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The decay of unstable states when several metastable states are available for occupation is investigated using
path-integral techniques. Specifically, a method is described that enables the probabilities with which the
metastable states are occupied to be calculated by finding optimal paths, and fluctuations about them, in the
weak-noise limit. The method is illustrated on a system described by two coupled Langevin equations, which
are found in the study of instabilities in fluid dynamics and superconductivity. The problem involves a subtle
interplay between nonlinearities and noise, and a naive approximation scheme that does not take this into
account is shown to be unsatisfactory. The use of optimal paths is briefly reviewed and then applied to finding
the conditional probability of ending up in one of the metastable states, having begun in the unstable state.
There are several aspects of the calculation that distinguish it from most others involving optimalipétles:
paths do not begin and end on an attractor, and moreover, the final point is to a large extent afibjttiaey,
interplay between the fluctuations and the leading-order contribution are at the heart of the metffiid,taad
final result involves quantities that are not exponentially small in the noise strength. This final result, which
gives the probability of a particular state being selected in terms of the parameters of the dynamics, is
remarkably simple and agrees well with the results of numerical simulations. The method should be applicable
to similar problems in a number of other areas, such as state selection in lasers, activationless chemical
reactions, and population dynamics in fluctuating environments.
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[. INTRODUCTION from states that have become unstable is at the heart of pat-
tern formation and the origin of complex structures, with the
The decay of metastable states, due to thermal or otheselection of nontrivial states being governed partly by the
random fluctuations, is a phenomenon seen in many diversgeterministic dynamics and partly by the noise acting on the
areas of science, and consequently has a huge literature aystem. Thus the picture painted above, while a simplified
sociated with it. In the simplest cases, where a potential camersion of this general scenario, contains many of its essen-
be defined and the states assigned a particular value of thiial features. In fact, the above structure can be derived from
potential, the decay process can be viewed as noise activéhe equations describing the entire system by focusing on the
tion over the potential barriers that separate the metastablenstable modes and the modes that have the potential to be
state under consideration from all of the other accessiblgelected, and treating all of the other modes as background
metastable states of the system. The average time taken t@ise. The resulting dynamics then comprises a small num-
escape from a potential welle., for the state to decajs of  ber of coupled ordinary differential equations acted on by
the order of exp{V/D), whereAV is the height of the barrier noise. If this flow is potential, then the above picture is re-
to be surmounted and is the strength of the noise. Thus the covered; if not, our techniques are still applicable, but it
picture we have in this case is of a set of metastable statebecomes more difficult to visualize.
with transitions between them that occur with probabilities State selection of the kind we have been describing is
that depend on the nature of the potential between the statebiquitous. In fluid dynamics, it appears when Rayleigh-
and on the strength of the noise. Benard convection rolls of a given wave number are formed
In contrast, the decay of unstable states, although a simafter the decay of unstable ones. A set of equations describ-
larly widespread phenomenon, has been studied much lessg the nonlinear coupling between parallel rolls of different
In terms of the above picture, the system starts at or near wave numbers may be deriv¢#l], and when the effects of
maximum of the potential and makes transitions to the acthe other modes are incorporatg®l, a set of coupled sto-
cessible metastable states of the system with various prolghastic differential equations of the kind mentioned above is
abilities, which, as before, depend on the nature of the pogenerated. In superconductivity, exactly the same equations
tential between the unstable and metastable states and on the in the above example govern state selection in, for ex-
noise. In an earlier pap¢d], we introduced a scheme that ample, narrow superconducting rings. This is simply because
enabled us to calculate the probabilities with which the varithe amplitude equation that governs the instabilities in the
ous metastable states are selected. Our aim here is to extefigid dynamics example is merely the Ginzburg-Landau
this work by giving a fuller presentation of the ideas andequation for a superconductpf]. A mode truncation then
techniques involved, justifying some of the earlier approxi-gives exactly the same set of coupled differential equations
mations that were made and discussing the link with reahcted upon by noisks]. In chemical kinetics, it has become
systems in more detail. clear in the past decade or two that there are many important
The phenomenon of the selection of metastable stateshemical reactions in which a barrier to the formation of an
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excited state is not present. Examples of these activationles®ns by the corresponding deterministic equations, but with
reactions [6] are the electronic relaxation of triphenyl- random initial conditiong23], are unsatisfactory in other
methane dyes and barrierless electron transfer in solutionvays. Probably the investigation nearest to our own has been
The potential discussed above is a reaction potential-enerdyy Mangel [24], however his main interest was not state
surface in this casg7]. In lasers, such as the ring dye laser selection.
[8], decay of an unstable mode to metastable ones can occur The plan of the paper is as follows. In Sec. I, we discuss
under the right operating conditions. The coordinates in thishe assumptions underlying the picture of state selection that
case are the mode amplitudes, and Langevin-type equatiomge have outlined and introduce a generic model that we use
are derived within the semiclassical theory of the [d9&rin to describe our calculational scheme in detail. An important
population dynamics, the Gause model of two competingaspect of our method is the realization that, typically, a state
specieg 10] again falls into this class. When the competition is selected well before the system reaches this chosen state.
is played out with a fluctuating environment, the resultingThis fact is used to simplify the problem in Sec. Ill, where it
stochastic differential equations once again fall into the geis also shown that naive calculational prescriptions, based on
neric class that we have been discussitl. It should, how- linearization of the initial dynamics, fail. A more systematic
ever, be noted that in this case there is no potential andpproach based on path-integral techniques is introduced in
moreover the noise is multiplicative. Sec. IV and the relevant optimal path is determined. This
Although many of these phenomena have been known fogives the leading-order contribution in the linit— 0. The
some time, the investigation of the state-selection aspect hamxt-to-leading-order contributions are determined in Sec. V.
been hampered by the lack of a suitable calculational tool. IMThe results of this analytic approach are given and compared
the case where a potentidlexists, the noise is additive and to Monte Carlo simulations in Sec. VI and our conclusions
only two modesx andy, are considered, the equations takeare presented in Sec. VII. There are two Appendices. Appen-

the form dix A describes some of the elementary approaches described
in Sec. Il in more detail. Appendix B contains technical
o ﬂJr 0 aspects relating to the determination of theoordinate of
x= X (V). the optimal path and the calculation of the action of that
(1) path.
) oV
y: - (9_ + ny(t)y
y Il. GENERAL CONCEPTS
where », and », are white noises of strengh. But even in We have already given several examples of situations

this, the simplest nontrivial case, these equations are difficulivhere state selection, following the decay of an unstable
to study mainly because, as we shall discuss later, in thstate, occurs. In this section, we will explore the different
region where state selection occurs, the coupled nature of theays in which the initial state of the system could arise, that
equations, their nonlinearity, and the noise, are all importants, the origin of the unstable state, and give an intuitive de-
However, as we have showi], there is a method that can scription of the decay and subsequent state selection, which
take all these aspects into account, and that is the pattwill form the basis of our analytical approach.
integral formulation of stochastic dynamics. This method An unstable state may arise by mechanisms that are either
succeeds where others fail because the equations can be renadiabatic or adiabatic. In the nonadiabatic case, the sys-
resented as a path integraithout approximationsystematic ~ tem, in an initially(metastable state, is transported very rap-
approximation techniques for path integrals developed oveidly to an unstable state. The time scale for the transition
the years can then be used as the basis of a calculationfibbm the stable to unstable state is much more rapid than the
scheme. characteristic time scale defining the natural dynamics of the
Most of the previous theoretical work on this problem hassystem. In this context, the transition from the stable to the
been limited to systems with one degree of freedom, govunstable state can be ignored and we simply characterize the
erned by the single equatiok=—V'(x)+ n(t), because system as having been prepared in an unstable state. Ex-
many of the complexities mentioned above are not present iamples of this type were mentioned in Sec. | and include
this one-dimensional case. Suzuki and co-workers developethemical reactions with no activation barrier and population
a theory for the decay of an unstable state in one dimensiodynamics in a fluctuating environment. Quasi-one-
in a series of paperd?2], as did a number of other authors dimensional superconductdis] are another example. In the
[13-19. However, the one-dimensional theory, althoughcase of the chemical reactions, an ultrafast light pykse
much easier to deal with, has none of the subtleties inhereriemtosecond lasgpumps molecules into an excited state. In
in state selection in higher dimensions: the decay is simplyerms of potential surfaces, the molecules are initialized in an
either to the right or to the left. Some studig0—-22 pur-  unstable state on the reactive surface. The subsequent reac-
ported to go beyond one dimension, but in fact consideredion can be viewed as a nuclear rearrangement on this reac-
spherically symmetric potentials, so that the problem couldive potential-energy surface. The evolution of the reaction,
be reduced to a quasi-one-dimensional problem in the radidhat is, the relative preponderance of reactants and products,
coordinate. Once again, the resultant structure is not riclean be studied using other ultrafast lasers. In the population
enough to address the question of state selection. Other agynamics example, the population is initialized so as to con-
proaches, such as replacing the stochastic differential equaist of only a few individuals of each species. During the
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initial period, the populations of both species grow exponeninitial bias is irrelevant to the ultimate choice of state made
tially, independently of the other, until competition drives theby the system. Yet another possibility is that it is just not
population of one of the species to zero. possible to start exactly at the origithe example taken from

