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Recent work on the structure of social networks and the internet has focused attention on graphs with
distributions of vertex degree that are significantly different from the Poisson degree distributions that have
been widely studied in the past. In this paper we develop in detail the theory of random graphs with arbitrary
degree distributions. In addition to simple undirected, unipartite graphs, we examine the properties of directed
and bipartite graphs. Among other results, we derive exact expressions for the position of the phase transition
at which a giant component first forms, the mean component size, the size of the giant component if there is
one, the mean number of vertices a certain distance away from a randomly chosen vertex, and the average
vertex-vertex distance within a graph. We apply our theory to some real-world graphs, including the world-
wide web and collaboration graphs of scientists and Fortune 1000 company directors. We demonstrate that in
some cases random graphs with appropriate distributions of vertex degree predict with surprising accuracy the
behavior of the real world, while in others there is a measurable discrepancy between theory and reality,
perhaps indicating the presence of additional social structure in the network that is not captured by the random
graph.
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I. INTRODUCTION works of various types, patrticularly in epidemiology. The

A random grapH1] is a collection of points, or vertices, passage of a disease through a community depends strongly
with lines, or edges, connecting pairs of them at randonon the pattern of contacts between those infected with the
[Fig. 1(@]. The study of random graphs has a long history.disease and those susceptible to it. This pattern can be de-
Starting with the influential work of Erdoand Rayi in the  picted as a network, with individuals represented by vertices
1950s and 19602—4], random graph theory has developed and contacts capable of transmitting the disease by edges. A
into one of the mainstays of modern discrete mathematicdarge class of epidemiological models known as susceptible/
and has produced a prodigious number of results, many ahfectious/recovered mode]5—7] makes frequent use of the
them highly ingenious, describing statistical properties ofso-called fully mixed approximation, which is the assump-
graphs, such as distributions of component sizes, existend®mn that contacts are random and uncorrelated, i.e., they
and size of a giant component, and typical vertex-vertex disform a random graph.
tances. Random graphs however turn out to have severe short-

In almost all of these studies the assumption has beeocomings as models of such real-world phenomena. Although
made that the presence or absence of an edge between twads difficult to determine experimentally the structure of the
vertices is independent of the presence or absence of ametwork of contacts by which a disease is sprg&dstudies
other edge, so that each edge may be considered to lmave been performed of other social networks such as net-
present with independent probability If there areN verti-  works of friendships within a variety of communitigs—11],
ces in a graph, and each is connected to an average ofnetworks of telephone calld2,13, airline timetableg14],
edges, then it is trivial to show that=z/(N—1), which for  and the power grid15], as well as networks in physical or
large N is usually approximated by/N. The number of
edges connected to any particular vertex is called the degre
k of that vertex, and has a probability distributipp given @)

by

Zkefz

N
pk=( k)r)"(l—p)“‘"‘: a (1)

where the second equality becomes exact in the limit of large
N. This distribution we recognize as the Poisson distribution:
the ordinary random graph has a Poisson distribution of ver-
tex degrees, a point which turns out to be crucial, as we NnOW F|G. 1. (a) A schematic representation of a random graph, the
explain. circles representing vertices and the lines representing etyes.

Random graphs are not merely a mathematical toy; theyirected random graph, i.e., one in which each edge runs in only
have been employed extensively as models of real-world nebne direction.
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biological systems, including neural netwofi$], the struc-
ture and conformation space of polyméts$,17), metabolic
pathwayqd 18,19, and food web$20,21]. It is found[13,14]

that the distribution of vertex degrees in many of these net-
works is measurably different from a Poisson distribution—
often wildly different—and this strongly suggests, as has
been emphasized elsewhd@?], that there are features of
such networks that we would miss if we were to approximate
them by an ordinaryPoisson random graph.

Another very widely studied network is the internet,
whose structure has attracted an exceptional amount of scrt
tiny, academic and otherwise, following its meteoric rise to
public visibility starting in 1993. Pages on the world-wide
web may be thought of as the vertices of a graph and the
hyperlinks between them as edges. Empirical stufi?@s-

26] have shown that this graph has a distribution of vertex
degree which is heavily right skewed and possesses a fe
(power law tail with an exponent betweer 2 and —3.
(The underlying physical structure of the internet also has a
degree distribution of this tyg®7].) This distribution is very . _ N
; FIG. 2. A schematic representatigtop) of a bipartite graph,
fs?:ngigr?arf) do(;iwscg:,apahn\?votﬂlzrzfi?/ree avillir;v Sg:;jr aep))(gr?)(;(tir;g?it or?such as thg graph of movies and the actor; who have appeared in
of the structural properties of the web. However, the Webthem' In this small graph we have fou_r MOVIES, labeled .1 to 4, and
. prop . ) 'L 711 actors, labeled\ to K, with edges joining each movie to the
differs frqm a random graph in another way also: it is d". actors in its cast. In the lower part of the picture we show the
rected. Links on the web lead from one page to another i . .\ e projection of the graph for the 11 actors.
only one direction/see Fig. 1b)]. As discussed by Broder
et al.[26], this has a significant practical effect on the typicalhe calculated exactly in the limit of large graph size. We also
accessibility of one page from another, and this effect alsgjive examples of the application of our theory to the model-
will not be captured by a simpleundirected random graph  jng of a number of real-world networks, including the world-

model. ~_wide web and collaboration graphs.
A further class of networks that has attracted scrutiny is

the class of collaboration networks. Examples of such net-
works include the boards of directors of compari28—31],
co-ownership networks of compani¢32], and collabora-
tions of scientist$33—37 and movie actorgl5]. As well as In this section we develop a formalism for calculating a
having strongly non-Poisson degree distributidi4,36,  variety of quantities, both local and global, on large unipar-
these networks have a bipartite structure; there are two digite undirected graphs with arbitrary probability distribution
tinct kinds of vertices on the graph with links running only of the degrees of their vertices. In all respects other than their
between vertices of unlike kind88]—see Fig. 2. In the case degree distribution, these graphs are assumed to be entirely
of movie actors, for example, the two types of vertices areandom. This means that the degrees of all vertices are inde-
movies and actors, and the network can be represented agpandent identically distributed random integers drawn from a
graph with edges running between each movie and the actospecified distribution. For a given choice of these degrees,
that appear in it. Researchers have also considered the pralso called the “degree sequence,” a graph is chosen uni-
jection of this graph onto the unipartite space of actors onlyformly at random from the set of all graphs with that degree
also called a one-mode netwofR8]. In such a projection sequence. All properties calculated in this paper are averaged
two actors are considered connected if they have appeared aver the ensemble of graphs generated in this way. In the
a movie together. The construction of the one-mode networkmit of large graph size an equivalent procedure is to study
however involves discarding some of the information con-only one particular degree sequence, averaging uniformly
tained in the original bipartite network, and for this reason itover all graphs with that sequence, where the sequence is
is more desirable to model collaboration networks using thehosen to approximate as closely as possible the desired
full bipartite structure. probability distribution. The latter procedure can be thought
Given the high current level of interest in the structure ofof as a “microcanonical ensemble” for random graphs,
many of the graphs described h¢88], and given their sub- where the former is a “canonical ensemble.”
stantial differences from the ordinary random graphs that Some results are already known for random graphs with
have been studied in the past, it would clearly be useful if wearbitrary degree distributions: in two beautiful recent papers
could generalize the mathematics of random graphs to nori40,41], Molloy and Reed have derived formulas for the po-
Poisson degree distributions, and to directed and bipartitsition of the phase transition at which a giant component first
graphs. In this paper we do just that, demonstrating in detatppears, and the size of the giant compon€rtiese results
how the statistical properties of each of these graph types caare calculated within the microcanonical ensemble, but apply

II. RANDOM GRAPHS WITH ARBITRARY
DEGREE DISTRIBUTIONS
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equally to the canonical one in the large system size limit.
The formalism we present in this paper yields an alternative (kM=2 K"py=
derivation of these results and also provides a framework for .
obtaining other quantities of interest, some of which we cal-
culate. In Secs. Illl and IV we extend our formalism to the
case of directed graphsuch as the world-wide wekand
bipartite graphgsuch as collaboration graphs

