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Percolation threshold, Fisher exponent, and shortest path exponent for four and five dimensions
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We develop a method of constructing percolation clusters that allows us to build very large clusters using
very little computer memory by limiting the maximum number of sites for which we maintain state information
to a number of the order of the number of sites in the largest chemical shell of the cluster being created. The
memory required to grow a cluster of masgs of the order ofs’? bytes whered ranges from 0.4 for
two-dimensional2D) lattices to 0.5 for sixor highej-dimensional lattices. We use this method to estimate
dmin, the exponent relating the minimum pattto the Euclidean distanae for 4D and 5D hypercubic lattices.
Analyzing both site and bond percolation, we fitg,= 1.607+0.005(4D) andd,,;,=1.812+ 0.006(5D). In
order to determinél,,;, to high precision, and without bias, it was necessary to first find precise values for the
percolation thresholdp.: p.=0.19688%0.000003(4D) and p.=0.14081-0.00001(5D) for site andp,
=0.160130-0.000003(4D) and p,=0.118174-0.000004(5D) for bond percolation. We also calculate the
Fisher exponent determined in the course of calculating the valuepof 7=2.313+0.003(4D) and 7
=2.412+0.004(5D).
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[. INTRODUCTION simulation and the computer processing power needed to
build these clusters. The method of “data blockin§,7] has
Percolation is a standard model for disordered systemBelped ameliorate the need for large amounts of memory. In
[1,2]. In percolation systems, sites or bonds on a lattice ar¢his method, the lattice is logically divided into blocks;
populated with probabilityp. The value of at which infinite ~memory for a block is not allocated until the lattice grows
clusters are formed is known as the critical probability orinto that block. The data blocking method has been used

percolation thresholg. . The shortest path exponety,, is recently to obtain precise estimates for the percolation

defined by the relatiof2,4,5] threshold and associated exponents for bond and site perco-
v lation on a number of latticef7,8]. Ultimately, however,
</‘>~rdmin, (1) although sufficient computer power is available to build

larger clusters, the cluster size is limited by the amount of
wherer is the Euclidean distance between two sites on dnemory avallable..Thlls becomes.partlcula_rl_y tr.ue as the di-
cluster and/ is the length of the shortest path traveling Mension of the latticel increases since at criticality the clus-
along occupied sites and bonds in the percolation cluster. THET becomes less densedcreases9]. To reach the same
length of this path is also known as the “chemical distance”ClUSter Mass or'n,,, we must have larger lattices.

between the sites. We can also write In this paper we describe a method of constructing clus-
ters that dramatically reduces the memory requirements
(ry~/* 2) needed to grow large clusters relative to previous methods.

Using this method of building large clusters, we estimate
for hypercubic lattices in four and five dimensions. The study
of critical properties in higher dimensions is important be-
cause one can use the results to test relations, which are
conjectured to hold in all dimensiorisyperscaling relations

which defines the exponemt= 1/d,,. With the exceptions
of d=6 (wherez=1/2) andd=1 (wherez=1), z is not
known exactly. The most common method of determining

numerically (and the one we will ugeis to grow clusters, q h believed to be th i all di
calculating the average distan¢e) of sites in the cluster 2and exponents that are believed to be the same in all dimen-

from the seed of the cluster as a function of chemical disSIONS(superuniversal exponentSThe current best estimates
tance/ from the seed. In order that finite size effects do notOf dmin for four and five dimensions, 1.630.03[3] and 1.8

play a role, the lattice must be large enough such that th 1, res_pectively, are of r_elatively low precis_ion co_mpared to
clusters that are grown do not reach the boundaries of thi&'€ estimates available in two and three dimensions 1.1307

lattice. +0.0004 and 1.37#0.006, respectively2,4].

