PHYSICAL REVIEW E, VOLUME 64, 026119
Relevance of percolation theory to the vulcanization transition
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The relationship between vulcanization and percolation is explored from the perspective of renormalized
local field theory. We show to arbitrary order in perturbation theory that the vulcanization and percolation
correlation functions are governed by the same Gell-Mann—Low renormalization-group equation. Hence, all
scaling aspects of the vulcanization transition are reigned by the critical exponents of the percolation univer-

sality class.
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[. INTRODUCTION where randomly occupied bonds are assigned a finite non-

zero conductance. In contrast to PG, which implement a
Vulcanization[1] has a vast array of technological and “momentum shell” renormalization group, we use the pow-
commercial applications. The vulcanization process transerful methods of renormalized local field theory. The mo-
forms a macromolecular liquid into an amorphous solid bymentum shell procedure, although physically intuitive, mixes
randomly introducing permanerfthemical crosslinks. In  scaling properties with features of other universal quantities
the liquid state all macromolecules are delocalized. In thdike scaling functions. Therefore, it is extremely difficult to
amorphous solid state a nonzero fraction of macromoleculesxtend the procedure beyond first order in perturbation
forms a macroscopic network. The constituents of this nettheory. Renormalized field theory goes in the other direction.
work are localized at random positions about which theyinstead of the elimination of fluctuating degrees of freedom
execute thermal motion characterized by a distribution Ohear the upper momentum Cutoff and a resca”ng Of the mo-
finite localization lengths. The_vulcanizatiqn transiti(o_nT) menta, the momentum cutoff is send to infinity at the begin-
between the two state®ccurring at a critical density of ning The ultravioletUV) infinities resulting from this lim-
crosslinkg represents a continuous phase transition. iting procedure are eliminated by the so-called

Due to the work of Goldbart, Zippelius, and COWorkersgenormalization factors. These renormalization factors then

(G2) 2] a rather comprehensive theoretical description Oldetermine the Gell-Mann—Low renormalization-group equa-

the VT exists to date on the level of a mean-field approxi-; : .
mation. The mean-field theory gave a first glance on th tion (RGB that encodes all the scaling properties of the

relation between the VT and the percolation transition, an heory. This RGE represents the cleanest way to analyze the

the critical exponents describing the VT were shown to b ull SC"’?"”g structure and _its critical exponents. Physical
consistent with the mean-field critical exponents for percolaprOpertIes beyond the scaling structure, however, cannot be

tion. Penget al. [3] introduced a minimal model for the VT inferred from the RGE. Indeed, these are, in general distinct,

and discussed it under the aspects of universality as a corf@’ Vulcanization and percolation. A further advantage of
mon theoretical formulation of general amorphous solidifica-"énormalized field theory is that it allows to find out general
tion transitions(of which the VT is a prime exampleRe- properties of the renormalization factofand hence, the
cently, Peng and GoldbarfPG) [4] carried out a RGE) to all orders of perturbation theory because they result
renormalization-group-improved one-loop calculation basedgolely from so-called superficially divergent Feynman dia-
on the minimal mode]3]. Their calculation showed that the grams. Our analysis presented in this paper thrives on this
critical exponents of vulcanization and percolation are inadvantage. We show to arbitrary order in perturbation theory
conformity to one-loop level. that vulcanization and percolation involve the same primitive

In the past, the VT has often been addressed directly frordivergences, and hence, are governed by the same RGE. This
the perspective of percolation theoriég. In contrast to the establishes an exact relation between the critical exponents
work of GZ, this perspective takes into account only a singleof the VT and the percolation transition provided that certain
ensemble of random connections, and therefore does not iBgditional mild, and generally accepted, assumptions do
corporate the effects of both quenched randomness and theyp|d, viz. that the correlation functions solving the RGE have
mal fluctuations. Given that an essential aspect of the VT ig nonsingular and nonvanishing limit as the infrared stable
the impact of the quenched random constraints on the thefixed point is approached. Furthermore, we exemplify dis-
mal motion of the ConStituentS, th?epriori identification of tinctions between the VT and the perco'ation transition by
the VT W|th percolation iS a nontriVial matter and one maycomparing the Order parameters Of both theories_
ask: What is the relevance of percolation theory to the VT?

