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Unstable decay and state selection
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The decay of unstable states when several metastable states are available for occupation is investigated using
path-integral techniques. Specifically, a method is described that enables the probabilities with which the
metastable states are occupied to be calculated by finding optimal paths, and fluctuations about them, in the
weak-noise limit. The method is illustrated on a system described by two coupled Langevin equations, which
are found in the study of instabilities in fluid dynamics and superconductivity. The problem involves a subtle
interplay between nonlinearities and noise, and a naive approximation scheme that does not take this into
account is shown to be unsatisfactory. The use of optimal paths is briefly reviewed and then applied to finding
the conditional probability of ending up in one of the metastable states, having begun in the unstable state.
There are several aspects of the calculation that distinguish it from most others involving optimal paths:~i! the
paths do not begin and end on an attractor, and moreover, the final point is to a large extent arbitrary,~ii ! the
interplay between the fluctuations and the leading-order contribution are at the heart of the method, and~iii ! the
final result involves quantities that are not exponentially small in the noise strength. This final result, which
gives the probability of a particular state being selected in terms of the parameters of the dynamics, is
remarkably simple and agrees well with the results of numerical simulations. The method should be applicable
to similar problems in a number of other areas, such as state selection in lasers, activationless chemical
reactions, and population dynamics in fluctuating environments.
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I. INTRODUCTION

The decay of metastable states, due to thermal or o
random fluctuations, is a phenomenon seen in many div
areas of science, and consequently has a huge literatur
sociated with it. In the simplest cases, where a potential
be defined and the states assigned a particular value of
potential, the decay process can be viewed as noise ac
tion over the potential barriers that separate the metast
state under consideration from all of the other access
metastable states of the system. The average time take
escape from a potential well~i.e., for the state to decay! is of
the order of exp(DV/D), whereDV is the height of the barrie
to be surmounted andD is the strength of the noise. Thus th
picture we have in this case is of a set of metastable sta
with transitions between them that occur with probabilit
that depend on the nature of the potential between the s
and on the strength of the noise.

In contrast, the decay of unstable states, although a s
larly widespread phenomenon, has been studied much
In terms of the above picture, the system starts at or ne
maximum of the potential and makes transitions to the
cessible metastable states of the system with various p
abilities, which, as before, depend on the nature of the
tential between the unstable and metastable states and o
noise. In an earlier paper@1#, we introduced a scheme tha
enabled us to calculate the probabilities with which the va
ous metastable states are selected. Our aim here is to e
this work by giving a fuller presentation of the ideas a
techniques involved, justifying some of the earlier appro
mations that were made and discussing the link with r
systems in more detail.

The phenomenon of the selection of metastable st
1063-651X/2001/64~2!/026116~19!/$20.00 64 0261
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from states that have become unstable is at the heart of
tern formation and the origin of complex structures, with t
selection of nontrivial states being governed partly by
deterministic dynamics and partly by the noise acting on
system. Thus the picture painted above, while a simplifi
version of this general scenario, contains many of its ess
tial features. In fact, the above structure can be derived fr
the equations describing the entire system by focusing on
unstable modes and the modes that have the potential t
selected, and treating all of the other modes as backgro
noise. The resulting dynamics then comprises a small n
ber of coupled ordinary differential equations acted on
noise. If this flow is potential, then the above picture is
covered; if not, our techniques are still applicable, but
becomes more difficult to visualize.

State selection of the kind we have been describing
ubiquitous. In fluid dynamics, it appears when Rayleig
Bénard convection rolls of a given wave number are form
after the decay of unstable ones. A set of equations desc
ing the nonlinear coupling between parallel rolls of differe
wave numbers may be derived@2#, and when the effects o
the other modes are incorporated@3#, a set of coupled sto-
chastic differential equations of the kind mentioned above
generated. In superconductivity, exactly the same equat
as in the above example govern state selection in, for
ample, narrow superconducting rings. This is simply beca
the amplitude equation that governs the instabilities in
fluid dynamics example is merely the Ginzburg-Land
equation for a superconductor@4#. A mode truncation then
gives exactly the same set of coupled differential equati
acted upon by noise@5#. In chemical kinetics, it has becom
clear in the past decade or two that there are many impor
chemical reactions in which a barrier to the formation of
©2001 The American Physical Society16-1
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ALAN McKANE AND MARTIN TARLIE PHYSICAL REVIEW E 64 026116
excited state is not present. Examples of these activation
reactions @6# are the electronic relaxation of tripheny
methane dyes and barrierless electron transfer in solu
The potential discussed above is a reaction potential-en
surface in this case@7#. In lasers, such as the ring dye las
@8#, decay of an unstable mode to metastable ones can o
under the right operating conditions. The coordinates in
case are the mode amplitudes, and Langevin-type equa
are derived within the semiclassical theory of the laser@9#. In
population dynamics, the Gause model of two compet
species@10# again falls into this class. When the competitio
is played out with a fluctuating environment, the resulti
stochastic differential equations once again fall into the
neric class that we have been discussing@11#. It should, how-
ever, be noted that in this case there is no potential
moreover the noise is multiplicative.

Although many of these phenomena have been known
some time, the investigation of the state-selection aspect
been hampered by the lack of a suitable calculational too
the case where a potentialV exists, the noise is additive an
only two modes,x andy, are considered, the equations ta
the form

ẋ52
]V

]x
1hx~ t !,

~1!

ẏ52
]V

]y
1hy~ t !,

wherehx andhy are white noises of strengthD. But even in
this, the simplest nontrivial case, these equations are diffi
to study mainly because, as we shall discuss later, in
region where state selection occurs, the coupled nature o
equations, their nonlinearity, and the noise, are all import
However, as we have shown@1#, there is a method that ca
take all these aspects into account, and that is the p
integral formulation of stochastic dynamics. This meth
succeeds where others fail because the equations can be
resented as a path integralwithout approximation; systematic
approximation techniques for path integrals developed o
the years can then be used as the basis of a calculat
scheme.

Most of the previous theoretical work on this problem h
been limited to systems with one degree of freedom, g
erned by the single equationẋ52V8(x)1h(t), because
many of the complexities mentioned above are not presen
this one-dimensional case. Suzuki and co-workers develo
a theory for the decay of an unstable state in one dimen
in a series of papers@12#, as did a number of other autho
@13–19#. However, the one-dimensional theory, althou
much easier to deal with, has none of the subtleties inhe
in state selection in higher dimensions: the decay is sim
either to the right or to the left. Some studies@20–22# pur-
ported to go beyond one dimension, but in fact conside
spherically symmetric potentials, so that the problem co
be reduced to a quasi-one-dimensional problem in the ra
coordinate. Once again, the resultant structure is not
enough to address the question of state selection. Othe
proaches, such as replacing the stochastic differential e
02611
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tions by the corresponding deterministic equations, but w
random initial conditions@23#, are unsatisfactory in othe
ways. Probably the investigation nearest to our own has b
by Mangel @24#, however his main interest was not sta
selection.

The plan of the paper is as follows. In Sec. II, we discu
the assumptions underlying the picture of state selection
we have outlined and introduce a generic model that we
to describe our calculational scheme in detail. An import
aspect of our method is the realization that, typically, a st
is selected well before the system reaches this chosen s
This fact is used to simplify the problem in Sec. III, where
is also shown that naive calculational prescriptions, based
linearization of the initial dynamics, fail. A more systemat
approach based on path-integral techniques is introduce
Sec. IV and the relevant optimal path is determined. T
gives the leading-order contribution in the limitD→0. The
next-to-leading-order contributions are determined in Sec
The results of this analytic approach are given and compa
to Monte Carlo simulations in Sec. VI and our conclusio
are presented in Sec. VII. There are two Appendices. App
dix A describes some of the elementary approaches descr
in Sec. III in more detail. Appendix B contains technic
aspects relating to the determination of they coordinate of
the optimal path and the calculation of the action of th
path.

II. GENERAL CONCEPTS

We have already given several examples of situati
where state selection, following the decay of an unsta
state, occurs. In this section, we will explore the differe
ways in which the initial state of the system could arise, t
is, the origin of the unstable state, and give an intuitive
scription of the decay and subsequent state selection, w
will form the basis of our analytical approach.

An unstable state may arise by mechanisms that are e
nonadiabatic or adiabatic. In the nonadiabatic case, the
tem, in an initially~meta!stable state, is transported very ra
idly to an unstable state. The time scale for the transit
from the stable to unstable state is much more rapid than
characteristic time scale defining the natural dynamics of
system. In this context, the transition from the stable to
unstable state can be ignored and we simply characterize
system as having been prepared in an unstable state.
amples of this type were mentioned in Sec. I and inclu
chemical reactions with no activation barrier and populat
dynamics in a fluctuating environment. Quasi-on
dimensional superconductors@5# are another example. In th
case of the chemical reactions, an ultrafast light pulse~a
femtosecond laser! pumps molecules into an excited state.
terms of potential surfaces, the molecules are initialized in
unstable state on the reactive surface. The subsequent
tion can be viewed as a nuclear rearrangement on this r
tive potential-energy surface. The evolution of the reacti
that is, the relative preponderance of reactants and prod
can be studied using other ultrafast lasers. In the popula
dynamics example, the population is initialized so as to c
sist of only a few individuals of each species. During t
6-2
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UNSTABLE DECAY AND STATE SELECTION PHYSICAL REVIEW E64 026116
initial period, the populations of both species grow expon
tially, independently of the other, until competition drives t
population of one of the species to zero.

In the adiabatic case, an unstable state may arise wh
~meta!stable state is transported through the instability ove
time scale that is slow compared to the time scale charac
izing the natural dynamics of the system. An example of t
process is provided by a quasi-one-dimensional super
ductor as studied in Ref.@25#. In this case, the system i
driven by a voltage source that accelerates the supercur
However, this acceleration cannot continue indefinitely a
the system becomes unstable, a situation associated wit
critical current of the superconductor. Once unstable, the
laxation process occurs via ‘‘phase slips’’ in which spatia
localized regions of the wire temporarily lose their superc
ducting properties and carry ‘‘normal,’’ i.e., nonsuperco
ducting, current. This process dissipates the excess en
and the system relaxes back to a locally stable state. M
scopic wires, i.e., wires that are not in the thermodynam
limit, have a finite number of discrete metastable station
current-carrying states. State selection in this case is cha
terized by the competition between these metastable cur
carrying states. The superconductivity instability describ
above is an example of the Eckhaus instability.