In the adiabatic case, an unstable state may arise whenp@pulation dynamics is an illustration of thisn these cases,
(metastable state is transported through the instability over dhe sensitivity of the final result to changes in the initial
time scale that is slow compared to the time scale characteffarting point will have to be carefully investigated. In addi-
izing the natural dynamics of the system. An example of thiion to all of these specific reasons, on general grounds be-
process is provided by a quasi-one-dimensional superco/@inning at the origin seems very natural, since it simply
ductor as studied in Ref25]. In this case, the system is Meéans that none of the final products or final modes are
driven by a voltage source that accelerates the supercurreffitially present. o
However, this acceleration cannot continue indefinitely and Since there appear to be good reasons to initialize the
the system becomes unstable, a situation associated with tR¥Stem at the origin in many cases, it will be assumed in the
critical current of the superconductor. Once unstable, the resubsequent theoretical development. In all of the examples
laxation process occurs via “phase slips” in which spatially 9'V€n In Sec. I, the competing qut%_s growiexpone.nnally for
localized regions of the wire temporarily lose their supercon@" initial period, without any significant interaction with
ducting properties and carry “normal,” i.e., nonsupercon-eaCh_Other- This corresponds to a linear growth law of the
ducting, current. This process dissipates the excess enerffM XI=a X, wherex, is the amplitude and the growth
and the system relaxes back to a locally stable state. Mes&@te of thelth mode. Clearly, the main interest from a state-
scopic wires, i.e., wires that are not in the thermodynamic€l€ction point of view is in the nature of the nonlinear in-
limit, have a finite number of discrete metastable stationarjeraction terms between the modes. Since the purpose of this
current-carrying states. State selection in this case is charaPaper is to give a clear and intuitive introduction to our cal-
terized by the competition between these metastable currergtlational scheme, we shall choose to illustrate our method

carrying states. The superconductivity instability described!Sing an example in which only two competing modes are
above is an example of the Eckhaus instability. present, and where the interaction terms may be derived from

Eckhaus instabilities arise in many physical systems irf potential. In othe_r words, the.governir!g.equations will have
addition to quasi-one-dimensional superconductors, includhe form (1). Obviously, two is the minimum number of
ing fluids, nematic liquid crystals, and lasers. In these Sys[nodes we need in orc_ier to discuss state selection, but having
tems, stationary one-dimensional periodic patterns are stab@ly two modes moving on a potential surface has the ad-
for a range of wave vector€. For instance, in the case of vantage that we can describe our method using the pictorial

the common Eckhaus instability, stationary solutions exisfanguage of “hills and valleys,” which we have already
for Q2<1, but are only stable iQ2<%. By changing the @dopted on several occasions. Furthermore, since as we have
control parameter slightlyQ states withQ?<: may be &lréady mentioned, the equations derived in both the fluid
shifted into the unstabl©?>1 regime. The essential fea- dynamics and superconductivity examples are idenfizal,

tures of the subsequent changes that follow from this may b€ Will work with these. They are

understood by performing a mode decomposition of the rel-

Gy o2 s3
evant amplitude equation and keeping only the previously X=axX—yxy" = ox>+ (1), 2
stable mode and the destabilizing modes with the largest Y= By — yyx2—ey3+ 7,0, 3)

growth rateg5]. An adiabatic elimination of the unstable
mode then leaves us with coupled ordinary differential equaynere x and y are the two competing modes with growth
tions for the amplitudes of the destabilizing modes. This aies, andg, respectively. All five parameters characterizing
adiabatic assumption is equivalent to assuming that the forrg,q model(, B, v, 6, ande) are assumed to be positive. The

of these differential _equqtion_s does_not change on the timgyige termsz,(t) and 7,(t) are taken to be Gaussian ran-
scale of state selection, i.e., in the time taken for one of the;y 1, variables with zero mean and

destabilizing modes to outcompete the otH&s).

An obvious question that now arises is the following: how (mi(t)p;(t")y=2D&(t—t"), (4)
do we know that the system is initialized in a state where the
amplitudes of the competing modes, final products, etc. aresherei andj are eitherx or y andD is the noise strength.
zero? Or expressed in the topographical terminology of Sed&quations(2) and (3) fall into the class of those given by
I, how do we know that we begin exactly at the top of theEgs.(1), since they are derivable from the potential
hill? Here we are assuming that the small nonzero amplitude,
required to initiate the growth, is induced by fluctuations,
i.e., by the noise. Once again, there are several possibilities.
It may be that in every realization of the stochastic process
the system starts near, but not necessarily at, the origin. Ad/e wish, however, to stress that the method is not restricted
long as there is no bias favoring any one of the competingo systems with only two modes, nor is the existence of a
modes, an average over many realizations of the process witlotential a prerequisite. This will become clear as the method
give the same results as if the system had started at the origis explored in subsequent sections.
in each case. Alternatively, the initial probability distribution It is interesting to note that the simple generalization of
may be so sharply peaked about the origin that any smathe model in which the strengths of the noisegt) and

@ B y 1) €
V(X,y)=— Exz— §y2+ §x2y2+ Zx4+ Zy“. (5
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FIG. 1. (a) lllustrative plot of V(x,y) with a= =2, y=4, and
5=e=¢. (b) Contours of zero force.

7,(1) are both of the same order, but not equal, already lea
to a more complicated situation. If we suppose that th
strengths of these noises dbg andD,, respectively, then

we may introducef;(t), i=1,2 such that the correlation

function of these new noise terms is exactly K, by writ-

ing 7;(t)=p"2

nated from Eqgs(2) and (3) by rescalingx(t) andy(t) by
defining new variables; and x, via x(t)=p}%;(t) and

y(t)=p§’ »(t). New constants replacingand e that absorb
this change of scale can easily be defined, but the interactiof
termsyxy? and yy x? becomeyllex§ and 721x2x§, respec-

tively, with y,,# v»;. Equations such as this are not deriv-
able from a potential, nevertheless minor modications of ouP

method are applicable to this case.

The potentialV(x,y) for a particular choice of parameters

is shown in Fig. 19).

‘:ﬁbgwum, since by this stage this minimum will almost certainly

Z;(t), where thep; are constants given by
D;=p;D. This rescaling of the noise may, in turn, be elimi-
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n-|-574

1/2
(X, )=(O,t ;) ) for the minima, (6)

1
(X,y)= ﬁ(t VBy—ae, =\ ay— o)

for the saddles.(7)

In fact, there are some conditions that need to be imposed on
the parameters of the model if saddle points are to exist.
These are thatvy— 85, By— ae, and y?>— e should all
have the same sign. Since we will normally assume that the
stability parameter$ and e, which ensure that the potential
is bounded below, are small, we will tal@y>ae and ay
> 36, which implies thaty?> Se.

The dynamics given by Eqgél), (4), and(5) is equivalent
to an overdamped particle moving on the potential surface
shown in Fig. 1a) and that is also acted upon by white noise.
In a typical realization, the particle will begin at the maxi-
mum and perform a random walk that is in the vicinity of the
origin at early times, but that eventually explores an ever
larger region. Eventually, the particle gets far enough from
the origin that the deterministic dynamics, specified\lyy
begins to have a significant impact and the particle acceler-
ates down towards the saddles and the minima. In this paper,
our main concern is state selection: we are not concerned
with the approach the particle makes to a particular mini-

e the selected state. For this not to be so, the particle would
have to hop over a barrier— an extraordinarily rare event. In
fact, as is clear from Fig. (&), as soon as the particle has
passed th& ory coordinate of one of the saddle points, it has
effectively chosen the final state and its subsequent motion is
of little interest to us. We therefore arrive at the conclusion
that the saddle points are the major factor influencing state
selection and by comparison the minima are of little conse-
uence. This can be made more transparent if we imagine
that 8 ande are very small, so that the mininié) are now at
very large values ok andy. In contrast, the positions of the
addles have changed much less: in the limit whtasmd e
go to zero, theix andy coordinates tend to the finite values
JBly and Jaly, whereas the minima tend to infinity. The
topography now consists of long valleys, leading from the

Before discussing the dynamics of the system, we have tbead of the valley between two saddles all the way down to
identify the extrema of the potential. These are given by thex minimum at the end of the valley. As soon as the particle

intersection of the two sets of curvé¥/dx=0 anddV/dy
=0 or, explicitly, by the intersection ofx=0, x*+ yy?

=a} and {y=0, yx>+ ey?=B}. These two ellipses, along
with the x andy axes, are shown in Fig(li). By comparing
Figs. 1a) and 1b), we see that there i$) a maximum at the
origin (denoted by a filled circle (ii) four minima at the
intersection of the ellipses and the axeenoted by open

enters the valley, it is extremely unlikely to escape over the
sides, and therefore it is extremely unlikely that it will do
anything else but move to the minimum at the end of that
particular valley. This makes it very clear that it is the
saddles, and not the minima, that we should focus on if we
wish to understand state selection.

These ideas are well illustrated by plotting out a few

circles, and(iii) four saddle points at the intersection of the Monte Carlo trajectories. Such simulations are extremely
two ellipses(denoted by crossgsThe precise positions of simple to carry out, and later we will compare our analytic

these extrema are

expression for the probability of a particular state being se-
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FIG. 2. Typical trajectories for the full potentid(x,y) with FIG. 3. Typical trajectories for the reduced potenN&(x,y)
a=pB=vy=1, §=€=0.1, and with noise strength=0.01. with a= B=y=1, and with noise strength =0.01.

lected with the proportion of runs that ended up in that statethe saddle along the line of steepest descentx, it will

For the moment, however, we are interested in the nature dfave a tendency to move down the slopes that are to the right
individual trajectories. The five shown in Fig. 2 are typical: and left, rather than carry on through the saddle and straight
the particle carries out Brownian motion about the origin, toup the incline ahead.

a greater or lesser extent, and then selects a particular valley. Just as the plot 0¥ is similar to that oV if we cut it off
Even after state selection, there may still be large deviationsear to the head of the valleys, so the Monte Carlo simula-
but eventually the particle settles down near to the axis alongons are similar in both cases if we do not follow the trajec-

which the valley runs. tories too deeply into the valleys. In Fig. 3, the rangexof
andy used to display the trajectories is smaller than that in
Ill. THE REDUCED POTENTIAL Fig. 2, so that the central region is emphasized. This makes