The purpose of this paper here is to explore the connec-
tion between \_/u_lcanization and percolation _in depth. We II. MODELING VULCANIZATION AND PERCOLATION
compare the minimal modgB] to a field theoretic model for
the random resistor netwollRRN) that we recently studied The theory of GZ and PG is based on the order-parameter
[6]. Such a RRN is nothing more than a percolation modefield
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. ~ o 0, is a constant that sets the width of the voltage interval
Q(r)=fRQ(k)e , (D such thaf — 6y yM < 69< 6,yM]. In the limit D—0, M
—oo, the constan®, plays the role of a redundant scaling

defined on the replicated-dimensional real space with co- parameter, i.e., the theory is independent of its value. In the

ordinates r=(ry, ... r,). The corresponding replicated following, we write ;- --~(A#)PS;---~[dPg...
wave vectors ar&=(ky, ... k,). Note that ourn corre- =:[;..., where the approximations become exact in the
sponds to (+1) in the theory by GZ. The replica limit limit studied.

The field-theoretic Hamiltonian for the RRN reads

HRRN = f ddX f&

FolV e D= ged®. O

—1 has to be taken before any other limit. The voluvhef

the real space is considered as being finite. Thuss a
discrete vector[;- - - is an abbreviation foE;- - -, which is

in the infinite volume limit equivalent to (2) ~"4fd"%. - -.
Microscopically, the order parameter isngfold correlation
function of density fluctuations and characterizes the amor-
phous state. The fluctuations about the average density them-
self represent a noncritical stochastic variable that is ex-

T N 1 -
§<P(X,9)2+ E[V‘P(X'@)]Z

cluded by the constraints
Qa(r@):f IT dr®ar)=0, a=1,...n. 2
B+«

Hence, Q(k) is only nonzero ifk belongs to the “higher

replica sector”(HRS), that means if at least two distinct
wave vectork(® k) of k are nonzero. The minimal model

for the vulcanization transitiof3] is defined by

vaf dﬂ(’?[%ﬂ(?)%%[%ﬂ(?)?— gQ(F)e' )

where 7— 7. measures the distance to the critical crosslink

density atr.. In a mean-field approximation,is positive in
the liquid phase and the VT occurssat 7.=0. By virtue of

the usual identification c&‘l(?) with the microscopic density
correlation,g is a positive coupling constant. The Hamil-
tonianH, is complete in the renormalization group sense,
i.e., it contains all relevant couplings and neglects all irrel-

evant ones.

The parameter— 7.~ (p.— p) specifies the deviation of the
occupation probability from the critical probabilityp.. In
mean-field theory the percolation transition happensr at
=7.=0. wis proportional to the resistance of the individual
random bonds.

In the percolating phase< 7., the mean order parameter
is given by

- - N2
<<p(x,)\)>HRRN = < exp( —ZROC(X)) >
c

N2
=<xm(x)exp< —ZRw(X)) >C
N2 '
:P°°<eXp(_ZR°°(X))>C' (6)

We are going to compare the perturbation theory based on
the minimal modelH,; to the perturbation theory of the Here,R..(x) is the(random resistance between an arbitrary

field-theoretic model for the RRN6—8]. This field-theoretic

model is based on an order-parameter fig(d, 5) that lives
on thed-dimensional real space with the coordinateShe

variabled denotes th®-fold replicated voltage at position

For regularization purpose$)= A6 takes discrete values

on aD-dimensional torus, the replica space, ieis chosen
to be aD-dimensional vector with integer components)

satisfying —M<v( <M and »(¥=2( mod(2M). The
order-parameter field is restricted by the condition

> o(x,6)=0. (4)
0

It follows that the replica space Fourier transfo}&fx,)f) of
the  order-parameter field, defined by <p(x,5)
=(2M) P p(x,N)explX-6), satisfies @(x,x=0)=0.
Without exception, we study the limid —0, M —o of the
replica space with (M)°—1 andA 6= 6,/\M—0. Here,

pointx and infinity. x..(x) is an indicator function that is one

if x is connected to infinity, i.e., ik belongs to a percolating
infinite cluster, and zero otherwisé. - - )¢ denotes the dis-
order average over all configurations of the diluted lattice.
(- )¢ stands for disorder averaging conditional to the con-
straint thatx belongs to an infinite cluster. Note th&t,
=(x=(X))c is the percolation probability, i.e., the order pa-
rameter for usualpurely geometrig percolation.