Eckhaus instabilities arise in many physical systems
addition to quasi-one-dimensional superconductors, inc
ing fluids, nematic liquid crystals, and lasers. In these s
tems, stationary one-dimensional periodic patterns are st
for a range of wave vectors,Q. For instance, in the case o
the common Eckhaus instability, stationary solutions ex
for Q2,1, but are only stable ifQ2, 1

3 . By changing the
control parameter slightly,Q states withQ2, 1

3 may be
shifted into the unstableQ2. 1

3 regime. The essential fea
tures of the subsequent changes that follow from this may
understood by performing a mode decomposition of the
evant amplitude equation and keeping only the previou
stable mode and the destabilizing modes with the larg
growth rates@5#. An adiabatic elimination of the unstabl
mode then leaves us with coupled ordinary differential eq
tions for the amplitudes of the destabilizing modes. T
adiabatic assumption is equivalent to assuming that the f
of these differential equations does not change on the t
scale of state selection, i.e., in the time taken for one of
destabilizing modes to outcompete the others@25#.

An obvious question that now arises is the following: ho
do we know that the system is initialized in a state where
amplitudes of the competing modes, final products, etc.
zero? Or expressed in the topographical terminology of S
I, how do we know that we begin exactly at the top of t
hill? Here we are assuming that the small nonzero amplitu
required to initiate the growth, is induced by fluctuation
i.e., by the noise. Once again, there are several possibili
It may be that in every realization of the stochastic proc
the system starts near, but not necessarily at, the origin
long as there is no bias favoring any one of the compe
modes, an average over many realizations of the process
give the same results as if the system had started at the o
in each case. Alternatively, the initial probability distributio
may be so sharply peaked about the origin that any sm
02611
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initial bias is irrelevant to the ultimate choice of state ma
by the system. Yet another possibility is that it is just n
possible to start exactly at the origin~the example taken from
population dynamics is an illustration of this!. In these cases
the sensitivity of the final result to changes in the init
starting point will have to be carefully investigated. In add
tion to all of these specific reasons, on general grounds
ginning at the origin seems very natural, since it simp
means that none of the final products or final modes
initially present.

Since there appear to be good reasons to initialize
system at the origin in many cases, it will be assumed in
subsequent theoretical development. In all of the examp
given in Sec. I, the competing modes grow exponentially
an initial period, without any significant interaction wit
each other. This corresponds to a linear growth law of
form ẋl5a lxl , wherexl is the amplitude anda l the growth
rate of thel th mode. Clearly, the main interest from a sta
selection point of view is in the nature of the nonlinear i
teraction terms between the modes. Since the purpose of
paper is to give a clear and intuitive introduction to our c
culational scheme, we shall choose to illustrate our met
using an example in which only two competing modes
present, and where the interaction terms may be derived f
a potential. In other words, the governing equations will ha
the form ~1!. Obviously, two is the minimum number o
modes we need in order to discuss state selection, but ha
only two modes moving on a potential surface has the
vantage that we can describe our method using the picto
language of ‘‘hills and valleys,’’ which we have alread
adopted on several occasions. Furthermore, since as we
already mentioned, the equations derived in both the fl
dynamics and superconductivity examples are identical@2,5#,
we will work with these. They are

ẋ5ax2gxy22dx31hx~ t !, ~2!

ẏ5by2gyx22ey31hy~ t !, ~3!

where x and y are the two competing modes with grow
ratesa andb, respectively. All five parameters characterizin
the model~a, b, g, d, ande! are assumed to be positive. Th
noise termshx(t) and hy(t) are taken to be Gaussian ra
dom variables with zero mean and

^h i~ t !h j~ t8!&52Dd~ t2t8!, ~4!

where i and j are eitherx or y and D is the noise strength
Equations~2! and ~3! fall into the class of those given b
Eqs.~1!, since they are derivable from the potential

V~x,y!52
a

2
x22

b

2
y21

g

2
x2y21

d

4
x41

e

4
y4. ~5!

We wish, however, to stress that the method is not restric
to systems with only two modes, nor is the existence o
potential a prerequisite. This will become clear as the met
is explored in subsequent sections.

It is interesting to note that the simple generalization
the model in which the strengths of the noisesh1(t) and
6-3
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ALAN McKANE AND MARTIN TARLIE PHYSICAL REVIEW E 64 026116
h2(t) are both of the same order, but not equal, already le
to a more complicated situation. If we suppose that
strengths of these noises areD1 and D2 , respectively, then
we may introducez i(t), i 51,2 such that the correlatio
function of these new noise terms is exactly Eq.~4!, by writ-
ing h i(t)5r i

1/2z i(t), where ther i are constants given b
Di5r iD. This rescaling of the noise may, in turn, be elim
nated from Eqs.~2! and ~3! by rescalingx(t) and y(t) by
defining new variablesx1 and x2 via x(t)5r1

1/2x1(t) and
y(t)5r2

1/2x2(t). New constants replacingd ande that absorb
this change of scale can easily be defined, but the interac
termsgxy2 andgyx2 becomeg12x1x2

2 andg21x2x1
2, respec-

tively, with g12Þg21. Equations such as this are not deri
able from a potential, nevertheless minor modications of
method are applicable to this case.

The potentialV(x,y) for a particular choice of paramete
is shown in Fig. 1~a!.

Before discussing the dynamics of the system, we hav
identify the extrema of the potential. These are given by
intersection of the two sets of curves]V/]x50 and]V/]y
50 or, explicitly, by the intersection of$x50, dx21gy2

5a% and $y50, gx21ey25b%. These two ellipses, alon
with thex andy axes, are shown in Fig. 1~b!. By comparing
Figs. 1~a! and 1~b!, we see that there is~i! a maximum at the
origin ~denoted by a filled circle!, ~ii ! four minima at the
intersection of the ellipses and the axes~denoted by open
circles!, and~iii ! four saddle points at the intersection of th
two ellipses~denoted by crosses!. The precise positions o
these extrema are

FIG. 1. ~a! Illustrative plot ofV(x,y) with a5b52, g54, and
d5e5

1
5 . ~b! Contours of zero force.
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~x,y!5X6S a

d D 1/2

,0C,
~x,y!5X0,6S b

e D 1/2C for the minima, ~6!

~x,y!5
1

Ag22de
~6Abg2ae,6Aag2bd!

for the saddles.~7!

In fact, there are some conditions that need to be impose
the parameters of the model if saddle points are to ex
These are thatag2bd, bg2ae, and g22de should all
have the same sign. Since we will normally assume that
stability parametersd ande, which ensure that the potentia
is bounded below, are small, we will takebg.ae andag
.bd, which implies thatg2.de.

The dynamics given by Eqs.~1!, ~4!, and~5! is equivalent
to an overdamped particle moving on the potential surf
shown in Fig. 1~a! and that is also acted upon by white nois
In a typical realization, the particle will begin at the max
mum and perform a random walk that is in the vicinity of th
origin at early times, but that eventually explores an e
larger region. Eventually, the particle gets far enough fr
the origin that the deterministic dynamics, specified byV,
begins to have a significant impact and the particle acce
ates down towards the saddles and the minima. In this pa
our main concern is state selection: we are not concer
with the approach the particle makes to a particular m
mum, since by this stage this minimum will almost certain
be the selected state. For this not to be so, the particle w
have to hop over a barrier— an extraordinarily rare event
fact, as is clear from Fig. 1~a!, as soon as the particle ha
passed thex or y coordinate of one of the saddle points, it h
effectively chosen the final state and its subsequent motio
of little interest to us. We therefore arrive at the conclusi
that the saddle points are the major factor influencing s
selection and by comparison the minima are of little con
quence. This can be made more transparent if we imag
thatd ande are very small, so that the minima~6! are now at
very large values ofx andy. In contrast, the positions of th
saddles have changed much less: in the limit whered ande
go to zero, theirx andy coordinates tend to the finite value
Ab/g and Aa/g, whereas the minima tend to infinity. Th
topography now consists of long valleys, leading from t
head of the valley between two saddles all the way down
a minimum at the end of the valley. As soon as the parti
enters the valley, it is extremely unlikely to escape over
sides, and therefore it is extremely unlikely that it will d
anything else but move to the minimum at the end of t
particular valley. This makes it very clear that it is th
saddles, and not the minima, that we should focus on if
wish to understand state selection.

These ideas are well illustrated by plotting out a fe
Monte Carlo trajectories. Such simulations are extrem
simple to carry out, and later we will compare our analy
expression for the probability of a particular state being
6-4
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UNSTABLE DECAY AND STATE SELECTION PHYSICAL REVIEW E64 026116
lected with the proportion of runs that ended up in that sta
For the moment, however, we are interested in the natur
individual trajectories. The five shown in Fig. 2 are typic
the particle carries out Brownian motion about the origin,
a greater or lesser extent, and then selects a particular va
Even after state selection, there may still be large deviatio
but eventually the particle settles down near to the axis al
which the valley runs.

III. THE REDUCED POTENTIAL

We have seen in the preceding section that the esse
features of state selection become much clearer in the l
d,e→0 when the saddle points are completely separa
from the minima, which have moved off to infinity. For th
rest of the paper, we work in this limit in order to illustra
our method in the simplest possible way. We will call t
problem defined in Sec. II when the limit is taken the ‘‘r
duced problem.’’ The reduced potential is then defined to

VR~x,y!52
a

2
x22

b

2
y21

g

2
x2y2. ~8!

A plot of VR looks very similar to the plot of the full poten
tial V in Fig. 1~a!, since this figure emphasizes the littl
changed central features of the potential. The main differe
is that whereas inV the valley floors start to ascend again
large uxu and uyu, in VR they keep descending. However,
was made clear in Sec. II, this behavior is of no interest to
and the fact thatV andVR differ in this way is immaterial.

From Eq.~8!, we see thatVR has only two types of ex-
trema: ~i! a maximum at the origin, and~ii ! four saddle
points at (x,y)5(6Xmin ,6Ymin), where

Xmin5Ab/g, Ymin5Aa/g. ~9!

