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Percolation threshold, Fisher exponent, and shortest path exponent for four and five dimensions
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We develop a method of constructing percolation clusters that allows us to build very large clusters using
very little computer memory by limiting the maximum number of sites for which we maintain state information
to a number of the order of the number of sites in the largest chemical shell of the cluster being created. The
memory required to grow a cluster of masss is of the order ofsu bytes whereu ranges from 0.4 for
two-dimensional~2D! lattices to 0.5 for six~or higher!-dimensional lattices. We use this method to estimate
dmin , the exponent relating the minimum pathl to the Euclidean distancer, for 4D and 5D hypercubic lattices.
Analyzing both site and bond percolation, we finddmin51.60760.005~4D! anddmin51.81260.006~5D!. In
order to determinedmin to high precision, and without bias, it was necessary to first find precise values for the
percolation threshold,pc : pc50.19688960.000003~4D! and pc50.1408160.00001~5D! for site andpc

50.16013060.000003~4D! and pc50.11817460.000004~5D! for bond percolation. We also calculate the
Fisher exponentt determined in the course of calculating the values ofpc : t52.31360.003 ~4D! and t
52.41260.004~5D!.

DOI: 10.1103/PhysRevE.64.026115 PACS number~s!: 64.60.Ak, 64.60.Fr, 05.45.Df
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I. INTRODUCTION

Percolation is a standard model for disordered syste
@1,2#. In percolation systems, sites or bonds on a lattice
populated with probabilityp. The value ofp at which infinite
clusters are formed is known as the critical probability
percolation thresholdpc . The shortest path exponentdmin is
defined by the relation@2,4,5#

^l &;r dmin, ~1!

where r is the Euclidean distance between two sites o
cluster andl is the length of the shortest path travelin
along occupied sites and bonds in the percolation cluster.
length of this path is also known as the ‘‘chemical distanc
between the sites. We can also write

^r &;l z, ~2!

which defines the exponentz51/dmin . With the exceptions
of d>6 ~where z51/2) andd51 ~where z51), z is not
known exactly. The most common method of determininz
numerically ~and the one we will use! is to grow clusters,
calculating the average distance^r & of sites in the cluster
from the seed of the cluster as a function of chemical d
tancel from the seed. In order that finite size effects do n
play a role, the lattice must be large enough such that
clusters that are grown do not reach the boundaries of
lattice.

Because corrections to scaling decrease with increa
l , the larger the value ofl max ~the value ofl at which we
stop the growth!, the more accurately we can estimatez. The
limitations on the sizel max to which the clusters can b
grown have been the computer memory available for

*Electronic address: gerryp@bu.edu
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simulation and the computer processing power needed
build these clusters. The method of ‘‘data blocking’’@6,7# has
helped ameliorate the need for large amounts of memory
this method, the lattice is logically divided into block
memory for a block is not allocated until the lattice grow
into that block. The data blocking method has been u
recently to obtain precise estimates for the percolat
threshold and associated exponents for bond and site pe
lation on a number of lattices@7,8#. Ultimately, however,
although sufficient computer power is available to bu
larger clusters, the cluster size is limited by the amount
memory available. This becomes particularly true as the
mension of the latticed increases since at criticality the clus
ter becomes less dense asd increases@9#. To reach the same
cluster mass orl max, we must have larger lattices.

In this paper we describe a method of constructing cl
ters that dramatically reduces the memory requireme
needed to grow large clusters relative to previous metho
Using this method of building large clusters, we estimatz
for hypercubic lattices in four and five dimensions. The stu
of critical properties in higher dimensions is important b
cause one can use the results to test relations, which
conjectured to hold in all dimensions~hyperscaling relations!
and exponents that are believed to be the same in all dim
sions~superuniversal exponents!. The current best estimate
of dmin for four and five dimensions, 1.6360.03 @3# and 1.8
@1#, respectively, are of relatively low precision compared
the estimates available in two and three dimensions 1.1
60.0004 and 1.37460.006, respectively@2,4#.

II. CLUSTER GENERATION

One method of cluster generation is the Leath meth
@10#. In this method a site is chosen as the seed site of
cluster. Using a random number generator and a given b
occupation probability, one determines whether the bo
connected to the seed site are occupied or not@11#. If a bond
is occupied, the site to which this bond connects is cons
©2001 The American Physical Society15-1
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ered to be part of the cluster and becomes a ‘‘growth si
These sites are at chemical distance of unity from the s
site; all sites at the same chemical distancel from the seed
site are considered to be in ‘‘chemical shelll .’’ The process
is then repeated for each of these growth sites with the n
set of growth sites being at chemical distance 2 from the s
site. The cluster continues to grow until the growth sto
naturally, the growth is terminated by the sides of t
d-dimensional lattice of edgeL, or the maximum chemica
distancel max is reached.