(6)

d n
(X&) Go(x)

Powers If the distribution of a propertk of an object is
generated by a given generating function, then the distribu-
tion of the total otk summed ovemindependent realizations
of the object is generated by timeth power of that generat-
ing function. For example, if we choosevertices at random

A. Generating functions from a large graph, then the distribution of the sum of the

Our approach is based on generating functipt®, the degrees of those vertices is generated By(x)]™. To see

most fundamental of which, for our purposes, is the generat/ny this is so, cong,ider the simple case of just two vertices.
ing function Gy(x) for the probability distribution of vertex 1 n€ squarg Go(x)]” of the generating function for a single

degreesk. Suppose that we have a unipartite undirected’€rtex can be expanded as
graph—an acquaintance network, for example-Noverti-

x=1

2
ces, withN large. We define [Go(X)12=] D piex¥
k
Go(x)= xK, 2 i
00= 2, P ) -5 pp
wherep, is the probability that a randomly chosen vertex on =pPoPoX’+ (PoP1+ P1Po) X*
the graph has degrde The distributionp, is assumed cor- )
rectly normalized, so that +(PoP2+ P1P1+ P2Po)X
+(PoPs+ P1P2+ P2P1+ PaP)X+ - -+ . (7)
Go(1)=1. )

It is clear that the coefficient of the power af in this

The same will be true of all generating functions consideredXpression is precisely the sum of all produgp such that
here, with a few important exceptions, which we will note atj +k=n, and hence correctly gives the probability that the
the appropriate point. Because the probability distribution issum of the degrees of the two vertices will et is straight-
normalized and positive definitéGy(x) is also absolutely ~forward to convince oneself that this property extends also to
convergent for allx|<1, and hence has no singularities in all higher powers of the generating function.
this region. All the calculations of this paper will be confined  All of these properties will be used in the derivations
to the region|x|<1. given in this paper.

The functionGy(x), and indeed any probability generat- ~ Another quantity that will be important to us is the distri-
ing function, has a number of properties that will prove usebution of the degree of the vertices that we arrive at by

ful in subsequent developments. following a randomly chosen edge. Such an edge arrives at a
Derivatives The probabilityp, is given by thekth deriva- ~ vertex with probability proportional to the degree of that
tive of G, according to vertex, and the vertex therefore has a probability distribution
of degree proportional tkp, . The correctly normalized dis-
1 dkG, tribution is generated by
P @
x=0 k
E kpkx ’
K Go(x)

Thus the one functio(x) encapsulates all the information =X Gl (8)
contained in the discrete probability distributipp. We say E Kpk 0
that the functionGy(x) “generates” the probability distribu- k
tion py.

If we start at a randomly chosen vertex and follow each of
the edges at that vertex to reach theearest neighbors, then
the vertices arrived at each have the distribution of remaining
outgoing edges generated by this function, less one power of
X, to allow for the edge that we arrived along. Thus the

Moments The average over the probability distribution
generated by a generating function—for instance, the ave
age degree of a vertex in the case dby(x)—is given by

z=(k>=; Kpe=Go(1). 5) distribution of outgoing edges is generated by the function
G (x) Go(x) Lo o
Thus if we can calculate a generating function we can also 1(x)= Gy(1) 2z o), ©

calculate the mean of the probability distribution which it
generates. Higher moments of the distribution can be calcuwherez is the average vertex degree, as before. The prob-
lated from higher derivatives also. In general, we have ability that any of these outgoing edges connects to the origi-
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nal vertex that we started at, or to any of its other immediatevhere « is a constant. The generating function for this dis-
neighbors, goes a~! and hence can be neglected in thetribution is
limit of large N. Thus, making use of the “powers” property

of the generating function described above, the generating _1/ ” ek —e Uk
function for the probability distribution of the number of Go(x)=(1-e ")go e "X =Y (14)
secondneighbors of the original vertex can be written as
and
2 P G1(X)]*=Go(G1(x)). (10 12
K 1—e 1/k
Gi(x)= v Ur (15

Similarly, the distribution of third-nearest neighbors is gen-
erated byG,(G1(G1(x))), and so on. The average number

2, of second neighbors is An example of a graph with an exponential degree distribu-

tion is given in Sec. V A.

(c) Power-law distributed graphsThe recent interest in
=G4(1)G}(1)=Gy(1), (11) the properties of the world-wide web and of social networks
=1 leads us to investigate the properties of graphs with a power-

law distribution of vertex degrees. Such graphs have been
where we have made use of the fact tht(1)=1. (One  discussed previously by Barataand co-workerg22,23
might be tempted to conjecture that since the average nunand by Aielloet al.[13]. In this paper, we will look at graphs
ber of first neighbors is54(1), Eq. (5), and the average With degree distribution given by
number of second neighbors Gg(1), Eqg. (11), then the
average number ofmth neighbors should be given by the
mth derivative ofG, evaluated ak=1. As we show in Sec.
Il F, however, this conjecture is wrong.

d
&GO(Gl(X))

Zr=

p=Ck e ¥« for k=1, (16)

whereC, 7, andk are constants. The reason for including
the exponential cutoff is twofold: first many real-world
graphs appear to show this cut¢ff4,36]; second it makes
B. Examples the distribution normalizable for alt, and not justr=2.

To make things more concrete, we immediately introduce The constanC is fixed by the requirement of normaliza-
some examples of specific graphs to illustrate how these cation, which givesC=[Li (e **)]~* and hence
culations are carried out.

(a) Poisson-distributed graph3he simplest example of a k™ Te K«
graph of this type is one for which the distribution of degree pk:m for k=1, 17
is binomial, or Poisson in the lardé limit. This distribution T

yields the standard random graph studied by many mathemgshere Li,(x) is thenth polylogarithm ofx. [For those unfa-

ticians and discussed in Sec. 1. In this graph the probabilitynijiar with this function, its salient features for our purposes
p=2/N of the existence of an edge between any two Verticege that it is zero at=0 and, real, finite, and monotonically

is the same for all vertices, ar@,(x) is given by increasing in the range<9x<1, for all n. It also decreases

NN with increasingn, and has a pole at=1 for n<1 only,
Gn(X)= k(1—p)Nkxk=(1—p+px)N=eg2x~ 1), although it has a valid analytic continuation belove 1
o) ,(20 ( k)p (1=p) (1=p+px) which takes the valug(n) atx=1.]
(12 Substituting Eq(17) into Eq.(2), we find that the gener-

ating function for graphs with this degree distribution is
where the last equality applies in the linhNit— . It is then
trivial to show that the average degree of a vertex is indeed Li (xe™ k)
G¢(1)=z and that the probability distribution of degree is Go(X)= ———7—-
given byp,=z*e k!, which is the ordinary Poisson distri- Li;(e=™)
bution. Notice also that for this special case we havq
G1(x)=Gy(x), so that the distribution of outgoing edges at a
vertex is the same, regardless of whether we arrived there

(18

n the limit k—o~—the case considered in Refd3] and
23]—this simplifies to

choosing a vertex at random, or by following a randomly Li (x)
chosen edge. This property, which is peculiar to the Poisson- Go(X)= ——, (19
distributed random graph, is the reason why the theory of ¢(n)
random graphs of this type is especially simple. . . .
(b) Exponentially distributed graphsPerhaps the next wh_lg;]egf(r) ItS' thg R'e”.‘anff funbctlon.
simplest type of graph is one with an exponential distribution e functionG,(x) is given by
f vertex d
of vertex degrees Li._y(xe~ %)
Gi(X)= ———— - (20)

pe=(1—e Yy Wx, (13) X Li,_y(e 1)
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Thus, for example, the average number of neighbors of &
randomly chosen vertex is

Li 1(8—1/K) I%‘ = ﬁ) + + + +
=G/ - 7’ 21
z=Gy(1) e T (21)

