PHYSICAL REVIEW E, VOLUME 64, 026122
Construction of an effective Hamiltonian for a three-dimensional Ising universality class
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The asymptotic and preasymptotic critical behavior in fluids, mixtures, and uniaxial magnets is believed to
be described by an effectivg’ scalar field theory with suitable, nonuniversal, coupling constants. The critical
parameters as well as the extent of crossovers and corrections to the leading critical behavior in physical
systems, crucially depends on the choice of these couplings. Here we propose a nhew method for deriving the
effective scalar field theory appropriate to a microscopic model in this universality class. Use is made of the
hierarchical reference theory, which implements the basic ideas of Wilson momentum space renormalization
group to microscopic Hamiltonians. The effective low-energy field theory is then analyzed by the minimal
subtraction scheme of Schloms and Dohm. We discuss the application of this method to the three-dimensional
Ising model and to the liquid-vapor phase transition. We make comparison with high-temperature expansion
results and with experimental data for rare gas.
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I. INTRODUCTION specific microscopic model and the effective coarse grained
Hamiltonian, which requires the tracing out of all “short-
Following the universality paradigm, physical systemswavelength” fluctuations.
presenting phase transitions are grouped in universality In order to clarify these issues, it is therefore important to
classes according to their asymptotic critical behavior. Ofind a systematic way to build up an effective Hamiltonian
particular physical relevance is the three-dimensidB&)  out of a given microscopic model. The natural tool to address
Ising universality class, which includes easy axis magnetshis class of problems is the hierarchical reference theory of
fluids, and mixtures. fluids (HRT) [7,8] which implements the basic ideas of Wil-
Nowadays it is well known that, in the critical region, all son momentum space RG in the framework of liquid state
these systems are described by“ascalar field Hamiltonian theory.
Her [1] which physically describes the long-wavelength fluc-  This theory allows, starting from the microscopic Hamil-
tuations of the order parameter. This effective Hamiltoniantonian of the model, to derive an exact hierarchy of differen-
depends on two coupling constants: the bare massd the  tial equations describing the evolution of thepoint corre-
self-interactionu of the field. Although the universal quanti- lation function of the system when fluctuations on larger and
ties(i.e., critical exponent and amplitude rati@se indepen- |arger lengthscales are included.
dent of the value ofi>0, this is not so for many physically However, in order to go beyond dimensionality expan-
interesting properties in the asymptotic and preasymptoticsion, it is necessary to introduce some kind of approximation
For instance, the critical temperature, the amplitude of ordeinto the theory(closure or truncation
parameter fluctuations, the extension of the critical region, In the numerical analisys of HRT performed so far, only
the importance of corrections to scaling, the presence of dehe first equation of the hierarchy has been treated by impos-
tectable crossover regions with well-defined effective criticaling an Ornstein-Zernik¢OZ) form for the pair-correlation
exponents, all depend on the particular value of the selffunction. The results obtained are in good agreement with
interaction term inH 4 which governs the coupling of fluc- experiments and simulations, satisfying scaling and hyper-
tuations on different lengthscales. scaling with nonclassical critical exponents whose values,
Actually, some doubt on the accuracy of¢d effective  however, typically deviate from the exact ones by 5%—10%.
Hamiltonian for describing the preasymptotic critical behav-The description of first-order phase transitions should also be
ior of the Ising model has been reported in the literaf@le  improved because HRT predicts an unphysical divergence of
In particular, the possible relevance of higher-order interacthe compressibility at coexistence.
tions (like a ¢® term) or of irrelevant symmetry breaking It is important to point out that these problems are only
terms(such asp®) should be investigated. due to the introduction of an approximate closure relation
Quite accurate nenormalization-gro(lRG) methods have and do not represent a limitation of HRT. In fact, it has been
been developed for obtaining the physically relevant quantiverified 8] that the second-order expansion of the hierar-
ties out of ae” effective Hamiltonian[3—6]. Using either  chy correctly reproduces the well-known results obtained by
large ordere-expansion results near dimension four or weak-Wilson [1] for the critical exponents.
coupling expansion of th@ function in a Callan-Symanzik The good accuracy of HRT on the description of the fluid
equation, explicit expressions for the order parameter, corran regions not asymptotically close to a phase transition, sug-
lation length, and susceptibility of the* model can be gests that the key ingredient missing in HRT with the present
evaluated. The missing ingredient is still the link between aclosure is just the correct treatment of very long-wavelength
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fluctuations, which determine the universal quantities. On thesystem. Notice that with this approach, no operation of
other hand, we know that, on those lengthscales, the model @arse graining is performed and all length scales are present
well represented by a coarse grained effective Hamiltonianin the Q system. The special choi¢@) for the interatomic
possibly of thee* form. Therefore, it is rather natural to interaction is able to allow the gradual turning on the long-
attempt to use the HRT formalism to trace out fluctuations upvavelength fluctuations typical of RG.
to a certain wave vector cutoff, and then switch to a field Remarkably, it is possible to obtain an exact set of differ-
theoretical description based on an effective Hamiltonianential equations expressing the change in physical properties
This is precisely the program of this paper, which will be when the cutoffQ is varied. They have the structure of a
presented in the following sections. hierarchy of evolution equations for the free energy and the
Section Il contains a brief summary of the HRT formal- n-point correlation functions. Here we only report the first
ism, to make the paper self-contained, together with the disequation of the hierarchy, which governs the inclusion of
cussion of the method we used to extract from HRT thefluctuations in the Helmholtz free energy of the model
couplings of the effective Hamiltonian. The RG equation we