Hrrny reduces forw—0 to the Hamiltonian for then
=(2M)P-state Potts model witm—1 for D—0. This is
important because the Potts model is known to describe per-
colation in this limit[9]. The connection betweekggy and
the Potts Hamiltonian becomes evident by relabelingrthe
fields ¢ by an indexa=1, ... n: ¢(x,6)— ¢.(x). The con-
straint (4) then reads¥ ,¢,(X)=0. Taking the usual base
e, i=1,...n-1, with 3,e=0, 3,ee=s;,
3e{eP) =5, ,—1/n, and upon definingr(—1) indepen-
dent fieldss by ¢,(x)=3;e!*s(x), we get the Potts-
Hamiltonian in the form
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mented it is safe to take the continuum limit ik space.
Then we extract the divergences of these diagrams by ex-
panding in a Taylor series in the external wave vectors,

S 25007+ 5[Ts 001

Hpows= J dx

9 e D,(K)=D,(0) + Dy(0)K? and D4({K})=D3({0}), where

6 i%:k )\”ks,(x)s](x)sk(x)], ™ higher-order terms are discarded since they are superficially
convergent.

Where)\ijkzzaei(a)e](a)e(k“) is the usual “Potts tensor.” Note In the following, we use without exception dimensional

that the introduction of the finite bond resistange=0 re-  regularization. Thus, UV divergencies appear as poles in the
duces the Potts symmetry, i.e., the full permutation symmetrgleviatione =6—d from d.. These poles are eliminated from
of the n fields s belonging to the basic representation of thesuperficially divergent vertex functions by using the renor-
symmetry grougsS,, to translation and rotation symmetry in malization scheme
the D-dimensional replica space. . o e
0—-0=72"20, r—r=7.+2"Z 1,
IIl. RENORMALIZATION AND SCALING o
: — : 9°—g°=A.Z"*?Z,up’, 9
We proceed with a renormalization group analysis of the
VT by employing standard methods of renormalized-fieldwhereA, is a suitably chosen amplitudg, ! is a conve-
theory[10]. The principal diagrammatic elements are easilynient length scale, and is a dimensionless version of the
gathered fronfHyy . First, we have the three-leg vertgx  coupling constant. In the minimal renormalization procedure,
Because the corresponding interaction is culig=6 is i.e., dimensional regularization in conjunction with minimal
found to be the upper critipal dimension of the VT. Secpnd, itsubtraction,(;-C is zero and thes poles are eliminated by
foIIow; from the quadratl'c part o, that the principal factors of the form
Gaussian propagator is given by
* y(m)
. . " zZ =1+, Y"'(u). (10)
G k) =G(k)j 1— 21 Sik@awt(N—1) 85, (8 =1 g

i i i The Y(™ (u) are expansions in the coupling constarie-
where G(k)=(7+k?)~1. e® is a n-dimensional vector ginning with the poweu™. A central theorem of renormal-
whoseath component is one and all other components ardzation theory, cf. Ref[10], ensures that this procedure is
zero. Accordingly,k(“)=R~é(“) is the component ok con- suitable to eliminate the UV divergencies from any vertex

taining replicac. The part ofG°(k) embraced by the curly f“”C:iF’” c;rder t;]y order in pglrturbation tk:jeory. WQ)IPSU)RGE
brackets ensures the constrdirt HRS. Equation(8) can be resulting from the primitive divergences determine the

N entirely.
interpreted so thaG"®Y(k) decomposes into three generic : - . L
parts one of which is proportional tav{-1) and hence, can First, we analyzeD,({0}), | being any positive integer,

be discarded from the onset. We call the remaining propagau-nder the assumption that it contains, apart from amorphous

am i - g ru (@) A T propagators, liquid propagators of just a single color, @ay
tors G*(k) =G(k) and GH[K'”']=G(K) 6 ke(=) @amor-  opyigusly, there aren different realizations of the generic

phous and liquid propagators, respectively, because the H ?pe represented b@l({ﬁ}) corresponding to tha different

fields enterings*" (k) are capable of diagnosing amorphous co|ors the liquid propagators can have. The sum over all
solidification in contrast to 1RS fields constituting the (hese realizations appears in the decomposition of the per-
G [k(®)]. Moreover, we refer t@“q[lf(_a)] as having color  {aining bold diagram. However, all these realizations sym-
a. Due to the propagator decomposition each principal diapgize equivalent mathematical expressions since the internal
gram decomposes into a sum of amorphous diagrams cofjave vectors labeled by the colors are merely integration
sisting of amorphous and liquid propagators. Note that suchjariaples. Hence, the overall contribution of this generic type

an amorphous diagram may feature liquid propagators of jush the primitive divergence of its bold diagram is
one or of several colors.

