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Constant pressure molecular dynamics on a hypercylinder

V. A. Ryabov
Laboratory of Radiation Solid State Physics, Institute of Physics and Power Engineering, 249020 Obninsk, Russia

~Received 17 October 2000; published 19 July 2001!

A Lagrangian formalism for variable-cell-shape molecular dynamics is derived from first principles. It is
based on consideration of a crystal as arranged on the surface of hypercylinder in an extended coordinate
frame. The artificial curvature along the additional degrees of freedom upsets the balance of forces acting on
every atom in a periodically repeating cell. Since the distance between atoms is not the metric tensor the
proposed method provides an essential simplification of the equations of motion compared to those of Parinello
and Rahman approach. The Lagrangian of the system eliminates the cell orientation from the dynamics, thus
avoiding symmetry-breaking effects and physically irrelevant cell rotation. The change from a fully flexible
cell to an isotropically flexible cell is realized within the same computational framework. Simulations for the
transformation of a model He lattice under isotropic applied pressure are used to illustrate the application of
this method.
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INTRODUCTION

The success of numerous applications of the molec
dynamics~MD! method and especially ofab initio MD cal-
culations is mainly due to a limited number of particles us
To reduce finite cell-size effects for an extended system,
riodic boundary conditions are introduced. However, t
suppresses fluctuations in the volume and shape of the
cell which, in particular, are responsible for structural pha
transitions. Necessary flexibility of the simulation cell und
periodic boundary conditions can be provided by vario
special methods. The first allowing the change of the c
volume was introduced by Andersen@1#. The volumeV of a
cubic simulation cell was considered as a dynamical varia
thus allowing for volume fluctuations driven by the dynam
imbalance between the imposed external pressurep and the
actual instantaneous internal pressures as given by the virial
theorem. Apart from this, the particle coordinatesr i were
replaced by scaled coordinatessi5r i /V1/3. As a result the
kinetic energy of the particles is measured in a frame t
‘‘breathes’’ with the cell. The fictitious ‘‘mass’’ associate
with volume fluctuation does not have the dimension
mass.

The generalization of this idea was proposed by Parin
and Rahman@2# ~PR! to allow for changes in both the vol
ume and the shape of the cell. Three edge vectors of the
cell are regarded as dynamical variables, and the coordi
and momentum of a particle are expressed in scaled fo
As a result, the Lagrangian has a time-dependent metric
sor. Many encouraging results have been obtained in
simulations of structure phase transitions@2–4#, in spite of
the fact that Lagrangians of ‘‘scaled’’ models have not be
obtained from first principles. The latter partly explains so
shortcomings of the PR method pointed out by several
thors: it does not reduce to the Andersen result as a sp
case, it is not invariant under modular transformation,
consistency between the condition of mechanical equilibri
and the virial theorem is only verified in the largeN limit,
and it has spurious cell rotation@5–8#. More complicated
1063-651X/2001/64~2!/026112~6!/$20.00 64 0261
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equations of motion have been proposed to avoid some
these problems@5,7–9#.

A new approach for the variable-cell-shape MD meth
evaluated from the first principle was proposed recently i
short note@10#. It is based on consideration of the crystal
arranged on a surface of the hypercylinder in extended c
figuration space and the artificial curvature upsets the
ance of forces acting on every atom in the periodically
peating cell, supplementary degrees of freedom enable
crystal to relax along the curvature directions until the mi
mum of free energy is reached.

The aim of this paper is to provide further development
this idea in terms of a general Lagrangian formalism. T
paper is organized as follows. In Sec. II we illustrate the id
of solid state equilibrium in extended space with the exam
of a one-dimensional crystal, e.g., atomic chain. Simple g
eralization of the one-dimensional~1D! case to 3D in Sec. III
make it possible to reproduce Andersen’s results of isosh
MD @1#. Further evaluation of the general case of MD wi
variable cell shape in Sec. IV starts from the consideration
the 2D ideal crystal to clear up main peculiarities of 3D ca
Section V contains results of simulation of a phase chang
the high pressure helium lattice near 300 K. This model s
tem has been studied in detail@11# by the PR method and
then easier calculations are a convenient check for the g
method.