adopted to analyze the effective Hamiltonian, is also re- d (—BA%| 1 dQy Q
ported. In Sec. Il we show three applications of this formal-  ~gg| v~ |~ Efk=Q—(2w)3 In[1+pS<(k)p(K)],
ism to the Ising model and to two models of fluids. Section @)

IV contains some conclusion and perspective.

where ¢=— Bw, while A%/V andS9(k) are, respectively,
Il. THEORY the free-energy density and the structure factor ofQreys-
tem. At the beginning of the integratio®Q{—) both these
quantities acquire their mean-field values, which in fact ne-
Let us consider the equilibrium properties of a classicalglect the nonlinear coupling of fluctuations.
fluid consisting of particles interacting through the two-body  The second equation of the hierarchy relatesQtaeriva-
potentialv(r). The starting point in the derivation of HRT tives of C9(k) to the three- and four-point correlation func-
equations is the separation of the interatomic interaation  tions. Analogously the other equations of the hierarchy give
in two parts[8]: relations that link theQ derivative of then-point correlation
function to the correlation functions of order up ot 2.
v(r)=vg(r)+w(r). (D) This formal hierarchy of equations is exact in the whole
phase diagram of the model. However, in order to obtain a
closed-form equation, which can be numerically solved, we
Shust introduce some approximation. We will consider the

sum_ed known, at Ieast numerically. Insteac(_r_) IS an at-  fq equation of the hierarchy with a closure relation express-
tractive term, which triggers the phase transition. Using thlqng the structure factoS(K) in terms of the free energy

separation and performing a Legendre transformation on th%Q. This closure is inspired by the so-called optimized ran-

grand canonical partition function, a formal diagrammatic om phase approximation of liquid state theory, which is

expansion for the Helmoltz free energy can be. written at al nown to describe the structure of a fluid rather accurately
orders in perturbation theory. In order to describe the evolu

. - - . ) 9]. The details of this closure can be found in H&f. Here
tion of the thermodynamic quantities due to the inclusion 01]\:Ne only point out that this approximation belongs to the

fluctuations, we implement the basic ideas of Wilson's RGyasq of the “Omnstein-zernike” closures characterized by the

apprpach[l]. within such a fo“”f‘a' pertu_r bat|Ye exp?""s,,"’“- analyticity of the correlation function in a neighborhood of
We first define a sequence of intermediate “attractive PO —0 even at the critical point:

tentials characterized by an infrared cut@¥ in Fourier
space:

A. HRT equations

Herevg(r) is a short-rangémostly) repulsive term(refer-
ence whose thermodynamic and structural properties are a

Lo MQ+b k? (4
w(k), k>Q Q - Jp? o™
WQ(k)= 0 k<0 2) pS=(k) p

where b is a nonuniversal constant, related to the micro-
and we study how the properties of the system, interactingcopic interaction and assumed to be finite in the whole
viav?(r)=vg(r)+w(r), evolve whenQ is varied forme  phase diagram of the model. At=0, this relation is exact
down to 0. In this way, the Fourier components of the attracand gives the compressibility sum rule. Closure relatign
tive part of the physical interaction may be included selec-unavoidably implies the vanishing of the critical exponent
tively, starting form the shorter wavelengths; in fact in thethereby introducing serious approximations in the evaluation
Q—o limit wQ(k) vanishes and we reduce to the referenceof universal properties at the critical point.
system, while a®— 0 the full interactiorv(r) is recovered. The growth of the long-wavelength fluctuations in the
Physically, this procedure corresponds to inhibit fluctuationgritical region makes this relatio@) less and less accurate
over wave vectors smaller thaD, thereby reproducing the asQ goes to zero, leading to a not very accurate determina-
momentum shell integration RG. At levé), effects due to tion of the critical exponents and to an unphysical divergence
the nonlinear coupling of density fluctuations are retainedf the compressibility when the coexistence curve is ap-
only for k>Q; we will refer to such a system as th@  proached.
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In Sec. 1l A we will discuss an application to the Ising the expansion coefficients of the local potentiain the ef-
model on a square lattice. Treatment of lattice systems rdective Hamiltonian(9) with the derivatives of the HRT free
quire some modification to HRT equations presented abovenergy evaluated &:

