functions are

m̃1~u,Y1!5
~22aY1!w̃k82w̃8k

l̃ 8k2@3/21~bd23/2!Y1# l̃ k8
, ~A36!

m̃2~u,Y1!52
~22aY1!w̃ l̃ 82@3/21~bd23/2!Y1#w̃8 l̃

l̃ 8k2@3/21~bd23/2!Y1# l̃ k8
,

~A37!

q̃1~u,Y1!

52
$m̃1@1/21~b21/2!Y1#1r ~]m̃1 /]r !u%k82m̃18k

l̃ 8k2@3/21~bd23/2!Y1# l̃ k8
,

~A38!

q̃2~u,Y1!5
$m̃2~12aY1!1r ~]m̃2 /]r !u% l̃ 8

l̃ 8k2@3/21~bd23/2!Y1# l̃ k8

2
@3/21~bd23/2!Y1#m̃28 l̃

l̃ 8k2@3/21~bd23/2!Y1# l̃ k8
, ~A39!

q̃12~u,Y1!5
$m̃1@1/21~b21/2!Y1#1r ~]m̃1 /]r !u% l̃ 8

l̃ 8k2@3/21~bd23/2!Y1# l̃ k8

2
@3/21~bd23/2!Y1#m̃18 l̃

l̃ 8k2@3/21~bd23/2!Y1# l̃ k8
. ~A40!

The angular correction-to-scaling functions are

m1,1~u!5
awk8

~22a!wk82w8k
2

~bd23/2!lk8

l 8k2bd lk8
, ~A41!

m2,1~u!5
awl81~bd23/2!w8l

~22a!wl82bdw8l
2

~bd23/2!lk8

l 8k2bd lk8
,

~A42!

q1,1~u!5
@~11Ds!m1,12~b21/2!#m1k8

bm1k82m18k

2
~m18m1,11m1m1,18 !k

bm1k82m18k
2

~bd23/2!lk8

l 8k2bd lk8
,

~A43!
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q2,1~u!5
@~11Ds!m2,11a#m2l 8

~12a!m2l 82bdm28l
2

~bd23/2!lk8

l 8k2bd lk8

1
@~bd23/2!m282~m28m2,11m2m2,18 !# l

~12a!m2l 82bdm28l
.

~A44!

The correction-to-scaling amplitudes are given by

A1
15@a/Ds1q2,1~0!#Y10, ~A45!

A1
25~b221!2Ds@a/Ds1q2,1~1!#Y10, ~A46!

B15~b221!2Ds@~122b!/2Ds1m1,1~1!#Y10, ~A47!

G1
15@~g21!/Ds1q1,1~0!#Y10, ~A48!

G1
25~b221!2Ds@~g21!/Ds1q1,1~1!#Y10. ~A49!

The angular functions in the classical limit are given b

m̄1~u!5m̃1~u,0!5
2w̃k82w̃8k

l̃ 8k2~3/2! l̃ k8
, ~A50!

m̄2~u!5m̃2~u,0!52
2w̃ l̃ 82~3/2!w̃8 l̃

l̃ 8k2~3/2! l̃ k8
, ~A51!

q̄1~u!5q̃1~u,0!52
~1/2!m̄1k82m̄18k

l̃ 8k2~3/2! l̃ k8
, ~A52!

q̄2~u!5q̃2~u,0!5
m̄2 l̃ 82~3/2!m̄28k̃

l̃ 8k2~3/2! l̃ k8
. ~A53!

APPENDIX B: THERMODYNAMIC RELATIONS

The differential relations are

dP̃5ŨdT̃1 r̃dm̃, ~B1!

dÃ52ŨdT̃1m̃dr̃, ~B2!

dF̃52w2dh22w1dh1 , ~B3!

dC̃52w2dh21h1dw1 ~B4!

with

Ã5 r̃m̃2 P̃, ~B5!

C̃5w1h11F̃. ~B6!

Decomposition into critical and regular parts gives

Ã~ T̃,r̃ !5DÃ~DT̃,Dr̃!1 r̃m̃0~ T̃!1Ã0~ T̃!, ~B7!

P̃~m̃,T̃!5D P̃~Dm̃,DT̃!2Ã0~ T̃!. ~B8!
02612
The relationship between the critical part of the press
P̃ and the critical part of the field-dependent potentialF̃

dD P̃~Dm̃,DT̃!5DŨd~DT̃!1Dr̃d~Dm̃!

5DŨd~DT̃1b2Dm̃!1~Dr̃2b2DŨ !d~Dm̃!

5w2dh21w1dh1 , ~B9!

so that

D P̃~Dm̃,DT̃!52DF̃~Dm̃,DT̃1b2Dm̃![2DF̃~h1 ,h2!.
~B10!

The Helmholtz free-energy densityÃ and the potentialC̃
are related by a Legendre transformation

Ã5C̃1b2h1w2 , ~B11!

as can be seen from

dDÃ~DT̃,Dr̃!2b2d~Dm̃DŨ !

52DŨd~DT̃1b2Dm̃!1Dm̃d~Dr̃2b2DŨ !

52w2dh21h1dw1 , ~B12!

so that

DÃ~DT̃,Dr̃!5DC̃~h2 ,w1!1b2h1w2 ~B13!

with

DŨ[2S ]DÃ

]DT̃
D

r̃

52S ]DC̃

]h2
D

w1

[w2 , ~B14!

Dm̃[S ]DÃ

]Dr̃
D

T̃

5S ]DC̃

]w1
D

h2

[h1 . ~B15!

From Eqs.~B10!, ~B14!, and~B15! it follows that the expres-
sions for the internal-energy densityŨ, the external fieldm̃,
and the pressureP̃ are invariant under mixing transforma
tions, while for the Helmholtz free-energy density one ha

DÃ~DT̃,Dr̃!5DC̃~h2 ,w1!2b2S ]DC̃

]w1
D

h2

S ]DC̃

]h2
D

w1

.

~B16!

Derived thermodynamic quantities are given by

S ] P̃

]T̃
D

r̃

5S ] P̃

]T̃
D

m̃

1S ] P̃

]m̃
D

T̃

S ]m̃

]T̃
D

r̃

, ~B17!

S ]m̃

]T̃
D

r̃

52S ]r̃

]T̃
D

m̃

S ]m̃

]r̃
D

T̃

, ~B18!
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S ]r̃

] P̃
D

T̃

5
1

r̃
S ]r̃

]m̃
D

T̃

, ~B19!

C̃V /T̃252S ]2Ã

]T̃2D
r̃

5S ]2P̃

]T̃2D
r̃

2 r̃S ]2m̃

]T̃2 D
r̃

, ~B20!

x̃5S ]r̃

]m̃
D

T̃

5S ]2P̃

]m̃2D
T̃

5x11b2
2x212b2x12, ~B21!
hy

,

e

g

y

l,

02612
S ]Ũ

]T̃
D

m̃

5S ]2P̃

]T̃2D
m̃

52
d2Ã0~ T̃!

dT̃2
1x2 , ~B22!

S ]r̃

]T̃
D

m̃

5S ]Ũ

]m̃
D

T̃

5x121b2x2 . ~B23!
ys.
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