I. ONE-DIMENSIONAL CHAIN

To illustrate the idea of introducing additional dime
sions, consider a set ofN classical particles of massm and
lattice periodd constituting the ideal atomic chain with th
coordinatesxi

05 idv, i 51, . . .N and cyclic boundary condi-
tions. If the particles interact via a pairwise potentialf(r ),
each experiences equal but opposite forcesFx5( j , i f i j

5( j , i¹ if(xi
02xj

0)Þ0. These forces exactly compensate
a result of periodic boundary conditions. To reveal the stre
bend the atomic chain, thereby introducing an additional
gree of freedom~see Fig. 1!. Assuming the curvature radiu
R to be the same for all particles, their new positio
©2001 The American Physical Society12-1
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V. A. RYABOV PHYSICAL REVIEW E 64 026112
@R sin(si /R),Rcos(si /R)# in Cartesian coordinates can b
written as@R,si # in the curvilinear coordinate frame of cir
cular arcs and radiusR. Now the radial component of th
overall force appears as a result of the curvature~see Fig. 1!,

FR5
1

R (
iÞ j

f i j si j , ~1!

wheresi j 5si2sj , usi j /Ru!1. This force acts to make ever
atom move along the radius of curvature, decreasing
stress and transferring a part of elastic energy of the ch
stored by the initial compression~or extension! to radial ki-
netic energy. As a result the chain period will oscillate ne
the equilibrium value determined by vanishing stress^FR&
50.

The Lagrangian for the curved atomic chain with the th
mal vibration of atoms taken into account can be written

L5
m

2 (
i 51

N

~Ṙ21v i
2!2(

i . j

N

f~ usi j u!, ~2!

v i5 ṡi2si

Ṙ

R
.

The equations of motion are found from the Lagrang
Eq. ~2!:

ṡi5v i1si

Ṙ

R
,

v̇ i52
1

m (
j

¹ if~si j !2v i

Ṙ

R
, ~3!

NmR̈5
s

R
,

s5m(
i 51

N

v i
22(

i . j
¹ if~si j !si j .

These equations describe the thermal motion of ev
atom along the circle as well as their collective motion alo
the circle radiusR. The right-hand part of the equation forR̈

FIG. 1. Balance of forces on a curved linear chain of atoms w
coordinates@R,si #. Preliminary compression due to a mismatch
the lattice constant (FxÞ0) is revealed by the radial component
force FR as a result of curvature.
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in Eq. ~3! is the radial component of the resulting forc
caused by internal stress of the chain.

The solution of these equations of motion conserves
total energy of the system associated with the Lagrangian
~2!,

H5
m

2 (
i 51

N

~Ṙ21v i
2!1(

i . j

N

f~ usi j u!. ~4!

Fictitious dynamics of a linear chain can be obtained n
by substitutionsi→xi in Eqs.~2! and~3!. It should be noted,
that the initial transition from a straight to a curved atom
row defined by the Lagrangian of Eq.~2! results in a change
of the potential energy caused by the replacement of rect
ear distancesxi j by segmentssi j . In principle, if the radius
of curvatureR is large enough the error involved in bringin
in the interaction;f8(xi j )(xi j /R)2 is negligible. Neverthe-
less, the inverse conversion from a curved atomic row t
fictitious 1D one compensates this inaccuracy, so that Eq~3!
is not formally constrained to large radius.

Now introduce an external tension forcef acting on atoms
of the chain. The cell containingN atoms being under the
cyclic boundary conditionsxN11

0 5x1
01Nd is seen within the

angleuN5Nd/R. This angle remains constant while the r
dius and the row period change:ḋ5dṘ/R. Hence, the equa
tions of motion for the atoms with external forcef are ob-
tained from Eq.~3! by replacing s by s1 f d, and the
modified equations of motion conserve the energy

H5
m

2 (
i 51

N

~Ṙ21v i
2!1(

i . j

N

f~ uxi j u!1 f uNR, ~5!

v i5 ẋi2xi

Ṙ

R
.

The last term in Eq.~5!, being equal tof Nd, is written in
the form displaying the direct dependence onR.

The average of the system over time,H being conserved,
corresponds to the equilibrium state where the strain v
ishes:^R̈&5^s&/N1 f ^d&50 . The radius oscillates near th
equilibrium value with the frequencyvR that depends on
initial values of curvature radiusR0 and periodd0. Accord-
ing to Eq. ~3! these values determine the angleu05d0 /R0
~constant during the evolution forv i50). The expansion of
the radial force in Eq.~3! over small deviation ofR from the
equilibrium value gives vR;v0d0 /R0, where v0
5@f9(^d&)/m#1/2 is the frequency of harmonic oscillation o
a particle in the row. Ifd0;^d& the frequency of the radia
oscillation becomesvR;vs /R, wherevs is the sound veloc-
ity.