(details can be found in Ref§8,10]). Here we only recall
that the integration in real space is replaced by sums, and

m/2—3  sm Q
momentum space integration must be limited to the first Bril- Vo= 10 (7_('8“4 (p) (10)
louin zone. Due to the anisotropy of the boundary of this To(m)! pm2z gpm Vo,
zone, integration over the spherical surfékle=Q in Eq. (3) “Q=Q

is not appropriate, but the integration can be performed over

any surface,q that spans the Brillouin first zone. The par- The integration over the short-wavelength fluctuatio@s (
ticular form of the potential and of the closure relation make>Q,), performed by the HRT evolution equations, together
the following choice for the surface very convenient: with the defining relatior(10) allows us to connect the mi-
croscopic model interacting via the potentia) with an ef-
I fective Hamiltonian of the form(9) which describes the
2e=1k5 754 ;l cosk,=Q . (5 long-wavelength effective model appropriate to our physical
system. Within this scheme, all the short-wavelength details
of the microscopic model are explicitly integrated out and
B. The critical region in the HRT contribute to the definition of the expansion coefficients
(self-interactionsin the effective Hamiltonian. These values
asymptotic evolution at long wavelengtfi®., asQ— 0) Eq. are therefore specific to the pa_lrticglar mp_del we are studying.
(3) with the low k form of the closure relatiori4) can be Conv_ersely, l_JnlversaI quantities like critical exponents a}nd
written in a universal form, independent of the details of theamp“tUde_ ratios are the same for all _mod_els of the 3D Ising
microscopic interaction: umversahty class._ The effective Hamiltonian const_ructed by
this method describes the long-wavelength fluctuations of the

If the system is in the critical region and we analyze the

gHQ 1 gHQ 1 1+ g2HQ/ 972 system in the momentum range froQy to_O, Whi(_:h drive_
I—I + 22 —dHQ=§In 30,2 . the critical behavior. However, it also retains the information
J oz 14+ (6°H%92%)| =0 about the nonuniversal properties of the system through the

(6)  values of the interactions,,, which do depend on the mi-

] o croscopic structure of the model.
Here the following definitions have been employed:

C. Dohm equations

—,BAQ_—EAQ
\ \

HQ: — _Qfd

) ' (7) At this stage we have just developed a systematic way to
P=Po derive an effective Hamiltonian describing the physical sys-
tem in the critical region. In order to obtain the physical
_ [ Po vz —(d-2)2 properties of the microscopic model we have to resort to
z= K_d (p=po)Q ' (8) some method able to calculate averages and correlation func-
tions for field theoretical Hamiltonians of this form. This
where ford=3, Kq=(272) %, andQ=Q,/I, py is the criti- _Hamiltonian represents a self-interactir_lg real scalar field and
cal density and the initial condition is set @=Q,. Equa- 'S Supplemented by an UV cutoff. This program can be
tion (6), with some straightforward substituti¢8, 11], is for- efficiently achlevedlln the context of minimal subt(act|on RG
mally identical to a Wegner-Hougton RG equation for aSchemg13]. In particular, we choose the formu!atlon due to
scalar field theory in the local potential approximatia®a) ~ Schloms and Dohni3,4], where renormalization is per-

[12]. This equation describes the RG flow of an effectiveformed directly in three dimensions without using the
Hamiltonian of the type e-expansion technique. Furthermore, Dohm already gives

expressions for various physical observables above and be-
o low the critical temperature, and the renormalizing functions
Heff:f F(V(P(X))ZJFUZ(Pz(XH E v me™(X) |dox e_mployed are known from accurate_BoreI r_esummation of
2 m=3 high loop order perturbative expansion. This allows us to
(9) obtain very accurate results for universal quantities whose
values are reported in Ref3,4,14. This method has been
as fluctuations are included under the assumption that the R&pplied just to ap* theory, and therefore we assume to trun-
flow does not generate nonlocal effective interactions. This igate our general local potentis(¢) in Eq. (9) to fourth
in fact an approximation, similar in spirit to our OZ closure order. We only recall the main steps in deriving these RG
(4). In Eq. (9) the ultraviolet(UV) cutoff |g|<1 on the mo- equations. The starting point is therefore the bare Hamil-
mentum of the Fourier transformed fluctuating fiedd, is  tonian for ag” theory:
also understood. The identity between the asymptotic form
of the HRT equation and the RG equations for a scalar field H :f ddx
@

1 1
I 2 4
in LPA, allows us to identify, in the long-wavelength regime, 5"0¢0F 5 (Veo) ™+ Uoeo|. (D
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In Eq. (11) the odd powers have been neglected becaus

close to the transition, the effective Hamiltonian is invariant

under the change— — ¢, and higher-order powers are ir-
relevant in the RG sense.

The expressions for the susceptibility and correlation

length are

X(K) =Tk ro,uq,A,d) "2, (12)

£(ro,Ug, A, d)={x(O)[x(K) =o}? (13

whereF(N) are the bare vertex functions. The critical value
of rqy (roc) is implicitly defined by

@0 e, U, A,d)=0. (14)

PHYSICAL REVIEW E64 026122

edu(l _ . 1o
dlnT=[3u[u(l,),1] with u(l_=1)=u=2Z,"Z K3ug.