We use the Leath method to construct clusters, but
keep track of which bonds are occupied and which sites h
been visited by a method different from that traditiona
used. Traditionally, this state information is stored in an ar
of size equal to the number of lattice sites. In the data blo
ing method, memory usage can be improved by alloca
blocks in this array dynamically. Vollmayr@12# eliminated
the use of this array, storing status of visited sites in a d
structure thus reducing memory requirements to grow a c
ter of masss to O(s). We extend the approach of Ref.@12#
further, reducing the memory required toO(su) where u
ranges from 0.4 for two-dimensional lattices to 0.5 for six~or
higher!-dimensional lattices.

To see how this can be done, we first consider the use
this state information.

~a! Occupancy status. Information concerning whether
site/bond is occupied is maintained so that it is the sa
independent of when it is accessed in the growth process
example, we would not generate a cluster with the pro
statistics if we treated a bond as occupied during one stag
the cluster growth and then treated it as empty during a l
stage.

~b! Visited status. Information concerning whether a sit
has been visited or not is maintained in order that~a! we do
not multiply count the presence of a site in the cluster and~b!
we do not retrace our steps during cluster generation, cau
the growth process to never end.

A. Occupancy status

We address the need to maintain information ab
whether a bond is occupied or not by using a random num
generation scheme in which the random number associ
with a bond is determined by the location of the bond in
lattice @12# and the orientation of the bond. This is done
first assigning a unique numbern to anysite in the lattice as
follows. Let (x1 ,x2 ,x3 . . . xd) be the coordinates of the sit
in the lattice, and let (L1 ,L2 ,L3 , . . . ,Ld) be the lengths of
the sides of the lattice. Then

n~x1 ,x2 ,x3 , . . . ,xd!

5†„$@~x1L2!1x2#L3%1x3 , . . . …Ld1xd‡ ~3!

assigns a unique number to any site in the lattice. We as
a unique numbern8 to anybond in the lattice by defining

n8~x1 ,x2 ,x3 , . . . ,xd ,o!5@n~x1 ,x2 ,x3 , . . . ,xd!d#1o,
~4!
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whereo is the orientation of a bond attached to sitex ~as-
suming values 0 tod21).

Furthermore we want to assign unique numbers to bo
over many different realizations. We then define

n9~x1 ,x2 ,x3 , . . . ,xd ,o,m!

5@n8~x1 ,x2 ,x3 , . . . ,xd ,o!M #1m, ~5!

wherem is the number of the realization andM is the maxi-
mum number of realizations we plan to create.

We then generate a 64-bit random numberR using an
encryptionlike algorithmf (n9) @13# usingn9 as its input,

R5 f ~n9!. ~6!

A bond is occupied ifR.264p. In practice, because for larg
lattices and a large number of realizationsn9 is greater than
264, the maximum size of the input to the random numb
algorithm, we actually determine the random number in t
steps,

R̄5 f „$@ f ~n!d#1o%M1m…. ~7!

That is, we first create an intermediate random number ba
only on the coordinates of the bond and then create the fi
random number based on the intermediate random num
the orientation of the bond and the realization number. Us
the test described in@14#, we confirm that, within statistica
error, our algorithm generates unbiased random numb
This test is important because there is only a small differe
between the inputs to the random number generator
neighboring sites. Any correlations between the outp
would cause incorrect results@14#. The generation of random
numbers using Eq.~7! is slower than congruence or shi
register techniques@14# but is somewhat compensated b
eliminating the processing done to store and access b
state when maintained in an array. In any case, the net e
of using this approach is about a factor of 5 increase
calculation time because of the slowness of the encrypt
like random number generator that we used.

B. Visited status

We address the need to maintain information ab
whether a site has been visited or not by storing informat
about visited sites in a data structure. Each entry in the d
structure contains the coordinates of the site, the chem
shell of the site, and a bit map with one bit for each directi
from which the site can be visited. The data structure can
accessed as a ‘‘circular list’’~first-in-first-out queue! so en-
tries can be added and deleted. Since a site can be vi
from different directions, we must ensure that a site
counted only once and that backtracking does not occur
accomplish this, before adding a site to the list of grow
sites, we first check to see if it is already in the list.