) . ) the initial Brownian dynamics seem more obvious, but in
We have seen in the preceding section that the essentigdality the nature of the trajectories before and during state
features of state selection become much clearer in the limielection is essentially identical to that of the full problem
6,e—0 when the saddle points are completely separatednhown in Fig. 2.
from the minima, which have moved off to infinity. For the | the next section, we will develop a calculational
rest of the paper, we work in this limit in order to illustrate Scheme' based on the path_integraj formulation of the sto-
our method in the simplest possible way. We will call the chastic process, to determine the probabilities of entering the
prOblem defined in Sec. Il when the limit is taken the “re- X Oryva”eys as a function of the model paramet&r$, v,
duced problem.” The reduced potential is then defined to beynd D. However, one might feel that such a sophisticated
theory is not necessary: it should be possible to obtain a
®) satisfactory theory by constructing an approximation based
on the picture we have built up in this and the preceding
section. We will therefore end this section by constructing an
A plot of VR looks very similar to the plot of the full poten- example of such a theory and show that it is unsatisfactory
tial V in Fig. 1(a), since this figure emphasizes the little- for a variety of reasons.
changed central features of the potential. The main difference A simple theory of state selection might have the follow-
is that whereas iV the valley floors start to ascend again ating ingredients.
large |x| and|y|, in Vg they keep descending. However, as (i) In the initial period, the noise and linear growth of the
was made clear in Sec. Il, this behavior is of no interest to usmodes dominate. Therefore, neglect the nonlinear interaction
and the fact thaV and Vg differ in this way is immaterial.  between the modes.e., sety=0).

a , B 4
VR(X,Y) == 5 X2 = S y*+ 2x%y%

From Eq.(8), we see tha¥/g has only two types of ex- (ii) State selection will be specified in the following way.
trema: (i) a maximum at the origin, andi) four saddle Define four sectors in they plane by drawing lines through
points at &,Y) = (£ Xmin»= Ymin), Where the origin and the saddle points. The particle will select the

state corresponding to a particular sector if it is in that sector
Xmin= W7 Ymin= \/m 9 for x~Xmin andy=~Ypin.

A calculation based on these two assumptions is given in
The reason for the subscript “min” is that the values given Appendix A. Even within the framework that these provide,
by Egs.(9) are the smallest values pf and|y| at which we there turn out to be many possible variants, each giving
can assume that state selection has taken place. A simpdightly different results. Leaving this aside for the moment,
stability analysis near these saddles shows that the stable aitdis shown in Appendix A that in one of the simplest
unstable directions are at an angle ®# to the axes. For schemes along these lines, the probability of ending up in an
example, in the positive quadrant, if the particle approaches valley is[see Eq.(Al14)]
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approximation scheme, as above, is likely to give disappoint-
ing results. We do not rule out being able to construct a
particular scheme of this type that will give reasonable re-
sults. There are enough possible variants that it may be pos-
sible to interpolate between these by introducing free param-
eters that can then be fitted to the Monte Carlo data.
However, such an ad hoc scheme is unnecessary, since we
will show in the remainder of the paper that a systematic
approach exists that gives simple formulas that are in good
agreement with the Monte Carlo data. The method is based
on the use of optimal paths, and so we begin with a brief
review of the path-integral formulation of Langevin dynam-

1 1.5 2 2.5 3 ics.

FIG. 4. Probability of flowing into ax valley as a function o,
with =1, y=1, andD=0.01. The dots show simulation results,
the full curve is the result10), and the dashed curve is res(l®). In this section, we review the formulation of stochastic

differential equations, such as Eq), as functional integrals
1 and obtain the dominant contribution to the conditional prob-
Ny=—"7, (100 ability we wish to determine in the limit where the noise
1+D? strength tends to zero.
The conditional probability that the system is in the state
(X;,ys) at timeT, given it was initially in the stat€0, 0) at
D (a—B) t=0, is

. (11
aﬁ o P(Xf1yf!T|01010):<5(Xf_X(T))5(yf_y(T))>ICa

IV. OPTIMAL PATHS

where

This has the correct qualitative behavior: whe# 8, that is,

p=0, N,=3. As p increasesN, increases towards unity. A where IC denotes the initial conditior{0)=0, y(0)=0 on
more careful calculation givd€q. (A15)] the stochastic process, amdT) andy(T) are solutions of
Egs.(2) and (3). The average in Eq.13) is over Gaussian
white noisesn,(t) and »,(t) with zero mean and correlation
function given by Eq(4). In terms of functional integrals,
Eq. (13) equals

2 .
N,=—tan 1D 7, (12
o

which again has the correct qualitative features.

We now compare these two formulas with the results of
Monte Carlo simulations. We togR, y, andD to be fixed in
the simulations, at values 1.0, 1.0, and 0.01, respectively, and Lo
varied« from 1.0 to 3.0 in steps of 0.2. For each valuenof 2 2
we performed a large number of runs where the particle Xexp[ _ﬁfo dif ’7x(t)+7/y(t)]J' (14)
started at the origin and ended up in one or another of the
valleys (for more details, see Sec. MIWe then simply whereC is a normalization constant and the subscrjpbn
counted the number of times that the particle ended up in &(T) andy(T) is to emphasize that they depend @(T)
particular valley and expressed this as a fraction of the totathrough Eqs(2) and(3). Using these equations to perform a
number of runs made. The results are shown in Fig. 4. functional change of variable fromyy ,7,) to (x,y) yields

It is clear that the results of the naive approach based on
assumptiongi) and (ii) above, worked out in Appendix A
and given by Eqgs(10) and(12), are not quantitatively cor- CJ,CDX Dy J&(x; =x(T))8(ys =y (T))
rect. They mainly overestimate the probability of the particle
ending up in thex valley. In addition, Eq(12), which repre- expl 1 (7

CJICD 7xD 7y (X =X, (T)) (Y =Y ,(T))

2
+

Y
X+ —

dt o

V)2
sents a more refined calculation, actually compares less fa- 4D J, y+ K) ' (15
vorably with the simulation results than does EtQ). This
clearly points to the unsatisfactory nature of this simplisticwhereJ is the Jacobian of the transformation. Expressed as a
scheme, as one would expect the more refined calculation feath integral,
compare more favorably with the simulation results.

We do not wish to pursue techniques based on this ap-
proach further in this paper. It was included specifically to
show that there is a delicate interplay between the nonlinear-
ity and the noise in Eqs(2) and (3), and any attempt to wherer=(x,y). The actionS[f] and the Jacobiad[ ] are
incorporate one or the other of these using an unsystematfanctionals that are given by

N r(T)=r
P(Ff,T|0,0)=Cfr "'Dr J[Flexg— S F)/D}, (16)
7(0)=0
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—1det '+V2+'+&V2- 1 L(Fe)= oS 23
S[Xuy]_zl 0 X IX y oX ( 7) (rC)_éf(t’)ﬁf(t") . . ( )
and[26] The resuli(21) is the starting point for our method: if we can
57 PN, determine the function®(® and PM), then we will have a
J[X'y]:de{_? ocexp[ %f dt| — + — ] (18  form for the conditional probability valid when the noise is
or o [ 9x® YT weak. This in turn will enable us to obtain a formula for the

) ) ) ) probability that either the or y valley is selected, as a func-
ForD—0, the path integrall6) is dominated by solutions of  {jon of o, 3, 7, andD. We shall devote the rest of this section

the Euler-Lagrange equatiod$/ 6r(t) =0, which satisfy the {5 the determination oP(® and leave the calculation &%)
boundary condition§(0)=0 andr(T)=r;. Let the solution {5 the next section.

of least action be denoted bg(t). Then writing r(t) The case of interest to us in this paper is wheis the
=f¢(t)+or(t), we have reduced potential8). The Euler-Lagrange equations for this
problem are
P(F;,T|0,0)=Cexp{— S(F.)/D fDar*Jr*Jr&r* .
( f ) p{ ( c) } [ C ] X=X(a— ,yy2)2_2,yxy2(ﬁ_ ’sz), (24)
xexp{ _% f Tt f Tavsr(t) §=y(B—yx*)2=2yyx¥(a—yy?). (25
0 0

It is important to realize that there are two distinct dynamics
associated with the problem under consideration. The first is
. the stochastic dynamics given by Ed) with the potential
(8). This was our starting point, the basis of the intuitive
(19 discussion of the dynamics given in Secs. Il and Ill, and the
dynamics of the Monte Carlo simulation. The second dynam-
Scaling 5F by D¥? and performing the Gaussian functional ics is the deterministicdynamics, given by Eqsi24) and

1 5°S

X 2 S oF ()

Sr(t")+0( 1)

r=r;

integral yields (25), which describes th® —0 limit of the stochastic dy-
namics. They are quite different and it is important not to
P(F¢, T 6,0)=c’ exp{—S(F¢)/D}I(Fe) carry over intuition from one to the other without careful
consideration. From Ed17),
525 —-1/2
Xdet ———= -+ [1+0O(D)]. T ) T
{‘”(‘ Jortt) r'rj sri=t [ante-uen [[aly eo
(20)
where
The new overall constant,, is immaterial since, as we have
seen in Sec. lll, we are interested only in the probability of . 1({aV\2 1[aV\?
ending up in thex or y valley, and we normalize these prob- U(r)=- 5(&) ) W) : (27)
abilities according tdN,+ N, = 1. We will therefore omit the
overall constant from now on. Since the last term in Eq26) is a constant, and conse-

While all the derivations in this section have been carriedquently gives zero variation, the Euler-Lagrange equations
out for potential systems with two degrees of freedom, it(24) and(25) correspond to classical mechanics in the poten-
should be clear that they generalize in an obvious way taial
systems of more than two degrees of freedom and those

where no potential exis{£6]. We may summarize the result Ur(X,Y)=—3x%(a—yy?)? = 3y2(B—yx*)?. (29
of performing the functional steepest descent on (#6) to o . - o
next-to-leading order by When considering the optimal paths suchrgd), it is the

potentialUg, and notVy, that is relevant. A plot ob) z(X,y)

P(F;,T]|0,00=PD(F;, T)exp{ — PO(F;, T)/D}[1+0O(D)], S shownin Fig. 5. ,
(21) We will, for concreteness, focus on paths that end in the

positive x valley; paths that end in the other valleys are
where the leading-order contributioR(?), is just the action treated in exactly the same way. The boundary conditions on
of the optimal path;(t) and the next-to-leading-order con- these paths ar&(0)=y(0)=0, x(T)=x;, andy(T)=ys,
tribution is with y;<x;. We therefore simplify Eqs(24) and (25) by

keeping only terms that are linear yn to obtain to lowest

PU(F; T)=J(Fo)[detL(Fo)] Y2 (22 order

Herel is the matrix formed from the second-order functional = a’X, (29
derivative of the action functional evaluated at the optimal

path: y=[B"=2(a+ B)yx*+y*x*)y. (30)
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2y;e FTeraginhgt,  O<t<t,,
2
yie AT-0 ex;{%{l—e‘z‘”‘”} , ty<t<T.