(19

In this case, however, the renormalizing functions for the
order parametefZ,(u),f [u(l)],{,(u)} are known with
lower accuracy, so we expect a lower accuracy in the deter-
mination of this quantity.

Integration of the Dohm equations can be easily per-
formed numerically by a standard adaptive Runge-Kutta al-
ghoritm [15]. The only quantity, which is not given, is the
value ofrg.; we have chosen the value obtained from the
integration of HRT at the HRT critical temperature via Eq.
(10). In this way, the critical temperature of the model is
fixed to its HRT estimate, which is actually quite accurate in
all the models we are going to examine. Another point to be
discussed is that Eq§l6) and (19) do not contain the tem-

This allows us to express the vertex functions in terms of theperature variable that just enters through the initial values of

differencery—rq., which will be convenient by virtue of the
super-renormalizability of ap* theory below four dimen-

the coupling constants),uy. Even if the hypothesis of linear
dependence af ont is the most popular choice in the litera-

sions. The theory is then regularized at a certain value of thiure, in our case we prefer to relax this ansatz by integrating
momenta(subtraction pointusing the minimal subtraction the HRT equations at every temperature of interest determin-
schemd13]. Finally, the use of Callan-Symanzik equations, ing the values of ; andu, via Eq. (10). The value ofl, at
allows us to obtain finite renormalized vertex functions, ex-which we stop the integration of the Dohm equations, is
pressed in terms of renormalized quantities, at every energymplicitly defined by

Integration of the Callan-Symanzik equation leads to the fol-

lowing expression for the susceptibility:

x=x(k=0)

Lp(U’)du,

_ @ i
Z, (= [Luh),317H uih By(u’)

2exp
(195

du(l)
FinT = Aulu(h).1] with u(l=1)=u=Z,"Z{Kauo.

(16)

Here 1<| < is the renormalization paramet@neasured
in mass units of J4) which defines the momentum scale of
the renormalization point. The functions,(u), Q(1,u,3),
£ (u), Bu(u), andZ,(u) are known by Borel summation of
perturbative loop expansidi3,4,14. Now, using the expan-
sion coefficients(10) as initial conditions for the Dohm

equations, we are able to obtain the behavior of quantities of

physical interest.

The above procedure can also be performed belgw
We only report the Dohm equations for susceptibility and
order paramete4]:

- L (u')
_ (2) —1y-2 0 ,
x-(K)=Z (Wf[ul )] 1-“exp u(l,)ﬂu(u’)du
17
£o(u")
(eo)*=Z (u)f Lul )]l - epr ﬁ‘:(u) u, (18

!

! dl
rOC=Z,(u,l)Q[l,u(I),3]epr1(2—§r)|—, (20)

and physically corresponds to the inverse correlation length

E=1"1 (22)

In summary, our method consists of integrating the HRT
equations at every temperature down to a suitable value of
the cutoff wave vecto®, in order to generate the expansion
coefficients of the effective Hamiltonian. At this point, in-
stead of proceeding with the full integration of HRT down to
Q=0, we use the coefficientgy=v,—v,. andug=v, ob-
tained in this way to integrate the Dohm equations. In par-
ticular, the value ofu, gives the initial condition, while the
value ofro=v,—v, is used in Eq(20) to obtain the value

of | at which we stop the integration.

IIl. RESULTS

Before showing the results obtained by the method dis-
cussed in the previous sections, we briefly discuss a few
open questions, which are still present at this point. First of
all, we have established a connection between HRT in OZ
closure and Dohm equations, but we do not know what is the
range of numerical values of the cut@)fat which this iden-
tification is correct, or if such a range of values exists. In
fact, as we proceed in the integration of the HRT equations,
the OZ closure becomes less and less accurate, while the
identification with a¢* theory becomes more accurate be-
cause we are entering the critical region and all irrelevant
terms disappear in the effective Hamiltonidr6]. Second, if
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such a range of values exists, consistency requires that physi- 05 ' ' '
cal quantities must show very little dependence on the choice
of the matching point in the range.

In the following discussion, all physical quantities pre- 025 - -
sented are expressed in natural units, taking as unit length the
lattice spacing for the Ising model and of the particle diam-
eter o for the fluid represented by either a Lennard-Jones
(LJ) or an Aziz potential. >

A. Ising model 025 F -7 -
/
As a first check of our method, we have considered the I.'
Ising model. Studying this modelwhose properties are ;
known with high accuracy from other methods like series -05 oz 04 05 o5 f
expansiorf17,18)) will allow us to test the proposed method Q

to construct the effective Hamiltonian and to get some infor-
mation about the matching value of the cut@f In Fig. 1,
we show the behavior of the first few even coefficienjs
v4, andug as the integration of the HRT equations is carried
out. The divergence of the coefficients andv, atQ=0 is
due to the presence of negative powers of the cutoff in the
definition (10). We only note that the divergence change
from +o to — is above or below the critical temperature.
Looking at Fig. 1, it can be seen that the coefficiegthas a
minimum, so one can think to fix the matching point at this
value of Q, in order to minimize the effects induced by ne-
glecting this term. In fact some authors argued thamay
be important in the description of the preasymptotic region
[2]. Nonetheless we empirically find that the results obtained
for physical quantities shows very little dependence from the
matching value in the region 68Q<<1.25. So we arbitrarily
choose to fix at each temperature the matching valu@ at
=1.0, in order to obtain a unified criterium even for other
models which do not display the minimum in the coeffi-
cient(see Fig. 4 and )8