Now we are in the position to address the renormalization n R _no1 R
of the VT Hamiltonian. For this task, it is sufficient to con- 2 Di({0})=nD,({0}) — D, ({0}). (11
sider those Feynman diagrams contributing to the superfi- a=1
cially divergent vertex functions fan— 1. Thus, we restrict

ourselves to one-particle irreducible diagrams with two orN€Xt, we assume tha?,({0}) contains liquid propagators of

three amputated external legs. In the following, we denot$€Veral colorsx,,-- -. Then the sum over the realizations
generic diagrams of this type bi,(K) and Dy({K}), re- of this generic type is given by

spectively.K stands for an external wave vector afi¢l} is n n R .

an abbreviation fofK,,K,,K;=—K;—K,}. Once the de- azl B(gr)zl - D({0p)=n(n—-1)---Dy({0}), (12
composition of the bold diagrams into amorphous diagrams

has been accomplishéike., the constraink e HRS is imple- i.e., it vanishes fon—1.
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Now we turn toD,(K) and assume that all featured liquid lating the critical exponents of the VT to work with an arbi-
propagators are of the same colar,for sake. Since this trary single color. Further, after the decomposition into amor-
color is distinguished, it is convenient to isolate it by settingPhous diagrams all the propagators can 1be identified with
R=R,+e@k(@ with K,=R—e@k(®, Then Dy(K) has _elementary propagators of the typ_e+(q )‘_ . We WI” see

. SN A o2 (a)2 , in the following that the perturbation series resulting from
Fhe expansmnDz.(K) =D,(0)+ DoKaT Dk T LS this effective decomposition coincides with the diagrammatic
important to realize that the expansion coefficiebts are

: ) . expansion of the field theory of RRN based on the Hamil-
independent of the choice of the color. Thus, the summatlo%nianHRRN in the limits D .w—s0.

over all realizations of the generic type represented by Tha cubic interaction term ey leads to the three-leg

Dy(K) gives vertexg. The principal propagator for the RRN is given by

" . =1 . bold |, Y\ — SNf1 o se -

> Dy(K) — Dy(0)+D K2+ -, (13 Gk =Gk, ML= 03 b (16

a=1 N N

where G(k,\)=(7+k?*+wx?)"1. Due to the factor{l

where we have exploited that,K%=(n—1)K? vanishes for  — §; 5}, which enforces the constraini+0, the principal
n— 1. The case of several colosisg, - - - can befinalyzed as propagator decomposes in a conducting paf"{(k,x)
above by isolating the dlst|nqu2|shed CO|0'BQ(;<) has thze =G(k,\) carrying replica currents and an insulating part
expansionD,(K) =D5(0) + DOKa,,B’,\...—i_le(a) +Dok G"(k)=G(k,\) &5 g not carrying replica currents. Each
+owithK, 5 =K—el@k(®—elPkB —... Thenitis principal diagram decomposes into a sum of conducting dia-
straightforward to check that grams consisting of conducting and insulating propagators.

N As soon as this decomposition is accomplished it is safe to
S S D R)x(n—1) (14 switch to continuous replica currents.
= a1 2 ' Now it is important to realize the one-to-one correspon-
dence between conducting and amorphous propagators as
i.e., the contribution of the two-leg diagrams featuring liquidwell as the one-to-one correspondence between insulating
propagators of several colors vanishesres 1. propagators and liquid propagators far—1. As far as
To analyze the single color diagrams further, we writeprimitive divergencies are concerned, these one-to-one cor-
G(k) in Schwinger parametrizatiorG(R):fgdte*(”kz)t. respondences lead identical diagrammatic expansions
cluding the combinatorial forefactors of the diagrarius the
VT and the RRN up to apparent distinctions in the propaga-

tors. Due to these distinctions a diagram(k,):) analogous

to D,(K) (with Pe°"%=pPa™ involves instead of Eq15) the
integrations

n

Suppose thaﬂ)z(_f() comprisesP propagators,P2™ being
amorphous and® being liquid with colore. Assume that
the diagram has loops, i.e., we have to integrate over

independent combination&y;}’ of internal wave vectors
{Q1.. .. .gp}. This integration is of the form