FIG. 3. Schematic representation of the sum rule for the con-
nected component of vertices reached by following a randomly cho-
. 1k . 1k sen edge. The probability of each such comporileft-hand side
Li,—p(e” ™) —Li,—a(e ™) (22) can be represented as the sum of the probabilitight-hand sidg
Li (e~ 1/'<) ’ of having only a single vertex, having a single vertex connected to
one other component, or two other components, and so forth. The
(d) Graphs with arbitrary specified degree distributidn ~ entire sum can be expressed in closed form as(#g).
some cases we wish to model specific real-world graphs that
have known degree distributions—known because we cait other than the edge we came in along, then, making use of
measure them directly. A number of the graphs described ithe “powers” property of Sec. Il AH;(x) must satisfy a
the Introduction fall into this category. For these graphs, weself-consistency condition of the form
know the exact numberns, of vertices having degrele and 5
hence we can write down the exact generating function for H1(X)=Xdo+Xa1H1(X) + X[ Hy(X) ]+ -+ . (29
that probability distribution in the form of a finite polynomial
However,q, is nothing other than the coefficient ®f in the
2 ok generating functiorG,(x), Eg. (9), and hence Eq25) can
=k also be written

and the average number of second neighbors is

2,=Go(1)=

Go(x)= ; (23

2 Ny H1(X)=xGy(H1(X)). (26)

If we start at a randomly chosen vertex, then we have one

wher_e th_e sum in the deno_mlnator ensures that the generatlr%%ch component at the end of each edge leaving that vertex,
function is properly normalized. As an example, suppose tha

in a community of 1000 people, each person knows betweeﬁnd hence t_he generating function for the size of the whole
. component is
zero and five of the others, the exact numbers of peopl€
in each category being, from zero to five:
(86,150,363,238,109,54This distribution will then be gen- Ho(X) =XGo(H1(x)). (27)
erated by the polynomial
In principle, therefore, given the functionSy(x) and
86+ 150k + 363x%+ 2383+ 10K + 54x° G;(x), we can solve Eq(26) for H;(x) and substitute into
1000 . Eq. (27) to getHy(x). Then we can find the probability that
(24) a randomly chosen vertex belongs to a component of size
by taking thesth derivative ofH. In practice, unfortunately,
this is usually impossible; Equatidg6) is a complicated and
frequently transcendental equation, which rarely has a
We are now in a position to calculate some properties oknown solution. On the other hand, we note that the coeffi-
interest for our graphs. First let us consider the distributiorcient of x® in the Taylor expansion dofi;(x) (and therefore
of the sizes of connected components in the graph. Ledlso thesth derivative are given exactly by onlg+ 1 itera-
H.(x) be the generating function for the distribution of the tions of Eq.(27), starting withH,=1, so that the distribution
sizes of components that are reached by choosing a randogenerated byd,(x) can be calculated exactly to finite order
edge and following it to one of its ends. We explicitly ex- in finite time. With current symbolic manipulation programs,
clude fromH(x) the giant component, if there is one; the it is quite possible to evaluate the first one hundred or so
giant component is dealt with separately below. Thus, exceperivatives in this way. Failing this, an approximate solution
when we are precisely at the phase transition where the giagan be found by numerical iteration and the distribution of
component appears, typical component sizes are finite, argluster sizes calculated from E@}) by numerical differen-
the chances of a component containing a closed loop dfiation. Since direct evaluation of numerical derivatives is
edges goes a1, which is negligible in the limit of large prone to machine-precision problems, we recommend evalu-
N. This means that the distribution of components generatedting the derivatives by numerical integration of the Cauchy
by H;(x) can be represented graphically as in Fig. 3; eacliormula, giving the probability distributiorPs of cluster
component is treelike in structure, consisting of the singlesizes thus:
site we reach by following our initial edge, plus any number

Go(x)=

C. Component sizes

(including zerg of other treelike clusters, with the same size 1 d°H 1 Ho(2)
distribution, joined to it by single edges. If we denotedyy Ps=g d_zso =5 é %dz. (29
the probability that the initial site hasedges coming out of S =0 <™ J z
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The best numerical precision is obtained by using the largest S=1-Gy(u), (34)
possible contour, subject to the condition that it encloses no
poles of the generating function. The largest contour foiwhereu=H,(1) is the smallest non-negative real solution of
which this condition is satisfied in general is the unit circle
|z|=1 (see Sec. Il A and we recommend using this contour u=G,(u). (35)
for Eq. (28). It is possible to find the first thousand deriva-
tives of a function without difficulty using this methdd3].  This result has been derived in a different but equivalent
form by Molloy and Reed41], using different methods.
D. The mean component size, the phase transition, and the The correct general expression for the average component
giant component size, excluding theformally infinite) giant component, if

. . , there is one, is
Although it is not usually possible to find a closed-form

expression for the complete distribution of cluster sizes on a

graph, we can find closed-form expressions for dlverage (s)= Ho(1) _ 1 GO(Hl(l))+Go(Hl(l))Gl(Hl(l))
properties of clusters from Eq&26) and (27). For example, Ho(1) Ho(1) 1-Gj(H(1))
the average size of the component to which a randomly cho-
sen vertex belongs, for the case where there is no giant com- 14 v (36
ponent in the graph, is given in the normal fashion by [1-S|[1-Gi(W] '
Sy=H,(1)=1+G{(1)H(1). 29
($)=Ho(1) ol DH:(D) 29 which is equivalent to Eq(31) when there is no giant com-
From Eq.(26) we have ponent §=0, u=1).
For example, in the ordinary random graph with Poisson
Hi(1)=1+Gj(1)H1(1), (300  degree distribution, we hav&,(x)=G;(x)=e**"1 [Eq.
(12)], and hence we find simply that1S=u is a solution of
and hence u=Gp(u), or equivalently that
Go(1 7 S=1-e7S 3
(s)=1+ o), & , (31) 37
1-G1(1) 2172

The average component size is given by
wherez, =z is the average number of neighbors of a vertex

and z, is the average number of second neighbors. We see (s)= _ (39)
that this expression diverges when 1-z+zS
Gi(1)=1. (32 These are both well-known resulis].

For graphs with purely power-law distributiopgq. (17)
This point marks the phase transition at which a giant comwith x—o], Sis given by Eq.(34) with u the smallest non-
ponent first appears. Substituting E¢8) and (9) into Eq.  negative real solution of
(32), we can also write the condition for the phase transition

as Li T*l(u)
u= m (39)
> k(k=2)p,=0. (33 o _
K For all 7=<2 this givesu=0, and henc&=1, implying that

. . _ . a randomly chosen vertex belongs to the giant component
Indeed, since this sum increases monc_)tonlcally as edgeg A&t probability tending to 1 as—c. For graphs withr
added to the graph, it follows that the giant component exists. 5 e probability of belonging to the giant component is
'f and only.|f this sum is positive. This result has been de'strictly less than 1, even for infinite. In other words, the
rived by different means by Molloy and Redd0]. An iant component essentially fills the entire graph fet2,

equivalent and intuitively reasonable statement, which ca ut not for 7>2. These results have been derived by differ-
also be derived from Eq31), is that the giant component i oonc by Aiellet al. [13].

exists if and only ifz,>z;.

Our generating function formalism still works when there
is a giant component in the graph, but, by definitibly(x)
then generates the probability distribution of the sizes of A variety of results are known about the asymptotic prop-
componentexcludingthe giant component. This means that erties of the coefficients of generating functions, some of
Ho(1) is no longer unity, as it is for the other generatingwhich can usefully be applied to the distribution of cluster
functions considered so far, but instead takes the valusizesP generated byHy(x). Close to the phase transition,
1-S, whereSis the fraction of the graph occupied by the we expect the tail of the distributioRg to behave as
giant component. We can use this to calculate the size of the
giant component from Eq$26) and (27) thus: Ps~s‘“e‘3/s*, (40)

E. Asymptotic form of the cluster size distribution
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where the constanta and s* can be calculated from the
properties ofHq(x) as follows.