(32)

ye(t)=

For self-consistency, we need to check thggtt) given by
Eqg. (32) is small, compared witlx.(t), if we are to justify
the linearization procedure that led to Eq29) and (30).
From Eq.(32), it is straightforward to check that.(t) has a
maximum att=t’, wheret'=T if X<Xq, and T—t’

=a 1 In(XIX,ir) if X>Xmin. As discussed in Sec. 11K, is
the minimum value ok at which state selection can be said
to have been completed, and therefore we require Xhat
= Xmin- The maximum value of.(t),

—Bla
, y
FIG. 5. lllustrative plot of the reduced potentidi(X,y) with yel(t )ZYf(X _ eXP{%(XZ—Xﬁqin)], (33
min

a=2, andB=y=1.

increases rapidly witiX and is already extremely large when
In our earlier treatment of this problelfrl], we restricted X~5Xmin- It m|ght therefore be tempting to argue that we
attention to end points lying on the axis, X;=X andys  need to takeX to be much less than this value if the linear-
=0 (and correspondingly;=Y andx;=0 for paths ending jzation procedure is to be valid. Since E83) has its least
in the positivey valley), arguing that the relative contribu- vajue whenX= X, this approximation would seem to be
tions coming from paths ending on the axes should be amest for this choice oX, and in fact this was the choice made
proximately equal to the relative contributions coming fromin our earlier work{1].
the paths ending anywhere in the vaIIeys. In fact, as shown in In fact, there are a Variety of reasons Why Choog'm@
Ref.[1], this turns out to be an excellent approximation, butpe X, is not suitable. First, the argument above, namely
it has the deficiency thaX is not determined. In this paper, that if X is too large then the linearization procedure is in-
we go beyond this approximation, which allows us to ex-yalid, is in fact incorrect. We will find that the width of the
plore its validity, but also, as we will see, the precise value ofgistribution is so narrow in thg direction that the range of
X within this improved treatment does not enter; the result iSntegration foryf need On|y be tiny' in fact 0n|y going out to
independent oK, provided thai is large enough. The quan- yajyes ofy; such thaty? exp{yX%/a}~1. From Eq.(33), we
tity y; has a different character X it will be integrated over  gge that under these conditiongt) is indeed small. We will
at a later stage, when the probability flux through the valley,ome back to this point again in Secs. VI and VII.
is determined. o The second reason is in fact more profound. Intuitively,
_ _The solution of Eq(29) thgt satisfies the boundary CoN- \ve expect that for large enough valuesXofthe probability
ditions x(0)=0 andx(T) =X is exactly the same as in Ref. fjx through a given valley should be independenXoThis
[1], namely is due to the fact that in the regime of weak noise, once state
selection has occurred there is no flux leakage out of a valley.
sinhat This implies that we should not have to make any choice for
(3D X because our results should be independenx a$ long as
X is large enough. In fact, this is precisely what we find,
namely that the probability flux through tixevalley tends to
The solution of Eq.(30) that satisfies the boundary condi- an asymptotic value aX tends to infinity. The remarkable
tionsy(0)=0 andy(T)=y; (we reserve the notatiowf for ~ cancellations that occur to produce ¥nandependent flux is
the finaly value for the end point of paths going along the a good indicator of the correctness of our calculational
valleys is discussed in Appendix B. There it is shown that anscheme. Again, we will come back to this point in Secs. VI
excellent approximation to the solution of this equatior  and VII.
distinguishable from the numerical solutjozan be found by Finally, throughout our calculation we use the approxima-
first solving the equation for smailand then for large, and  tion thatT is large in the sense thaf *"<1 ande #T<1.
matching the two at some intermediate matching tige  This is apparently a problem, since we need the form of the
Comparison with the numerical solution shows that the apsistribution for allT in order to perform the time integral of
proximation remains good for a wide range of valuegf the probability flux in the calculation of the total flux through
from about 0.T to 0.6T or 0.7T. In order to be able to the valley. The way out of this impasse is to takesuffi-
obtain a simple form for the solution, we have assumed thatiently large that the probability current is essentially zero at
T is large, in the sense that “"<1 ande #T<1. Using small times, and only starts making appreciable contributions
Egs.(B3) and (B7), we can write the explicit analytic form to the T integral whenT is such thate *T<1 ande AT
as <1. It is not clear how largeX will have to be, but as dis-

X (=X

sinha T’
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cussed above, the probability flux through thealley tends  where
to an asymptotic value aX grows, so we are assured of 1 pla NG )
always finding a value oX for which the approximation that Sy=—<i2> exp{ 7’_] fyx /adz SBla)-1g-7
T is large is valid. 2a\ yX a | Jo
At first sight, the largel approximation might appear to 2 2
be problematic because it ignores the shorter state-selection X(B=az)™+3[yX"=Bl. (36)

time scalesx™* and8~*. However, this is not the case. The The two terms in Eq(35) have different characters: as re-

reason is that the integrals over time that are performed imarked upon earlier, we will eventually integrate oyerto

the calculation of the action and Jacobian prefactor includ@btain the probability flux through the valley, but the first

these earlier times. In other words, the entire classical patherm will remain, giving a leading-order contribution of

in particular the spatial region near the origin, is included inexp—(aX?4D)(cothaT—1) to Eq.(21).

the calculation. When performing similar calculations to find the escape
After these rather technical asides, it is worthwhile sum-rate from one metastable state to another, the leading-order

marizing what we have deduced about the equation for theesulte™*¥'P gives a reasonable estimate, and the need to go

optimal path, which leave$0, 0) at t=0 and arrives at t0 next order and to calculate the prefactor only arises if

(X,y;) at timet=T. It is given by Eqs(31) and(32) under !ncreased accuracy is required. The situation is very different

the assumptions that) T is such thate “T<1 ande #T  in the present case of the decay from an unstable state. As

<1, (i) X is larger than a fewX,;, , and (iii) t,, and (T mentioned .a}lready, we expect that the main contribution to

—t,) are large(we will later find that we require that € pro_blab|I|ty2qux through the valley will occur wheh

e 2ng] e 2Plm<], e 22Tt <1, ande 28T~ <1). ~(2a) *In(aX“/D). The conditional probability distribution

r(21) is peaked around a value ®fof this order because of a
contribution,Po(X,y; ,T), to the conditional probability dis- Palance between the leadifgassical term and the prefac-

tribution (21), by finding the action of the optimal path given tor (a fluctuational term. For this reason, the calculation of

by Egs.(31) and (32). We begin by noting that, from Eq. the prefactor in this problem, unlike in escape problems, is
(26), the classical paths are solutionssof —aU/:?x andy vital if the essential structure of the state-selection probabili-
_ —'(?U/(?y Multiplying the first equation by, the second ties is to be captured. We therefore turn to the calculation of

one byy, adding them, and integrating the result gives!Ms quantity.

1752, 2 _
g(x_c+yc)+U—.E, a congtant. Thus another form for the V. CALCULATION OF THE PREFACTOR
action of classical paths is

We are now in a position to calculate the leading-orde

In this section, we will calculate the next-to-leading-order
contribution in Eq.(21). From Eq.(22), we see that it con-
sists of two distinct contributions: the first from the Jacobian
J[ 7] evaluated at the optimal path and the second from the
Details of the calculation are given in Appendix B. From Eg. fluctuations around the optimal path that give rise to the

.
S=b [ A tETHIVIE. G
0

(B20), we find determinant of the second functional derivative of the action
2 (23). We begin by evaluation of this determinant.
Starting from EQq.(26), and using the notatio23), we
S;=—4(cothaT—1)+ 3yis,, (35 i
d? 2
_W‘I‘a _47chc[a’+:8_'yxc]
L(Fc): 2 s (37)

d
—Ayxylat B Xl = o+ (B yxd)?—2ayx

where, in line with our prewous assumption, we have ne-entries only prowdeO(yc) corrections to the eigenvalues of

glected terms that a@(yZ) down on the terms shown in Eq. the matrix withy.=0. Therefore, neglecting these terms as
(37). We have omitted any time dependence in BY) for  pefore, we conclude that within the approximation we have
the sake of clarity, but it should be remembered that theadopted in this paper, we may set the off-diagonal entries in

classical solutiong. andy are functions ot and the matrix  Eq. (37) to zero. From Eqs(23) and (37), we now find
is multiplied by an overall factor o6(t—t’). The diagonal

entries are as in thg.=0 case[1]; only the off-diagonal detL () =detL, detL,, (39
entries are different. However, it is easy enough to see that

the eigenvalues of Eq37) are even iny., and since the whereL, andL, represent fluctuations ir andy, respec-
matrix with y.=0 has no zero eigenvalues, the off-diagonaltively:
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d2
LX:—W‘Fa’z, (39)
d2
— 2\2 2
Ly——W‘i‘(B—’yXC) —2ayX;. (40