A o expl —w tik2— > t,g?
La_},exnl’— > tiQi,i_i;D tiq{®? f{qi,;i}' p{ ie%;‘ond o igP 14

iepam

= [F ({Wt}PCO”d)]D eXp[ - C({t}pcond)WXz}
X A({thexp{ —B({thk?}, (17)

=[F({t}pan) 1" exp{ — C({t}pam) K3}
X A({t}) exp{ —B({t})k(®?}, (15

- A with the same function#&,B,C,F as in Eq.(15). Equation
whereQ, ;=Q;—e{“q(®. {t}pam denotes the subset of the (17) leads forD—0 to
{t1, ... tp} belonging to the amorphous propagators. By
comparing Egs(13) and(15) in the limit n—1 we see that D—0
D,(0) results from the integrald{t}A({t})exp(—7=t;) and Dy(K,X) — Dyo(0)+DgWh2+D K2+ -, (18
D, from [d{t}A({t})B({t})exp(—7=it;). We conclude from
Eq. (15) that these parts can be extracted directly by replacwhere the divergent coefficieni3,(0) andD; are identical
ing all amorphous and liquid propagators by elementaryto those appearing in E4L3). Here in the RRN, however, a
propagators of the typer(-q?) 1. Moreover, we can sim- further divergent coefficienD arises. Thus, the renormal-

plify K2 to k? once the wave-vector integration has beenization scheme
carried out. An analogous, yet simpler, reasoning applies to

A o 7 2_ Q2 - e
D4({0}) containing a single color. The case thaD,(K) p—@=2"p, g*—g’=AZ Zup’,
and D5({0}) contain solely amorphous propagators, i.e., no 3 . . (19
colors at all, can be analyzed in a similar fashion. wow=Z"1zZw, ror=7r+Z21Zr

The quintessence of our considerations is that primitive
divergences stemming from diagrams with multiple colorsinvolves a further renormalization factd,. The other fac-
drop out in the limitn— 0. Hence, it is sufficient for calcu- tors,Z,Z.,Z,, are identical to those in the renormalization
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scheme(9) becal_Jse the sgperflmglly_dlvergent parts of the GF\‘RRN)({X’ 5},T,W)=§_ NBIVFF\IRRN)({X/&é/ \/W})-
two diagrammatic expansions coincide to any order vior (2
—0. This leads to the conclusion that the renormalization
factors appearing in the renormalization scheme for the VT Although the VT and percolation are showing the same
are identical to those for percolation. scaling behavior, the universal scaling functidag " and
Due to the independence of the unrenormalized theory ofim,, ., F{RRV) are in general different for both theories. This
the arbitrary length scale ~ ! introduced by renormalization s due to the fact that these functions are not entirely deter-
the correlation functions mined by the superficially divergent parts of the correspond-
. e o . o . ing vertex functions. The universal scaling functions cannot
GU P} m9)=(Qry) - (TN, (200 Dbe calculated from the RGE.

6)

of the VT order parameter satisfy the identity IV. ORDER PARAMETERS

9 o To illustrate the distinctions between VT and percolation
M@GN =0. (21) e now revisit the order parameters. We start with the order
parameter for the RRN, E@6). Above the percolation point
This identity translates with the help of the renormalizationwe deduce from Eq26) and the constraint) that

schemeg(9) via the Gell-Mann—Low—Wilson functions . .
M RN G, 7,W) = (@ (X, ) 3¢

B =
_M&M 0’ :POC(T){J'dep(RRN)(X)
3 alnr ’ .
K(U)=p au |y ><exp<—xwz¢/y)—l]. (27
Y(U)ZM&(;TLZ , (22 Here P, (r)~|7]# is the percolation probability and

0 wePp(RRN) (W e4/vs, ) is the probability distribution of the
where the bare quantities are kept fixed while taking th O_ndUCtanCé“:.llR% from an gr_bltra_ry point on the perco-
derivatives. into the RGE ating cluster to infinity. The digit 1 in the bracket denotes
’ the limit of 1h=(2M)~P for D—0. In the n-state Potts