It should be noted that the potential term in the value os
in Eq. ~3! is the interaction between neighboring halves
the ideal atomic chain cut in any place. The conventio
Lagrangian formalism for an ideal infinite chain eliminat
the interaction of this kind providing the equilibrium exis
for any lattice period. The latter has to be obtained from
minimum of the total potential energy~or free energy for a
finite temperature!. The introduction of additional degree o

h

2-2
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CONSTANT PRESSURE MOLECULAR DYNAMICS . . . PHYSICAL REVIEW E 64 026112
freedom enables us to supplement the conventional cond
of equilibrium that sets the forces acting on every atom
zero by the additional one of vanishing internal stress,
completes the problem of equilibrium in the frame of t
unified Lagrangian formalism.

II. ISOSHAPE MOLECULAR DYNAMICS
UNDER CONSTANT PRESSURE

The approach developed can be easily generalized to
3D case when considering only isoshape fluctuations of
cell. The crystal is taken to lie on the surface of a 4D cyl
der of radiusR. Similarly to the one-dimensional case, a
artificial curvature reveals an internal stress in the crystal.
a result the cell volume and coordinates fluctuate as the
dius of the cylinder fluctuates. In full analogy with Eq.~3!
we have

ṙ i5vi1r i

Ṙ

R
,

v̇i52
1

m (
i

¹ if~r i j !2vi

Ṙ

R
, ~6!

NmR̈5
1

R
~s23pV!.

The expression

s5m(
i 51

N

v i
22(

i . j
f8~r i j !r i j ~7!

represents the kinetic and virial contribution to the inter
pressure. In analogy with tension forcef involved in the 1D
case the hydrostatic external pressurep is introduced here.

The time evolution of a system governed by Eqs.~6! and
~7! occurs in the (6N12)-dimensional phase space on a s
face corresponding to the constant energyH. The Hamil-
tonian H can be easily written from Eq.~5! by substitution
3D variables instead of 1D ones

H5
m

2 (
i 51

N

~Ṙ21v i
2!1(

i . j

N

f~r i j !1puN
4DR3,

vi5 ṙ i2r i

Ṙ

R
, ~8!

uN
4D is the value of constant solid angle under which the c

is seen in 4D space during time evolution. Introducing
basic vectorsa1 , a2 , anda3 defining the MD cell, this angle
is equal touN

4D5V/R35(a1@a2a3#)/R3. The last term in Eq.
~8!, being equal topV, is written in a form displaying the
direct dependence onR.

SinceṘ/R5V̇/3V, the equations of motion, Eqs.~7! and
~8!, are almost the same as those obtained by Andersen@1#.
The radiusR, similar to the effective mass of the pistonM in
Ref. @1#, is a free parameter determining the time scale
volume fluctuation. Of course, in equilibrium, the respect
02611
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kinetic energies are equal:^NmṘ2&5^MV̇2&5kBT (kB is
the Boltzmann constant, andT is the temperature! regardless
of the values of the both parameters. As above, the freque
of the volume fluctuation is determined by the value of t
radiusR: vR;vs /R. The comparison of this frequency wit
vV;(Nmvs

2/MV2)1/2 taken from Ref.@8# defines the rela-
tionship between the two free parameters:M;Nm(R/V)2.
According to Ref.@1# the frequency value should bevV

;vs /L, L5V1/3, which reduces toR;L.

III. VARIABLE-CELL-SHAPE MOLECULAR DYNAMICS

Basically, the extra degrees of flexibility introduced by
independent curvature for the crystal with respect to ev
coordinate axisX, Y, and Z are insufficient to guarantee
proper trend to equilibrium. In particular, the vanishing
the radial forces due to the change of curvature related
every axis still leaves some residual stress. To resolve
consider relaxation of an ideal 2D crystal with a mismatch
the lattice constants. Introducing independent curvatu
along the axesX andY, the crystal turns out to be stretche
on the surface of the two hypercylinders in 4D configurati
space of radiusRxx andRyy , respectively. As before, curva
tures reveal the radial forcessxx5( i . jf8(r i j )xi j