The reason for the subscript ‘‘min’’ is that the values giv
by Eqs.~9! are the smallest values ofuxu and uyu at which we
can assume that state selection has taken place. A si
stability analysis near these saddles shows that the stable
unstable directions are at an angle ofp/4 to the axes. For
example, in the positive quadrant, if the particle approac

FIG. 2. Typical trajectories for the full potentialV(x,y) with
a5b5g51, d5e50.1, and with noise strengthD50.01.
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the saddle along the line of steepest descent,y5x, it will
have a tendency to move down the slopes that are to the
and left, rather than carry on through the saddle and stra
up the incline ahead.

Just as the plot ofVR is similar to that ofV if we cut it off
near to the head of the valleys, so the Monte Carlo simu
tions are similar in both cases if we do not follow the traje
tories too deeply into the valleys. In Fig. 3, the range ox
andy used to display the trajectories is smaller than that
Fig. 2, so that the central region is emphasized. This ma
the initial Brownian dynamics seem more obvious, but
reality the nature of the trajectories before and during s
selection is essentially identical to that of the full proble
shown in Fig. 2.

In the next section, we will develop a calculation
scheme, based on the path-integral formulation of the
chastic process, to determine the probabilities of entering
x or y valleys as a function of the model parametersa, b, g,
and D. However, one might feel that such a sophistica
theory is not necessary: it should be possible to obtai
satisfactory theory by constructing an approximation ba
on the picture we have built up in this and the preced
section. We will therefore end this section by constructing
example of such a theory and show that it is unsatisfact
for a variety of reasons.

A simple theory of state selection might have the follo
ing ingredients.

~i! In the initial period, the noise and linear growth of th
modes dominate. Therefore, neglect the nonlinear interac
between the modes~i.e., setg50!.

~ii ! State selection will be specified in the following wa
Define four sectors in thexy plane by drawing lines through
the origin and the saddle points. The particle will select
state corresponding to a particular sector if it is in that sec
for x'Xmin andy'Ymin .

A calculation based on these two assumptions is given
Appendix A. Even within the framework that these provid
there turn out to be many possible variants, each giv
slightly different results. Leaving this aside for the mome
it is shown in Appendix A that in one of the simple
schemes along these lines, the probability of ending up in
x valley is @see Eq.~A14!#

FIG. 3. Typical trajectories for the reduced potentialVR(x,y)
with a5b5g51, and with noise strengthD50.01.
6-5
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Nx5
1

11D̂r
, ~10!

where

D̂[
gD

ab
and r5

~a2b!

a
. ~11!

This has the correct qualitative behavior: whena5b, that is,
r50, Nx5 1

2 . As r increases,Nx increases towards unity. A
more careful calculation gives@Eq. ~A15!#

Nx5
2

p
tan21 D̂2r, ~12!

which again has the correct qualitative features.
We now compare these two formulas with the results

Monte Carlo simulations. We tookb, g, andD to be fixed in
the simulations, at values 1.0, 1.0, and 0.01, respectively,
varieda from 1.0 to 3.0 in steps of 0.2. For each value ofa,
we performed a large number of runs where the part
started at the origin and ended up in one or another of
valleys ~for more details, see Sec. VI!. We then simply
counted the number of times that the particle ended up
particular valley and expressed this as a fraction of the t
number of runs made. The results are shown in Fig. 4.

It is clear that the results of the naive approach based
assumptions~i! and ~ii ! above, worked out in Appendix A
and given by Eqs.~10! and ~12!, are not quantitatively cor-
rect. They mainly overestimate the probability of the parti
ending up in thex valley. In addition, Eq.~12!, which repre-
sents a more refined calculation, actually compares less
vorably with the simulation results than does Eq.~10!. This
clearly points to the unsatisfactory nature of this simplis
scheme, as one would expect the more refined calculatio
compare more favorably with the simulation results.

We do not wish to pursue techniques based on this
proach further in this paper. It was included specifically
show that there is a delicate interplay between the nonlin
ity and the noise in Eqs.~2! and ~3!, and any attempt to
incorporate one or the other of these using an unsystem

FIG. 4. Probability of flowing into anx valley as a function ofa,
with b51, g51, andD50.01. The dots show simulation result
the full curve is the result~10!, and the dashed curve is result~12!.
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approximation scheme, as above, is likely to give disappo
ing results. We do not rule out being able to construc
particular scheme of this type that will give reasonable
sults. There are enough possible variants that it may be
sible to interpolate between these by introducing free par
eters that can then be fitted to the Monte Carlo da
However, such an ad hoc scheme is unnecessary, sinc
will show in the remainder of the paper that a systema
approach exists that gives simple formulas that are in g
agreement with the Monte Carlo data. The method is ba
on the use of optimal paths, and so we begin with a b
review of the path-integral formulation of Langevin dynam
ics.

IV. OPTIMAL PATHS

In this section, we review the formulation of stochas
differential equations, such as Eq.~1!, as functional integrals
and obtain the dominant contribution to the conditional pro
ability we wish to determine in the limit where the nois
strength tends to zero.

The conditional probability that the system is in the sta
(xf ,yf) at timeT, given it was initially in the state~0, 0! at
t50, is

P~xf ,yf ,Tu0,0,0!5^d„xf2x~T!…d„yf2y~T!…& IC ,
~13!

where IC denotes the initial conditionx(0)50, y(0)50 on
the stochastic process, andx(T) and y(T) are solutions of
Eqs. ~2! and ~3!. The average in Eq.~13! is over Gaussian
white noiseshx(t) andhy(t) with zero mean and correlatio
function given by Eq.~4!. In terms of functional integrals
Eq. ~13! equals

CE
IC

DhxDhyd„xf2xh~T!…d„yf2yh~T!…

3expH 2
1

4D E
0

T

dt@hx
2~ t !1hy

2~ t !#J , ~14!

whereC is a normalization constant and the subscripth on
x(T) and y(T) is to emphasize that they depend onh(T)
through Eqs.~2! and~3!. Using these equations to perform
functional change of variable from (hx ,hy) to ~x,y! yields

CE
IC

Dx Dy Jd„xf2x~T!…d„yf2y~T!…

3expH 2
1

4D E
0

T

dtF S ẋ1
]V

]x D 2

1S ẏ1
]V

]x D 2G J , ~15!

whereJ is the Jacobian of the transformation. Expressed a
path integral,

P~rW f ,Tu0W ,0!5CE
rW~0!50W

rW~T!5rW f
DrW J@rW#exp$2S@rW#/D%, ~16!

whererW5(x,y). The actionS@rW# and the JacobianJ@rW# are
functionals that are given by
6-6
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S@x,y#5 1
4 E

0

T

dtF S ẋ1
]V

]x D 2

1S ẏ1
]V

]x D 2G ~17!

and @26#

J@x,y#5detFdhW

drW G}expH 1
2 E

0

T

dtF]2V

]x2 1
]2V

]y2 G J . ~18!

For D→0, the path integral~16! is dominated by solutions o
the Euler-Lagrange equationsdS/drW(t)50, which satisfy the
boundary conditionsrW(0)50 andrW(T)5rW f . Let the solution
of least action be denoted byrWc(t). Then writing rW(t)
5rWc(t)1drW(t), we have

P~rW f ,Tu0W ,0!5C exp$2S~rWc!/D%E Dd rWJ@rWc1drW#

3expH 2
1

D E
0

T

dt8E
0

T

dt9drW~ t8!

3F1

2

d2S

drW~ t8!drW~ t9!
U

rW5rWc

GdrW~ t9!1O~drW !3J .

~19!

ScalingdrW by D1/2 and performing the Gaussian function
integral yields

P~rW f ,Tu0W ,0!5C8 exp$2S~rWc!/D%J~rWc!

3detF d2S

drW~ t8!drW~ t9!
U

rW5rWc

G21/2

@11O~D !#.

~20!

The new overall constant,C8, is immaterial since, as we hav
seen in Sec. III, we are interested only in the probability
ending up in thex or y valley, and we normalize these prob
abilities according toNx1Ny51. We will therefore omit the
overall constant from now on.

While all the derivations in this section have been carr
out for potential systems with two degrees of freedom
should be clear that they generalize in an obvious way
systems of more than two degrees of freedom and th
where no potential exists@26#. We may summarize the resu
of performing the functional steepest descent on Eq.~16! to
next-to-leading order by

P~rW f ,Tu0W ,0!5P~1!~rW f ,T!exp$2P~0!~rW f ,T!/D%@11O~D !#,
~21!

where the leading-order contribution,P(0), is just the action
of the optimal pathrWc(t) and the next-to-leading-order con
tribution is

P~1!~rW f ,T!5J~rWc!@detL~rWc!#
21/2. ~22!

HereL is the matrix formed from the second-order function
derivative of the action functional evaluated at the optim
path:
02611
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L~rWc!5
d2S

drW~ t8!drW~ t9!
U

rW5rWc

. ~23!

The result~21! is the starting point for our method: if we ca
determine the functionsP(0) and P(1), then we will have a
form for the conditional probability valid when the noise
weak. This in turn will enable us to obtain a formula for th
probability that either thex or y valley is selected, as a func
tion of a, b, g, andD. We shall devote the rest of this sectio
to the determination ofP(0) and leave the calculation ofP(1)

to the next section.
The case of interest to us in this paper is whenV is the

reduced potential~8!. The Euler-Lagrange equations for th
problem are

ẍ5x~a2gy2!222gxy2~b2gx2!, ~24!

ÿ5y~b2gx2!222gyx2~a2gy2!. ~25!

It is important to realize that there are two distinct dynam
associated with the problem under consideration. The firs
the stochastic dynamics given by Eq.~1! with the potential
~8!. This was our starting point, the basis of the intuiti
discussion of the dynamics given in Secs. II and III, and
dynamics of the Monte Carlo simulation. The second dyna
ics is thedeterministicdynamics, given by Eqs.~24! and
~25!, which describes theD→0 limit of the stochastic dy-
namics. They are quite different and it is important not
carry over intuition from one to the other without caref
consideration. From Eq.~17!,

S@rW#5 1
2 E

0

T

dt@ 1
2 rẆ22U~rW !#1 1

2 E
0

T

dt
dV

dt
, ~26!

where

U~rW !52
1

2 S ]V

]x D 2

2
1

2 S ]V

]y D 2

. ~27!