Because corrections to scaling decrease with increasing
/, the larger the value of 5 (the value of/” at which we
stop the growth the more accurately we can estimat@he One method of cluster generation is the Leath method
limitations on the size/,,, to which the clusters can be [10]. In this method a site is chosen as the seed site of the
grown have been the computer memory available for theluster. Using a random number generator and a given bond

occupation probability, one determines whether the bonds
connected to the seed site are occupied of 1t If a bond
*Electronic address: gerryp@bu.edu is occupied, the site to which this bond connects is consid-

II. CLUSTER GENERATION
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ered to be part of the cluster and becomes a “growth site.whereo is the orientation of a bond attached to sitéas-
These sites are at chemical distance of unity from the seesuming values 0 tal—1).

site; all sites at the same chemical distaricéom the seed Furthermore we want to assign unique numbers to bonds
site are considered to be in “chemical shéll The process over many different realizations. We then define

is then repeated for each of these growth sites with the next

set of growth sites being at chemical distance 2 from the seed n"(X1,X2,X3, . . . Xq,0,M)

site. The cluster continues to grow until the growth stops
naturally, the growth is terminated by the sides of the

d-dimensional lattice of edge, or the maximum chemical wherem is the number of the realization amdl is the maxi-

distance/ . is reached. o
mum number of realizations we plan to create.
We use the Leath method to construct clusters, but we ! .
We then generate a 64-bit random numistusing an

keep track of which bonds are occupied and which sites have L . M ) " o
been visited by a method different from that traditionally encryptioniike algorithn¥(n") [13] usingn” s its input,
used. Traditionally, this state information is stored in an array R=f(n") 6)
of size equal to the number of lattice sites. In the data block- '

ing met_hod,_ memory usage can be improved py_allocatings\ bond is occupied iR>2%p. In practice, because for large
blocks in th's. array dyna_rmcally. Vollma_){!iz] ehmm_ated lattices and a large number of realizatiarfsis greater than
the use of this array, storing status of visited sites in a dataea, the maximum size of the input to the random number

structure thus reducing memory requirements to grow a clusz, .\ . : :
algorithm, we actually determine the random number in two
ter of masss to O(s). We extend the approach of R¢12] stgps y

further, reducing the memory required @(s’) where 6
ranges from 0.4 for two-dimensional lattices to 0.5 for(®ix
highep-dimensional lattices.

To see how this can be done, we first consider the uses
this state information.

=[n'"(Xq,X2,X3, ... Xq,0)M]+m, (5)

R=f({[f(n)d]+0}M +m). 7

qfhat is, we first create an intermediate random number based
(a) Occupancy statusnformation concerning whether a only on the coordinates of the bond and then create the final
site/bond is occupied is maintained so that it is the Samerando_m ”“’.“bef based on the |nterme.d|at'e random num.ber,

1pe orientation of the bond and the realization number. Using

independent of when it is accessed in the growth process. F?h . . . o -
example, we would not generate a cluster with the prope e test descrlbgd inL4], we confirm _that, within statistical
ror, our algorithm generates unbiased random numbers.

statistics if we treated a bond as occupied during one stage Of . . . .
the cluster growth and then treated it as empty during a Iatebh|s test is important because there is only a small difference
etween the inputs to the random number generator for

stage. ighboring sites. A lations bet the output

(b) Visited statusInformation concerning whether a site neighboring sites. Any correlations between - the outputs
has been visited or not is maintained in order tawe do would cause incorrect result4]. The generation of random
numbers using Eq(7) is slower than congruence or shift

not multiply count the presence of a site in the cluster @nd . : .
we do noF: )r/etrace ourgteps during cluster generation, causirl .g|§ter_techn|que$14] put Is somewhat compensated by
the growth process to never end. iminating the_ processing done to store and access bond
state when maintained in an array. In any case, the net effect
of using this approach is about a factor of 5 increase in
A. Occupancy status calculation time because of the slowness of the encryption-

We address the need to maintain information abouf!k€ random number generator that we used.

whether a bond is occupied or not by using a random number
generation scheme in which the random number associated B. Visited status
with a bond is determined by the location of the bond in the \y\e address the need to maintain information about

lattice [12] and the orientation of the bond. This is done by \yhether a site has been visited or not by storing information
first assigning a unique numberto anysitein the lattice as  gpout visited sites in a data structure. Each entry in the data
follows. Let (x;,Xz,X3 . . . Xq) be the coordinates of the site gty cture contains the coordinates of the site, the chemical
in the lattice, and letl(,,L,,L3, ... Lq) be the lengths of  gpell of the site, and a bit map with one bit for each direction
the sides of the lattice. Then from which the site can be visited. The data structure can be
accessed as a “circular list(first-in-first-out queugso en-
tries can be added and deleted. Since a site can be visited
=[({[(x1L2)+Xo]La}+ X3, .. . )Lg+Xq4] ®) from different directions, we must ensure that a site is
counted only once and that backtracking does not occur. To
accomplish this, before adding a site to the list of growth
Wtes, we first check to see if it is already in the list.
1. If it is already on the list, we do not add a new entry
but, in the entry for the site already in the list, we do set the
n'(Xq,X2,X3, - .. Xq,0)=[N(X{,X2,X3, ... Xq)d]+0, bit corresponding to the orientation of the connected bond
(4)  which was traversed to visit the site.