In Figs. 2 and 3 the reduced temperature dependence of
the susceptibility, correlation length, and order parameter are
shown on a decimal logarithmic plot. In this way the
asymptotic slope of each quantity is identified with the rela-
tive critical exponent. Notice that the present theoretical re-
sults contain no free parameters and the comparison is per-
formed at the same reduced temperature. We recall that the
HRT critical temperature is within 0.5% from the correct
value[10]. !

Looking at Fig. 2 one can see that HRT results are in very 185 02 04 05 08 1
good agreement with Fisher’s predictions at high tempera- Q
tures. In fact, at these temperatures, the effects of a nonzero
value for# is very small so that the QZ closure.relation i§ &model @ in units of inverse lattice spacing Solid line, t
good approximation of the two-point correlation function _1 5 10-3: dashed line,t=0: and the dot dashed line.
CQS';)- Conversely below a reduced temperature of about 1 0x 1073, The divergence of coefficients, and v, nearQ
10" 4, HRT predictions already deviate from the correct re-= s due to the presence of powers@in the denominatoréL0).
sult. This deviation is an effect of the approximation inducedexactly at the critical temperature these coefficients tend to a finite
by an OZ closure relation, which leads to the mentionedimit, otherwise, they diverge ta- o, according to whether we are
overestimations of the critical exponentsy=1.378, v above or belowT,.
=0.689, 5=0.345) [8]. Conversely, at this temperature
scale, Dohm equations are already rather accurate. with Dohm predictions, even if small deviations are still

Figure 3 shows the results for the susceptibility and ordepresent for loffj>—4. HRT results are not displayed be-
parameter below the critical temperature. The asymptotic bezcause, as already stated, in this region it gives an identically
havior of the susceptibility turns out to be in good agreementnfinite susceptibility on the coexistence curve.

FIG. 1. The expansion coefficients, v4, anduvg for the Ising
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8 , . . . , ,

FIG. 2. The reduced suscepti-
bility (in units of ideal gas suscep-
tibility ) and correlation lengtliin
units of lattice spacing for the
Ising model abovd& ;. Solid line,
Fisher Burford approximan{d.7];
dot-dashed line, HRT results; and
the dashed line, Dohm equations.

-2 : L . ' : ' . L . The new calculation scheme al-
-5 -4 -3 -2 -1 0 lows us to obtain correct critical
log ,t exponents. Correlation length is
. : ‘ : ‘ : : measured in units of lattice spac-
I ing.
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g e
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o% \«.,k__
° s
0.82 | =3
08 ‘ s . s .
-1.8 -1.79 -1.78 -1.77 -1.76 -1.75 -1.74
log,,t
FIG. 2.

Dohm results for the order parameter are in good agree- As already stated above, thg coefficient, Fig. 4 does
ment with Fisher’s predictions for Igig<—2. not display any minimum and so we have chosen to fix the
We believe that the somewhat lower accuracy obtainedalue of cutoff atQ= 1.0 as for the Ising modélength units
for the amplitude of the order parameter is due only to theare set by the particle diamete). The behavior of the ex-
lower accuracy, mentioned above, for the renormalizatiorpansion coefficients, andv,, in the limit Q—0, is the same

functions available for this quantify]. as for the Ising model. Figure 5 shows the behavior of the
) first two odd expansion coefficients; andvs [see Eq.(9)
B. LJ potential and (10)]. Their value atQ=1.0 differs from zero because

In order to study and to test the validity of the procedurethe ¢— — ¢ symmetry is recovered only asymptotically
outlined in Sec. Il, we applied all the above method to theclose to the critical point. The divergence f andvs at
study of a LJ fluid[19,20. In this case the reference system Q=0 for t=0 is not exactly at the critical density. In the
is the hard-sphere gas. following, we disregard the odd terms even at finQebe-
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FIG. 3. The reduced susceptibilitin units of ideal gas suscep-
tibility) and magnetizatior{in the number of spins per sjtdor
the Ising model belowT.. Solid line, the Fisher-Burford-Essam
approximantg 18]; dot-dashed line, HRT results; and the dashed
line, Dohm equations. HRT predictions for susceptibility in this
case are identically infinite. In both cases, the agreement with Fish-
er's extrapolations is very good.