The cutoff parametes* is simply related to the radius of
convergenceéx* | of the generating functiof42,44], accord-
ing to

1

*:—
S T

(41)

The radius of convergend&* | is equal to the magnitude of
the positionx* of the singularity inHy(x) nearest to the

origin. From Eq.(27) we see that such a singularity may

arise either through a singularity {By(x) or through one in
H.(x). However, since the first singularity iGy(x) is
known to be outside the unit circl&ec. 1l A), and the first
singularity in H4(x) tends tox=1 as we go to the phase
transition(see belovy, it follows that, sufficiently close to the
phase transition, the singularity khy(Xx) closest to the origin
is also a singularity irH(x). With this resultx* is easily
calculated.

Although we do not in general have a closed-form expres-

sion for H{(x), it is easy to derive one for its functional
inverse. Puttingv=H(x) andx:Hl’l(W) in Eq. (26) and
rearranging, we find

x=Hi'(w)= (42

Gy(w)’

The singularity of interest corresponds to the point at
which the derivative oHIl(w) is zero, which is a solution
of

Gi(w*)—w*G(w*)=0. (43
Thenx* (and hence*) is given by Eq(42). Note that there
is no guarantee that E€43) has a finite solution, and that if

it does not, therPs will not in general follow the form of Eq.
(40).

PHYSICAL REVIEW E 64 026118

a—1 0

Ho(X)= SE:‘,O PS5+ cga s % xS+ e(a), (46)

where C is a constant and the lagérron term e(a) is as-
sumed much smaller than the second term. The first term in
this expression is a finite polynomial and therefore has no
singularities on the finite plane; the singularity resides in the
second term. Using this equation, the expongntan be
written

HH(X)
B=lim| 1+ (x—1) —

Xx—1 HO(X)
2 SZ—aXS—l

) ) 1 x—1s=a

=lim lim ;+ o
a—o X—1 2 Sliaxsil

s=a

(1 1-xT'(3—a,—alnx)
>;+xlnx I'2—a,—alnx)|’

= lim lim

a—ow Xx—1

(47)

where we have replaced the sums with integralsadse-
comes large, anli(v,u) is the incompletd’-function. Tak-
ing the limits in the order specified and rearrangingdomwe
then get

a=B+1=3, (48
regardless of degree distribution, except in the special case
whereG/(1) vanishedsee Eq.(44)]. The resulta=3 was

known previously for the ordinary Poisson random gribh
but not for other degree distributions.

F. Numbers of neighbors and average path length

We turn now to the calculation of the number of neigh-

When we are precisely at the phase transition of our sysPors who arem steps away from a randomly chosen vertex.
tem, we haveG;(1)=G}(1)=1, and hence the solution of AS Shown in Sec. Il A, the probability distributions for first-

Eqg. (43) givesw* =x* =1—a result that we used above—
ands* —oo. We can use the fact that =1 at the transition
to calculate the value of the exponenias follows. Expand-
ing H; Y(w) aboutw* =1 by puttingw=1+ € in Eq. (42,
we find that

H (1+6)=1—§G'1'(1)62+O(E3), (44)

where we have made use 6f(1)=G;(1)=1 at the phase
transition. So long a&7(1)+# 0, which in general it is not,
this implies thatH,(x) and hence alsbly(x) are of the form

Ho(x)~(1—x)? as x—1, (45)
with B=3. This exponent is related to the exponentas
follows. Equation(40) implies thatHy(x) can be written in
the form

and second-nearest neighbors are generated by the functions
Go(x) andGy(G1(x)). By extension, the distribution ahth
neighbors is generated b@qy(G(...G(X)...)), with

m—1 iterations of the functiorG, acting on itself. If we
defineG(M(x) to be this generating function fenth neigh-

bors, then we have

Go(X) for m=1,

G(m)(x):[dm—”@l(x))

for m=2. (49)

Then the average numbey, of mth-nearest neighbors is

da(m
dx

=Gy(1G™ V" (1)=G1(1)Zy- 1.
x=1

Zn=

(50

Along with the initial conditionz, =z=G(1), this then tells
us that
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m-1 of z; andz,, but we can still employ Eq54) to calculate”.

2 (52) In the case of the ordinargPoisson random graph, for in-

stance, we find from Eq12) thatz,=z, z,=z% and so/

From this result we can make an estimate of the typicalk=InN/Inz which is the standard result for graphs of this
length/” of the shortest path between two randomly chosenype[1]. For the graph with degree distributed according to
vertices on the graph. This typical path length is reachedhe truncated power law, Eq17), z; and z, are given by
approximately when the total number of neighbors of a ver£gs.(21) and(22), and the average vertex-vertex distance is
tex out to that distance is equal to the number of vertices on

Z3

Zy=[G1(1)]" *Gy(1) = %

the graph, i.e., when InN+In[Li (e ¥)/Li,_(e Y«
AL L Gl LS G S
d ln[LIT—Z(e 1K)/L|7'—1(e lK)_l]
1+ >, zy,=N. (52
m=1 In the limit k— o, this becomes
Using Eq.(51) this gives us INN+In[¢(7)/{(7—1)]
/= +1. (56)
IN[(N=1)(z,-2)) +Z}]-InZ 53 In[&(r=2)/¢(r=1)=1]
In(z3/2) Note that this expression does not have a finite positive real

value for anyr< 3, indicating that one must specify a finite
cutoff « for the degree distribution to get a well-defined
In(N/zy) -~ average vertex-vertex distance on such graphs.

In the common case wheMN>z; andz,>z,, this reduces to

In(z,/21) G. Simulation results
This result is only approximate for two reasons. First, the as g check on the results of this section, we have per-
conditions used to derive it are only an approximation; theqormed extensive computer simulations of random graphs
exact answer depends on the detailed structure of the grapfith various distributions of vertex degree. Such graphs are
Second, it assumes that all vertices are reachable from @jatively straightforward to generate. First, we generate a set
randomly chosen starting vertex. In general however this willyf N random numbergk;} to represent the degrees of the
not be true. For graphs with no giant component it is cerertices in the graph. These may be thought of as the “stubs”
tainly not true and Eq(54) is meaningless. Even when there sf eqges, emerging from their respective vertices. Then we
is a giant component, however, it is usually not the case thathoose pairs of these stubs at random and place edges on the
it fills the entire graph. A better approximation ¥6 may  graph joining them up. It is simple to see that this will gen-
therefore be given by replacirg in Eq. (54) by NS, where  grate all graphs with the given set of vertex degrees with
Sis the fraction of the graph occupied by the giant compo-equal probability. The only small catch is that the siink;

nent, as in Sec. Il D. _ _ of the degrees must be even, since each edge added to the
Such shortcomings notwithstanding, there are a number Qfraph must have two ends. This is not difficult to contrive
remarkable features of E¢G4). however. If the setk;} is such that the sum is odd, we

(1) It shows that the average vertex-vertex distance for alkjmply throw it away and generate a new set.

random graphs, regardless of degree distribution, should As a practical matter, integers representing vertex degrees
scale logarithmically with sizeN, according to/=A with any desired probability distribution can be generated
+BInN, where A and B are constants. This result is of ysing the transformation method if applicable, or failing that,
course well known for a number of special cases. a rejection or hybrid method45]. For example, degrees
(2) It shows that the average distance, which is a g|0babbeying the power-law-plus-cutoff form of E¢L7) can be
property, can be calculated from a knowledge only of thegenerated using a two-step hybrid transformation/rejection
average numbers of first- and second-nearest neighborgethod as follows. First, we generate random inteders
which are local properties. It would be possible therefore to- 1 wjith distribution proportional t@ ¥/~ using the trans-
measure these numbers empirically by purely local measurgyrmation[46]
ments on a graph such as an acquaintance network and from

them to determine the expected average distance between k=[—kIn(1-r)], (57
vertices. For some networks at least, this gives a surprisingly
good estimate of the true average distaf®4g. wherer is a random real number uniformly distributed in the