1. If it is already on the list, we do not add a new ent
but, in the entry for the site already in the list, we do set
bit corresponding to the orientation of the connected bo
which was traversed to visit the site.
5-2
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2. If it is not in the list, we add it~storing the coordinates
and chemical length and setting the bit corresponding to
direction from which the site was visited!.

When we are about to process the entry for a growth s
we only count the site once in the mass of the cluster,
only attempt to grow the cluster in directions other th
those from which the site was visited. In this way we avo
backtracking along already traveled paths. If the data st
ture had to be searched sequentially every time we w
about to create a growth site, the time needed would m
this approach impractical. In Ref.@12#, the data structure wa
maintained as a binary tree in order to reduce search t
We use the faster ‘‘hash table’’ method@15# to access entries
for the visited sites.

The hashing technique works as follows: A keyK is as-
sociated with each entry of the data structure. We use a fu
tion h(K) to map the key into a ‘‘slot’’ at offseth(K) in a
‘‘hash table.’’ If the slot in the table is not already used, w
store the number or address of the entry in this slot; if
slot is used~this is referred to as a ‘‘collision’’! we add the
entry to a chain of entries all of which map to the same va
h(K). Ideally the functionh(K) maps the keys uniformly
over the slots in the table so we obtain few long chains. If
use a hash table of sizeM52m, wherem is an integer and
chooseK as the unique numbern of the site, an effective
hashing function is@15#

h~n!5
1

2w2m
@~nC!mod 2w#, ~8!

wherew is the word size~in bits! of our computer and the
hash constant,C is the least significantw bits of the product
of 2w and the ‘‘golden ratio,’’ (A521)/2. Thush(n) yields
the upperm bits ~shift right w2m bits! of the result of taking
the lowerw bits of the product of the unique site number a
the hash constantC. We implement the ability to chain en
tries in the data structure by defining another field in the d
structure entry that serves as a chain pointer field. To find
entry in the data structure for a site, we calculate the uni
site number using Eq.~3!, find the offset in the hash tabl
using Eq.~8!, and then walk the chain of entries to find th
entry with the desired coordinates. If we make the size of
hash table equal to the size of the site data structure, we
the average number of hash ‘‘collisions’’ to be less than t
so we can determine if a site has been visited very efficien

This approach of keeping the status of visited sites i
special data structure~not in the lattice array! applies to any
lattice model. In the case of growing percolation clusters
can further reduce the amount of memory needed sig
cantly. This is accomplished by recognizing that a site wh
is multiply visited is done so during the growth of a sing
chemical shell. This is the key insight that allows us to
duce the memory requirement and can be confirmed by c
sidering the bonds adjacent to a site in a lower chem
shell: ~i! an occupied bond adjacent to a site in a low
chemical shell cannot be a path to revisit that site because
do not backtrack and~ii ! an unoccupied bond adjacent to
site in a lower chemical shell cannot be on the path to rev
that site. Sites in the same chemical shell can, however
02611
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visited by multiple paths as shown in Fig. 1~a!. Thus we need
only keep state information about growth sites, which the
selves have not yet been used to create entries for the
chemical shell. The number of such sites at any point in
growth process will be of the order of the size of the curre
chemical shell.

The discussion so far has been for hypercubic lattices.
these lattices, we ensure that we did not double count sit
backtrack by maintaining information about growth site
which themselves have not yet been used to create entrie
the next chemical shell and then checking for duplicat
More generally~e.g., for triangular lattices!, the situation is a
little more complicated as shown in the example in Fig. 1~b!.
A similar situation is shown in Fig. 1~c!, where we grow a
cluster from multiple seeds. To treat both types of situati
we must maintain~i! state information about growth site
that themselves have not yet been used to create entrie
the next chemical shell and~ii ! state information about al
sites in the chemical shell previous to the one being bu
Before we add a site to the list of growth sites, we check i
is already present in the previous shell; if it is, we do not a
it.