cause their inclusion would require a generalization of the
RG equations, which is not yet available.
Even in this case, the final results show no significant
dependence on the value Qfin the range 0.5:.Q<1.5.
Unfortunately, comparison with results obtained from 1
other methods, is not as easy as before, because, to the best
of our knowledge, Monte Carlo simulation results are not
available in the critical region. 08
We choose to compare only the asymptotic behavior of
the physical quantities above and beldwwith the experi-
mental results for K{21], results for other rare gases are
very similar. >
Figure 6 shows the behavior of the isothermal reduced 0.4
compressibility[ S(0)=nkgT«1] and the correlation length
aboveT.. Correlation length amplitude and critical expo-
nents obtained by Dohm equations are in very good agree- 02
ment with experimental results, and also HRT predictions are
in good agreement with experiment unless temperature is
very close toT.. Conversely, the Dohm amplitude for com- 0 02 04 0.8 08 1
pressibility is not so good as for the Ising mod2l and we Q
find a deviation of about 30%. Also the HRT results under- F|G. 4. The expansion coefficients,, v,, andvg for the LJ
estimate the experimental data over most of the temperatufiid at the same reduced temperatures of the Ising model Fi@. 1 (
range. in units of inverse lattice spacingSolid line,t=1.0x 10 %; dashed
In Fig. 7 the results for the compressibility and the orderline, t=0; and the dot-dashed lines= —1.0x 10" 3.
parameter below critical temperature are presented. As they

are gboveTc, our results for the susceptibjlity amplitude, are 22]. Another source of inaccuracy can be the presence in a
not in very good agreement with experimental data, whil luid of odd terms. We will comment on this in Sec. Il C.

the estimates of the order parameter appear to be accurate.
A possible origin of the discrepancies encountered in the
behavior of the compressibility both above and beldw
derives from the fact that the LJ potential does not describe In order to check whether the discrepancies in the suscep-
very well the true intermolecular interaction for a rare gastibility amplitude presented in Figs. 6 and 7 are due to the

0.6

C. Aziz Axilrod-Teller potential
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0 1 Il
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002 log,, t
FIG. 6. The reduced isothermal compressibi(ityunits of ideal
gas compressibilifyand correlation lengtkin units of o) for the LJ
>° 008 potential abovel .. Solid line, experimental data for KR1] in the

asymptotic region; dot-dashed line, HRT results; the dashed line,
Dohm equations. The agreement with susceptibility is not as good
as for the Ising model. Discrepancies in the amplitude factors are
30% for susceptibility and 5% for the correlation length.

-0.04

vg term does not present any minimum, so again we choose
-0.05 o“ 0z o2 0s o5 1 to fix the value of the matching cutoff =1.0 as before.
Q Odd term coefficients obtained at the same reduced tem-

peratures of LJ are shown in Fig. 9. Nonzero value of these

FIG. 5. The behavior of the odd expansion coefficiangsand
v for the LJ potential Q in units of inverse lattice spacingSolid 6 ; .
line, t=1.0x 10" 3; dashed linet=0x10"3; and the dot-dashed
line, t=—1.0x10"%. At Q=1, their value differs from zero be-
cause invariance— — ¢ is restored only asymptotically close to
the critical point. Divergence @=0 also fort=0, is due to the 4
density, which is not exactly at the critical value.

log,, S(0)

fact that LJ potential does not represent accurately the mi-
croscopic interaction of a rare gas, we applied the previously 5 | i
discussed technique to a more accurate potepfid|23
which is believed to describe well the properties of the rare
gas. The total interaction is of the form

0 - 4
V(rg, ... JN):E vazidlri— )+ 2 vaT(ri L. T). log,,<0>
i<j i<j<k
(22)
Here the Aziz potentidl24] has been used for the two-body 5 -45 -4 -35
interaction, and the Axilrod-Teller terrf25] describes the log,, [t]

three-body forces. This last term, which is mostly repulsive,

is included in the r_eference sy:?‘tem together with the rep_ulgas compressibilityand order parametdin units of o—3) for LJ

sive part of _the Aziz two'bOdy interaction. Thermodynamic potential belowT. . Solid line, experimental data for K21]; dot-

and correlation properties of the reference system are calCiashed line, HRT results; and dashed line, Dohm equations. Experi-

lated using the modified hypernetted ch@#HNC) approxi-  mental data for Kr are valid only in the asymptotic region. The

mation, extended to treat three-body for¢26]. Details of  amplitude factor for susceptibility has been derived from the ampli-

computation can be found in ReR2]. tude factor abovel, using the universal ratio between these two
The expansion coefficient§ig. 8) display the same be- quantities which is 4.8. Discrepancies for the susceptibility ampli-

havior found for the LJ potentials in the lim@—0, and the tude are 30%, while for the order parameter they are 10%.