J J model limitw— 0, we retrieve from Eq(27) the Potts order-

Jd N R
,LL% +B£ + KTE_ + E'y G&VT)({I'},T,U,,M)ZO. parametelM (Potts)(é,q_) _ Poo(T)(5§'6— 1)_
(23 The order parameter for the VT has an analogous form
[1-3]
Since the functionsB, «,y are entirely determined by the
renormalization factors, in particular by the¥) (u), the MOD(E,7)=( Q1))
RGE (23) is exactly equal to the RGE for the correlation
functions of percolation theory. The RGE determines the % R?
scaling structure of a field theory. Thus, the VT has the same = Poo(T)[ fo pr(VT)(X)eXP( —X— |- 1] ,

critical exponents as percolation,
v=[2=k(u)]™"  7=yu,), (24)

whereu, is the infrared stable fixed point determined by . . ~
B(u,)=0. The percolation exponents are known to thirdratlon nOf EQE rze%%a szabgut a Ce”tef. of mass _rat
ordere [11]. Introducing the correlation length~| 7| ~* and =1/n2a=1r - £°p(E70) is the; pr_obablllty distribution
the order-parameter exponenB=r(d—2+ 7)/2, the o_f t_he inverse squares of the Iocallzat!on Ieng'glrf.l)Here, the
asymptotic solution of the RGE23) can be written as digit 1 in t.he bracket denates the limit M for n .
—1. Equation(28) demonstrates exemplarily that the scaling
ne _ ¢ NBIvp(VT) g+ functions in vulcanization and percolation are in general dif-
Gk n=¢ PN @9 ferent. We annotate that if all the monomers are sharply lo-
The RRN differs from percolation as long as the bondcalized at their average positions, E@®8) reduces to
resistancaw is finite. The bond-resistance constitutes a fur-M VD (r,7) = P.(7)(dro—1) resembling the form of the
ther scaling variable and leads to an additional derivativéPotts order parameter.
Zwal aw, where £(u)= u(JInw)/(du)|o, in the correspond- The universal distributionD(x) and p(RRN(x) may
ing RGE[6]. Defining the resistance crossover exponent bybe distinct. A mean-field calculation, however, leads in both
¢=1[2—{(u,)], the asymptotic solution for the correlation casedfor the RRN, see Appendix)&o P..(7)=2||/g and
functions of RRN can be written as to the same integro-differential equatiph-3]

(28)

whereR?=3"_. (r®—7)? corresponds to the radius of gy-
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22 (@p(x))=p(x) - J “dx px—x")p(x),  (29)
3x PO =P() = | dx'p(x=x")p(x"),

with p(0)=p(e)=0. It is interesting that the Laplace trans- B

form'p(z) = Jodxp(x)exp(—zX) and the differential equation _ _O_ 5 f\_ +_(,x *\)_

that follows from Eq.(29),

4zp'(2)=(1-p(2))p(2), (30)

~__o -

with p(O) 1 and p(oo) 0, was already introduced many ~—

years ago by Stephel¥] and Stinchcombd12] in their

mean-field theory of RRN and determination of the conduc- FIG. 1. Reduction of the one-loop self-energy diagram.
tivity of a Bethe lattice, respectively.

lap of the network constituents, monomers and bonds, re-
V. CONCLUDING REMARKS spectively. Another obvious distinction is that the usual per-
colation involves a single ensembigz. the ensemble of the

percolation and vulcanization are identical to arbitrary ordethUUteg Ia'r[:]lgle con::gura:;o?nsmw?e:ﬁas{hvilr%ar:|§at|(r)n fea;Lerres
in perturbation theory. Consequently, both transitions aré 0 ensembles. one pertaining to the thermai degrees ot free-

governed by the same Gell-Mann—Low RGE. This RGE de,?hoom E\n?h;nf? (;[? tthg Crgftsyl]lgkc g'Stlr'r?Et:jont tl)t ttlé:]nsk;)ut
termines entirely the scaling structure of both transitions. ug uctuations rossl istribution play a

Hence, the scaling behavior of physically analogous quantl][nore |rTr1]portant role than thermallc flrlljctuatlons do, at Ie?jst as

ties in both transitions is identical. In particular, the VT is ar as the connectivity aspects of the VT are concerne

governed by the critical exponents of the percolation univer-

sality class. Quantities that are not completely determined by ACKNOWLEDGMENT

superficial divergences cannot be calculated from the Gell- ]

Mann—Low RGE. These quantities, e.g., scaling functions, We acknowledge support by the Sonderforschungsbereich

are in general different in both theories. 237 “Unordnung und groRe Fluktuationen” of the Deutsche
Moreover, we compared the order parameter for the RRNFOrschungsgemeinschaft.

and the VT. These two have an analogous form that com-

prises the percolation order parameter. However, the physical  AppENDIX A: REDUCTION OF SUPERFEICIALLY

content of the RRN and the VT order parameters is richer DIVERGENT DIAGRAMS

than that of their analog for purely geometrical percolation.