2 /r i j and
syy5( i . jf8(r i j )yi j

2 /r i j directed along respective radiu

According to Eq.~3! each atom coordinate evolves asẋi /xi

5Ṙxx /Rxx and ẏi /yi5Ṙyy /Ryy , while the both radii change
independently. Assuming relaxation of the stress along b
directions by means of radius decrease~or increase! until a
state in whichsxx5syy50 is achieved, there are still pos
sible equal but opposite stresses along axesX8 and Y8 ro-
tated through the angleDc5p/4 to the initial frameXY.
Actually, within the new frame the tensionsx8x8 along axis
X8, for instance, concurs with the same compressionsy8y8
along the other axisY8. The conditionsxx5syy50 is ful-
filled whereassxyÞ0. To exclude this tension, consider th
deformation process in the coordinate systemX8Y8. Now, as
before, we can introduce the curvatures along the new a
and consider independent deformation alongX8 and Y8.
Since the deformationsẋi8/xi85Ṙx8x8 /Rx8x8 and ẏi8/yi8

5Ṙy8y8 /Ry8y8 along both axes differ only by sign, we ca
introduce Ṙxy /Rxy5Ṙx8x8 /Rx8x852Ṙy8y8 /Ry8y8 . The re-
verse rotation of coordinate frameX8Y8 to XY transforms
the equations of deformation toẋi /yi5Ṙxy /Rxy and ẏi /xi

5Ṙxy /Rxy . At the same time the components of tens
sx8x852sy8y8 and sx8y850 transform tosxx52syy50
andsxy5( i . jf8(r i j )xi j yi j /r i j .

This evaluation enables us to modify the initial equati
of deformation by introducing an additional degree of fre
dom. Relaxation within the coordinate systemsXY andX8Y8
could be introduced independently as operating in the dif
ent phase spaces. As a result, the velocities of the coordi
deformation due to the two kinds of curvature can be c
sidered as additive and the final deformation for a 2D latt
can be defined as
2-3
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ẋi5
Ṙxx

Rxx
xi1

Ṙxy

Rxy
yi ,

ẏi5
Ṙyy

Ryy
yi1

Ṙxy

Rxy
xi . ~9!

Deformation of the basic cell vectors obeying Eq.~9!
changes the cell volume. It is easy to show that the rate
this change is given by

V̇5VS Ṙxx

Rxx
1

Ṙyy

Ryy
D , ~10!

containing only the diagonal component of the curvature
dius.

With both relations of Eqs.~9! and~10!, the final expres-
sion for the Hamiltonian in the 3D case can be constructe
the same way as the Hamiltonian Eq.~4! in the 1D case. We
get

H5
m

2 (
a, j 51

N F(
b

Ṙab
2 1S ṙ ia2(

b
r ıg

Ṙag

Rag
D 2G1(

i . j

N

f~r i j !

1puN
4DRxxRyyRzz,

a,b,g5x,y,z. ~11!

As above, the constant solid angle being equal touN
4D

5(a1@a2a3#)/RxxRyyRzz reduces the last term in Eq.~11! to
the valuepV.

From the Hamiltonian, Eq.~11!, the equations of motion
can be easily found to be

v ia5 ṙ ia2(
g

r ig

Ṙga

Rga
,

v̇ ia52
1

m (
i . j

¹ iaf~r i j !2(
g

v ig

Ṙga

Rga
, ~12!

NmR̈ab5
1

Rab
Fsab2pVdab1

1

2 (
g

S Ṙag

Rag
Jgb

1
Ṙbg

Rbg
JgaD G .

HereJab5( i 51
N (r iav ib2r ibv ia) are the components of th

angular momentum. Six independent components of the
vature radiusRab5Rba are driven by the symmetrical com
ponents of the internally generated stress tensor

sab5m(
i 51

N

v iav ib2(
i . j

f8~r i j !

r i j
r i j ar i j b . ~13!

The coupling of the atomic motion to the cell motion
made through the last term of Eq.~11!, which is independen
02611
of
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r-

of orientation and state of rotation of the cell. The comp
nents of vectorsa1 , a2 , and a3 that span the edges of th
MD cell evolve according to

ȧka5(
g

akg

Ṙga

Rga
, k51,2,3. ~14!