To evaluate the determinants of the operat@® and (40),

we make use of a well-known formula for such determinants

[28]. Let L be an operator of the type d?/dt>+ ¢(t) and

suppose that the eigenfunctionsloére required to vanish at

PHYSICAL REVIEW E 64 026116

Neglecting theO(yg) term as before, one finds thafr,)
=JJ,, where

Je=exp{—3aT}, (47)
- I yX?[sinh 2aT—2aT
=P BT T S Ginf T
2
—expl —1pT+ 2
exp{ 2BT+ 4aJ, (48)

the boundaries @t=0 andt=T, as in the case of interest to since we are assuming theit *"<1. Since both the determi-
us here. Now let(t) andh,(t) be two independent solu- nants and the Jacobians factorize into contributions associ-

tions of the homogeneous equatibh=0. Then

_ hi(0)hy(T) —h(0)hy(T)
h1(0)h,(0) —h,(0)hy(0)

(41)

The constant of proportionality if41) may be omitted for
the same reason the overall constant was omitted irfZB.
the probability of ending up in the positivevalley will be

normalized by the sum of the probabilities of ending up in

the x andy valleys. Furthermore, i, is the solution that
vanishes at=0, then the formula for det involves only this
solution,

detL= hZ(T) .
h,(0)

(42
The solution of L,h=0 that satisfiesh(0)=0 is h,(t)
=F sinhat, whereF is a constant. Therefore,

sinhaT
detlL,= I

(43

To find detL,, we need only note that the solutions of the
homogeneous equatidnyh=0 are also the solutions of the

classical equatiort30). But the solution that vanishes &t

=0 has already been found in Appendix B: it is given by

Egs.(B3) and (B7),
Gsinhgt, 0st<t,,

_ 2
h2(t) - Eeﬂt exp{ — ﬁefza(Tft)
2a

2 0t

(44)

where G is a constant. Sinch,(0)=8G, use of Eq.(42)
yields

1 X2
detL,=-——efT exp{ - 7—] . (45)

Y28 2a

It only remains to calculate the Jacobian at the optima

path. From Eq(18), this is given by

.
J(r*c>=exp{%f0 dt{[—a+yy§<t>]+[—ﬁ+vx§<t>]}]-
(46)

ated with thex coordinate and contributions associated with
they coordinate, we may summarize the results of this sec-
tion so far as

Jx

_detL =(2a)Y%e T, (49
J X2
deytL =(2B)Y%e AT exp{ ;_a] (50)

y

It is straightforward to check that these results agree with
those of Ref[1] under the assumptions that “"<1. and

e #T<1. While neglecting corrections to the leading behav-
ior of the prefactor that are of the tyge 2*T ore ?#Tis in

line with this largeT approximation, we will see later that the
final integration oveiT will also providea posteriorijustifi-
cation for the neglect of these terms.

From Egs.(21), (35), (49), and(50), we can now write
down the conditional probability for the system to berat
=(X,y;) at timeT, given that it was at the origin at time
=0, as

2
P(r ,T|5,0)=(4aﬁ)1’2exp{ —(a+B)T+ %

x X cothaT—1
ex E(cot a )

2
xexp{—zy—lgsy][lJrO(D)]. (52

As we discussed in detail in Secs. Il and Ill, when using
the modified potentia(8) the question is not what are the
paths of least action from the origin to the minima of the
potential, since those minima cease to exist when the limit
5,e—0 is taken. Instead, the question is what is the relative
flux through one valley compared to the other? To calculate
the flux, it is not the conditional probability distributidB1)

that we need to know, but the probability currept

|=(jx,jy). This current is related to the conditional prob-
ability distribution through the Fokker-Planck equati@9]

JP .
—+div 7 =0,

ot (52

where
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>

J=—(VV)P—DVP. (53 occurred. At this point that particular run ceases. If the par-
ticle has ended up inyavalley, for instance, 1 is added to the

In order to find.7 from P given by Eq.(51), we first note total number of runs which have selected thenode. An-

from Eq. (21) that other run is initiated and the result of that is added to the
totals. After a large number of runs, the proportions selecting
DVP=—(VP©)P[1+0O(D)]. (54) thexmode andy mode are used to calculatg andN,, the
relative probabilities of these states being selected.
Therefore, we only need to differentiai¢ and P(®) with Let us focus on the runs ending up in the positiwalley,
respect toX andys in order to find7. Carrying this out, we €xactly as we have been doing in the analytic treatment in
obtain Secs. IV and V. For each of these runs, the final value of

y—calledy; in the analytic treatment above—will vary. We

would expect most of the runs to end near totrexis, with

off-axis end points becoming less and less common as we

move away from the axis. This is reflected in thedepen-
Jy=(ysSy+ BY:— vy iX?)P. (56)  dence ofJ, given by Eq.(57). Just as in the Monte Carlo

simulation, where we add up all contributions with a differ-

In the next section, we will calculate the flux through theing final y coordinate ax=X, so we need to integrate Eq.

positivex valley. This will involve only the component of  (57) over ally; atx=X. Similarly, just as in the Monte Carlo

normal to the linex=X. ThereforE, the/ Component of the Simulation, where we add up all of the Contr.ibution.s, no

current,.7,, will not contribute and need not be consideredMatter how long they took to get to the end point, so in the

any further; the entire contribution to the flux will come from a@nalytic treatment we have to integrate overTalio obtain

integrating.7, , given by Eq.(55), overy; . By virtue of the the total flux. Therefore, we need to calculate

y? term in the exponential in E@51), this will be a Gaussian " .

integral. While we would naturally neglect tiy?) term in ]:X(X)ZJ dTJ dys (X, s, T), (58)

Eq. (55) in line with previous approximations in this section, 0 -

we now see that it would in any case give a contribution of, ) .

orderD once they; integral is performed. This is a further n ord(_ar to calculate_ thg ;tat_e-selectlon probabilities. .

justification for ignoring such terms. Finally, we have been_ While the above justification for Eq58) as the quantity

neglectinge 2¢T-type corrections in the prefactor, which that we 'need to calculat_e seems |ntu'|t|vely plausible, it is

means that we should replace caffiby 1. These approxi- worthwhile formally proving this. We first need to specify

mations lead to the resulf,= «XP and so we find from Eq. what endmg up in the positive valle_:y means in terms of
(51) that a mathematical expression. Since, in the limit-oo, trajec-

tories will have entered one of the four valleys, we define the
yX2 probability that it has entered the positixevalley as
T(X.y5,T)=2a(ap)?X eXp{ —(a+p)T+ —]

Fi=| 5 Xcoth(aT) 1]+ aX—-yXyZ|P, (55

2a oc ®
) prob(+x valley)= lim f dyff dX P(X,y;,T]0,0).
~ X cothaT-1 Toem X
X ex D (cotha ) (59)

y? Here the positivex valley is defined as the entire potential
xexp — 55 Sy ([1+0(D)]. (57)  surface to the right of the line= X. On the other hand, from
the continuity equationi52),
This is the key result of this section. We need now only use

it to calculate the total flux through the positixevalley at lim P(X,y,T|0,0)—P(X,y;,0/0,0)
x=X and compare it with the analogous quantity through the Toee
positivey valley. This will give us the relative probability of % g . o R
the x mode being selected. =f EP(X,yf ,T10,0dT= —f div dT. (60)
0 0
VI. RESULTS

Integrating Eq.(60) over the “volume” {x=X,—ow<y;
The idea underlying the method we use to calculate the~>}. using the fact that aT=0 the end point is at the

relative probability of one of the states being selected is mos®rigin, and making use of the divergence theorem, we get

easily understood by first describing the analogous procedure . . .

used when carrying out Monte Carlo simulations. As was  |im f dyff dx p(x'yf,T|6,0):_j de 7-dS.

briefly alluded to in Sec. lll, for each run the particle starts at 1« J - X 0 S

the origin and subsequently follows the Langevin dynamics (61

of the reduced problem until it reaches: =X in one of the ) . )

X Va”eys Ory: +VY in one of they Va”eys_ We usedX The “Surface" |ntegra| on the I‘Ight-hand Slde Of E(ﬁl)

=5Xmin andY=5Y,, to be certain that state selection had only gives a contribution at= X, wheredS s in the direc-
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tion of the outward normal, i.e., in the negatixealirection.
Thus7-dS= — J,dy; and so the required probabilitB9) is
equal to Eq.(58).

Substituting Eq(57) into Eq.(58) and performing they;

integration yields
2aD 1/2 ’}/XZ -
— U2y |~~~ A —(a+B)T
F(X)=2a(aB) X( S, ) expl' Za]fo dTe

aX?
xXexp —

25 (cothaT—1)[1+0(D)]. (62

As remarked in Sec. V, ar@(y,?) corrections in the prefac-
tor give O(D) corrections to Eq(62), as doO(y?) correc-

tions to the action, which justifies their omission. The final

integral overy; also provides justification for the linear ap-
proximation. An examination aff,(X,y;,T) shows that this
function is effectively nonzero only for small values |gf|,
which get still smaller asX increases, so that unle$g|
<exp{—yX%2a}, the flux is essentially zero. Thus either the
conditional probability distribution or the conditional prob-
ability current resemble a thin wafer centered on xhexis
when plotted at fixed. Moreover, this wafer gets very much
thinner with increasingX. This means that the limits on the
y¢ integral in Eq.(58) are effectively +exp{—yX%2a},
which is tiny for largeX. It is more instructive to change
variables fromy; to yF =y; exp{yX%2a}, so that the integral
now has the range-1, 1). But, as discussed in Sec. 1V, this
means that Eq33) now reads

. ) - F{
exp —
Xmin

which has a magnitude less than 1 fed <yt <1. Thus the

ye(t)=Yy§ ( (63

PHYSICAL REVIEW E 64 026116

To perform the integration in Eq62), we (i) replace
(cothaT—1) by its largeT form, 2e~2<T (justified below,
and (i) change variables tg=(aX?/2D)e 2T, Then the
integral becomes

1

2a

2D

(a+B)2a
aXz)

fzdf g[(a+ﬁ)/2a]flef.f’ (64)
0

whereE = (aX?)/2D. The integral is an incomplete gamma
function: it equalsl'([ @+ B]/2«) plus exponentially small
corrections irD coming from the large, but finite, upper limit
E [27]. Neglecting these exponentially small terms, we
therefore obtain for the total flux through the positiveal-

ley at X
24D 12 X2
fx<X)=<aB>1’ZX(—Zy) exp[yz—a}
2D (a+pB)2a CY‘I‘IB

By using the approximation (cotil—1)~2e 2%, terms of
order. D~ le 21T (n=1 ) were neglected, but these
are of the order oD"¢"*! and give contributions that are
O(D) down on the leading terrt65). Similarly, any correc-
tions to the prefactor of orde T or e AT would also give
contributions that are down compared to E5). Once
again, we see that these final integrals justify approximations
that we made earlier.