N(X1,X2,X3, -« . Xq)

assigns a unique number to any site in the lattice. We assi
a unique numben’ to anybondin the lattice by defining
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2. If itis not in the list, we add ifstoring the coordinates (a) b) ©)
and chemical length and setting the bit corresponding to thgs 50
direction from which the site was visitgd © 00 000000000 0000000 COOO®O 00O

When we are about to process the entry for a growth site o ._:E:g;ig d LS oo 0SS0 %8 °
we only count the site once in the mass of the cluster, ando ool |oo ooo| loooo téj’o o
only attempt to grow the cluster in directions other than[© 00O &6 0 00Ol 00O €00 00O |000 & 00
those from which the site was visited. In this way we avoid |3 o o 6 0 8 a6 o I oo 000000 o
backtracking along already traveled paths. If the data struc-
ture had to be searched sequentially every time we were FIG. 1. Examples of cluster growth at the beginning of the
about to create a growth site, the time needed would makgopulation of sites at chemical distance 3 from the seed site. The
this approach impractical. In Rdfl2], the data structure was seed sites are denoted by striped circles.Example of a square
maintained as a binary tree in order to reduce search timdattice in which a siteC is multiply visited from sitesA andB. (b)

We use the faster “hash table” methdts] to access entries Example of a triangular lattice in which si® can be multiply
for the visited sites. visited from sitesA and D and in which site D can be multiply

The hashing technique works as follows: A ki€yis as-  Visited from sitesB and C. (c) Example in which the cluster is
sociated with each entry of the data structure. We use a fun@own from multiple seeds. Sit can be multiply visited from sites
tion h(K) to map the key into a “slot” at offseh(K) in a A andD; site D can be multiply visited from siteB and C.

“hash table.” If the slot in the table is not already used, we

store the number or address of the entry in this slot; if thevisited by multiple paths as shown in Figal Thus we need

slot is used(this is referred to as a “collision’ we add the only keep state information about growth sites, which them-
entry to a chain of entries all of which map to the same valueselves have not yet been used to create entries for the next
h(K) |dea”y the functionh(K) maps the keys uniform'y Chemical She”. The number Of SUCh Sites at any pOint in the
over the slots in the table so we obtain few long chains. If wegrowth process will be of the order of the size of the current
use a hash table of sizd =2™, wherem is an integer and chemical shell.

chooseK as the unique number of the site, an effective The discussion so far has been for hypercubic lattices. For
hashing function i§15] these lattices, we ensure that we did not double count site or

backtrack by maintaining information about growth sites,
1 which themselves have not yet been used to create entries for
h(n)= ———-[(nC)mod 2], (8)  the next chemical shell and then checking for duplicates.
2 More generally(e.g., for triangular latticesthe situation is a
little more complicated as shown in the example in Figp)1
A similar situation is shown in Fig.(t), where we grow a
cluster from multiple seeds. To treat both types of situation,
we must maintain(i) state information about growth sites
that themselves have not yet been used to create entries for
the next chemical shell andi) state information about all

00000000 ©C00000 000

wherew is the word sizén bits) of our computer and the
hash constanC is the least significanw bits of the product
of 2% and the “golden ratio,” (/5—1)/2. Thush(n) yields
the uppem bits (shift rightw—m bits) of the result of taking
the lowerw bits of the product of the unique site number and

the hash constar. We implement the ability to chain en- sites in the chemical shell previous to the one being built.

tries in the data structure by defmmg anqther f|_eld n th? dat%efore we add a site to the list of growth sites, we check if it
structure entry that serves as a chain pointer field. To find a already present in the previous shell: if it is, we do not add

entry in the data structure for a site, we calculate the uniqu

site number using Eq3), find the offset in the hash table ™ The size of a chemical shell can be estimated as follows.

using E_q.(8), and _then walk_ the chain of entries to .f'nd the The chemical distance” scales with the mean Euclidean
entry with the desired coordinates. If we make the size of the

hash table equal to the size of the site data structure, we finréaldlus of the cluster as
the average number of hash “collisions” to be less than two
so we can determine if a site has been visited very efficiently.