The size of a chemical shell can be estimated as follo
The chemical distancel scales with the mean Euclidea
radius of the clusterr as

l ;r dmin, ~9a!

while the cluster mass~the number of sites in the cluster! s
scales as

s;r df , ~9b!

wheredmin has values 1.13 and 2 ford52 and 6, respec-
tively @2,4,16,17#; df , the fractal dimension of the cluste
mass, has the exact values 91/4851.89 and 4 ford52 and 6,
respectively@1,2#. Then

s;l df /dmin, ~10!

and

FIG. 1. Examples of cluster growth at the beginning of t
population of sites at chemical distance 3 from the seed site.
seed sites are denoted by striped circles.~a! Example of a square
lattice in which a siteC is multiply visited from sitesA andB. ~b!
Example of a triangular lattice in which siteC can be multiply
visited from sitesA and D and in which site D can be multiply
visited from sitesB and C. ~c! Example in which the cluster is
grown from multiple seeds. SiteC can be multiply visited from sites
A andD; site D can be multiply visited from sitesB andC.
5-3
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TABLE I. Simulation parameters and results forpc and the Fisher exponentt.

Dimension Type No. of realizations smax pc t

Bond 108 131 073 0.16013060.000003
4 2.31360.003

Site 108 131 073 0.19688960.000003

Bond 108 16 383 0.11817460.000004
5 2.41260.004

Site 108 16 383 0.1408160.00001
a

ite
th
ge

t
io
w
th
us

to
ith
le
d

nd

d
s

at
ep
to

in
.

e
s-

ys

hed

ate

irly

zed
h

ula-
ped
-
e

o-
of
s-
ize
ad
ds;l (df /dmin)21dl 5~sdmin /df !(df /dmin)21dl

5s12(dmin /df )dl . ~11!

Settingdl 51, we find the size of the outermost chemic
shell of a cluster of masss scales as

sshell~s!;su, ~12!

whereu512dmin /df .
The values ofu range from'0.4 to 0.5 ford52 to d

56. Thus the size of the data structure to contain the vis
status is only of the order of the square root of the size of
cluster size because we only store status for the lar
chemical shell.

III. PERCOLATION THRESHOLD AND FISHER
EXPONENT

In order to determinedmin to high precision and withou
bias, it is necessary to first find values of the percolat
threshold substantially more precise than previously kno
~in most cases!. To determine these thresholds we used
method of measuring cluster-size statistics of individual cl
ters grown on large virtual lattices as described in@7#. The
data-blocking method@6# used involves assigning memory
parts of the lattice only when the cluster grows into it. W
the data-blocking method, like the hashing method, a tab
used to access a data structure but in this case, the
structure entries represent blocks of sites instead of i
vidual sites; there are no collisions, but some memory
wasted. The advantage of using the data-blocking metho
opposed to the one proposed in this work is that the state
all sites are recorded~as described in the Appendix!, so it
allows using a fast random number generator. The d
blocking method allows lattices of sufficient size to ke
finite-size effects under control, with sufficient speed
achieve good statistics.~The hashing method described
this paper could also have been used for this calculation!

In four dimensions~4D!, we use a virtual lattice of 5124

sites, broken up into blocks of 164 sites each. In 5D, the
virtual lattice of size 1285 is divided into blocks of size 85.
The cluster-size cutoffsmax is 2175131,072, and 214

516 384 for 4D and 5D, respectively. The threshold is d
termined as the value ofp that leads to the cluster size di
tribution ns best following a power lawns;s2t. Simulating
about 108 clusters for each case, and using the data anal
techniques employed in@7#, we find
02611
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0.19688960.000003 @4D site#

0.16013060.000003 @4D bond#

0.1408160.00001 @5D site#

0.11817460.000004 @5D bond#.

~13!

Also, for t we find the values

t5H 2.31360.003 @4D#

2.41260.004 @5D#.
~14!

These results are more precise than some of the publis
values forpc50.1601360.00012@3#, 0.140760.0003@18#,
and 0.1181960.00004@19# for 4D bond, 5D site, and 5D
bond percolation, respectively, and fort52.41 for 5D per-
colation; for 4D site percolation, Ballesteroset al. @20# found
the comparably precise valuepc50.19690160.000005~just
slightly higher than ours! andt52.312760.0007. The ana-
lytic e-expansion method has also been used to estim
critical exponents @21–25#. Using the third-order
e-expansion forh of Ref. @21# and the scaling relationst
5d/df11 and df5(d122h)/2, we find t52.348 and
2.421 for 4D and 5D, respectively. These values are fa
close to the values we measured.

All simulation parameters and our results are summari
in Table I. The precision of our results is sufficiently hig
that we expect that statistical errors inpc will not have an
effect on our value ofdmin .