Meanwhile, the cell volume is defined only by the diagon
components of the curvature radius. It is easy to see tha
3D analog of Eq. ~10! still stands: V̇5V(gṘgg /Rgg .
Therefore, only the diagonal components of radius of cur
ture contribute to the last term of the Hamiltonian of E
~11!, proving the physical irrelevance of the orientation
the cell.

The temperature of the system is defined as the time
erage

kBT5K 1

3N16 (
i 51

N

~2KR1mv i
2!L , ~15!

whereKR5m(abṘab
2 /2 is the kinetic energy related to th

radial motion of a particle.
The first term in Eq.~11! is an analog of the kinetic en

ergy with effective massW in the PR method@2#. Although
the ‘‘effective’’ mass of each radius vibration mode is equ
to Nm, in equilibrium, at temperatureT,3kBT is contributed
to H by the first term and 3N/2kBT by the second kinetic
term. Hence, the enthalpy is conserved within the range
the fluctuation of theKR term. The average over the tim
evolution of the system corresponds to an average in
isobaric-isoenthalpic ensemble to which can be associat
canonical isothermal-isobaric ensemble@1#. Starting from
initial conditions r i(0),ṙ i(0),Rab(0) with respect to the
given energy and pressure the evolution of the system oc
in (6N112)D phase space on the surface corresponding
constant energy. The relaxation time for recovery from i
balance between the external pressure and the internal s
is determined now by the values of curvature radius. T
comparison of the frequency of cell parameter fluctuat
vPR;(Nmvs

2/WL2)1/2 taken from Ref. @8# with vR

;vs /Rab defines the relationship between the two free p
rameters:Rab;L(W/Nm)1/2.

IV. MD COMPUTATIONS

The solid-solid transitions in4He at high temperature
studied in Ref.@11# by the PR method have been employ
here to illustrate the proposed MD technique. It is not t
intention to make detailed comparison with the results
Ref. @11#, but two examples of fcc-bcc transitions are e
plored to check the validity of the results summarized abo

The simulation cell for bcc→fcc transition containedN
5686 atoms initially disposed in a bcc structure, with t
lattice constantd052.4 Å and nonzero componentsa1,x ,
a2,y , and a3,z . Small random displacement of the particl
from the lattice sites and zero velocities provided the init
conditions for the ensuing dynamics. After some time to
tablish equilibrium, an MD run with curvature was mad
2-4



o

e

n
at
f
tu

rn
ai
on

c
ai

he
.
ia

b-

ers

a-

ith

s

r
er

cc
o
to

t

CONSTANT PRESSURE MOLECULAR DYNAMICS . . . PHYSICAL REVIEW E 64 026112
The equations of the motion, Eq.~12!, were solved using a
Verlet-type integration and the potential of Azizet al. @12#,
truncated at a distancer c55.67 Å . A conservation ofH of
1024 in relative value was obtained over integration times
104Dt with the time step Dt51023(ml2/«)1/2,
l 52.553 Å. The reduced units~r.u.! of energy and time are
«5kB(10.22 K) and (ml2/«)1/2, respectively.

Unlike the PR method with only one free parameter~ef-
fective mass!, here are six. The initial curvature radiusRxx
510.0 Å with respect to theX axis, being unequal toRab
520.0 Å, a,bÞx,x enables us to emphasize the preferr
direction of cell deformation (c axis!. The time history of the
radius velocities for energyH* 5H/«N51128.9, pressure
p* 5pl3/«52200 and temperatureT* 5kBT/«528.7 is
shown in the lower part of Fig. 2. Initially, in each simulatio
the diagonal elements of internal virial pressure fluctu
about the same values;pV, the off-diagonal elements o
the pressure tensor fluctuate about zero. When the struc
transformation occurs, one diagonal element of the inte
stress becomes responsible for cell deformation, while m
taining the dynamical balance. It is better seen in oscillati
of the velocityṘxx along thec axis, whose values~averaged
over a limited number of MD steps;10) distinctly diverge
from other ones just after;2000 MD steps. It results in
successive deformation of the initial cubic MD cell to a re
tangular parallelepiped with quadratic section in the pl
YZ. The final ratioa1x /a2y and a1x /a3z vary from 1 to
;1/A2 while a2y /a2y(0) and a3z /a3z(0) vary from 1 to
0.89. The angular distortion of the cell was negligible. T
calculations@11# exhibited the same kind of transformation

The upper part of Fig. 2 shows the curve of the rad
kinetic energyKR . Oscillations ofKR near the mean value
^KR&5TR* ;2.0 attenuate too slowly to achieve the equili