(3) It shows that only the average numbers of first- andrange Gsr<1. Second, we accept this number with prob-
second-nearest neighbors are important to the calculation aility k™7, where by “accept” we mean that if the number is
average distances, and thus that two random graphs withot accepted we discard it and generate another one accord-
completely different distributions of vertex degrees, but theing to Eq.(57), repeating the process until one is accepted.
same values of; andz,, will have the same average dis- In Fig. 4 we show results for the size of the giant compo-
tances. nent in simulations of undirected unipartite graphs with ver-

For the case of the purely theoretical example graphs wéex degrees distributed according to E&j7) for a variety of
discussed earlier, we cannot make an empirical measuremedifferent values ofr and x. On the same plot we also show

026118-8



RANDOM GRAPHS WITH ARBITRARY DEGREE . .. PHYSICAL REVIEW E 64 026118

1.0

us definep;, to be the probability that a randomly chosen
vertex has in-degreg and out-degredk. It is important to
realize that in general this joint distribution paindk is not
equal to the produqp;pi of the separate distributions of in-
and out-degree. In the world-wide web, for example, it seems
likely (although this question has not been investigated to
our knowledge that sites with a large number of outgoing
links also have a large number of incoming ones, i.e., jthat
andk are correlated, so tha, # p;px. We appeal to those
working on studies of the structure of the web to measure the
joint distribution of in-degrees and out-degrees of sites; em-
pirical data on this distribution would make theoretical work
much easier.

We now define a generating function for the joint prob-
cutoff parameter k ability distribution of in-degrees and out-degrees, which is

necessarily a function of two independent variabieandy,
FIG. 4. The size of the giant component in random graphs withthus. y P nay

vertex degrees distributed according to ELj), as a function of the
cutoff parameteic for five different values of the exponemnt The )
points are results from numerical simulations on graphsNof a(x,y)= 2 pjkxlyk. (59
=1 000 000 vertices, and the solid lines are the theoretical value for Ik

infinite graphs, Eqs.34) and(35). The error bars on the simulation
results are smaller than the data points.

038 |
0.6 |

04 |

size of giant component

02 |

0.0 &

Since every edge on a directed graph must leave some vertex
and enter another, the net average number of edges entering
the expected value of the same quantity derived by numerical vertex is zero, and hengg, must satisfy the constraint
solution of Egs.(34) and (35). As the figure shows, the
agreement between simulation and theory is excellent. _
> (j=k)pu=0. (59)
Ill. DIRECTED GRAPHS Ik

We turn now to directed graphs with arbitrary degree dis-This implies thatG(x,y) must satisfy
tributions. An example of a directed graph is the world-wide
web, since every hyperlink between two pages on the web 99 _ 99
goes in only one direction. The web has a degree distribution X oy
that follows a power law, as discussed in Sec. .

undirected ones, and which becomes important when we agpe graph.

ply our generating function formalism. In a directed graph it Using the functiorg(x,y), we can, as before, define gen-

sl Lo K ot o 3 0 T rating funcinsG and G, for he number of outgong
edges leaving a randomly chosen vertex, and the number

by following (directed edges from vertexB, that does not ; .
necessarily mean that vertBxcan be reached from vertéx leaving the vertex rea(_:hed by foII_owmg a_randomly chosen
There are two correct generalizations of the idea of the com@dge' We can also define generating functibgandF, for

ponent to a directed graph: the set of vertices that are reacil® NUmber arriving at such a vertex. These functions are

able from a given vertex, and the set from which a givendiven by
vertex can be reached. We will refer to these as “out-

=z, (60)
x,y=1

x,y=1

components” and “in-components,” respectively. An in- _ :Ea_g

component can also be thought of as those vertices reachable Fo)=6(x.1),  Fa(x) zay|, _,’ (61)

by following edges backwardéut not forwards from a Y

specified vertex. It is possible to study directed graphs by 1 4G

allowing both forward and backward traversal of ed¢sese Go(y)=3G(ly), Guy)==— (62

Ref. [26], for example. In this case, however, the graph Z X[,y

effectively becomes undirected and should be treated with

the formalism of Sec. II. Once we have these functions, many results follow as before.

With these considerations in mind, we now develop theThe average numbers of first and second neighbors reachable
generating function formalism appropriate to random di-from a randomly chosen vertex are given by ) and
rected graphs with arbitrary degree distributions. )
G
X ay

. (63
x,y=1

A. Generating functions 2,=Gy(1)G1(1)

In a directed graph, each vertex has separate in-degree
and out-degree for links running into and out of that vertex.These are also the numbers of first and second neighbors
Let from which a random vertex can be reached, since Ef}.
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reach from the strongly connected component é)dhose
vertices that can be reached from the strongly connected
@ component but from which it is not possible to reach the
D links out strongly connected component. The solution of £E§4) and

strongly

ted
connecte (35 with Gy(x) and G;(x) defined according to Eq62)
gives the number of vertices, as a fractionNyfin the giant
strongly connected component plus those vertices from

which the giant strongly connected component can be

FIG. 5. The “bow-tie” diagram proposed by Brodet al. as a reached. Usi_n@o(x) "’_md':l(x) [Eq. (61] in place 0fGo(x)
representation of the giant component of the world-wide b~ @nd G1(x) gives a different solution, which represents the
though it can be used to visualize any directed graph fraction of the graph in the giant strongly connected compo-

nent plus those vertices that can be reached from it.

component

and (63) are manifestly symmetric ix andy. We can also
make an estimate of the average path length on the graph
from B. Simulation results

In(N/z,) We have performed simulations of directed graphs as a
(64) check on the results above. Generation of random directed
graphs with known joint degree distributiqm is somewhat
as before. However, this equation should be used with cauhore complicated than the generation of undirected graphs
tion. As discussed in Sec. Il F, the derivation of this formuladiscussed in Sec. Il G. The method we use is as follows.
assumes that we are in a regime in which the bulk of thdirst, it is important to ensure that the averages of the distri-
graph is reachable from most vertices. On a directed graphutions of in-degree and out-degree of the graph are the
however, this may be far from true, as appears to be the casame, or equivalently tha; satisfies Eq(59). If this is not
with the world-wide wel]26]. the case, at least to good approximation, then generation of
The probability distribution of the numbers of vertices the graph will be impossible. Next, we generate a seiof
reachable from a randomly chosen vertex in a directedn/out-degree pairsj(,k;), one for each vertek according
graph—i.e., of the sizes of the out-components—is generate the joint distributionp;, , and calculate the sun¥j; and
by the functionHo(y) =yGo(H1(y)), whereH,(y) is a so- 3.k, . These sums are required to be equal if there are to be
lution of Hy(y) =y Gy (H.(y)), just as before(A similar and o dangling edges in the graph, but in most cases we find

obvious pair of equations governs the sizes of the inyyat they are not. To rectify this we use a simple procedure.
components.The results for the asymptotic behavior of the We choose a vertexat random, discard the numbeis ;)

component  size dlstrl_butlon from Sec. IIE generahzefor that vertex and generate new ones from the distribution
straightforwardly to directed graphs. The average out-~

. . i )ji - We repeat this procedure until the two sums are found
component size for the case where there is no giant comp

nent is given by Eq(31), and thus the point at which a giant ° bg gqual. Finally, we choose ran(_:iom infout pairs of edges
' L _ and join them together to make a directed graph. The result-
component first appears is given once moreGj(1)=1. . h has the desired ber of verti d the desired
Substituting Eq.(58) into this expression gives the explicit INg graph has the desired number of vertices and the desire
condition joint distribution of in- and out-degree.
We have simulated directed graphs in which the distribu-
o tion pjy is given by a simple product of independent distri-

Ek: (2jk=j=k)py=0 (65 putions of in-degree and out-degréas pointed out in Sec.