Since the last term in Eq.~26! is a constant, and conse
quently gives zero variation, the Euler-Lagrange equati
~24! and~25! correspond to classical mechanics in the pot
tial

UR~x,y!52 1
2 x2~a2gy2!22 1

2 y2~b2gx2!2. ~28!

When considering the optimal paths such asrWc(t), it is the
potentialUR , and notVR , that is relevant. A plot ofUR(x,y)
is shown in Fig. 5.

We will, for concreteness, focus on paths that end in
positive x valley; paths that end in the other valleys a
treated in exactly the same way. The boundary conditions
these paths arex(0)5y(0)50, x(T)5xf , and y(T)5yf ,
with yf!xf . We therefore simplify Eqs.~24! and ~25! by
keeping only terms that are linear iny, to obtain to lowest
order

ẍ5a2x, ~29!

ÿ5@b222~a1b!gx21g2x4#y. ~30!
6-7
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ALAN McKANE AND MARTIN TARLIE PHYSICAL REVIEW E 64 026116
In our earlier treatment of this problem@1#, we restricted
attention to end points lying on thex axis, xf5X and yf
50 ~and correspondinglyyf5Y andxf50 for paths ending
in the positivey valley!, arguing that the relative contribu
tions coming from paths ending on the axes should be
proximately equal to the relative contributions coming fro
the paths ending anywhere in the valleys. In fact, as show
Ref. @1#, this turns out to be an excellent approximation, b
it has the deficiency thatX is not determined. In this pape
we go beyond this approximation, which allows us to e
plore its validity, but also, as we will see, the precise value
X within this improved treatment does not enter; the resu
independent ofX, provided thatX is large enough. The quan
tity yf has a different character toX: it will be integrated over
at a later stage, when the probability flux through the val
is determined.

The solution of Eq.~29! that satisfies the boundary con
ditions x(0)50 andx(T)5X is exactly the same as in Re
@1#, namely

xc~ t !5X
sinhat

sinhaT
. ~31!

The solution of Eq.~30! that satisfies the boundary cond
tions y(0)50 andy(T)5yf ~we reserve the notationY for
the finaly value for the end point of paths going along they
valleys! is discussed in Appendix B. There it is shown that
excellent approximation to the solution of this equation~in-
distinguishable from the numerical solution! can be found by
first solving the equation for smallt and then for larget, and
matching the two at some intermediate matching timetm .
Comparison with the numerical solution shows that the
proximation remains good for a wide range of values oftm
from about 0.1T to 0.6T or 0.7T. In order to be able to
obtain a simple form for the solution, we have assumed
T is large, in the sense thate2aT!1 and e2bT!1. Using
Eqs. ~B3! and ~B7!, we can write the explicit analytic form
as

FIG. 5. Illustrative plot of the reduced potentialUR(x,y) with
a52, andb5g51.
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yc~ t !5H 2yfe
2bTegX2/2a sinhbt, 0<t<tm

yfe
2b~T2t ! expFgX2

2a
$12e22a~T2t !%G , tm<t<T.

~32!

For self-consistency, we need to check thatyc(t) given by
Eq. ~32! is small, compared withxc(t), if we are to justify
the linearization procedure that led to Eqs.~29! and ~30!.
From Eq.~32!, it is straightforward to check thatyc(t) has a
maximum at t5t8, where t85T if X,Xmin and T2t8
5a21 ln(X/Xmin) if X.Xmin . As discussed in Sec. III,Xmin is
the minimum value ofx at which state selection can be sa
to have been completed, and therefore we require thaX
>Xmin . The maximum value ofyc(t),

yc~ t8!5yf S X

Xmin
D 2b/a

expH g

2a
~X22Xmin

2 !J , ~33!

increases rapidly withX and is already extremely large whe
X;5Xmin . It might therefore be tempting to argue that w
need to takeX to be much less than this value if the linea
ization procedure is to be valid. Since Eq.~33! has its least
value whenX5Xmin , this approximation would seem to b
best for this choice ofX, and in fact this was the choice mad
in our earlier work@1#.

In fact, there are a variety of reasons why choosingX to
be Xmin is not suitable. First, the argument above, nam
that if X is too large then the linearization procedure is
valid, is in fact incorrect. We will find that the width of th
distribution is so narrow in they direction that the range o
integration foryf need only be tiny, in fact only going out to
values ofyf such thatyf

2 exp$gX2/a%;1. From Eq.~33!, we
see that under these conditionsyc(t) is indeed small. We will
come back to this point again in Secs. VI and VII.

The second reason is in fact more profound. Intuitive
we expect that for large enough values ofX, the probability
flux through a given valley should be independent ofX. This
is due to the fact that in the regime of weak noise, once s
selection has occurred there is no flux leakage out of a va
This implies that we should not have to make any choice
X because our results should be independent ofX as long as
X is large enough. In fact, this is precisely what we fin
namely that the probability flux through thex valley tends to
an asymptotic value asX tends to infinity. The remarkable
cancellations that occur to produce anX-independent flux is
a good indicator of the correctness of our calculatio
scheme. Again, we will come back to this point in Secs.
and VII.

Finally, throughout our calculation we use the approxim
tion thatT is large in the sense thate2aT!1 ande2bT!1.
This is apparently a problem, since we need the form of
distribution for allT in order to perform the time integral o
the probability flux in the calculation of the total flux throug
the valley. The way out of this impasse is to takeX suffi-
ciently large that the probability current is essentially zero
small times, and only starts making appreciable contributi
to the T integral whenT is such thate2aT!1 and e2bT

!1. It is not clear how largeX will have to be, but as dis-
6-8
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UNSTABLE DECAY AND STATE SELECTION PHYSICAL REVIEW E64 026116
cussed above, the probability flux through thex valley tends
to an asymptotic value asX grows, so we are assured o
always finding a value ofX for which the approximation tha
T is large is valid.

At first sight, the largeT approximation might appear t
be problematic because it ignores the shorter state-sele
time scalesa21 andb21. However, this is not the case. Th
reason is that the integrals over time that are performe
the calculation of the action and Jacobian prefactor incl
these earlier times. In other words, the entire classical p
in particular the spatial region near the origin, is included
the calculation.

After these rather technical asides, it is worthwhile su
marizing what we have deduced about the equation for
optimal path, which leaves~0, 0! at t50 and arrives at
(X,yf) at time t5T. It is given by Eqs.~31! and~32! under
the assumptions that~i! T is such thate2aT!1 and e2bT

!1, ~ii ! X is larger than a fewXmin , and ~iii ! tm and (T
2tm) are large ~we will later find that we require tha
e22atm!1, e22btm!1, e22a(T2tm)!1, ande22b(T2tm)!1!.

We are now in a position to calculate the leading-ord
contribution,P0(X,yf ,T), to the conditional probability dis-
tribution ~21!, by finding the action of the optimal path give
by Eqs. ~31! and ~32!. We begin by noting that, from Eq
~26!, the classical paths are solutions ofẍ52]U/]x and ÿ
52]U/]y. Multiplying the first equation byẋ, the second
one by ẏ, adding them, and integrating the result giv
1
2 ( ẋc

21 ẏc
2)1U5E, a constant. Thus another form for th

action of classical paths is

Sc5 1
2 E

0

T

dt@ ẋc
21 ẏc

2#2 1
2 ET1 1

2 @V#0
T . ~34!

Details of the calculation are given in Appendix B. From E
~B20!, we find

Sc5
aX2

4
~cothaT21!1 1

2 yf
2Sy , ~35!
ne
.

th

th

a
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where

Sy5
1

2a S a

gX2D b/a

expH gX2

a J E
0

gX2/a
dz z~b/a!21e2z

3~b2az!21 1
2 @gX22b#. ~36!

The two terms in Eq.~35! have different characters: as re
marked upon earlier, we will eventually integrate overyf to
obtain the probability flux through the valley, but the fir
term will remain, giving a leading-order contribution o
exp2(aX2/4D)(cothaT21) to Eq.~21!.

When performing similar calculations to find the esca
rate from one metastable state to another, the leading-o
resulte2DV/D gives a reasonable estimate, and the need to
to next order and to calculate the prefactor only arises
increased accuracy is required. The situation is very differ
in the present case of the decay from an unstable state
mentioned already, we expect that the main contribution
the probability flux through the valley will occur whenT
;(2a)21ln(aX2/D). The conditional probability distribution
~21! is peaked around a value ofT of this order because of a
balance between the leading~classical! term and the prefac-
tor ~a fluctuational! term. For this reason, the calculation
the prefactor in this problem, unlike in escape problems
vital if the essential structure of the state-selection probab
ties is to be captured. We therefore turn to the calculation
this quantity.

V. CALCULATION OF THE PREFACTOR

In this section, we will calculate the next-to-leading-ord
contribution in Eq.~21!. From Eq.~22!, we see that it con-
sists of two distinct contributions: the first from the Jacobi
J@rW# evaluated at the optimal path and the second from
fluctuations around the optimal path that give rise to
determinant of the second functional derivative of the act
~23!. We begin by evaluation of this determinant.

Starting from Eq.~26!, and using the notation~23!, we
obtain
L~rWc!5F 2
d2

dt2
1a2 24gxcyc@a1b2gxc

2#

24gxcyc@a1b2gxc
2# 2

d2

dt2
1~b2gxc

2!222agxc
2
G , ~37!
f
as
ve

s in
where, in line with our previous assumption, we have
glected terms that areO(yc

2) down on the terms shown in Eq
~37!. We have omitted any time dependence in Eq.~37! for
the sake of clarity, but it should be remembered that
classical solutionsxc andyc are functions oft and the matrix
is multiplied by an overall factor ofd(t2t8). The diagonal
entries are as in theyc50 case@1#; only the off-diagonal
entries are different. However, it is easy enough to see
the eigenvalues of Eq.~37! are even inyc , and since the
matrix with yc50 has no zero eigenvalues, the off-diagon
-

e

at

l

entries only provideO(yc
2) corrections to the eigenvalues o

the matrix withyc50. Therefore, neglecting these terms
before, we conclude that within the approximation we ha
adopted in this paper, we may set the off-diagonal entrie
Eq. ~37! to zero. From Eqs.~23! and ~37!, we now find

detL~rWc!5detLx detLy , ~38!

whereLx and Ly represent fluctuations inx and y, respec-
tively:
6-9
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Lx52
d2

dt2
1a2, ~39!

Ly52
d2

dt2
1~b2gxc

2!222agxc
2. ~40!