IV. SHORTEST PATH EXPONENT

To calculate the shortest path exponent, we ran sim
tions at the percolation thresholds found above. We stop
cluster growth atl max52048 for 4D bond and site percola
tion and l max51024 for 5D bond and site percolation. W
simulated 733106, 393106, 1053106, and 203106 real-
izations for 4D bond, 4D site, 5D bond, and 5D site perc
lation, respectively. During our simulations, we kept track
the maximum and minimum lattice points to which our clu
ters extended. Using this information, we determined the s
of the lattice that we would have needed to build if we h
been using conventional memory techniques. Ford55 the
lattice would have had sides of lengthL5245 resulting in
approximately 9003109 lattice sites ('1 TB memory!; the
actual memory used was less than'106 ~1 MB!, six orders
of magnitude smaller.
5-4
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Figure 2~a! shows plots of̂ r & for 4D site and bond per
colation, while Fig. 2~b! shows plots of̂ r & for 5D site and
bond percolation. While the plots resemble straight lines,
effects of corrections to scaling are, in fact, considerab
One customarily assumes that corrections to scaling have
functional form@1,2,4,5#

^r &;l z~11Al 2D1••• !, ~15!

where the constantA depends on the dimension, lattice typ
and percolation type~bond or site! but the exponentD de-
pends only on dimension. Let

h~ l ![
^r &

l z8
;l z2z8~11Al 2D1••• !, ~16!

wherez8 is an estimated value ofz. If l max were infinitely
large, we could determinez as the value ofz8, which results
in a plot of h(l ) that asymptotically approaches a consta
~i.e., has zero slope asl →`); however, sincel max is finite,
we may obtain misleading results if we determinez in this
manner. Nevertheless, we can use this approach to deter
bounds onz.

To see how this is accomplished, first consider Fig. 3~a!,
in which we ploth(l ) for 4D bond percolation for various
values ofz8. From this figure and Eq.~16! it is clear thatA is
positive. Hence, we know that if for largel the slope of

FIG. 2. Euclidean distancêr & versus chemical distancel for
site percolation~upper line! and bond percolation~lower line! for
~a! 4D and~b! 5D. The slightly different apparent slopes of the plo
for bond and site cases can be attributed to different values o
correction-to-scaling parameters.
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h(l ) becomes an increasing function, the leading power-
term l z2z8 will dominate becausez.z8. Thus a lower
bound onz is that value ofz8 at whichh(l ) asymptotically
becomes an increasing function. From Fig. 3~a! this value is
0.620.

We can proceed similarly by considering site percolat
in 4D, plottingh(l ) for 4D site percolation for various val
ues ofz8 in Fig. 3~b!. From these plots it is clear thatA for
bond percolation is negative. Hence we know that if for lar
l the slope ofh(l ) becomes a decreasing function, we a
seeing the leading power-law terml z2z8 dominate because
z,z8. Thus an upper bound onz is that value ofz8 at which
h(l ) asymptotically becomes a decreasing function. Fr
Fig. 3~b! this value is 0.625.

Proceeding in the same manner for site and bond pe
lation in 5D @see Fig. 4~a,b!#, we find that the constantA is
positive for both bond and site percolation, allowing us
determine only an upper bound ofz50.5515~the lower of
the upper bounds for site and bond percolation!. While this
method of finding bounds onz by identifying the value ofz8
at which the slope ofh(l ) changes sign does not alway
yield both upper and lower bounds, it has the advantage
it does not require any estimation of the parametersA andD
in Eq. ~12! and, in fact, is somewhat insensitive to the exa
form of the the corrections-to-scaling terms.

We also analyze our data using another more commo
used method@4–6#. That method is to plot the effective ex

he

FIG. 3. h(l )[^r &/l z versusl for ~a! 4D bond percolation for
values of~from top to bottom! z850.615, 0.620, and 0.625 and~b!
4D site percolation for values of~from top to bottom! z8
50.623, 0.625, and 0.627. The dashed horizontal lines are
vided as guides to the eye to allow one to better see that, for l
l , the middle plots ofh(l ) in ~a! and ~b! are increasing and de
creasing, respectively.
5-5
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ponentsz(l ) between pointsl and 2l versusl 2D using an
estimated value ofD that yields the straightest line. The e
fective exponentz(l ) between two points atl and 2l is the
value of the slope between these points in a log-log plo
^r (l )&

z~ l !5
ln@^r ~2l !&#2 ln@^r ~ l !&#

ln@2l #2 ln@ l #
5

ln@^r ~2l !&/^r ~ l !&#

ln@2#
.