. Il A, this is not generally the case for real-world directed
for the first appearance of the giant component. This expregraphs, where in-degree and out-degree may be corrglated.
sion is the equivalent for the directed graph of E&2p). It is In Fig. 6 we show results from simulations of graphs with
also possible, and equally valid, to define the position aidentically distributed(but independentin-degree and out-
which the giant component appearsfj(1)=1, which pro- ~ degrees drawn from the exponential distribution, EL).
vides an alternative derivation for E€55). For this distribution, solution of the critical-point equation

Just as with the individual in-component and out-Gi(1)=1 shows that the giant component first appears at
components for vertices, the size of the giant component or.=[In 2] 1=1.4427. The three curves in the figure show
a directed graph can also be defined in different ways. Théhe distribution of numbers of vertices accessible from each
giant component can be represented using the “bow-tie” diavertex in the graph forx=0.5, 0.8, andk.. The critical
gram of Broderet al.[26], which we depictin a simplified  distribution follows a power-law fornisee Sec. Il ¢ while
form) in Fig. 5. The diagram has three parts. The stronglythe others show an exponential cutoff. We also show the
connected portion of the giant component, represented by thexact distribution derived from the coefficients in the expan-
central circle, is that portion in which every vertex can besion ofH(x) about zero. Once again, theory and simulation
reached from every other. The two sides of the bow tie repare in good agreement. A fit to the distribution for the case
resent(1) those vertices from which the strongly connectedx= k. gives a value ofe=1.50+0.02, in good agreement
component can be reached but which it is not possible tevith Eq. (48).
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1

. y ——3 connects, then the distribution of the number of other edges
& ] leaving those two vertices is generated by the equivalent of
[ oK=1x, = 14427 Eq. (9):
0.1
i E 1 ’ 1 !
. F100="=15(x), 910 ="=gg(x). (69)
oy [ H g
£ 001 . _ _ o
% E Now we can write the generating function for the distribution
b= r 1 of the number of co-star@.e., actors in shared moviesf a
0.001 | N ! randomly chosen actor as
: Go(X) = Fo(g1(X)). (70)
0.0001 ) '10 If we choose a random edge, then the distribution of number
of co-stars of the actor to which it leads is generated by
number of accessible sites s
FIG. 6. The distributiorP of the numbers of vertices accessible G1(x)=11(0:(x)). (71)

from each vertex of a directed graph with identically exponentiallyThese two functions play the same role in the one-mode
distributed in-degree and out-degree. The points are simulation r'esetwork of actors as the functions of the same name did for
sults for s.ystems. oN=1 000 000 vertices and the solid lines are the unipartite random graphs of Sec. II. Once we have cal-
the analytic solution. culated them, all the results from Sec. Il follow exactly as
before.
The numbers of first and second neighbors of a randomly
The collaboration graphs of scientists, company directorsghosen actor are
and movie actors discussed in Sec. | are all examples of

IV. BIPARTITE GRAPHS

bipartite graphs. In this section we study the theory of bipar- 2;=Gy(1)="15(1)g1(1), (72
tite graphs with arbitrary degree distributions. To be con- , , , , ) 5
crete, we will speak in the language of “actors” and “mov- 2,=Go(1)G1(1)=fo(1)f1(Dg1(D % (73

les,” but clearly all the developments here are applicable thx licit expressions for these quantities can be obtained b

academic collaborations, boards of directors, or any other phicit exp q y

biparti substituting from Eqgs(67) and (69). The average vertex-
ipartite graph structure. : e

vertex distance on the one-mode graph is given as before by

Eq.(54). Thus, it is possible to estimate average distances on

such graphs by measuring only the numbers of first and sec-

Consider then a bipartite graph efmovies andN actors, ond neighbors.

in which each actor has appeared in an average ofovies The distribution of the sizes of the connected components

and each movie has a cast of average sizetors. Note that in the one-mode network is generated by E27), where

only three of these parameters are independent, since th#;(X) is a solution of Eq.(26). The asymptotic results of

A. Generating functions and basic results

fourth is given by the equality Sec. Il E generalize simply to the bipartite case, and the av-
erage size of a connected component in the absence of a
mov giant component is
M- N (66) ,
. Go(y)
Let p; be the probability distribution of the degree of actors ()=1+ (74)

(i.e., of the number of movies in which they have appepred 1=Gay(D)

andq, be the distribution of degreg.e., cast sizeof mov- as before. This diverges whe®;(1)=1, marking the first

ies. We define two generating functions that generate thesg)nearance of the giant component. Equivalently, the giant
probability distributions thus: component first appears when

fo(x)zz ijj, go(X)ZE quk_ (67) fo(1)go(1)=F5(1)gg(1). (75
i K

Substituting from Eq(67), we then derive the explicit con-
(It may be helpful to think off as standing for “film,” in  dition for the first appearance of the giant component:
order to keep these two straighfAs before, we necessarily
have > Jk(ik=i=Kp;ai=0. (76)
fo(1)=go(1)=1, fo(1)=p, gh1)=v. (689 , , _
The sizeS of the giant component, as a fraction of the total
If we now choose a random edge on our bipartite grapmumberN of actors, is given as before by the solution of Egs.
and follow it both ways to reach the movie and actor that it(34) and(35).
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Of course, all of these results work equally well if “ac- M g2 (1)
tors” and “movies” are interchanged. One can calculate the =— (2, _ (81)
average distance between movies in terms of common actors N Go(1)

shared, the size and distribution of connected components of .
movies, and so forth, using the formulas given above, witi1@king use of Eqs(66), (67), and (70), this can also be

only the exchange of, andf, for g, andg,. The formula ~ Written as

(75) is, not surprisingly, invariant under this interchange, so 1 (= 12)(vy— 1)

that the position of the onset of the giant component is the Z 1= M2~ Ho\V2— V1 82)
same regardless of whether one is looking at actors or mov- C p1vi(2vy;—=3vyt+wy)’

ies. . o
where u, =2, k"py is the nth moment of the distribution of

i numbers of movies in which actors have appeared,gnd
B. Clustering the same for cast siz@umber of actors in a movie
Watts and Strogatgl5] have introduced the concept of
clustering in social networks, also sometimes called network C. Example
transitivity. Clustering refers to the increased propensity of

pairs of people to be acquainted with one another if they . . e ;
have another acquaintance in common. Watts and Strogaﬂ'th Poisson-distributed numbers of both movies per actor

defined a clustering coefficient that measures the degree BII::'?E actlozrs perfmgvtiﬁ.tln this case, following the derivation
clustering on a graph. For our purposes, the definition of thif' =9- (12), we find tha

coefficient is fO(X) — e,u(xf l), go(x) — ev(xf l), (83)
3 (number of triangles on the graph 3N,

:(number of connected triples of vertiges N3
(77) Go(x)=G1(x)=exf u(e"* PD-1]. (84)

To give an example, consider a random bipartite graph

andf(x)="fy(x) andgi(x) =gq(Xx). Thus

Here “triangles” are trios of vertices each of which is con- This implies thatz,= uv andz,= (uv)?, so that
nected to both of the others, and “connected triples” are trios

in which at least one is connected to both the others. The . InN InN

factor of 3 in the numerator accounts for the fact that each - In wy “Inz’

triangle contributes to three connected triples of vertices, one

for each of its three vertices. With this factor of 3, the valuejust as in an ordinary Poisson-distributed random graph.
of C lies strictly in the range from zero to one. In the directedFrom Eq.(74), the average sizés) of a connected compo-
and undirected unipartite random graphs of Secs. Il and llinent of actors, below the phase transition, is
C is trivially zero in the limitN—o. In the one-mode pro-

jections of bipartite graphs, however, both the actors and the

(85

movies can be expected to have nonzero clustering. We here (s)= 1—pv’ (86)
treat the case for actors. The case for movies is easily derived
by swappingf’s andg’s. which diverges, yielding a giant component, @at=z=1,
An actor who hasz=z; co-stars in total contributes also as in the ordinary random graph. From E@l) and
$z(z—1) connected triples tdl;, so that (35), the sizeS of the giant component as a fractiondfis a
solution of
N3:%N§z: 2(z—1)r,, (79) S gu(e 1) @

wherer, is the probability of having co-stars. As shown And from Eq.(81), the clustering coefficient for the one-
above[Eq. (70)], the distributionr, is generated byG,(x)  Mode network of actors is
and so 3
ce Mwv B 1
N3=3NGg(1). (79 TNV (Wt p) p+l