The total flux given by Eq(65) depends orX, which is
still undetermined, apart from the requirement that it should
be greater than a feX,,,. However, if we investigate th¥
dependence of the expression in E§H), we find that asX
increases fronX,,,, it first decreases untX equals two or
three timesX,n, Where it reaches a constant value and sub-
sequently remains at this value Xs—«. Of course, this
constancy of the flux is exactly what we would expect: once

linearization procedure is justified. In some sense, the varithe system has selected the positivealley, it remains in

abley? is more appropriate in this problem thgnitself.

An examination of the integrand in E¢62) shows that is
has a maximum whef =T*=(2a) ~1In{a®}?/[(a+ B)D]},
which is slightly different from the value mentioned in Sec.

that state and so the flux should be conserved within the
valley, i.e., be the same for ak. We will denote this con-
stant value simply ag,; it is given by theX—oo limit of

Eq. (65):

IV. This is because that value came from the estimates of

Sec. Il and Appendix A, which used the value for the maxi-
mum that is found in the analogous one-dimensional stochas-

tic process inx(t). The more refined calculation we have
been discussing here has an additiosaf" contribution
coming from fluctuations iry(t) and fromJ, . It is the oc-
currence of this term in the integrand of E¢(62) that

changes the value at which the maximum occurs by this very

slight amount. From E¢62), we can also check the conjec-
ture made in Sec. IV that KX is greater than a few,;,, then
even the tails of the integrand will be at valuesTothat are

large enough for the approximations made in this paper to be
valid. A numerical investigation of the integrand shows that

it has typically already fallen by two orders of magnitude
from its maximum value forT satisfyinge T e #T<1
when X is larger than a fewX,, -

a+pB
2a

2’)/D Bl2a
=)

]-"X=2D(27T)1’2(aﬂ)1’2(

% —-1/2
XH dziﬁ’“)lez(ﬁ—az)z} [1+0(D)].
0
(66)

The integral in Eq(66) may be expressed in terms of gamma
functions: it equalsxBI'(B/«). Therefore,

(a+ﬁ

2yD
o2

[1+0(D)].
(67)

Bl
fXZZD(Z”)M( ) T (Bl
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The result(67) only depends on the four parametersg, v, a
andD, as we would expect. An exactly analogous calculation
of the total flux through thg valley atY gives the same form

=

but with o and 8 interchanged: 0.9
at+p 0.8
2yD\ «/%8 2B Ny
_ 172
fy ZD(27T) (BZ) [F(a/ﬁ):Il/Z[l_l—O(D)] 0.7
(68)

Throughout the analysis, we have ignored constant factor:
that multiply both the results coming from paths ending up in
the x valley and those ending up in tlyevalley. The reason T 1.5 > > 5 3
given was that eventually we would normalize the probabili-
ties of state selection and therefore common factors were FIG. 6. Probability of flowing into ax valley as a function o,
irrelevant. We are now at the point where we can impose thi¥/ith =1, y=1, andD=0.01. The dots show simulation results
normalization, but before doing so, let us put in the constangnd the full curve is our theoretical result g given by Eqs(72).
multiplying factor explicitly, and in doing so absorb the ad-
ditional factors of D(27)Y? that appear in Eqs67) and ~ Xmin 21dY s, respectively, in the reduced problem, the only
(68) into it. We therefore determine the final forms for the place wherey appears in the Langevin equation is multiply-

ok
o

total fluxes along the andy valleys as ing D. Thus the effect of the interaction, specified fayis to
renormalize the noise. This means that the probability of
atp either thex mode or of they mode being selected depends

only on the three quantities, 8, andyD. It is clear thatN,

F -
2’)/D Bl2a
Fx= ( 2 ) [F(E/a)]l,2[1+O(D)], (69 andN, given by Eqgs(72) have the right behavior in various

« limits. First of all, if «= B they are equal. Itx and 8 are not
approximately the same, the relative magnitude®pfand

a+
24D\ /28 2—’3'3 N, are largely governed by their dependence Dnif o
fy:/C( 72 [F(a/ﬂ)]l/z[lJrO(D)], (700 >p, theno>0, andN,=<1 while Ny<D“<1. A more de-
tailed comparison with the results of Monte Carlo simula-
whereK is the overall constant. tions is given in Fig. 6.

The relative probability of flowing into ax valley has The final resul(72) is in good, but not perfect, agreement
already been introduced in Sec. Ill. In terms of the totalwith simulations. We believe that the only restriction on our
fluxes, it is given by method is thatD should be small, so that the method of

steepest descent is appropriate. Bor 0.01, the neglect of
Fx O(D) corrections to Eqg69) and(70) should mean that our
NX:}‘XTf‘y' (7D resultis within approximately 1% of the simulation results. It

is not clear from an examination of Fig. 6 whether the slight
with Ny=1—N,. From Eqs.(69), (70), and(71), we obtain  discrepancy is due to th®(D) corrections or to additional
contributions that have not been accounted for. Since the

1 1 agreement is still not perfect for smallBr, we should take
Ny=——"—""+, Ny= —— (72 the latter explanation seriously and carry out a search to see
1+{(e,B)D” 1+{(B,a)D 7 if we can find such additional terms. A possible source is the
where following. We have conjectured that the solution of E@l)
and (25) that has the least action can be obtained first by
_ 29D o?— B2 finding the x.(t) solution withy.=0, and then linearizing
D=—+, o=—F+, about it. However, there are undoubtedly higher action solu-
ap 2ap3 tions of Eqs.(24) and(25) that have a nontrivial structure in
at B B\ 12 X andy,_that is, solutions that c_annot be obtaine(_j as a simple
(24 g)/2ap T _) F(—) expansion about thg=0 solution. In other applications of
e B)I(E) 2B @ the steepest-descent method, we would neglect these solu-
' B a+p a ' tions as they would give contributions that were exponen-
2w F(’E) tially smaller than the contributions from the least action

(73 solutions, and thus be completely negligible for small

However, in this problem, after integrating over the pre-
Equations(72) and (73) are the desired results. Note that viously exponentially small contribution becomes a power

the only place where the coupling constanénters is mul- law[see Eq(64)], or more preciselyD divided by a quantity
tiplying the noise strengtD. It is simple to see that this will related to the action of the solution, all raised to a power.
always be the case sincexfandy are measured in units of Although we do not know what power the higher action
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solutions will be raised to without further analysis, it is clearwhereAV is the height of the barriéto make the transition
that solutions to Eq924) and(25) with, for instance, twice from one potential well to another, and this is reflected in the
the action of the solution considered in this paper, have afact that the optimal paths are essentially of infinitely long
least the potential of changing our result by a not insignifi-duration T—o). In the problem studied in this paper, we
cant amount. Thus it appears that the neglect of higher actiogre focusing on phenomena on much shorter time scales, i.e.,
solutions, which is common in most problems involving op-the decay of a state with no barrier to a metastable state. Any
timal paths, may not be so well-founded in the situation thakhsequent procegsresumably a noise-activated escape to a
we are considering in this paper. different well of the kind we have just discusgedd of no
interest to us here. Actually, as explained in Sec. Il, we do
VII. CONCLUSIONS not even require that the end point of the optimal path be a
metastable state, but only that it lie somewhere in the valley
_ In this paper, we have presented the motivation, justificathat leads to the metastable state in the full problem. The
tion, and calculational details of a method for determiningqntimal paths in these cases are of finite duration. To achieve
the probabilities of various metastable states being selectgfls the initial velocity of the particle in the mechanical anal-

for occupation, when an unstable state decays. Although, 85, has to be nonzero at the origin. Asincreases, this
we hope we have made clear, this is a widespread phenorn]

. iitial velocity decreases, and eventually tends to zer® if
enon, theoretical progress seems to have been hampered b y y

lack of sufficiently powerful tools with which to attack the Ye?i'\c/ilzrt]o Ionffltl::;ybther details of the calculation involving ob-
problem. As a consequence, most studies were carried out y gop

some time ago on one-dimensional systeims quasi-one- imal paths turn out to be remarkably subtle. For example,