~17!

The l 50 intercept of a plot ofz(l ) will be an estimate for
z, and the slope will be proportional toA. Our best estimate
for D for d54 andd55 is 0.4,D,0.6, so we use a valu
of D of 0.5 and plotz(l ) for 4D site and bond percolation i
Fig. 5~a! and 5D site and bond percolation in Fig. 5~b!. In
Fig. 5~a!, the fact that the slopes of the lines change sugg
that we are seeing the effects of both the correction
scaling term in Eq.~15! as well as higher order terms, whic
become less significant at larger values ofl . In general, it is
more efficient to generate smaller clusters and more of th
rather than fewer, larger ones. However, if the correction
scaling are not well understood or large, then one must b
the largest clusters possible. As we see here, strong co
tions to scaling are present in 4D percolation where the p
of effective slope change at largel . If we had used smalle
clusters using traditional memory-management techniq
we would have obtained incorrect results. In Fig. 5~a!, the

FIG. 4. h(l )[^r &/l z versusl for ~a! 5D site percolation for
values of ~from top to bottom! z850.5510, 0.5515, and 0.5520
and ~b! 5D bond percolation for values of~from top to bottom! z8
50.5595, 0.5615, and 0.5635. The dashed horizontal lines are
vided as guides to the eye to allow one to better see that, for l
l , the the middle plots ofh(l ) in ~a! and ~b! are decreasing.
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almost horizontal plot for site percolation indicates that t
amplitude,A, of the correction-to-scaling term is very sma
From these plots and our estimates above of bounds onz, we
estimate

z5H 0.62260.002 @4D#

0.55260.002 @5D#.
~18!

In terms ofdmin , this corresponds to

dmin5H 1.60760.005 @4D#

1.81260.006 @5D#.
~19!

The previously published values fordmin obtained by nu-
merical methods are 1.6360.03 @3# and 1.8@1# for 4D and
5D. Thus our estimates ofdmin are of higher accuracy tha
the existing ones and have accuracy comparable to tha
the estimate ofdmin in 3 dimensions, 1.37460.006 @5#. Us-
ing the rational form of the second ordere-expansion, of
Ref. @25# @in which a cubic term was added so thatdmin(d
51)51] we find dmin51.568 and 1.803 for 4D and 5D
respectively. Thee-expansion result for 5D is just a sma
amount outside the error bar of our result. The agreement
be improved by making a@2,1# Pade approximation to the
e-expansion series; using this technique, we finddmin
51.614 and 1.814 for 4D and 5D, respectively, in go
agreement with our results.

Our results and all simulation parameters are summar
in Table II.

ro-
ge

FIG. 5. Effective exponentz versus 1/l 2D with D50.5 for bond
percolation~upper line! and site percolation~lower line! for ~a! 4D
and ~b! 5D.
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TABLE II. Simulation parameters and results for the spreading exponentz and shortest path exponen
dmin .

Dimension Type pc No. of realizations l max z dmin

Bond 0.160130 733106 2048
4 0.62260.002 1.60760.005

Site 0.196889 393106 2048

Bond 0.118174 1053106 1024
5 0.55260.002 1.81260.006

Site 0.14081 203106 1024
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V. DISCUSSION

We have developed a technique that allows us to b
very large percolation clusters using very little memory.
fact, using the method described here, relative to comp
processing power available today and in the foreseeable
ture, computer memory is no longer a constraint on build
percolation clusters near the percolation threshold. The c
cal computer resource thus becomes solely proces
power. For example, by extrapolating from our simulatio
we find that with our method, with less than 108 bytes of
memory, we could build a 5D cluster of 1012 sites, which
would have required a lattice of 1017 sites, and reach a valu
of l max of 107 ~versus the 1024 cutoff we used in our sim
lations!. But the time to build a single trillion-site cluste
would be about 2000 h on current workstations. As proces
speeds increase, our technique for reducing memory u
should allow critical exponents and constants to be de
mined with greater precision. Current techniques of grow
clusters, including the one described in this paper, req
computer processing resource ofO(s), wheres is the size of
the cluster grown.