(88)

A movie that stark actors contributegk(k—1)(k—2) where we have made use of HG6).
triangles to the total triangle count in the one-mode graph. Another quantity of interest is the distribution of numbers
Thus the total number of triangles on the graph is the sum obf co-stars, i.e., of the numbers of people with whom each
1k(k—1)(k—2) over all movies, which is given by actor has appeared in a movie. As discussed above, this dis-
tribution is generated by the functidBy(x) defined in Eq.
(70). For the case of the Poisson degree distribution, we can
perform the derivatives, Eq4), and settingk=0 we find
that the probabilityr, of having appeared with a total of
Substituting into Eq(77), we then get exactlyz co-stars is

NA=%M§ k(k—1)(k—2)q=:Mgy(1). (80
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FIG. 7. The frequency distribution of numbers of co-stars of an  FIG. 8. Frequency distributions for the boards of directors of the
actor in a bipartite graph witle=1.5 andv=15. The points are Fortune 1000. Left panel: the numbers of boards on which each
simulation results foM =10 000 andN=100 000. The line is the director sits. Right panel: the numbers of directors on each board.
exact solution, Eq989) and(90). The error bars on the numerical

results are smaller than the points. to incorporate realistic degree distributions into the models.
As we will show, the results are in reasonably good agree-
K ment with empirical data, although there are some interesting
[ue "% 89 g : indicati :
discrepancies also, perhaps indicating the presence of social
phenomena that are not incorporated in the random graph.

z

z
v .
r :_eﬂ(e —-1)
z 7zl kZ‘l

z
k

where the coefficient§} are the Stirling numbers of the

second kind 47] A. Collaboration networks

z (—1)k " In this section we construct random bipartite graph mod-

[ }Z > r—fz- (90 els of the known collaboration networks of company direc-
| tors [29-31], movie actord15], and scientist$36]. As we

will see, the random graph works well as a model of these

D. Simulation results networks, giving good order-of-magnitude estimates of all

Random bipartite graphs can be generated using an a|gg,uan_tities investigated, and in some cases giving results of
rithm similar to the one described in Sec. IIl B for directed Startling accuracy. ,
graphs. After making sure that the required degree distribu- OUr first example is the collaboration network of the
tions for both actor and movie vertices have means consighembers of the boards of directors of the Fortune 1000 com-
tent with the required total numbers of actors and moviedanies(the 1000 US companies with the highest reveiues
according to Eq(66), we generate vertex degrees for each!Ne data come from the 1999 Fortune 10@0-31 and in
actor and movie at random and calculate their sum. If thes&ct include only 914 of the 1000, since data on the boards of
sums are unequal, we discard the degree of one actor and of{t¢ "émaining 86 were not available. The data form a bipar-
movie, chosen at random, and replace them with new adite graph in which one type of vertex represents the boards
grees drawn from the relevant distributions. We repeat thi&f directors, and the other type the members of those boards,

process until the total actor and movie degrees are equalith €dges connecting boards to their members. In Fig. 8 we
Then we join vertices up in pairs. show the frequency distribution of the numbers of boards on

In Fig. 7 we show the results of such a simulation for aWhich éach member sits, and the numbers of members of

bipartite random graph with Poisson degree distributiom. ~ €ach board. As we see, the former distribution is close to
fact, for the particular case of the Poisson distribution, theeXPonential, with the majority of directors sitting on only
graph can be generated simply by joining up actors and mo\e"€ bqard, while the latter is strongly peaked around ten,
ies at random, without regard for individual vertex degrees. indicating that most boards have about ten members.

The figure shows the distribution of the number of co-stars, USing these distributions, we can define generating func-
of each actor, along with the analytic solution, E@9) and  tions fo(x) and go(x) as in Eq.(23), and hence find the

(90). Once more, numerical and analytic results are in good@enerating function&o(x) and G,(x) for the distributions
agreement. of numbers of co-workers of the directors. We have used

these generating functions and E¢&) and(81) to calculate

the expected clustering coefficie@itand the average number

of co-workersz in the one-mode projection of board direc-
In this section we construct random graph models of twators on a random bipartite graph with the same vertex degree

types of real-world networks, namely, collaboration graphdistributions as the original dataset. In Table | we show the

and the world-wide web, using the results of Secs. Il and IVresults of these calculations, along with the same quantities

V. APPLICATIONS TO REAL-WORLD NETWORKS
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TABLE I. Summary of results of the analysis of four collabora- 0.12

tion networks. g ]

0.10 ¢~ g b 1

ClusteringC Average degree : g W ]

Network Theory Actual Theory Actual . 0.08 | 3 4

Company directors 0.590 0.588 14.53 14.44 E 0.06 : E ]

Movie actors 0.084 0.199 1256  113.4 5 - 10
Physics(arxiv.org 0.192 0.452 16.74 9.27 =

0.04 |
Biomedicine(MEDLINE) 0.042 0.088 18.02  16.93 i

002 |

for the real Fortune 1000. As the table shows the two are in 000 L0+ .
remarkable—almost perfect—agreement. 0 10
It is not just the average value afthat we can calculate
from our generating functions, but the entire distribution:
since the generating functions are finite po|ynomia|s in this FIG. 10. The distribution of the number of other boards with
case, we can simply perform the derivatives to get the probwhich each board of directors is “interlocked” in the Fortune 1000
ability distributionr,. In Fig. 9, we show the results of this data. An interlock between two b_oards means the_lt_they share one or
calculation for the Fortune 1000 graph. The points in thegMore common members. The_pomts are the empirical data, the solid
figure show the actual distribution & for the real-world line is the theoretical prediction. Inset: the number of boards on
data, while the solid line shows the theoretical results. AgaifVhich one’s codirectors sit, as a function of the number of boards
the agreement is excellent. The dashed line in the figurgne sits on oneself.
shows the distribution for an ordinary Poisson random graph
with the same mean. Clearly this is a significantly inferior fit. numbers of other boards, while overestimating those with
In fact, within the business world, attention has focusedntermediate numbers of interlocks. One possible explanation
not on the collaboration patterns of company directors, bubf this is that “bigshots work with other bigshots.” That is,
on the “interlocks” between boards, i.e., on the one-modethe people who sit on many boards tend to sit on those
network in which vertices represent boards of directors angyoards with other people who sit on many boards. And con-
MO boards are CO”ne(?teq if they have one or more- direCt0r§erse|y the peop|e who sit on on|y one bo&vd’nch is the
in common[28,29. This is also simple to study with our majority of all directors, tend to do so with others who sit on

model. In Fig. 10 we show the distribution of the numbers of,1y one board. This would tend to stretch the distribution of
interlocks that each board has, along with the theoretical pres;mpers of interlocks just as seen in figure, producing a

d'Ct'c.)r.] from our model. AS. we see, the agreemgnt lc?ewveeHisproportionately high number of boards with very many or
empirical data_ and theory IS 5|g_n|f|cantly worse in th'? Cas‘:'Q/ery few interlocks to others. To test this hypothesis, we
than for the dlstrlbutlor_w o_f_co-dlrectors. In_part|cular, it ap- have calculated, as a function of the number of boards on
pears that our theory significantly underestimates the numberh. h a director sits. th ber of board hich
of boards that are interlocked with very small or very IargeW Ich a director sits, the average number of boards on whic
each of their co-directors sit. The results are shown in the
e inset of Fig. 10. If these two quantities were uncorrelated, the
. plot would be flat. Instead, however, it slopes clearly up-
— wards, indicating indeed that on the average the big shots
1 work with other big shots(This idea is not new. It has been
discussed previously by a number of others—see Ré8.
2 collabloratitlms ] and [49]' for example)‘
L inphysics 7 The example of the boards of directors is a particularly
< instructive one. What it illustrates is that the cases in which
000 20 30 a0 50 ] our random graph model§ agree weII_ with re_al-world phe-_
I nomena are not necessarily the most interesting. Certainly it
is satisfying, as in Fig. 9, to have the theory agree well with
/ > N the data. But probably Fig. 10 is more instructive: we have
' '10' = ‘20' ' 30 ‘ P learned sor_nething about the. structure of the network of the
boards of directors by observing the way in which the pattern
of board interlocks differs from the predictions of the purely
FIG. 9. The probability distribution of numbers of co-directors fandom network. Thus it is perhaps best to regard our ran-
in the Fortune 1000 graph. The points are the real-world data, thdom graph as a null model—a baseline from which our ex-
solid line is the bipartite graph model, and the dashed line is théectations about network structure should be measured. It is
Poisson distribution with the same mean. Insets: the equivalent digleviation from the random graph behavior, not agreement
tributions for the numbers of collaborators of movie actors andwith it, that allows us to draw conclusions about real-world
physicists. networks.

number of interlocks

0.10 —

z

frequency

frequency r
=
>
th
T

collaborators

0.00

number of codirectors z
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We now look at three other graphs for which our theory
also works well, although again there are some noticeable
deviations from the random graph predictions, indicating the
presence of social or other phenomena at work in the net-
works.