dimensional systemsYet, these are actually the systems ofth_e gse_of the reduced _p(_)tential simplifies the problem, b.Ut
least interest. The really interesting aspects of the problerfiliminating the actual minima means that we have to specify
arise in two or more dimensions, where the system can pefn arbitrary final value ok (if we are considering state se-
form Brownian motion near an unstable state, and then seledgction into the positivex valley), which we denote byX.
a final state through a mixture of randomnéasise and However, the probability of the positive valley being se-
dynamics (which will necessarily be nonlinear in all non- '€cted should not depend o6 as long asX has a value that
trivial cases. It is this interplay of randomness and determin-ies in the valley. Reassuringly, this is what we find in our
ism, both essential to the process, which makes the probleficulation, but it requires us to take into account yhee-
so difficult. pendence of the path for this “common-sense” condition to
Our main purpose in this paper has been to show hoWe observeq. In our earlier treatmeni, we sought to give
path-integral techniques, and especially the notion of optimaPn!y the outline of our method, and made the assumption that
paths, can be used to analyze this technically hard problertl€ total probability flux through a particular valley was pro-
In order to stress that relatively naive approaches are not abRPrtional to(a) its value on the axes, an@) its maximum
to capture much of the subtlety of this problem, we carried’@/Ue, which occurs atT=T*, the time for which
through what seemed to us the simplest approach to thB(X,0,0/0,0) is a maximum at a fixed. Within this scheme,
problem in two dimensions, and showed that it was not abléhere was no way of determining andY, and so we fixed
to give satisfactory results. Although the extent of the agreethem to our simulation results. The best values wre
ment with numerical work is always open to interpretation,= Xmi, andY=Y ,, in line with our expectations. However,
there were two features that signified that the naive methowe have found here that it is possible to get a form forythe
was defective. First there was no systematic way to proceecomponent of the optimal path only if we assume tKas
with the calculation; one was faced with ad hoc choices thasufficiently large—which comes from the requirement that
had to be made at several junctures in the calculation. Seenust be sufficiently large—and so settidg= X, and Y
ondly, the crude approximatigiiO) to the already unsystem- =~Y ., is not possible in the approach we have adopted here.
atic result(12) actually gives better agreement with simula- Needless to say, we expect that if we were able to find the
tions than Eq(12) itself, which indicates the dubious nature full solution for the optimum path, then we would not need
of these results. It should also be borne in mind that thdo constrainX or Y to be large: the expressions for the fluxes
prediction thatN,=3 when a= g is assured by symmetry 7y and F, would be valid for all X=X, and for all'Y
and that in almost all schemé§—1 asa gets very much =Y ,,. Presumably the fact th&f, decreases from its value
larger thang, simply because the noise will have very little at X=X, and only becomes constant wheérquals a few
effect in this case. If we add to this the expectation thatX,,, is not due to a violation of flux conservatidihis
N, () will be a smooth function, we see that even the sim-would necessitate some flux leakage, and it is difficult to see
plest approximation cannot be expected to be too far outwhere it would go t® but instead to the inapplicability of
These observations indicate that we should focus more oaur calculational scheme for sma] which simply gives the
the systematicgor lack thereof of the calculation, rather incorrect expression faFy . It should be stressed that this is
than getting perfect agreement with simulation data. not a problem for our method: we simply taKeandY large
The nature of the optimal paths used in the treatment preenough so thatF, and F,, respectively, do tend to
sented here is different from those in the more familiar prob-asymptotic values. These are the required values and are
lem of escape from one potential well to the other. In thatthose that we use in our determinationMf andN, .
situation, it takes an exponentially large tirhexp@V/D), An even more subtle aspect of the calculation concerns
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the applicability of the linear approximation in determining stable mode becomes unstable, is responsible for much of the
they component of the optimal path. Although at first sight emergent order found in systems far from equilibrium. The
y.(t) is not small for largeX, it turns out that the range of continual branching to more complex structures that this en-
final values ofy.(t), denoted byy;, decreases so fast s  tails [30] is not only governed by the dynamics of the pro-
increases that the smali(t) approximation is still valid. Put cess but also by the random fluctuations, or noise, generated
more intuitively, if T is large, the path has to take a wide Py the large number of other degrees of freedom of the sys-
detour to largey if it is to take a sufficiently long time to €M not explicitly included in the description. The model that
reach ,y;) (recall thatT is fixed for these paths But we havg |nvest|gat_ed in this paper is, as has already begn
“large y* means large relative to((T)=y;, and, as dis- emphasized, the S|_mplest, showing enough of the compli-
cussed earlier, the curregt(X,y; ,T) is effectively nonzero cated features of this process of state selection to serve as an

only for tiny values of|y;|. So while it is true that on the illustrative example of our method. In forthcoming papers,

le ofv. th . f th timal path dd we will show how the method can be applied to more com-
scale oly; the excursions ot the optimal path sprea eeppIex examples, such as state selection in lasers and the study
into the plane, in fact the range gf is so minute that the

! =k ] _ _ of population dynamics in a fluctuating environment. We be-
linearization assumption remains valid. The result that thgieye that the ideas and techniques developed here will not
probabllhty is so concgntrated about the_ axes is used in othgjly pe applicable to these situations, but to many others
places in the calculation. For example, in Sec. VI we arguegyhere multiple states compete for occupation.

that the “volume” integral in Eq.(60) could be replaced by

the “surface” integral in Eq(61), and then we proceeded to ACKNOWLEDGMENTS

ignore some of the contributions from the “surfaces” in the

latter integral. We specified the volume in the case of the A.M. wishes to thank the Department of Physics at the
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x=X. Actually, this is not quite correct, since we need tothis work was carried out, for hospitality, and EPSRC for
define a similar volume for thg valleys, and these will financial support under Grant No. K/79307. M.T. gratefully
overlap in the sectors wheseandy are both large. We can acknowledges support from the MRSEC program of the NSF
be reasonably vague about how precisely to define these voinder Contract No. DMR 9808595.

umes and surfaces simply becauge(and 7,) fall away so

fast that they have an utterly negligible contribution however APPENDIX A

we define them. In any reasonable definition, the only con-

i'l;(ml\?gr;%l?sz ?(;thfﬁ;ea;(ri];egre(Bl) will be on the linex ementary theory put forward at the end of Sec. Ill. We will
We believe that one of the best indicators of the correct-Obtaln S|r_nple EXpressions for the probability that the particle

ness of our approach is the cancelation of the various factor:slr:gjlgt?o:ﬂ'ns?I?(Svggeﬁ’l which are compared to Monte Carlo

of X coming from several different sources(a) the fluctua- S . : L

tions about they(t) solution, (b) the action of they(t) We begin with the first ingredient in this simple theory.

. . ; . Since y=0, we have only to solve the Langevin equations
solution(after integration oveys), (c) the action of thex(t) o o .
solution (after integration oveil), and(d) the definition of )a(\l;v gX:bZX(stgl\?:c?g;aﬁ t)ll+giyrgctx)e.ar1sduc;2rgnlfnéga$|r O?éi:t]; dctin
the current in terms of the probability distribution. What re- Y - y y

mains after these cancellations is essentially independent & and 5, they are also Gaussian random variables. It is

X, as would intuitively be expected. As we have repeatedlfasy to show thafx(t)) =(y(t))=0 and therefore the prob-

stressed, many of these contributions come from assumingtglr'g dtg?ttr;[gEi)rpa:;“gtet':iei(())(,y)s at ime t, given that it
that T is large. This seems somewhat paradoxical, since w gl ! !

would expect that state selection is determined at earlier

times. This can be understood if one realizes that the [drge P(x,y,t|0,0,0)=J\/exp{

calculation determines the normalization of the flux in Eq.

(65), or equivalently, the quantity(«,B) in Egs. (72). To

obtain a finiteX—cc limit, it is essential to include a non- \yhere A/ is a normalization constant. For later use we wil

trivial y.(t) optimal path in the analysis. If the optimal path 3,50 need

is taken to bey.(t)=0, then only theD factor in Eqs.(72)

is determined. This was essentially the approach we adopted

in our earlier papefl]. While we believe that the treatment

given here is a great improvement on that reported in Ref.

[1], there is certainly room for further improvement. For in-  To quantify the second ingredient, first suppose that the

stance, the linearization approximation seems very reasomoordinates of the particléx,y) are in the first quadrant. If

able on physical grounds, but it would be useful to put it onthe angle it makes with the positiveaxis, tan }(y/x), is less

a sounder mathematical footing. A deeper understanding dhan tan *(Y,,/Xmin), then according to our criterion, it goes

the origin of the small scale set by expgX?«) would also  into thex valley. Since the tan function is monotonic in the

be valuable. interval (0, 7/2), and generalizing to other quadrants by us-
The competition between new modes, when a previouslyng |x| and|y| rather tharnx andy, the criterion becomes

In this appendix, we explore the consequences of the el-

2 2

X y

S 203%(0) 2(yA(1))”
(A1)

(Xz(t)>=%(ez“t—1), <y2(t)>=%(92[“—1)- (A2)
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x| 1yl . 2 2
> =particle chooses valley, (A3) Ny=—tan [«(t)], Ny=—tan [« *(t)], (All)
Xmin Ymin ™ ™
vyl IX where we have used the result Taw)+tan Y(1w) = /2.
V> __—Particle choosey valley. (Ad) If (x3(1))>(yA(t)) or (y?(t))>(x2(t)), which can happen
min min

These ingredients can now be put together. The questio
reduces to how often the particle is in the sector specified by
(A3) at a given timet and how often it is in the sector
specified by(A4) at this time. This probability is found by
integrating Eq.(A1) over allx and ally with the constraint
that it satisfies eithefA3) or (A4) depending on whether we
want the probability of ending up in the or y valley. Re-
stricting ourselves to the positive quadrant, which we cal
obviously do on symmetry grounds, the probabilities of end-

ing up in anx valley, N,, and in ay valley, Ny, are

« AX X y?
Ny= 4N fo dxfo dyex"l’ T 20y 2<y2<t>>]’

even whena and B8 are not too different, we may replace
Egs.(All) by a simpler form, which resembles Eq#10),

but with constants multiplying the exponentials.

The simple resultA10) does not depend on the parameter
v, which represents the nonlinear part of the potential, or on
the noise strengti). This is also true of EqgAll) if we
ignore the factor 1 compared to the exponentials in Egs.
(A2). To understand this, let us suppose that 8. From
Egs. (A10) or (Al1l), we see that whehis small, although
Iﬁ{here is a slight bias in favor of thevalley over they valley,

it is not that marked. However, asncreases, the asymmetry
becomes more marked, until at large times the particle has
only a very small chance of being in tlyezalley. We need to
simulate the role that the saddle points play in state selection
by choosing the time to have the valiye which is the time

(A5)  at which it is most likely that the andy coordinates of the

2

% Aly X v’
Ny:4Nfo dyfo dxexp{ T2y 2<y2<t>>]'

particle will have magnitudeX,,, and Y, respectively.