We note that the technique we have developed is us
when we can count the quantities in which we are interes
as we build the cluster~e.g., cluster mass, average distance
sites in a chemical shell!. On the other hand, it is not clea
how we could calculate the mass of the backbone, for
ample, using our method because current methods of d
mining backbone mass require knowing all the sites in
cluster, not just those in the current chemical shell. To ob
backbone properties one could, however, reduce memor
quired to;s ~versusLd) by maintaining information abou
all visited sites~not just those in the current chemical she!
in a data structure as opposed to maintaining the full lat
data structure@12#. In the Appendix, we describe an altern
tive method of cluster generation that can be used when
formation about all visited sites must be maintained.

Finally, it is useful to compare our method with th
Hoshen-Kopelman method@26#, which constructsall clusters
in a d-dimensional lattice by successively populatingd21
dimensional slices of the lattice. Memory is used to store
last and current slice of the lattice so the memory nee
scales asLd21. The Hoshen-Kopelman method is much le
memory efficient than the method presented here, and
comes less effective as the dimension increases s
Ld21/Ld→1 with increasingd. Also, the Hoshen-Kopelman
method cannot be used to calculatedmin . On the other hand
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the Hoshen-Kopelman method is better suited to other pr
lems, such as calculating the number of clusters that s
across a rectangular system, than our method, based o
Leath algorithm.
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APPENDIX: ALTERNATIVE METHOD
OF CLUSTER GROWTH

We discuss a variant of our approach in which we s
store information concerning which sites are visited in a d
structure and access the entries using a hash table. How
if one stores information about all visited sites, not just f
those in the last shell~s!, then a traditional random numbe
generator ~one which does not take the coordinate
orientation of the bond as input! can be used. Let us firs
consider the case where we have no need for occupied b
information~e.g., we are simply counting the number of sit
in the cluster!. When considering a growth site, if:~i! an
adjacent site is vacant we determine whether the bond c
nected to that site is occupied or not;~ii ! an adjacent site is
not vacant we simply do not make a determination
whether the bond is occupied.

In this way we make a determination about whethe
given bond is occupied no more than once.

Now consider the case in which we do have a need
know whether a bond is occupied or not~e.g., we are count-
ing the number of bonds in the cluster or we will be det
mining the backbone of the cluster!. In this case, when con
sidering a growth site, if:

~i! An adjacent site is vacant, we determine whether
bond connected to that site is occupied or not.

~ii ! An adjacent site is not vacant and is in a higher che
cal shell, we also determine whether the bond is connecte
that site is occupied or not.

~iii ! An adjacent site is not vacant and is in the sa
chemical shell as the growth site, we make a determina
about whether the bond is occupied only if the direction fro
the growth site to the adjacent site is positive. In this way,
determination about whether the bond is occupied is d
only once. This situation arises in noncubic~e.g., triangular!
5-7
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lattices and when we start cluster growth with multip
seeds.

~iv! An adjacent site is not vacant and is in a lower chem
cal shell than the growth site, we make no determinat
about whether the bond to that site is occupied; whether
bond is occupied has been determined earlier in the gro
process. In fact, the bond must be unoccupied because
were occupied we would have reached the growth site ea
directly from the adjacent site.

Thus we ensure that we determine whether a bond is
cupied once and only once. If one needs to keep a recor
s

a

P.

02611
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whether a given bond is occupied~e.g., to later determine the
backbone! this information can be stored in the entry in th
data structure for the site with which the bonds are associ
along with the coordinates of the site, etc.

This method trades off memory~we keep state for all
visited sites! versus performance~we can use the faster tra
ditional random number generators as opposed to the enc
tionlike random number generator!. Also, in cases where we
for some other reason, must keep state information abou
the sites, we can obtain the benefit of the using a fa
random number generator.
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Muñoz Sudupe, G. Parisi, and J. J. Ruiz-Lorenzo, Phys. Let
400, 346 ~1997!.

@21# O. F. de Alcantara Bonfim, J. E. Kirkham, and A. J. McKan
J. Phys. A13, L247 ~1980!; 14, 2391~1981!.

@22# J. L. Cardy and P. Grassberger, J. Phys. A18, L267 ~1985!.
@23# H. K. Janssen, Z. Phys. B: Condens. Matter58, 311 ~1985!.
@24# H. K. Janssen, O. Stenull, and K. Oerding, Phys. Rev. E59,

R6239~1999!.
@25# H. K. Janssen and O. Stenull, Phys. Rev. E61, 4821~2000!.
@26# J. Hoshen and R. Kopelman, Phys. Rev. B14, 3438~1976!.
5-8