FIG. 7. The reduced isothermal compressibi(ityunits of ideal

026122-8
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Q

0 0.2 04 06 0.8 1

FIG. 8. The expansion coefficients, vg, anduvg for the Aziz
Axilrod-Teller potential Q in units of inverse lattice spacingThe
reduced temperature is the same Figs. 1 and 4. Solid tine,
=1.0x10"3; dashed line,t=0; and the dot-dashed linet
=—1.0x10 3. As for LJ (4) there is no minimum is theg coef-
ficient behavior. The matching procedure is doneQat1.0. The
behavior of expansion coefficients resembles that of Fig. 4 Qear
=0.
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0.02 T T T

001

-0.01

—0.05 -

|
015 } ]
|

0 0.2 0.4 06 0.8 1

Q

FIG. 9. The odd expansion coefficients for the Aziz potent@l (
in units of inverse lattice spacihgReduced temperatures are the
same for Fig. 5. Solid line:=1.0X 1073: dashed linet=0; and the
dot-dashed linet= —1.0x 10~ 3; Here as for the LJ case of Fig. 5,
divergencies aQ=0 for the critical temperature are due to be not
exactly at the critical density.

The asymptotic region results aboVg are shown in Fig.
10. Comparison is made as before with the experimental data
for Kr [21]. As can be seen, agreement for isothermal com-
pressibility is improved(cf. Fig. 6 but correlation length
predictions are of slightly worse quality than that of LJ.

Similar considerations can be done for the results below
T., presented in Fig. 11, where results for isothermal com-
pressibility are not very precis@ven if better than the LJ
potential of Fig. 7; discrepancies in the amplitude factor are
now about 12%whereas predictions for the order parameter
are good.

D. Terms beyond the¢* model

As stated in the previous sections, the good results ob-
tained for the Ising model are not encountered in the suscep-
tibility of the fluid models. The discrepancies encountered
could be ascribed to the fact that, for fluid models, the effec-
tive Hamiltonian(9) should include odd power terms. These

coefficients aQ=1.0 should be noted, while the divergence terms disappear only at the critical poif@€0) when in-
at t=0 is as before due to be only approximately at thevariancep— — ¢ is restored. But aQ=1.0, their presence

critical density.

can affect the final results.

026122-9
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log,, S(0)
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log,, t Gro It

FIG. 11. The reduced isothermal compressibiliiy units of
ideal gas compressibiliiyand order parametgin units of o~ %) for
the Aziz Axilrod-Teller potential below .. Solid line, experimental
data for Kr in the asymptotic regime; dot-dashed line, HRT results;
ehnd the dashed line, Dohm equations. The error on the amplitude
%actor are about 12% and of 10% for susceptibility and order pa-
rameter, respectively.

FIG. 10. The reduced isothermal compressibility units of
ideal gas compressibilifyand correlation lengtkin units of o) for
the Aziz Axilrod-Teller potential abov&.. Solid line, experimental
data for Kr in the asymptotic regim1]; dot-dashed line, HRT
results; and the dashed line, Dohm equations. The agreement wi
susceptibility is quite better than that obtained for the LJ fligiid-
crepancy in the amplitude factor is now of 12%onversely results

for the correlation length are just a little worséaccuracy for the ) . 4 .
amplitude factor is about 10R6 tive Hamiltonian of terms beyong® for the Ising model

(Fig. 12 and for the fluid modelgFigs. 13 and 1¥4shows

In order to test the effective relevance of the terms nelhat these terms are more relevant for fluids model. The rela-
g|ected from the Hamiltonian of Eq@) and (10) we com- tive importance of thQDG term is similar for the two models
pared the second derivative of the free energ$A(dp?) of a fluid and larger than in the case of the Ising model. In
obtained from the HRT integration &= 1.0 with the poly-  addition, thep® term is very small for the LJ potential, but it
nomial parametric representation obtained using the expars quite significant in the case of the Aziz potential with
sion coefficients of Eq(10) evaluated at the same cutoff. three-body forces, and this is in agreement with the general
The results of this test are presented in Figs. 12—14. Figure
12 shows that the free energy of the Ising model is well 08
approximated by a* Hamiltonian(at least for low magne-
tizationg; the ¢® term begins to be important only for mag-
netization greater then 0.1. Figure(&Binstead clarifies the 06
role of odd terms for LJ potentials. It can be seen that, even
at densities close to the critical density, the free energy is not
well represented by @* Hamiltonian because of the pres- o4
ence of the odd terms. However, it is possible to eliminate
the effects of the first odd terma® defining the critical den-
sity as the density at whic#fA/9?p has its minimum. Figure g2
13(b) shows the results obtained with this redefinition of the
critical density, which must be lowered by 3%. It is also
possible to note that the second odd tesmgives very little 0.0
correction. Figure 14 shows the same of Fig. 13 for the Aziz
potential; in this case the critical density is lowered by 1.5%.
The contribution of thep® term is greater than before. 02 , ‘ ,

We performed the integration of the Dohm equation, ~ 0.00 0.10 0.20 0.30 0.40
evaluating the expansion coefficients of Ef0) at this ef- M
fective critical density, both for LJ and Aziz potentials, but  FiG. 12. The free energy for the Ising modeh”
the results for the physical quantities are almost unchanged 52(— gA/v)/aM? is compared with the polynomial parametric
by this redefinition. We conclude that the’ term is not  representation obtained fas* (H,) and ¢® (Hg) Hamiltonians.
responsible for the lower quality of the results for a fluid. OnThe contribution of thee® term is negligible for magnetization
the other hand, comparison of the contributions to the effeclower than 0.1.
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FIG. 14. The free energy for the Aziz potential (n units of
o~ 3). Hamiltonians have the same meaning for Fig. 13. In this case
the (p— p.)® term is more important than for the LJ potential.