This approach of keeping the status of visited sites in a | . L
special data structur@ot in the lattice arrayapplies to any While the cluster masg&the number of sites in the clusjes
lattice model. In the case of growing percolation clusters we*cales as
can further reduce the amount of memory needed signifi- q
cantly. This is accomplished by recognizing that a site which s~r, (9b)
is multiply visited is done so during the growth of a single
chemical shell. This is the key insight that allows us to re-Wheredpy, has values 1.13 and 2 fat=2 and 6, respec-
duce the memory requirement and can be confirmed by corively [2,4,16,17; d;, the fractal dimension of the cluster
sidering the bonds adjacent to a site in a lower chemicamass, has the exact values 94889 and 4 fod=2 and 6,
shell: (i) an occupied bond adjacent to a site in a lowerrespectively{1,2]. Then
chemical shell cannot be a path to revisit that site because we
do not backtrack andii) an unoccupied bond adjacent to a s~/ /Amin, (10
site in a lower chemical shell cannot be on the path to revisit
that site. Sites in the same chemical shell can, however, band

/~ r 9min, (9a)
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TABLE |. Simulation parameters and results foy and the Fisher exponent

Dimension Type No. of realizations Smax Pe T
Bond 16 131 073 0.1601360.000003
4 2.313+0.003
Site 16 131 073 0.1968890.000003
Bond 16 16 383 0.118174 0.000004
5 2.412+0.004
Site 16 16 383 0.1408%0.00001
ds~ /(dt/dmin) =1q /= (gUmin/dt) (d¢ /dmin) =1 0.19688%0.000003 [4D site]
— gl (dmin/d /. (12) 0.16013@- 0.000003 [4D bond 13
, , , , Pe=) 0.14081-0.00001  [5D site] (13
Settingd/ =1, we find the size of the outermost chemical
shell of a cluster of massscales as 0.118174-0.000004 [SD bond.
Sehel(8)~ S, (120  Also, for 7 we find the values
where §=1—dpy,/ds. 2.313+0.003 [4D]
The values off range from=~0.4 to 0.5 ford=2 tod (14

=
=6. Thus the size of the data structure to contain the visited 2.412£0.004 [5D].

status is only of the order of the square root of the size of the

cluster size because we only store status for the |arge§?[hese results are more precise than some of the published
chemical shell. values forp,=0.16013-0.00012[3], 0.1407+=0.0003[18],

and 0.118190.00004[19] for 4D bond, 5D site, and 5D
bond percolation, respectively, and fer2.41 for 5D per-
colation; for 4D site percolation, Ballesteresal.[20] found
the comparably precise valyg =0.196901 0.000005(just

In order to determingl,,, to high precision and without slightly higher than ougsand 7=2.3127-0.0007. The ana-
bias, it is necessary to first find values of the percolatioriytic e-expansion method has also been used to estimate
threshold substantially more precise than previously knowgritical —exponents [21-25. Using the third-order
(in most cases To determine these thresholds we used thes-expansion fory of Ref. [21] and the scaling relations
method of measuring cluster-size statistics of individual clus=d/d;+1 and di=(d+2—7)/2, we find 7=2.348 and
ters grown on large virtual lattices as described7h The  2.421 for 4D and 5D, respectively. These values are fairly
data-blocking methofb] used involves assigning memory to close to the values we measured.
parts of the lattice only when the cluster grows into it. With  All simulation parameters and our results are summarized
the data-blocking method, like the hashing method, a table it Table I. The precision of our results is sufficiently high
used to access a data structure but in this case, the ddtzat we expect that statistical errors pg will not have an
structure entries represent blocks of sites instead of indieffect on our value ofl ;.
vidual sites; there are no collisions, but some memory is
wasted. The advantage of using the data-blocking method as
opposed to the one proposed in this work is that the states of
all sites are recordeths described in the Appendixso it To calculate the shortest path exponent, we ran simula-
allows using a fast random number generator. The dataions at the percolation thresholds found above. We stopped
blocking method allows lattices of sufficient size to keepcluster growth at’,,,,=2048 for 4D bond and site percola-
finite-size effects under control, with sufficient speed totion and/ .= 1024 for 5D bond and site percolation. We
achieve good statistic§The hashing method described in simulated 7% 10°, 39x10°, 105x 10°, and 20< 10° real-
this paper could also have been used for this calculation. izations for 4D bond, 4D site, 5D bond, and 5D site perco-