To evaluate the determinants of the operators~39! and ~40!,
we make use of a well-known formula for such determina
@28#. Let L be an operator of the type2d2/dt21f(t) and
suppose that the eigenfunctions ofL are required to vanish a
the boundaries att50 andt5T, as in the case of interest t
us here. Now leth1(t) and h2(t) be two independent solu
tions of the homogeneous equationLh50. Then

detL}
h1~0!h2~T!2h2~0!h1~T!

h1~0!ḣ2~0!2h2~0!ḣ1~0!
. ~41!

The constant of proportionality in~41! may be omitted for
the same reason the overall constant was omitted in Eq.~20!:
the probability of ending up in the positivex valley will be
normalized by the sum of the probabilities of ending up
the x and y valleys. Furthermore, ifh2 is the solution that
vanishes att50, then the formula for detL involves only this
solution,

detL5
h2~T!

ḣ2~0!
. ~42!

The solution of Lxh50 that satisfiesh(0)50 is h2(t)
5F sinhat, whereF is a constant. Therefore,

detLx5
sinhaT

a
. ~43!

To find detLy , we need only note that the solutions of th
homogeneous equationLyh50 are also the solutions of th
classical equation~30!. But the solution that vanishes att
50 has already been found in Appendix B: it is given
Eqs.~B3! and ~B7!,

h2~ t !5H G sinhbt, 0<t<tm

G

2
ebt expF2

gX2

2a
e22a~T2t !G , tm<t<T,

~44!

where G is a constant. Sinceḣ2(0)5bG, use of Eq.~42!
yields

detLy5
1

2b
ebT expH 2

gX2

2a J . ~45!

It only remains to calculate the Jacobian at the optim
path. From Eq.~18!, this is given by

J~rWc!5expH 1
2 E

0

T

dt$@2a1gyc
2~ t !#1@2b1gxc

2~ t !#%J .

~46!
02611
s
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Neglecting theO(yc
2) term as before, one finds thatJ(rWc)

5JxJy , where

Jx5exp$2 1
2 aT%, ~47!

Jy5expH 2 1
2 bT1

gX2

4a Fsinh 2aT22aT

2 sinh2 aT G J
'expH 2 1

2 bT1
gX2

4a J , ~48!

since we are assuming thate2aT!1. Since both the determi
nants and the Jacobians factorize into contributions ass
ated with thex coordinate and contributions associated w
the y coordinate, we may summarize the results of this s
tion so far as

Jx

AdetLx

5~2a!1/2e2aT, ~49!

Jy

AdetLy

5~2b!1/2e2bT expH gX2

2a J . ~50!

It is straightforward to check that these results agree w
those of Ref.@1# under the assumptions thate2aT!1. and
e2bT!1. While neglecting corrections to the leading beha
ior of the prefactor that are of the typee22aT or e22bT is in
line with this largeT approximation, we will see later that th
final integration overT will also providea posteriori justifi-
cation for the neglect of these terms.

From Eqs.~21!, ~35!, ~49!, and ~50!, we can now write
down the conditional probability for the system to be atrW f
5(X,yf) at timeT, given that it was at the origin at timet
50, as

P~rW f ,Tu0W ,0!5~4ab!1/2expH 2~a1b!T1
gX2

2a J
3expH 2

aX2

4D
~cothaT21!J

3expH 2
yf

2

2D
SyJ @11O~D !#. ~51!

As we discussed in detail in Secs. II and III, when usi
the modified potential~8! the question is not what are th
paths of least action from the origin to the minima of t
potential, since those minima cease to exist when the li
d,e→0 is taken. Instead, the question is what is the relat
flux through one valley compared to the other? To calcul
the flux, it is not the conditional probability distribution~51!

that we need to know, but the probability currentJW
5(Jx ,Jy). This current is related to the conditional pro
ability distribution through the Fokker-Planck equation@29#

]P

]t
1div JW 50, ~52!

where
6-10
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JW 52~¹V!P2D¹P. ~53!

In order to findJW from P given by Eq.~51!, we first note
from Eq. ~21! that

D¹P52~¹P~0!!P@11O~D !#. ~54!

Therefore, we only need to differentiateV and P(0) with
respect toX andyf in order to findJW . Carrying this out, we
obtain

Jx5S a

2
X@coth~aT!21#1aX2gXyf

2D P, ~55!

Jy5~yfSy1byf2gyfX
2!P. ~56!

In the next section, we will calculate the flux through t
positivex valley. This will involve only the component ofJW
normal to the linex5X. Therefore, they component of the
current,Jy , will not contribute and need not be consider
any further; the entire contribution to the flux will come fro
integratingJx , given by Eq.~55!, overyf . By virtue of the
yf

2 term in the exponential in Eq.~51!, this will be a Gaussian
integral. While we would naturally neglect theO(yf

2) term in
Eq. ~55! in line with previous approximations in this sectio
we now see that it would in any case give a contribution
order D once theyf integral is performed. This is a furthe
justification for ignoring such terms. Finally, we have be
neglectinge22aT-type corrections in the prefactor, whic
means that we should replace cothaT by 1. These approxi-
mations lead to the resultJx5aXP and so we find from Eq.
~51! that

Jx~X,yf ,T!52a~ab!1/2X expH 2~a1b!T1
gX2

2a J
3expH 2

aX2

4D
~cothaT21!J

3expH 2
yf

2

2D
SyJ @11O~D !#. ~57!

This is the key result of this section. We need now only u
it to calculate the total flux through the positivex valley at
x5X and compare it with the analogous quantity through
positivey valley. This will give us the relative probability o
the x mode being selected.

VI. RESULTS

The idea underlying the method we use to calculate
relative probability of one of the states being selected is m
easily understood by first describing the analogous proce
used when carrying out Monte Carlo simulations. As w
briefly alluded to in Sec. III, for each run the particle starts
the origin and subsequently follows the Langevin dynam
of the reduced problem until it reachesx56X in one of the
x valleys or y56Y in one of they valleys. We usedX
55Xmin andY55Ymin to be certain that state selection h
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occurred. At this point that particular run ceases. If the p
ticle has ended up in ay valley, for instance, 1 is added to th
total number of runs which have selected they mode. An-
other run is initiated and the result of that is added to
totals. After a large number of runs, the proportions select
thex mode andy mode are used to calculateNx andNy , the
relative probabilities of these states being selected.

Let us focus on the runs ending up in the positivex valley,
exactly as we have been doing in the analytic treatmen
Secs. IV and V. For each of these runs, the final value
y—calledyf in the analytic treatment above—will vary. W
would expect most of the runs to end near to thex axis, with
off-axis end points becoming less and less common as
move away from the axis. This is reflected in theyf depen-
dence ofJx given by Eq.~57!. Just as in the Monte Carlo
simulation, where we add up all contributions with a diffe
ing final y coordinate atx5X, so we need to integrate Eq
~57! over allyf at x5X. Similarly, just as in the Monte Carlo
simulation, where we add up all of the contributions,
matter how long they took to get to the end point, so in t
analytic treatment we have to integrate over allT to obtain
the total flux. Therefore, we need to calculate

Fx~X!5E
0

`

dTE
2`

`

dyfJx~X,yf ,T!, ~58!

in order to calculate the state-selection probabilities.
While the above justification for Eq.~58! as the quantity

that we need to calculate seems intuitively plausible, it
worthwhile formally proving this. We first need to specif
what ‘‘ending up in the positivex valley’’ means in terms of
a mathematical expression. Since, in the limitT→`, trajec-
tories will have entered one of the four valleys, we define
probability that it has entered the positivex valley as

prob~1x valley!5 lim
T→`

E
2`

`

dyfE
X

`

dX P~X,yf ,Tu0W ,0!.

~59!

Here the positivex valley is defined as the entire potenti
surface to the right of the linex5X. On the other hand, from
the continuity equation~52!,

lim
T→`

P~X,yf ,Tu0W ,0!2P~X,yf ,0u0W ,0!

5E
0

` ]

]T
P~X,yf ,Tu0W ,0!dT52E

0

`

div JW dT. ~60!

Integrating Eq. ~60! over the ‘‘volume’’ $x>X,2`,yf
,`%, using the fact that atT50 the end point is at the
origin, and making use of the divergence theorem, we ge

lim
T→`

E
2`

`

dyfE
X

`

dX P~X,yf ,Tu0W ,0!52E
0

`

dTE
S
JW •dSW .

~61!

The ‘‘surface’’ integral on the right-hand side of Eq.~61!

only gives a contribution atx5X, wheredSW is in the direc-
6-11
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tion of the outward normal, i.e., in the negativex direction.
ThusJW •dSW 52Jxdyf and so the required probability~59! is
equal to Eq.~58!.

Substituting Eq.~57! into Eq. ~58! and performing theyf
integration yields

Fx~X!52a~ab!1/2XS 2pD

Sy
D 1/2

expH gX2

2a J E
0

`

dT e2~a1b!T

3expH 2
aX2

4D
~cothaT21!J @11O~D !#. ~62!

As remarked in Sec. V, anyO(yf
2) corrections in the prefac

tor give O(D) corrections to Eq.~62!, as doO(yf
4) correc-

tions to the action, which justifies their omission. The fin
integral overyf also provides justification for the linear ap
proximation. An examination ofJx(X,yf ,T) shows that this
function is effectively nonzero only for small values ofuyf u,
which get still smaller asX increases, so that unlessuyf u
&exp$2gX2/2a%, the flux is essentially zero. Thus either th
conditional probability distribution or the conditional prob
ability current resemble a thin wafer centered on thex axis
when plotted at fixedT. Moreover, this wafer gets very muc
thinner with increasingX. This means that the limits on th
yf integral in Eq. ~58! are effectively 6exp$2gX2/2a%,
which is tiny for largeX. It is more instructive to change
variables fromyf to yf* 5yf exp$gX2/2a%, so that the integra
now has the range~21, 1!. But, as discussed in Sec. IV, th
means that Eq.~33! now reads

yc~ t8!5yf* S X

Xmin
D 2b/a

expH 2
gXmin

2

2a J , ~63!

which has a magnitude less than 1 for21,yf* ,1. Thus the
linearization procedure is justified. In some sense, the v
ableyf* is more appropriate in this problem thanyf itself.