FIG. 13. The free energy for the LJ modeN’=4?
(— BAIV)9p? (p in units of o~ 3). The comparison is made with
polynomial parametric representations for the theoriés;
=v2(p—po)>+tvalp—p)*, Ha=valp—pc)®+vs(p—pc)+valp _ _
—po)t, Hs=va(p—po)2+vs(p—po)3+valp—po)i+uvs(p—po)®  coarse grainedg®) theories match. It is reassuring to ob-
and He=va(p—po)2+vs(p—po)i+uvalp—p)*+uvs(p—po)®  serve that indeed a range of values of the cutoff exists where
+vg(p—pc)®. In the upper figure, expansion coefficients are evalu-this matching is possible and that the results do not strongly
ated at the HRT critical density. Odd terms make it impossible to fitdepend on the choice @,
the free energy with thél, Hamiltonian. In the figure, expansion The combined use of these two methods allowed us to
coefficients are evaluated at the effective critical density, wAére obtain results for physical quantities above and below the
has a minimum. critical temperature for the three models presented in Sec.

Il. In particular, susceptibility and correlation length predic-
understanding of the role of three-body forces on criticalitytions belowT., represent an extension of the HRT results.
[28]. Remarkably, the application of this method to the Ising

model led to results that are in very good agreement with
IV. CONCLUSIONS series expansion predictiqns,_both ab_ove and below _the criti-
cal temperature. The application of this method to fluid mod-

We have developed a method that allows to obtain a quarels is less satisfactory. The results for correlation length and
titative link between HRT, which is an implementation of order parameter are in good agreement with experimental
Wilson’s momentum shell renormalization group, and RGresults for krypton, but the results for compressibility when
equations, which instead are based on the minimal subtrathe LJ potential is used, are not very good. When a better
tion scheme. This method requires the identification of a morepresentation of the interatomic potential is used, the agree-
mentum scaleQ,, where the microscopi¢HRT) and the ment with experimental data in the critical region improves
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for the compressibility, but the correlation length is less achew techniques to deal with more complex field theories,
curate. Globally the quality of the results for a fluid model iswhich include external fields and higher-order terms in the
significantly inferior to that for the Ising Model. expansion of the effective potentid). This would allow us

As a source of inaccuracy in the case of a fluid, twoto get information about other physical quantities like the
possibilities can be considered. The first one is that the longmagnetization along the critical isotherm, and to hopefully
wavelength density fluctuations in a realistic fluid model, areimprove the agreement with experimental data for fluid mod-
only approximatively described by @* theory. In fact we els.
find that, even within LPA, there are further interactions to  In particular, in Ref[29] is discussed a theory that allows
be retained in the effective Hamiltonian expansi®y see to obtain susceptibility, correlation length, and order param-
Figs. 16 and 19. The tests performed in Figs. 13 and l#ter even in the preasymptotic region. Monte Carlo simula-
showed us that even the redefinition of the critical densitytions of the Ising model are in good agreement with results
which allows us to minimize the effects of the lowest odd predicted by this theory, as shown in R€f30,31]. However
term, gives no significant improvements on the physicalthe details of the specific thermodynamic model enter in this
quantities. Furthermore, the crossover phenomena for fluidheory only through parameters, which cannot be predicted
are much more complicated than for the Ising md@&l, so by the theory itself, but must be derived from other methods.
the matching between HRT and Dohm equations may be leds may be interesting to use HRT to derive these parameters
accurate. The second possibility concerns the interparticlen order to try to improve the results obtained for the fluid
potentials, which may describe the true interaction betweemodels discussed.
the fluid particles in the critical region only approximatively.  Finally, the study of more sophisticated closure relations
In addition there is an interplay between interatomic interacto the HRT equations, should also improve the accuracy in
tion and higher-order terms in the effective Hamiltonian. It isthe determination of the initial conditions of the RG equa-
known[22] that the LJ potential is not an accurate model oftions.
the interatomic interaction, but when the more accurate Aziz
potential is used, it is also necessary to introduce three-body
forces. In this last case, the® term becomes much more
relevant[28] and it is plausible that what we gain with the  The authors want to thanks M. Tau who wrote the pro-
better modelization of the interatomic potential is lost by thegrams for the integration of HRT equations for the Aziz po-
less accurate representation of the effective Hamiltonian itential. The program for the integration of HRT equations for
terms of theg® model. Ising and LJ potential was written by D. Pini, who is also

We hope that this paper will motivate the development ofgratefully acknowledged.
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