This is implemented by requiring thaix?(t))=X2.. or

(y?(to))=Y?2... Note that we have used the word “or,” since

(AB6) only one relation is required to determimg, and the two

relations given yield incompatible values fog unless «

Where the faCtor 4 comes from inCIUding the Contl’ibutionS: B Once again’ as is common in many aspects Of the naive
from the other quadrants and=Yyin/Xmin. In the N, inte-  approach to state selection that we have been summarizing in
gral, change variables fromto z, wherey=»Axz at fixedX.  thjs appendix, there is a considerable degree of arbitrariness

Thex integral can now be easily performed, giving

min

_ /\/Y ) 1 dz
N NG00 [

where

CNE(D) Y inXA(D)
Y)Y XEYA(D)

k(1)

In a similar way,

in the choice ot.. We will assume that foox> 8, when the
particle is most likely to go into the valley, t. is determined

(A7) from the condition on(x?(t.)) and vice versa. Then from

Egs.(A2),
1 D
s

5 ) a=B, (A12)

(A8) which has the characteristic formln D asD—0.

If we substitute Eq(A12) into Egs.(A10), we obtain the
probability of ending up in am valley. In terms of the quan-

tities
Xmin 2 1 dz D _
_ A Y (a—p)

Ny 4NYmin<y (t)>JO 1+K72(t)22 . (Ag) D= ﬁ and p= p y (A].S)
From Egs(A2), we see that ix and 8 are not very different we obtain
from each other, ther(t) will be neither very large nor very
small, and we can ignore the integrals in E@s?7) and(A9) 1
as a first approximation. Then determiningby asking that Ny= 1+|5p' (A14)

N+ N, =1 and ignoring the factor 1 compared to the expo-

nentials in Eqs(A2) yields

e2at @28t

Nx:—eZat+62ﬁt' Ny:—ezat+ezﬁt-

(A10)

If we substitute Eq(A12) into Egs.(Al1l), we obtain the
more general form

2 .
NX:;tan—lo—P. (A15)

There are several simple arguments that give formulas re-
sembling this. It is not difficult to improve on this by includ-  EquationgA14) and(A15) are the principal results of this
ing the integrals in Eqs(A7) and (A9). Once again deter- appendix. The two main points we wish to makgijstheir

mining A/ by normalization gives

derivation is somewhat arbitrarfthere are several other
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similar assumptions we could make that would give usbelow. However, let us first present a quick argument, which
slightly different formulag, and(ii) although, as is discussed gives us the correct final result.

in Sec. I, they show the right qualitative features, they are For t near t,,y-(t)~Ae’'/2. Also from Egs. (B4),

not in good agreement with Monte Carlo simulations. Thus ay- (t) =ef'e”??f(z), and sincez,,<1, it follows that fort
more systematic and sophisticated theory is required. This iseart,,,y- (t)~ef'f(z). To get a smooth match, we require

given in Secs. 1V, V, and VI of the paper.

APPENDIX B

f(z) to be a constan#\/2, for values ofz nearz,,. Looking
now at Eq.(B6), we see that the first term is constant, but the
second term changes very quickly in the snzategime,
since it diverges in the— 0 limit. We therefore takés=0 to

The purpose of this appendix is to explore the solution Ofget a smooth match, which in turn gives= A/2. Therefore,

Eqg. (30), wherex(t) is given by Eq.(31) and wherey(0)
=0 andy(T)=y;s. Throughout, we will assume that is
large in the sense that “"<1 ande #T<1, which will
allow us to obtain a rather simple form for the solution.

Small t solution Let {=X?cosecRaT. Sincee *T<1,
{<1. Therefore, Eq(30) becomes

y=y{B?—2{y(a+ B)sint? at+O({?)}.

We look for a solution of Eq(B1) as a power series it
y(O=Yo(t) +y1(1){+0(L?).

Clearly the zeroth-order solution that satisfig€)=0 is

(B1)

(B2)

yo(t)=Asinhgt, where A is an arbitrary constant. It is
straightforward to determing,(t), but since a short analysis

shows thaty,(t) {<y,(t) for all t=T/2, we conclude that it
is sufficient to take the smallof the solution of Eq(30)—
which we denote by _—to be

y-(t)=Asinhgt, t<t,. (B3)

Large t solution In this regime, botre *T<1 ande™

<1, and thereforec(t) andxZ(t) may be approximated by
respectively. Using these

X2e—2a(T—t) and X4e—4a(T—t)’
forms in Eq.(30) and making the change of variables

2

7= % e—Za(T—t), f= eZ/ZZ_B/ZHy, (B4)

we find thatf(z) satisfies the equation

d?f df (at+p)

Zd—zz+(V—Z)d—Z— , V= p . (B5)

This equation is easily solved to give

7X2/a _
f(z)=,4+8f dz zZ Ve, (B6)

z

2

A yX
— _ bt _ T A 2a(T-1)
y~ (1) 5 e exp[ 5 e ] t>t,. (B7)

Having matched EqB3) and Eq.(B7) neart,,,, we can now
fix the constantA from the boundary conditioy(T)=y;.
Doing this gives us the forni32).

Let us briefly indicate how we arrive at this result in a
more systematic fashion. We can choose to either match
{f(2),f'(2)} atz=z, or {y(t),y(t)} att=t,,. They are re-
lated by

e Ply(t)=e ??f(2), (B8)
y(t f/
;%=,8—a2+2a2 f((zz)) (B9)

Now, by successive integration by parts, we can obtain an
approximation to the integral in E¢B6) valid for smallz
For our purposes we need retain only the first term:

Z*VJrl z
f(z)=~A+B P Z~Z,. (B10)
Therefore, to leading order,
az, Pleg?m
fo(zm)=A+tB—F7—,
B
(B11)

fL(2) = — Bemz,, (A

On the other hand,y_(t,)=(A/2)ef'm and y_(t,)
=(BA/2)e’'m. So from Eqs(B8) and(B9),

A Zml2 ’ A Z/2
f<(zm):§em ) f<(zm):Zem - (B12)

Matching Eqgs.(B11) and(B12) gives

where A and B are arbitrary constants and where the upper

limit of the z integral has been arbitrarily chosen to be the

value thatz takes on whenn=T.

We now have to match E@B6) to Eq.(B3) att=t,. It
will turn out that we do not have to specify, precisely, but
let us assume for now that it has the vall®. Then the
corresponding value df,z,,, is seen from Eqs(B4) to be

very small. Formally the matching procedure consists of
equating bothy(t,,) andy(t,,) for the solutions in the large
and small time regimes. We will carry out this procedure

A A
A=5[1+0(zw)],  B= 7z #'*[1+0(zq)].

2
(B13)
Substituting Eqs(B13) into Eq. (B6), we obtain
A 2/
fo(2)= E: 1—z§,§"+ﬁ)/”fzyx dz 2eTPPez|
(B14)

026116-17



ALAN McKANE AND MARTIN TARLIE PHYSICAL REVIEW E 64 026116

Clearly for values ofz that are not small, the second term is Using Eq.(32) and changing variables frotrto z [given by
completely negligible and sb. (z) ~A/2 to a very good ap- Egs.(B4)], one finds
proximation. However, even for values nfnear toz,, we
can neglect this term; it gives a contribution thaQ¢z,,). O a Al 28T
Therefore, once again, we obtain Eg§7). 5 Jtmdtyc(t)_ 16a | yx2) €

In determining the form of/(t), we have implicitly as-
sumed that the solution of least action is such )+ 0
for t#0. However, there are other solutions of the type
y(t)=0 for t<t; (wheret;<T) and a nontrivial solution of
Eq. (30), wherex(t) is given by Eq.(31) and wherey(t;) (B17)
=0 andy(T)=ys, for t=t,. Intuitively, we would expect
that the solution witti; =0, which is the one found above, is
the solution of least action, and all those witji>0 have
greater action. This is due to the fact that, especially for large

2

PXCla o)~ 1.2 2

X dz A9~ e 2(B— az)?.
Zm

The range of the integral in EqB17) may be taken as
(0,yX?/ ) as long as we subtract out

t,, the path will have to curve away sharply from thexis fzmdz 2P0~ 1e7 2 B— qz)?= aﬁzﬁ’“[1+0(zm)].

if it is to satisfy the condition at=T. We have checked this 0

by numerically solving the differential equatid®0) for y(t) (B19)
with differentt, values, and found that the action monotoni- o ) ) )

cally increases with, . The upper limit in the integral in EqB17) is O(1), and

Let us end by outlining the evaluation of the classicaltherefore the integral itself is al€d(1). Therefore, the con-

action (34). To evaluateE, we choose to take=0, since in tribution (B18) is negligible compared to it, and so we may
this case U=0. Also V|,_o=0 and V|_i=—taX? effectively replace the lower limit of the integral in Eq.

+1v2roX2— 1. (B17) by zero. The third term in EqB16) being linear in
2YilyX"~ Bl. Therefore, (T—t,,) is negligible compared with the second term, which
1 (T 1 1 is exponential in Bt,,. This term is in turn negligible com-
Se={= f dtsxd—=x3 T-=aX?
2 Jo 47c _, 4
1T 1.
+{§ fo dtye— 7 Ve

pared to Eq(B17), sincee 2T~ tm<1. So the leading con-
tribution to Eq.(B17) is

1
T+—y$[yx2—ﬂ]}. 1 A2 [ o\l
4 -2 2_

(B15) )
2pT | YX ) —1a—20 a2
The first bracket on the right-hand side of EB15) xe? Jo dz 2P/ e % (B—az)®.
is easily evaluated from(t) given by Eq.(31). One finds
(aX?/4)(cotheT—1). The second bracket requires a little (B19
more calculation, sincg.(t) has a different functional form o )
depending on whether is less than, or greater thaty,. Substituting the value oA determined from the boundary
Substituting the form fot<t,, first of all gives for the sec- conditiony(T) =y into Eq.(B19), the classical actioB15)
ond bracket becomes
L Td'2 A2'B'h A2,32 S ot thaT 1+:L2 X2 erf2 a |
zftm tye+ —g—sinh 2Bty — ——(T—tw) = (cothaT—1)+ 2 yil yX*= g1+ X2
1 YX?| [ yx¥a .
+ 7 Vilv2=51. (B16) xexp,'T] JO dz2#9 le ¥ g-az)®  (B20)
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