An examination of the integrand in Eq.~62! shows that is
has a maximum whenT5T* [(2a)21ln$a2X2/@(a1b)D#%,
which is slightly different from the value mentioned in Se
IV. This is because that value came from the estimates
Sec. III and Appendix A, which used the value for the ma
mum that is found in the analogous one-dimensional stoc
tic process inx(t). The more refined calculation we hav
been discussing here has an additionale2bT contribution
coming from fluctuations iny(t) and fromJy . It is the oc-
currence of this term in the integrand of Eq.~62! that
changes the value at which the maximum occurs by this v
slight amount. From Eq.~62!, we can also check the conjec
ture made in Sec. IV that ifX is greater than a fewXmin , then
even the tails of the integrand will be at values ofT that are
large enough for the approximations made in this paper to
valid. A numerical investigation of the integrand shows th
it has typically already fallen by two orders of magnitu
from its maximum value forT satisfying e2aT,e2bT!1
whenX is larger than a fewXmin .
02611
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To perform the integration in Eq.~62!, we ~i! replace
(cothaT21) by its largeT form, 2e22aT ~justified below!,
and ~ii ! change variables toj5(aX2/2D)e22aT. Then the
integral becomes

1

2a S 2D

aX2D ~a1b!/2aE
0

J

dj j@~a1b!/2a#21e2j, ~64!

whereJ5(aX2)/2D. The integral is an incomplete gamm
function: it equalsG(@a1b#/2a) plus exponentially small
corrections inD coming from the large, but finite, upper lim
J @27#. Neglecting these exponentially small terms, w
therefore obtain for the total flux through the positivex val-
ley at X

Fx~X!5~ab!1/2XS 2pD

Sy
D 1/2

expH gX2

2a J
3S 2D

aX2D ~a1b!/2a

GS a1b

2a D @11O~D !#. ~65!

By using the approximation (cothaT21)'2e22aT, terms of
order. D21e22(n11)aT (n51,...) were neglected, but thes
are of the order ofDnjn11 and give contributions that ar
O(D) down on the leading term~65!. Similarly, any correc-
tions to the prefactor of ordere2aT or e2bT would also give
contributions that are down compared to Eq.~65!. Once
again, we see that these final integrals justify approximati
that we made earlier.

The total flux given by Eq.~65! depends onX, which is
still undetermined, apart from the requirement that it sho
be greater than a fewXmin . However, if we investigate theX
dependence of the expression in Eq.~65!, we find that asX
increases fromXmin , it first decreases untilX equals two or
three timesXmin , where it reaches a constant value and s
sequently remains at this value asX→`. Of course, this
constancy of the flux is exactly what we would expect: on
the system has selected the positivex valley, it remains in
that state and so the flux should be conserved within
valley, i.e., be the same for allX. We will denote this con-
stant value simply asFx ; it is given by theX→` limit of
Eq. ~65!:

Fx52D~2p!1/2~ab!1/2S 2gD

a2 D b/2a

GS a1b

2a D
3H E

0

`

dz z~b/a!21e2z~b2az!2J 21/2

@11O~D !#.

~66!

The integral in Eq.~66! may be expressed in terms of gamm
functions: it equalsabG(b/a). Therefore,

Fx52D~2p!1/2S 2gD

a2 D b/2a GS a1b

2a D
@G~b/a!#1/2@11O~D !#.

~67!
6-12
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The result~67! only depends on the four parametersa, b, g,
andD, as we would expect. An exactly analogous calculat
of the total flux through they valley atY gives the same form
but with a andb interchanged:

Fy52D~2p!1/2S 2gD

b2 D a/2b GS a1b

2b D
@G~a/b!#1/2@11O~D !#.

~68!

Throughout the analysis, we have ignored constant fac
that multiply both the results coming from paths ending up
the x valley and those ending up in they valley. The reason
given was that eventually we would normalize the probab
ties of state selection and therefore common factors w
irrelevant. We are now at the point where we can impose
normalization, but before doing so, let us put in the const
multiplying factor explicitly, and in doing so absorb the a
ditional factors of 2D(2p)1/2 that appear in Eqs.~67! and
~68! into it. We therefore determine the final forms for th
total fluxes along thex andy valleys as

Fx5KS 2gD

a2 D b/2a GS a1b

2a D
@G~b/a!#1/2@11O~D !#, ~69!

Fy5KS 2gD

b2 D a/2b GS a1b

2b D
@G~a/b!#1/2@11O~D !#, ~70!

whereK is the overall constant.
The relative probability of flowing into anx valley has

already been introduced in Sec. III. In terms of the to
fluxes, it is given by

Nx5
Fx

Fx1Fy
, ~71!

with Ny512Nx . From Eqs.~69!, ~70!, and~71!, we obtain

Nx5
1

11z~a,b!D̃s
, Ny5

1

11z~b,a!D̃2s
, ~72!

where

D̃[
2gD

ab
, s5

a22b2

2ab
,

z~a,b!5S a

b D ~a21b2!/2ab GS a1b

2b D
GS a1b

2a D S GS b

a D
GS a

b D D
1/2

.

~73!

Equations~72! and ~73! are the desired results. Note th
the only place where the coupling constantg enters is mul-
tiplying the noise strengthD. It is simple to see that this wil
always be the case since, ifx andy are measured in units o
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Xmin andYmin , respectively, in the reduced problem, the on
place whereg appears in the Langevin equation is multipl
ing D. Thus the effect of the interaction, specified byg, is to
renormalize the noise. This means that the probability
either thex mode or of they mode being selected depend
only on the three quantitiesa, b, andgD. It is clear thatNx
andNy given by Eqs.~72! have the right behavior in variou
limits. First of all, if a5b they are equal. Ifa andb are not
approximately the same, the relative magnitudes ofNx and
Ny are largely governed by their dependence onD̃: if a

.b, thens.0, andNx&1 while Ny&D̃s!1. A more de-
tailed comparison with the results of Monte Carlo simu
tions is given in Fig. 6.

The final result~72! is in good, but not perfect, agreeme
with simulations. We believe that the only restriction on o
method is thatD should be small, so that the method
steepest descent is appropriate. ForD50.01, the neglect of
O(D) corrections to Eqs.~69! and~70! should mean that ou
result is within approximately 1% of the simulation results.
is not clear from an examination of Fig. 6 whether the slig
discrepancy is due to theO(D) corrections or to additiona
contributions that have not been accounted for. Since
agreement is still not perfect for smallerD, we should take
the latter explanation seriously and carry out a search to
if we can find such additional terms. A possible source is
following. We have conjectured that the solution of Eqs.~24!
and ~25! that has the least action can be obtained first
finding the xc(t) solution with yc50, and then linearizing
about it. However, there are undoubtedly higher action so
tions of Eqs.~24! and~25! that have a nontrivial structure in
x andy, that is, solutions that cannot be obtained as a sim
expansion about they50 solution. In other applications o
the steepest-descent method, we would neglect these
tions as they would give contributions that were expon
tially smaller than the contributions from the least acti
solutions, and thus be completely negligible for smallD.
However, in this problem, after integrating overT, the pre-
viously exponentially small contribution becomes a pow
law @see Eq.~64!#, or more precisely,D divided by a quantity
related to the action of the solution, all raised to a pow
Although we do not know what power the higher actio

FIG. 6. Probability of flowing into anx valley as a function ofa,
with b51, g51, andD50.01. The dots show simulation resul
and the full curve is our theoretical result forNx given by Eqs.~72!.
6-13
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ALAN McKANE AND MARTIN TARLIE PHYSICAL REVIEW E 64 026116
solutions will be raised to without further analysis, it is cle
that solutions to Eqs.~24! and ~25! with, for instance, twice
the action of the solution considered in this paper, have
least the potential of changing our result by a not insign
cant amount. Thus it appears that the neglect of higher ac
solutions, which is common in most problems involving o
timal paths, may not be so well-founded in the situation t
we are considering in this paper.

VII. CONCLUSIONS

In this paper, we have presented the motivation, justifi
tion, and calculational details of a method for determini
the probabilities of various metastable states being sele
for occupation, when an unstable state decays. Although
we hope we have made clear, this is a widespread phen
enon, theoretical progress seems to have been hampered
lack of sufficiently powerful tools with which to attack th
problem. As a consequence, most studies were carried
some time ago on one-dimensional systems~or quasi-one-
dimensional systems!. Yet, these are actually the systems
least interest. The really interesting aspects of the prob
arise in two or more dimensions, where the system can
form Brownian motion near an unstable state, and then se
a final state through a mixture of randomness~noise! and
dynamics~which will necessarily be nonlinear in all non
trivial cases!. It is this interplay of randomness and determ
ism, both essential to the process, which makes the prob
so difficult.

Our main purpose in this paper has been to show h
path-integral techniques, and especially the notion of opti
paths, can be used to analyze this technically hard prob
In order to stress that relatively naive approaches are not
to capture much of the subtlety of this problem, we carr
through what seemed to us the simplest approach to
problem in two dimensions, and showed that it was not a
to give satisfactory results. Although the extent of the agr
ment with numerical work is always open to interpretatio
there were two features that signified that the naive met
was defective. First there was no systematic way to proc
with the calculation; one was faced with ad hoc choices t
had to be made at several junctures in the calculation. S
ondly, the crude approximation~10! to the already unsystem
atic result~12! actually gives better agreement with simul
tions than Eq.~12! itself, which indicates the dubious natu
of these results. It should also be borne in mind that
prediction thatNx5 1

2 when a5b is assured by symmetr
and that in almost all schemesNx→1 asa gets very much
larger thanb, simply because the noise will have very litt
effect in this case. If we add to this the expectation t
Nx(a) will be a smooth function, we see that even the si
plest approximation cannot be expected to be too far
These observations indicate that we should focus more
the systematics~or lack thereof! of the calculation, rather
than getting perfect agreement with simulation data.

The nature of the optimal paths used in the treatment
sented here is different from those in the more familiar pr
lem of escape from one potential well to the other. In th
situation, it takes an exponentially large time@exp(DV/D),
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whereDV is the height of the barrier# to make the transition
from one potential well to another, and this is reflected in
fact that the optimal paths are essentially of infinitely lo
duration (T→`). In the problem studied in this paper, w
are focusing on phenomena on much shorter time scales,
the decay of a state with no barrier to a metastable state.
subsequent process~presumably a noise-activated escape t
different well of the kind we have just discussed! is of no
interest to us here. Actually, as explained in Sec. II, we
not even require that the end point of the optimal path b
metastable state, but only that it lie somewhere in the va
that leads to the metastable state in the full problem. T
optimal paths in these cases are of finite duration. To ach
this, the initial velocity of the particle in the mechanical ana
ogy has to be nonzero at the origin. AsT increases, this
initial velocity decreases, and eventually tends to zero iT
tends to infinity.