FIG. 2. Fluctuation in the curvature radius velocities of a b
crystal of He.~a! The kinetic energy along the additive degrees
freedomKR . ~b! The velocities of curvature radius contributed

KR . Solid line isṘxx ~the componentȧ1x behaves in an equivalen

manner!. Since the evolution of the componentṘyy and Ṙzz looks

similar ~like that of nondiagonal componentsṘab ,aÞb), there

only two componentsṘyy ~dashed curve! andṘxy ~dotted curve! are
shown.
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rium valueTRE* 53kBT/«N;0.1 after 104 MD steps because
of the large initial radius. The effective massW520m used
in Ref. @11# corresponds toRab(0);L(W/Nm)1/2;3 Å.
The transition bcc→fcc also occurs for the sameRab(0)
53.0 Å but in much more time.

To consider more rapid evolution of the cell paramet
the next example of reverse fcc→bcc transition started from
the radiusRab(0)51.0 Å. Furthermore, the initial lattice
constantd052.8 Å for the pressurep* 5pd3/«51800 in
this example was far from the equilibrium value (;3.0 Å),
thus giving a large amplitude of oscillations of all cell p
rameters. After;2400 MD steps the cubic cell ofN5256
atoms in the initialbcc structure withH* 51002.7 trans-
forms also to a rectangular parallelepiped of fcc phase w

FIG. 3. Time histories ofNPH simulation during fcc→bcc tran-
sition in He crystal. The componenta1x of the cell vectora1

evolves similarly toRxx . The cell componentsa2y anda3z evolve
as Ryy ~dashed curve!. Evolution of all nondiagonal component
looks similar, therefore onlyRxy ~dotted curve! is shown here.

FIG. 4. Kinetic energy fluctuations during fcc→bcc transition in
He crystal. The contributions of the curvature radius vibrationKR

and the transverse kinetic energy@the second term in triangula
brackets of Eq.~15!# are shown separately by the upper and low
curve.

f
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V. A. RYABOV PHYSICAL REVIEW E 64 026112
respect to the ratioa1x /a3z;A2 anda2y /a2y(0);0.89~Fig.
3!. Because the pressure is isotropic and all component
Rab(0) are equal to each other, which element of the pr
sure is mainly responsible for the transformation is purel
matter of chance. In this example it depends on initial atom
displacements. Unlike the previous example, the kinetic
ergy KR drops considerably during the evolution up to
equilibrium value ofTR* ;0.01, as the temperature tends
the valueT* 5kBT/«536.2 ~Fig. 4!.

CONCLUSIONS

A constant pressure method has been developed from
principles and tested. The equations of motion, Eq.~12!, pro-
vide essential simplification of calculation for variable-ce
shape MD since the distance between atoms is not the m
tensor. No special metric formula is required for the calcu
tion of the total distance traveled by a particle which can
misleading in the PR formalism@7#.

The Hamiltonian, Eq.~11!, eliminates the cell orientation
from dynamics and fluctuation in the cell shape generated
Eq. ~12! is not determined by the shape of the simulati
cell, which is arbitrary. Accordingly the motion equations a
invariant with respect to the interchange between equiva
02611
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cells and one can conclude that the Hamiltonian, Eq.~11!, is
invariant under modular transformation@5#.

The general treatment reduces to the Andersen cas
isoshape cell fluctuation within the same approach. Beca
of its physical transparency, the extension to anisotropic
ternal stress and constant-temperature condition is stra
forward. Corresponding results will be discussed elsewh

The principal difference of the present method with r
spect to the PR one is the number of extended degree
freedom. In the PR formalism, nine independent compone
of the scaling matrix, viz., the components of basic cell ve
tors, determine the dynamics of the system. Only six of th
are necessary to define the shape of the MD cell. The th
remaining parameters describing the orientation of the M
cell in space are responsible for the physically irrelevant c
rotation @8#. Six extended degrees of freedom exploited
the proposed method avoid this problem regardless of
symmetry condition for the components of the pressure t
sor. The motion equations are driven by the six free para
eters related to the additional degrees of freedom. The v
ishing of each stress tensor component by means of
appropriate curvature provides quite independently the e
librium value of one of the six cell parameters. Hence,
problem of lattice equilibrium can be solved in full in term
of the unified approach.
s.
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