The order parameter for the RRN involves a scaling function In this appendix, we demonstrate the simplicity of deter-

that incorporates the distribution of the conductance to infinmining the one-loop contributions to the renormalization of

ity whereas the order parameter for the VT features the disthe VT model. Consider the self-energy diagram constructed

tribution of the inverse squares of localization length. Inof the HRS(bold) propagators, Fig. 1.

mean-field approximation, the corresponding distribution After decomposition in amorphousthin) and liquid

functions turn out to be identical. To determine these distri{dashed propagators, we get the second line in Fig. 1, where

bution functions beyond mean-field level is an interestingsummation over the colors, 8 is implied. We have shown

We showed that the primitive divergences occurring in

issue for future work. that diagrams with different colors do not contribute to the
We would like to emphasize that the analysis of scalingprimitive divergencies. Hence, we can set 8 in the third
properties presented in Sec. Il is hardly feasible withoutdiagram. However, then the third diagram can be discarded

employing the methods of renormalized local field theory.because the wave vectors of the two propagators of the same
These methods provide a clear-cut discrimination betweengolor cannot add to a HRS external wave vector at the ver-
scaling properties and other universal quantities like scalindgices. Now we can replace all the propagators by the simple
functions. Furthermore, these methods allow to restrict atterene (7+ qiz)*l that results in the simple diagram appearing
tion to superficially divergent diagrams which simplifies thein the third line of Fig. 1. Therefore, we get in dimensional
analysis tremendously. regularization, after including the combinatorial factor 1/2,
The intimate relationship between vulcanization and perthe following one-loop contributiod’ '°°" to the two-leg
colation seems plausible because macroscopic connectivityertex functionI', (note that the vertex functionEy are

is the central issue in both systems. There are, on the othelefined as the negative of the corresponding diagrams
hand, striking distinctions between vulcanization and perco-
lation. For example, common percolation models like the

RRN live on some underlying lattice whereas vulcanization TL-loop |y = 9 1
involves no lattice. Vulcanization as considered in this paper 2 Jg(r+ ) [+ (q+k)?]
features an excluded volume interaction which is extraneous
. L 2_—¢l2 kZ
to percolation. A similarity between the excluded volume __ 9T +—+0kY |, (A1)
interaction and the lattice is, however, that both prevent over- Ae |1—¢/l2 6 ’
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derivatives of the renormalization factors by
=udInZ Ildu|o, one derives easily the Gell-Mann—Low—
Wilson functions of the RGE as

;
Bu)=(—e+3y—y,)u=| —e+ zu+0(u?) |u,

= 2
(A7)
u 2
= -2 Hu)==5+0(u), (A8)
i - i 5u
FIG. 2. Reduction of the one-loop vertex diagram. K(U) = y— 77=F+O(U2)- (A9)

wheree=6—d andA,=(47)¥T(1+¢/2). Renormaliza-

tion, Eq.(9), with I'y—1'y=2"N2T and the identification The fixed pointu, as the asymptotic solution of the flow
k?=K? leads to the one-loop result equation Idu(l)/dl=pB(u) is found to be u,=2¢&/7
+0(e?). The critical exponents follow asy=y(u,)=

I P 2, \sl2 —&/21+0(e?) and v '=2—k(u,)=2—5&/21+0O(&?).
Fa(Kim) =1 Z, e(1—¢l2) (u )= These are the known percolation exponents.
u . .
+|Z- g(uzlr)s’z KZ+0(u?K?%. (A2)  APPENDIX B: THE ORDER PARAMETER OF THE RRN

In this appendix, we discuss some properties of the order

parameterr\/l(é,r,w) of the random resistor network above
the percolation point. We begin with a mean-field consider-

The ¢ poles are eliminated by choosing minimally

u u
Z=1+ e +0(u?), Z,=1+ - +0(u?). (A3) ation based on the saddle point equation stemming from Eq.
5):
Now we consider the first order correctid ~'°°" to the
vertex functionl;. The three-leg diagram constructed of the OHRR ) 2 .
bold propagators, Fig. 2, decomposes in the amorphous dia- 0= —=(7= V=WV e(x,0)

grams shown in the second line of Fig. 2. Once more the ¢(x,0)

summation over the colorg, B, andy is implied. We can g
seta=B=1y in the diagrams to extract the primitive diver- )
gencies. However, then the third and fourth diagram can be

discarded because the wave vectors of the propagators of the

same color cannot add to a HRS external wave vector at aihe last term in this equation follows from the condition that
the vertices. What is left is the third line of Fig. 2 where thethe variation must be done subject to the constredhtWe