In four dimensiong4D), we use a virtual lattice of 522  lation, respectively. During our simulations, we kept track of
sites, broken up into blocks of 4Gsites each. In 5D, the the maximum and minimum lattice points to which our clus-
virtual lattice of size 12Bis divided into blocks of size®8  ters extended. Using this information, we determined the size
The cluster-size cutoffsy,, is 21'=131,072, and ¥  of the lattice that we would have needed to build if we had
=16 384 for 4D and 5D, respectively. The threshold is de-been using conventional memory techniques. &er5 the
termined as the value gf that leads to the cluster size dis- lattice would have had sides of length=245 resulting in
tribution ng best following a power lamg~s~ 7. Simulating  approximately 908 10° lattice sites &1 TB memory; the
about 16 clusters for each case, and using the data analysiactual memory used was less tharl0° (1 MB), six orders
techniques employed irv], we find of magnitude smaller.

Ill. PERCOLATION THRESHOLD AND FISHER
EXPONENT

IV. SHORTEST PATH EXPONENT
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4 FIG. 3. h(/)=(r)//* versus/ for (a) 4D bond percolation for

FIG. 2. Euclidean distancg) versus chemical distancé for ~ values of(from top to bottomz’=0.615, 0.620, and 0.625 axfio)
site percolation(upper liné and bond percolatiofiower line) for ~ 4D site percolation for values offrom top to bottom 2z’

(a) 4D and(b) 5D. The slightly different apparent slopes of the plots =0.623, 0.625, and 0.627. The dashed horizontal lines are pro-

for bond and site cases can be attributed to different values of theided as guides to the eye to allow one to better see that, for large

correction-to-scaling parameters. /, the middle plots oh(/) in (a) and (b) are increasing and de-
creasing, respectively.

Figure 2a) shows plots ofr) for 4D site and bond per- . . . .
colation, while Fig. 2) shows plots ofr) for 5D site and h(/) bggc:/me; an |nc.reasmg function, tije leading power-law
bond percolation. While the plots resemble straight lines, th&€m #*~* will dominate ’becausez>z : Thus a lower
effects of corrections to scaling are, in fact, considerableP0und onzis that value ofz’ at whichh(/) asymptotically

One customarily assumes that corrections to scaling have tfCOMes an increasing function. From Figa)3his value is

: .620
functional form[1,2,4,9 We can proceed similarly by considering site percolation
<r>~/2(1+A/'7A+ ) (15) in 4D, plottingh(/) for 4D site percolation for various val-

ues ofz’ in Fig. 3(b). From these plots it is clear thatfor

where the constar depends on the dimension, lattice type bpnd percolation is negative. Hence we know that if for large
and percolation typébond or sit¢ but the exponent de- / the slope ofh(/) becomes a decrerf\smg function, we are
pends only on dimension. Let seeing the leading power-law tenff~* dominate because
z<Zz'. Thus an upper bound anis that value oz’ at which
L) - A h(/) asymptotically becomes a decreasing function. From
h(/)= 7~/Z C(I+ASTR ), (16)  Fig. 3(b) this value is 0.625.
8 Proceeding in the same manner for site and bond perco-
, . o lation in 5D [see Fig. 4a,b], we find that the constam is
wherez' is an estimated value a If /maxlweref infinitely positive for both bond and site percolation, allowing us to
!arge, we could determineas th.e value of’, which results  yatermine only an upper bound o 0.5515 (the lower of
in a plot of h(~) that asymptotically approaches a constantihe ypper bounds for site and bond percolatidhihile this
(i.e., has zero slope as—); however, since’mais finite,  method of finding bounds onby identifying the value o’
we may obtain misleading results if we determin@n this ‘at which the slope oh(/) changes sign does not always
manner. Nevertheless, we can use this approach to determipg|d both upper and lower bounds, it has the advantage that
bounds ore. it does not require any estimation of the paramefeesid A
To see how this is accomplished, first consider Fi@,3 in Eq.(12) and, in fact, is somewhat insensitive to the exact
in which we ploth(/) for 4D bond percolation for various form of the the corrections-to-scaling terms.
values ofz’. From this figure and Eq16) it is clear thatA is We also analyze our data using another more commonly
positive. Hence, we know that if for larg€ the slope of used method4—6]. That method is to plot the effective ex-
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FIG. 4. h(/)=(r)//* versus/ for (a) 5D site percolation for
values of (from top to bottom z’'=0.5510, 0.5515, and 0.5520, FIG. 5. Effective exponertversus 14~ * with A=0.5 for bond
and (b) 5D bond percolation for values d¢from top to bottom z’ percolation(upper ling and site percolatiolower line) for (a) 4D
=0.5595, 0.5615, and 0.5635. The dashed horizontal lines are preand (b) 5D.
vided as guides to the eye to allow one to better see that, for large
7, the the middle plots ofi(/) in (a) and(b) are decreasing. almost horizontal plot for site percolation indicates that the