We consider the graph of movie actors and the movies in
which they appeaf15,50 and graphs of scientists and the
papers they write in physics and biomedical resefdéh In
Table | we show results for the clustering coefficients and
average coordination numbers of the one-mode projections
of these graphs onto the actors or scientists. As the table
shows, our theory gives results for these figures that are of N
the right general order of magnitude, but typically deviate 1 10 100 1000 1 10 100 1000
from the empirically measured figures by a factor of 2 or so. in—degree out—degree
In the insets of Fig. 9 we show the distributions of numbers
of collaborators in the movie actor and physicist graphs, and FIG. 11. The probability distribution of in-degreeft pane)
again the match between theory and real data is good, but n8fd out-degreéright panej on the world-wide web, rebinned from
as good as with the Fortune 1000. the data of Brodeet al. [26]. The solid lines are best fits of the

The figures for clustering and mean numbers of collaboform (92)-

rators are particularly revealing. The former is uniformly o i
about twice as high in real life as our model predicts for theknown to afflict linearly histogrammed data plotted on log

actor and scientist networks. This shows that there is a siicale& We find both distributions to be well fitted by the

nificant tendency to clustering in these networks, in additiorf®'™

to the trivial clustering one expects on account of the bipar- .

) . L o =C(k+kg) 7 1

tite structure. This may indicate, for example, that scientists Pi=C( o (92)

tend to introduce pairs of their coIIaboratqrs to one anotherwhere the constarg is fixed by the requirement of normal-

thereby encouraging clusters of collaboration. The figures for__ ; :
o3 Ization, taking the value %(7,kg), were{(x,y) is the gen-

average numbers of collaborators show less deviation from

theory than the clustering coefficients, but nonetheless ther%rahz{:"déT function[47]. The constant, and are found by

is a clear tendency for the numbers of collaborators to b east-squares fits, giving values of 0.58 and 3.94dgrand

smaller in the real-world data than in the models. This probs Jiz)r?gdrgfg fgz’ Ifori:]h? |n—dﬁglr)?e an:j Orl:]t_?ﬁg\,f,ii ctj%smf_it
ably indicates that scientists and actors collaborate repealP— ’ pectively, easonabie agreeme € s

edly with the same people, thereby reducing their total numPerformed by Brodeet al. With these choices, the data and

: Eqg. (91) match closely(see Fig. 11
ber of collaborators below the number that would naively be Neither the raw data nor our fits to them satisfy the con-

expected if we consider only the numbers of papers that thegtraint (59, that the total number of links leaving pages

write or movies they appear in. It would certainly be possible hould equal the total number arriving at them. This is be-

to take effects such as these into account in a more sophisti- the dat tis not mplete picture of the web. Onl
cated model of collaboration practices. cause Ine gata setis not a complete picture ot the web. Lnly

about 2< 1% of the web’s 168 or so pages were included in
the study. Within this subset, our estimate of the distribution
of out-degree is presumably quite accurate, but many of the
In this section we consider the application of our theory ofoutgoing links will not connect to other pages within the
random directed graphs to the modeling of the world-widesubset studied. At the same time, no incoming links that
web. As we pointed out in Sec. Il A, it is not at present originate outside the subset of pages studied are included,
possible to make a very accurate random-graph model of thieecause the data are derived from “crawls” in which web
web, because to do so we need to know the joint distributioppages are found by following links from one to another. In
pj« of in-degree and out-degrees of vertices, which has not tsuch a crawl one only finds links by finding the pages that
our knowledge been measured. However, we can make they originate from. Thus our data for the incoming links is
simple model of the web by assuming in-degree and outeuite incomplete, and we would expect the total number of
degree to be independently distributed according to theimcoming links in the dataset to fall short of the number of
known distributions. Equivalently, we assume that the jointoutgoing ones. This indeed is what we see. The totals for
probability distribution factors according = p;Q - incoming and outgoing links are approximately 2.80° and
Broderet al.[26] give results showing that the in-degree 1.1x 10°.
and out-degree distributions of the web are approximately The incompleteness of the data for incoming links limits
power law in form with exponents;,=2.1 andr,,=2.7, the information we can at present extract from a random
although there is some deviation from the perfect power lawgraph model of the web. There are however some calcula-
for small degree. In Fig. 11, we show histograms of theirtions that only depend on the out-degree distribution.
data with bins chosen to be of uniform width on the logarith- Given Eq. (91), the generating functions for the out-
mic scales used(This avoids certain systematic errors degree distribution take the form

number of pages

B. The world-wide web
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®(x,7,Kg) cluding directed and bipartite graphs. We have shown how,
Go(X) =Gy (x)= Zrky) (920 using the mathematics of generating functions, one can cal-
0 culate exactly many of the statistical properties of such
where ®(x,y,z) is the Lerch® function [47]. The corre- graphs in the limit of large numbers of vertices. Among other
sponding generating functiort, and F; we cannot calcu- things, we have given explicit formulas for the position of
late accurately because of the incompleteness of the datthe phase transition at which a giant component forms, the
The equalityGy=G; (and alsoFy=F;) is a general prop- size of the giant component, the average and distribution of
erty of all directed graphs for which;,=p;q, as above. It the sizes of the other components, the average numbers of
arises because in such graphs in-degree and out-degree &tgftices a certain distance from a given vertex, the clustering
uncorrelated, and therefore the distribution of the out-degregoefficient, and the typical vertex-vertex distance on a graph.
of a vertex does not depend on whether you arrived at it byNe have given examples of the application of our theory to
choosing a vertex at random, or by following a randomlythe modeling of collaboration graphs, which are inherently
chosen edge. _ bipartite, and the world-wide web, which is directed. We
One property of the web that we can estimate from the,ye shown that the random graph theory gives good order-
generating functions for out-degree alone is the fracBan ot magnitude estimates of the properties of known collabo-
of the graph taken up by the glant strongly connected COMzation graphs of business people, scientists, and movie ac-
ponent plus those sites from which the giant strongly CONors although there are measurable differences between
nected component can be reached. This is given by ' : : .
theory and data that point to the presence of interesting so-
S,=1-Go(1-S,). (93) _ciolo_gical effects in t_hese networks. For the web we are lim-
ited in what calculations we can perform because of the lack
In other words, S, is a fixed point ofGy(x). Using the  of appropriate data to determine the generating functions.
measured values ¢ and 7, we find by numerical iteration However, the calculations we can perform agree well with
that S,=0.527, or about 53%. The direct measurements okmpirical results, offering some hope that the theory will
the web made by Brodest al. show that in fact about 49% prove useful once more complete data become available.
of the web falls inS;,, in reasonable agreement with our
calculation. Possibly this implies that the structure of the
web is close to that of a directed random graph with a power- ACKNOWLEDGMENTS
law degree distribution, though it is possible also that it is
merely coincidence. Other comparisons between random
graph models and the web will have to wait until we have
more accurate data on the joint distributipj of in-degree
and out-degree.
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