- 1 -
¢(x,6)*— ﬁjé,cp(xﬁ’)z)- (B1)

propagators are replaced by g?) ~*. Thus, we find seek a spatially homogeneous solution, rotational invariant
about 6=0 in replica space. Thus, we make the ansatz
ry({oh =2 3f 1 2g3r e (Ad) @(x,0)=M(6)=m[f(6%) —1]. Here, f denotes a localized
® J a(7+q?)?3 A function with [; f(6'%)=/;1=n. From Eq.(B1) we get,
assumingm#0 for <0,
After renormalization we get
1-loop v2_ 24 5 e 2 0= (7= WV () — r— 0| §(§2)2—2f (%) + 2
T3 *P({0},7) = —g| Z/*~ — (u®l7)"*+0(u?) |. 6 2
(A5)
_ 2| #g22)| B2
It follows the remaining renormalization factor nJé' (69 B2)
Z,=1+ 4_u +0(u?). (A6) We separate this equation in its localized and its delocalized
&

parts:

All the renormalization factors, EqgA3,A6) are known
since a long time as the factors that renormalize the Potts o2z 9M o, 220y
model in the one state lim{tl1]. Denoting the logarithmic (T=WV)T(67) 2 (f(6%)°=21(6%)=0, (BY
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gm 1 Nr2N2 | —
T+7 Z—HJé,f(e ) =0. (B4)
Now we write the functiorf as a Laplace integral
f(52)=J dtp(t)exp —t62). (B5)
0

PHYSICAL REVIEW E64 026119

d below six, we calculate the mean macroscopic conductance

to infinity ... We consider spatial length scales large in
comparison to the correlation length In this regime the
RRN above the percolation point<0, can be considered as
a homogeneous material of conductivity( 7). Instead of
addressing.., directly, we determine the resistankg of the
RRN between in inner sphere of radias>¢ and an outer
one of radiud.>a. The solution to this simple problem may

Then we have for the term containing the replica space dese gleaned from many textbooks on electricity and magne-

rivative

V2f(6%) = rdtﬁt)(mzéz—zm)exq—téz)
0
o0 N d .
:f dt4exp{—t02)&(t2p(t)), (B6)
0

where the last equality holds in the linlt—0, i.e.,n—1.

Furthermore we can deduce in this limit from the normaliza-

tion of f thatfg’dta(t)=1, which leads in the limih—1 to
[55(6%)%=[f;f(6%)]?=1. Thus, we obtain from EqB4)

that the mean-field percolation order parameter is given for

7<0 by m=—27/g=2|7|/g. Using this result and equating
the coefficients of exp{té?), we get finally from Eq(B3)

4w d 2 _ jtd YTYAYY. ' B7
T g EPOI=p®— | d'p(t)p(t—t), (BT

which constitutes, after a rescaling, the integro-differential

equation(29). A very good approximative solution of this
equation is given by(x)=ax 2 exp(—1/4x) for x<1 and

tism. One finds that the voltagé behaves as a function of
the current as

|
V= d-2)s,

1
ad—2_ Ld-2

=R, (B8)

where Sy is the surface of the unit sphere éhdimensions.
3. can now be obtained by taking the limit—cc. The
leading terms in this limit are

(d—2)a%? ford>2,
3 =R '~0Syy [In(L/a)]"*  ford=2, (BY)
(2—d)L~ @9 ford<2.

Hence, the macroscopic conductance to infildity is finite

in the case ofi>2 and vanishes fal<2. We conclude that
the distribution of the conductance to infinipfx) must de-
velop aé peak atx=0 if d=<2 and the order parameter of
the RRN vanishes. If we make a scaling ansatz

S (7)=|7|?F(LI¢al§), (B10)

p(x) =24(bx—3/5)exp(-bx) for x>1 witha=0.56925 and  and compare with Eq(B9), we find the well-known expo-
b= 13424[1] These asymptOtIC forms y|e|d also Very gOOd nentt for the macroscopic Conductiviw( T) = | 7-|t

approximations in the overlapping regian=1.

The previous mean-field consideration is valid in an exact

sense only for dimensiond=6. To get information about
the behavior of the distributiop(x) on the spatial dimension

t=(d—-2)v+o (B11

in all cases.
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