amplitude,A, of the correction-to-scaling term is very small.

ponentsz(/) between points” and 2 versus/ 2 using an  From these plots and our estimates above of bounds we
estimated value oA that yields the straightest line. The ef- estimate
fective exponent(/) between two points at and 2 is the
value of the slope between these points in a log-log plot of Z_{O-GZZJS 0.002 [4D] 18

(r()) 0.552+0.002 [5D].
o IN[{r(27))]1—=In[{r())] _ IN[{r(22)){r(/))] In terms ofd,,,, this corresponds to
Inf27]=Inl/] In[2] an {1.60& 0.005 [4D]
min— (19
1.812+0.006 [5D].

The /=0 intercept of a plot ofz(/) will be an estimate for

z, and the slope will be proportional #. Our best estimate The previously published values faf.,;, obtained by nu-

for A for d=4 andd=5 is 0.4<A<0.6, so we use a value merical methods are 1.630.03[3] and 1.8[1] for 4D and

of A of 0.5 and plotz(~) for 4D site and bond percolation in 5D. Thus our estimates af.,, are of higher accuracy than
Fig. 5@ and 5D site and bond percolation in Fighh In  the existing ones and have accuracy comparable to that for
Fig. Xa), the fact that the slopes of the lines change suggeste estimate ofl,;, in 3 dimensions, 1.3740.006[5]. Us-

that we are seeing the effects of both the correction-toing the rational form of the second orderexpansion, of
scaling term in Eq(15) as well as higher order terms, which Ref. [25] [in which a cubic term was added so thth;(d
become less significant at larger values’ofin general, itis =1)=1] we find d,;;,=1.568 and 1.803 for 4D and 5D,
more efficient to generate smaller clusters and more of thentgspectively. Thee-expansion result for 5D is just a small
rather than fewer, larger ones. However, if the corrections t@mount outside the error bar of our result. The agreement can
scaling are not well understood or large, then one must buildbe improved by making §2,1] Pade approximation to the
the largest clusters possible. As we see here, strong corree-expansion series; using this technique, we fidgl,
tions to scaling are present in 4D percolation where the plots=1.614 and 1.814 for 4D and 5D, respectively, in good
of effective slope change at largé If we had used smaller agreement with our results.

clusters using traditional memory-management techniques Our results and all simulation parameters are summarized
we would have obtained incorrect results. In Figa)sthe  in Table II.

026115-6



PERCOLATION THRESHOLD, FISHER EXPONENT, AND ... PHYSICAL REVIEW & 026115

TABLE II. Simulation parameters and results for the spreading expanantd shortest path exponent

dmin-
Dimension Type Pc No. of realizations  /'ax z Ormin
Bond 0.160130 7810° 2048
4 0.622+0.002 1.6070.005
Site 0.196889 3910 2048
Bond  0.118174 10810° 1024
5 0.552+0.002 1.812-0.006
Site 0.14081 28 10° 1024
V. DISCUSSION the Hoshen-Kopelman method is better suited to other prob-

ems, such as calculating the number of clusters that span

We have develqped a technqu_Je that aI_Iows us to buil cross a rectangular system, than our method, based on the
very large percolation clusters using very little memory. InLeath algorithm

fact, using the method described here, relative to computer
processing power available today and in the foreseeable fu-
ture, computer memory is no longer a constraint on building ACKNOWLEDGMENTS

percolation clusters near the percolation threshold. The criti- We thank Y. Ashkenazy, S. V. Buldyrev, P. Grassberger, S.

cal computer resource thus becomes solely processiqgavlin and D. Stauffer for helpful comments and discus-
power. For example, by extrapolating from our simulations,Sions ,and BP Amoco and NSF for financial support
we find that with our method, with less than®1bytes of ' pport.