Many of the other details of the calculation involving o
timal paths turn out to be remarkably subtle. For examp
the use of the reduced potential simplifies the problem,
eliminating the actual minima means that we have to spe
an arbitrary final value ofx ~if we are considering state se
lection into the positivex valley!, which we denote byX.
However, the probability of the positivex valley being se-
lected should not depend onX, as long asX has a value that
lies in the valley. Reassuringly, this is what we find in o
calculation, but it requires us to take into account they de-
pendence of the path for this ‘‘common-sense’’ condition
be observed. In our earlier treatment@1#, we sought to give
only the outline of our method, and made the assumption
the total probability flux through a particular valley was pr
portional to~a! its value on the axes, and~b! its maximum
value, which occurs atT5T* , the time for which
P(X,0,0u0W ,0) is a maximum at a fixedX. Within this scheme,
there was no way of determiningX andY, and so we fixed
them to our simulation results. The best values wereX
*Xmin andY*Ymin , in line with our expectations. Howeve
we have found here that it is possible to get a form for thy
component of the optimal path only if we assume thatX is
sufficiently large—which comes from the requirement thaT
must be sufficiently large—and so settingX'Xmin and Y
'Ymin is not possible in the approach we have adopted h
Needless to say, we expect that if we were able to find
full solution for the optimum path, then we would not nee
to constrainX or Y to be large: the expressions for the flux
Fx and Fy would be valid for allX>Xmin and for all Y
>Ymin . Presumably the fact thatFx decreases from its valu
at X5Xmin , and only becomes constant whenX equals a few
Xmin , is not due to a violation of flux conservation~this
would necessitate some flux leakage, and it is difficult to
where it would go to!, but instead to the inapplicability o
our calculational scheme for smallX, which simply gives the
incorrect expression forFx . It should be stressed that this
not a problem for our method: we simply takeX andY large
enough so thatFx and Fy , respectively, do tend to
asymptotic values. These are the required values and
those that we use in our determination ofNx andNy .

An even more subtle aspect of the calculation conce
6-14
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the applicability of the linear approximation in determinin
the y component of the optimal path. Although at first sig
yc(t) is not small for largeX, it turns out that the range o
final values ofyc(t), denoted byyf , decreases so fast asX
increases that the smallyc(t) approximation is still valid. Put
more intuitively, if T is large, the path has to take a wid
detour to largey if it is to take a sufficiently long time to
reach (X,yf) ~recall that T is fixed for these paths!. But
‘‘large y’’ means large relative toyc(T)5yf , and, as dis-
cussed earlier, the currentJx(X,yf ,T) is effectively nonzero
only for tiny values ofuyf u. So while it is true that on the
scale ofyf the excursions of the optimal path spread de
into the plane, in fact the range ofyf is so minute that the
linearization assumption remains valid. The result that
probability is so concentrated about the axes is used in o
places in the calculation. For example, in Sec. VI we argu
that the ‘‘volume’’ integral in Eq.~60! could be replaced by
the ‘‘surface’’ integral in Eq.~61!, and then we proceeded t
ignore some of the contributions from the ‘‘surfaces’’ in th
latter integral. We specified the volume in the case of
positive x valley as the entire plane to the right of the lin
x5X. Actually, this is not quite correct, since we need
define a similar volume for they valleys, and these will
overlap in the sectors wherex andy are both large. We can
be reasonably vague about how precisely to define these
umes and surfaces simply becauseJx ~andJy! fall away so
fast that they have an utterly negligible contribution howe
we define them. In any reasonable definition, the only c
tribution to the surface integral~61! will be on the linex
5X, very close to thex axis.

We believe that one of the best indicators of the corre
ness of our approach is the cancelation of the various fac
of X coming from several different sources:~a! the fluctua-
tions about theyc(t) solution, ~b! the action of theyc(t)
solution~after integration overyf!, ~c! the action of thexc(t)
solution ~after integration overT!, and ~d! the definition of
the current in terms of the probability distribution. What r
mains after these cancellations is essentially independen
X, as would intuitively be expected. As we have repeate
stressed, many of these contributions come from assum
that T is large. This seems somewhat paradoxical, since
would expect that state selection is determined at ea
times. This can be understood if one realizes that the largX
calculation determines the normalization of the flux in E
~65!, or equivalently, the quantityz(a,b) in Eqs. ~72!. To
obtain a finiteX→` limit, it is essential to include a non
trivial yc(t) optimal path in the analysis. If the optimal pa
is taken to beyc(t)50, then only theD̃s factor in Eqs.~72!
is determined. This was essentially the approach we ado
in our earlier paper@1#. While we believe that the treatmen
given here is a great improvement on that reported in R
@1#, there is certainly room for further improvement. For i
stance, the linearization approximation seems very rea
able on physical grounds, but it would be useful to put it
a sounder mathematical footing. A deeper understandin
the origin of the small scale set by exp(2gX2/a) would also
be valuable.

The competition between new modes, when a previou
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stable mode becomes unstable, is responsible for much o
emergent order found in systems far from equilibrium. T
continual branching to more complex structures that this
tails @30# is not only governed by the dynamics of the pr
cess but also by the random fluctuations, or noise, gener
by the large number of other degrees of freedom of the s
tem not explicitly included in the description. The model th
we have investigated in this paper is, as has already b
emphasized, the simplest, showing enough of the com
cated features of this process of state selection to serve a
illustrative example of our method. In forthcoming pape
we will show how the method can be applied to more co
plex examples, such as state selection in lasers and the s
of population dynamics in a fluctuating environment. We b
lieve that the ideas and techniques developed here will
only be applicable to these situations, but to many oth
where multiple states compete for occupation.
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APPENDIX A

In this appendix, we explore the consequences of the
ementary theory put forward at the end of Sec. III. We w
obtain simple expressions for the probability that the parti
ends up in anx valley, which are compared to Monte Car
simulations in Sec. III.

We begin with the first ingredient in this simple theor
Sinceg50, we have only to solve the Langevin equatio
ẋ5ax1hx(t) and ẏ5by1hy(t). Such linear problems can
always be solved exactly. Sincex andy are linearly related to
hx and hy , they are also Gaussian random variables. It
easy to show that̂x(t)&5^y(t)&50 and therefore the prob
ability that the particle is at~x,y! at time t, given that it
started at the origin at timet50, is

P~x,y,tu0,0,0!5N expH 2
x2

2^x2~ t !&
2

y2

2^y2~ t !&J ,

~A1!

whereN is a normalization constant. For later use we w
also need

^x2~ t !&5
D

a
~e2at21!, ^y2~ t !&5

D

b
~e2bt21!. ~A2!

To quantify the second ingredient, first suppose that
coordinates of the particle~x,y! are in the first quadrant. If
the angle it makes with the positivex axis, tan21(y/x), is less
than tan21(Ymin /Xmin), then according to our criterion, it goe
into thex valley. Since the tan function is monotonic in th
interval ~0, p/2!, and generalizing to other quadrants by u
ing uxu and uyu rather thanx andy, the criterion becomes
6-15
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uxu
Xmin

.
uyu

Ymin
⇒particle choosesx valley, ~A3!

uyu
Ymin

.
uxu

Xmin
⇒particle choosesy valley. ~A4!

These ingredients can now be put together. The ques
reduces to how often the particle is in the sector specified
~A3! at a given timet and how often it is in the secto
specified by~A4! at this time. This probability is found by
integrating Eq.~A1! over all x and ally with the constraint
that it satisfies either~A3! or ~A4! depending on whether w
want the probability of ending up in thex or y valley. Re-
stricting ourselves to the positive quadrant, which we c
obviously do on symmetry grounds, the probabilities of en
ing up in anx valley, Nx , and in ay valley, Ny , are

Nx54NE
0

`

dxE
0

lx

dy expH 2
x2

2^x2~ t !&
2

y2

2^y2~ t !&J ,

~A5!

Ny54NE
0

`

dyE
0

l21y
dx expH 2

x2

2^x2~ t !&
2

y2

2^y2~ t !&J ,

~A6!

where the factor 4 comes from including the contributio
from the other quadrants andl5Ymin /Xmin . In the Nx inte-
gral, change variables fromy to z, wherey5lxz at fixedx.
The x integral can now be easily performed, giving

Nx54N Ymin

Xmin
^x2~ t !&E

0

1 dz

11k2~ t !z2 , ~A7!

where

k2~ t !5
l2^x2~ t !&

^y2~ t !&
5

Ymin
2 ^x2~ t !&

Xmin
2 ^y2~ t !&

. ~A8!

In a similar way,

Ny54N Xmin

Ymin
^y2~ t !&E

0

1 dz

11k22~ t !z2 . ~A9!

From Eqs.~A2!, we see that ifa andb are not very different
from each other, thenk(t) will be neither very large nor very
small, and we can ignore the integrals in Eqs.~A7! and~A9!
as a first approximation. Then determiningN by asking that
Nx1Ny51 and ignoring the factor 1 compared to the exp
nentials in Eqs.~A2! yields

Nx5
e2at

e2at1e2bt , Ny5
e2bt

e2at1e2bt . ~A10!

There are several simple arguments that give formulas
sembling this. It is not difficult to improve on this by includ
ing the integrals in Eqs.~A7! and ~A9!. Once again deter
mining N by normalization gives
02611
on
y

n
-

s

-

e-

Nx5
2

p
tan21@k~ t !#, Ny5

2

p
tan21@k21~ t !#, ~A11!

where we have used the result tan21(w)1tan21(1/w)5p/2.
If ^x2(t)&@^y2(t)& or ^y2(t)&@^x2(t)&, which can happen
even whena and b are not too different, we may replac
Eqs.~A11! by a simpler form, which resembles Eqs.~A10!,
but with constants multiplying the exponentials.