memory, we could build a 5D cluster of #0sites, which
would have required a lattice of 1Gsites, and reach a value APPENDIX: ALTERNATIVE METHOD
of / max Of 107 (versus the 1024 cutoff we used in our simu- OF CLUSTER GROWTH

lations. But the time to build a single trillion-site cluster We discuss a variant of our approach in which we still
would be about 2000 h on current workstations. As processaly, e jnformation concerning which sites are visited in a data

sEeefjds 'ﬂcrease’. o?r technique fo:jreducmg memgrydusa%?ructure and access the entries using a hash table. However,
should allow critical exponents and constants to be detelz ,,q sigres information about all visited sites, not just for
mined with greater precision. Current technigues of 9rowingpose in the last shé), then a traditional random number

clusters, including the one described in this paper, requirgenerator (one which does not take the coordinates/
computer processing resource@(s), wheresis the size of  gientation of the bond as inputan be used. Let us first

the cluster gLownh o N | , gonsider the case where we have no need for occupied bond
We note that the technique we have developed is usefyl ¢, mation(e.g., we are simply counting the number of sites

when we can count the quantities in which we are interesteg}, o cluster. When considering a growth site, ifi) an
as we build the clustee.qg., cluster mass, average distance t0,gjacent site is vacant we determine whether the bond con-

f]nes na Chﬁjm'c?l Slhe”Oh” the othefr T}ang’ Itkls not cf:lear nected to that site is occupied or néit) an adjacent site is
ow we could calculate the mass of the backbone, or €Xqqi yacant we simply do not make a determination of

ample, using our method because current methods of detef;hather the bond is occupied.

mining backbone mass require knowing all the sites in the | this way we make a determination about whether a
cluster, not just those in the current chemical shell. To obtaiRy\ .en bond is occupied no more than once.

backbone properties one could, however, reduce memory re- Now consider the case in which we do have a need to
quired to~s (versusLY) by maintaining information about know whether a bond is occupied or retg., we are count-
all visited sites(not just those in the current chemical shell ing the number of bonds in the cluster or we will be deter-

in a data structure as opposed to maintaining the full 'attic‘?nining the backbone of the clusietn this case, when con-
data structur¢12]. In the Appendix, we describe an alterna- sidering a growth site, if: '

tive method of cluster generation that can be used when in-

formation about all visited sites must be maintained. (i) An adjacent site is vacant, we determine whether the
Finally, it is useful to compare our method with the bond connected to that site is occupied or not.
Hoshen-Kopelman methd@6], which constructsll clusters (i) An adjacent site is not vacant and is in a higher chemi-

in a d-dimensional lattice by successively populatidg 1 cal shell, we also determine whether the bond is connected to
dimensional slices of the lattice. Memory is used to store thehat site is occupied or not.

last and current slice of the lattice so the memory needed (iii) An adjacent site is not vacant and is in the same
scales a9~ 1. The Hoshen-Kopelman method is much lesschemical shell as the growth site, we make a determination
memory efficient than the method presented here, and bebout whether the bond is occupied only if the direction from
comes less effective as the dimension increases sindbe growth site to the adjacent site is positive. In this way, the
L971Y/L9— 1 with increasingd. Also, the Hoshen-Kopelman determination about whether the bond is occupied is done
method cannot be used to calculdig,. On the other hand, only once. This situation arises in nonculgég., triangular
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lattices and when we start cluster growth with multiple whether a given bond is occupiéelg., to later determine the
seeds. backbong this information can be stored in the entry in the
(iv) An adjacent site is not vacant and is in a lower chemi-data structure for the site with which the bonds are associated
cal shell than the growth site, we make no determinatioralong with the coordinates of the site, etc.
about whether the bond to that site is occupied; whether the This method trades off memorfwe keep state for all
bond is occupied has been determined earlier in the growthisited site$ versus performancéve can use the faster tra-
process. In fact, the bond must be unoccupied because if ditional random number generators as opposed to the encryp-
were occupied we would have reached the growth site earlidgfonlike random number generajoAlso, in cases where we,
directly from the adjacent site. for some other reason, must keep state information about all
Thus we ensure that we determine whether a bond is odhe sites, we can obtain the benefit of the using a faster
cupied once and only once. If one needs to keep a record sandom number generator.
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