The simple result~A10! does not depend on the parame
g, which represents the nonlinear part of the potential, or
the noise strength,D. This is also true of Eqs.~A11! if we
ignore the factor 1 compared to the exponentials in E
~A2!. To understand this, let us suppose thata.b. From
Eqs. ~A10! or ~A11!, we see that whent is small, although
there is a slight bias in favor of thex valley over they valley,
it is not that marked. However, ast increases, the asymmetr
becomes more marked, until at large times the particle
only a very small chance of being in they valley. We need to
simulate the role that the saddle points play in state selec
by choosing the time to have the valuetc , which is the time
at which it is most likely that thex andy coordinates of the
particle will have magnitudesXmin and Ymin , respectively.
This is implemented by requiring that̂x2(tc)&5Xmin

2 or
^y2(tc)&5Ymin

2 . Note that we have used the word ‘‘or,’’ sinc
only one relation is required to determinetc , and the two
relations given yield incompatible values fortc unlessa
5b. Once again, as is common in many aspects of the n
approach to state selection that we have been summarizin
this appendix, there is a considerable degree of arbitrarin
in the choice oftc . We will assume that fora.b, when the
particle is most likely to go into thex valley, tc is determined
from the condition on̂ x2(tc)& and vice versa. Then from
Eqs.~A2!,

tc52
1

2a
lnS gD

ab D , a>b, ~A12!

which has the characteristic form2 ln D asD→0.
If we substitute Eq.~A12! into Eqs.~A10!, we obtain the

probability of ending up in anx valley. In terms of the quan-
tities

D̂[
gD

ab
and r5

~a2b!

a
, ~A13!

we obtain

Nx5
1

11D̂r
. ~A14!

If we substitute Eq.~A12! into Eqs. ~A11!, we obtain the
more general form

Nx5
2

p
tan21D̂2r. ~A15!

Equations~A14! and~A15! are the principal results of this
appendix. The two main points we wish to make is~i! their
derivation is somewhat arbitrary~there are several othe
6-16
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similar assumptions we could make that would give
slightly different formulas!, and~ii ! although, as is discusse
in Sec. III, they show the right qualitative features, they a
not in good agreement with Monte Carlo simulations. Thu
more systematic and sophisticated theory is required. Th
given in Secs. IV, V, and VI of the paper.

APPENDIX B

The purpose of this appendix is to explore the solution
Eq. ~30!, wherex(t) is given by Eq.~31! and wherey(0)
50 and y(T)5yf . Throughout, we will assume thatT is
large in the sense thate2aT!1 and e2bT!1, which will
allow us to obtain a rather simple form for the solution.

Small t solution. Let z5X2cosech2aT. Since e2aT!1,
z!1. Therefore, Eq.~30! becomes

ÿ5y$b222zg~a1b!sinh2 at1O~z2!%. ~B1!

We look for a solution of Eq.~B1! as a power series inz:

y~ t !5y0~ t !1y1~ t !z1O~z2!. ~B2!

Clearly the zeroth-order solution that satisfiesy(0)50 is
y0(t)5A sinhbt, where A is an arbitrary constant. It is
straightforward to determiney1(t), but since a short analysi
shows thaty1(t)z!y0(t) for all t&T/2, we conclude that it
is sufficient to take the smallt of the solution of Eq.~30!—
which we denote byy,—to be

y,~ t !5A sinhbt, t,tm . ~B3!

Large t solution. In this regime, bothe2aT!1 ande2at

!1, and thereforexc
2(t) andxc

4(t) may be approximated by
X2e22a(T2t) and X4e24a(T2t), respectively. Using thes
forms in Eq.~30! and making the change of variables

z5
gX2

a
e22a~T2t !, f 5ez/2z2b/2ay, ~B4!

we find thatf (z) satisfies the equation

z
d2f

dz2 1~n2z!
d f

dz
50, n5

~a1b!

a
. ~B5!

This equation is easily solved to give

f ~z!5A1BE
z

gX2/a
dz z2nez, ~B6!

whereA andB are arbitrary constants and where the up
limit of the z integral has been arbitrarily chosen to be t
value thatz takes on whent5T.

We now have to match Eq.~B6! to Eq. ~B3! at t5tm . It
will turn out that we do not have to specifytm precisely, but
let us assume for now that it has the valueT/2. Then the
corresponding value ofz,zm , is seen from Eqs.~B4! to be
very small. Formally the matching procedure consists
equating bothy(tm) and ẏ(tm) for the solutions in the large
and small time regimes. We will carry out this procedu
02611
s

e
a
is

f

r

f

below. However, let us first present a quick argument, wh
gives us the correct final result.

For t near tm ,y,(t);Aebt/2. Also from Eqs. ~B4!,
y.(t)5ebte2z/2f (z), and sincezm!1, it follows that for t
neartm ,y.(t);ebt f (z). To get a smooth match, we requir
f (z) to be a constant,A/2, for values ofz nearzm . Looking
now at Eq.~B6!, we see that the first term is constant, but t
second term changes very quickly in the small-z regime,
since it diverges in thez→0 limit. We therefore takeB50 to
get a smooth match, which in turn givesA5A/2. Therefore,

y.~ t !5
A

2
ebt expH 2

gX2

2a
e22a~T2t !J , t.tm . ~B7!

Having matched Eq.~B3! and Eq.~B7! neartm , we can now
fix the constantA from the boundary conditiony(T)5yf .
Doing this gives us the form~32!.

Let us briefly indicate how we arrive at this result in
more systematic fashion. We can choose to either ma
$ f (z), f 8(z)% at z5zm or $y(t),ẏ(t)% at t5tm . They are re-
lated by

e2bty~ t !5e2z/2f ~z!, ~B8!

ẏ~ t !

y~ t !
5b2az12az

f 8~z!

f ~z!
. ~B9!

Now, by successive integration by parts, we can obtain
approximation to the integral in Eq.~B6! valid for small z.
For our purposes we need retain only the first term:

f ~z!'A1B z2n11ez

n21
, z'zm . ~B10!

Therefore, to leading order,

f .~zm!5A1B
azm

2b/aezm

b
,

~B11!
f .8 ~zm!52Bezmzm

2~a1b!/a .

On the other hand,y,(tm)5(A/2)ebtm and ẏ,(tm)
5(bA/2)ebtm. So from Eqs.~B8! and ~B9!,

f ,~zm!5
A

2
ezm/2, f ,8 ~zm!5

A

4
ezm/2. ~B12!

Matching Eqs.~B11! and ~B12! gives

A5
A

2
@11O~zm!#, B5

A

4
zm

~a1b!/a@11O~zm!#.

~B13!

Substituting Eqs.~B13! into Eq. ~B6!, we obtain

f .~z!5
A

2 H 12zm
~a1b!/aE

z

gX2/a
dz z~a1b!/bezJ .

~B14!
6-17
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Clearly for values ofz that are not small, the second term
completely negligible and sof .(z);A/2 to a very good ap-
proximation. However, even for values ofz near tozm we
can neglect this term; it gives a contribution that isO(zm).
Therefore, once again, we obtain Eq.~B7!.

In determining the form ofy(t), we have implicitly as-
sumed that the solution of least action is such thaty(t)Þ0
for tÞ0. However, there are other solutions of the ty
y(t)50 for t<t1 ~wheret1,T! and a nontrivial solution of
Eq. ~30!, wherex(t) is given by Eq.~31! and wherey(t1)
50 andy(T)5yf , for t>t1 . Intuitively, we would expect
that the solution witht150, which is the one found above,
the solution of least action, and all those witht1.0 have
greater action. This is due to the fact that, especially for la
t1 , the path will have to curve away sharply from thex axis
if it is to satisfy the condition att5T. We have checked this
by numerically solving the differential equation~30! for y(t)
with different t1 values, and found that the action monoton
cally increases witht1 .

Let us end by outlining the evaluation of the classic
action ~34!. To evaluateE, we choose to taket50, since in
this case U50. Also Vu t5050 and Vu t5T52 1

2 aX2

1 1
2 yf

2@gX22b#. Therefore,

Sc5H 1

2 E
0

T

dt ẋc
22

1

4
ẋc

2U
t50

T2
1

4
aX2J

1H 1

2 E
0

T

dt ẏc
22

1

4
ẏc

2U
t50

T1
1

4
yf

2@gX22b#J .

~B15!

The first bracket on the right-hand side of Eq.~B15!
is easily evaluated fromxc(t) given by Eq.~31!. One finds
(aX2/4)(cothaT21). The second bracket requires a litt
more calculation, sinceyc(t) has a different functional form
depending on whethert is less than, or greater than,tm .
Substituting the form fort<tm first of all gives for the sec-
ond bracket

1

2 E
tm

T

dt ẏc
21

A2b

8
sinh 2btm2

A2b2

4
~T2tm!

1
1

4
yf

2@gX22b#. ~B16!
02611
e

l

Using Eq.~32! and changing variables fromt to z @given by
Eqs.~B4!#, one finds

1

2 E
tm

T

dt ẏc
2~ t !5

A2

16a S a

gX2D b/a

e2bT

3E
zm

gX2/a
dz z~b/a!21e2z~b2az!2.

~B17!

The range of the integral in Eq.~B17! may be taken as
(0,gX2/a) as long as we subtract out

E
0

zm
dz z~b/a!21e2z~b2az!25abzm

b/a@11O~zm!#.

~B18!

The upper limit in the integral in Eq.~B17! is O(1), and
therefore the integral itself is alsoO(1). Therefore, the con-
tribution ~B18! is negligible compared to it, and so we ma
effectively replace the lower limit of the integral in Eq
~B17! by zero. The third term in Eq.~B16! being linear in
(T2tm) is negligible compared with the second term, whi
is exponential in 2btm . This term is in turn negligible com-
pared to Eq.~B17!, sincee22b(T2tm)!1. So the leading con-
tribution to Eq.~B17! is

1

4
yf

2@gX22b#1
A2

16a S a

gX2D b/a

3e2bTE
0

gX2/a
dz z~b/a!21e2z~b2az!2.

~B19!

Substituting the value ofA determined from the boundar
conditiony(T)5yf into Eq.~B19!, the classical action~B15!
becomes

Sc5
aX2

4
~cothaT21!1

1

4
yf

2@gX22b#1
yf

2

4a S a

gX2D b/a

3expH gX2

a J E
0

gX2/a
dz z~b/a!21e2z~b2az!2. ~B20!
,
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