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Constant pressure molecular dynamics on a hypercylinder
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A Lagrangian formalism for variable-cell-shape molecular dynamics is derived from first principles. It is
based on consideration of a crystal as arranged on the surface of hypercylinder in an extended coordinate
frame. The artificial curvature along the additional degrees of freedom upsets the balance of forces acting on
every atom in a periodically repeating cell. Since the distance between atoms is not the metric tensor the
proposed method provides an essential simplification of the equations of motion compared to those of Parinello
and Rahman approach. The Lagrangian of the system eliminates the cell orientation from the dynamics, thus
avoiding symmetry-breaking effects and physically irrelevant cell rotation. The change from a fully flexible
cell to an isotropically flexible cell is realized within the same computational framework. Simulations for the
transformation of a model He lattice under isotropic applied pressure are used to illustrate the application of

this method.
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INTRODUCTION equations of motion have been proposed to avoid some of

these problem§5,7-9.

The success of numerous applications of the molecular A new approach for the variable-cell-shape MD method
dynamics(MD) method and especially @ initio MD cal- ~ evaluated from the first principle was proposed recently in a
culations is mainly due to a limited number of particles usedshort note[10]. It is based on consideration of the crystal as
To reduce finite cell-size effects for an extended system, pea'ranged on a surface of the hypercylinder in extended con-
riodic boundary conditions are introduced. However, thisfiguration space and the artificial curvature upsets the bal-
suppresses fluctuations in the volume and shape of the MBNce of forces acting on every atom in the periodically re-
cell which, in particular, are responsible for structural phasd€ating cell, supplementary degrees of freedom enable the
transitions. Necessary flexibility of the simulation cell underCryStal to relax along the curvature directions until the mini-
periodic boundary conditions can be provided by varioud"tM of free energy 1s rgached. .
special methods. The first allowing the change of the cell[ The aim of this paper is to provide further development of

volume was introduced by Andersgt. The volume( of a his idea in terms of a general Lagrangian formalism. The

bic simulati I dered d ical vari bIgaper is organized as follows. In Sec. Il we illustrate the idea
cubic simuiation cell was considered as a dynamica vanabigg o i state equilibrium in extended space with the example
thus allowing for volume fluctuations driven by the dynamic

) ) of a one-dimensional crystal, e.g., atomic chain. Simple gen-
imbalance between the imposed external prespuasd the  g5jization of the one-dimensiondD) case to 3D in Sec. Il

actual instantaneous internal pressairas given by the virial  make it possible to reproduce Andersen’s results of isoshape
theorem. Apart from this, the particle coordinatgswere VD [1]. Further evaluation of the general case of MD with
replaced by scaled coordinatgs=r;/Q"°. As a result the variable cell shape in Sec. IV starts from the consideration of
kinetic energy of the particles is measured in a frame thathe 2D ideal crystal to clear up main peculiarities of 3D case.
“breathes” with the cell. The fictitious “mass” associated Section V contains results of simulation of a phase change in
with volume fluctuation does not have the dimension ofthe high pressure helium lattice near 300 K. This model sys-
mass. tem has been studied in detdill] by the PR method and
The generalization of this idea was proposed by Parinelldhen easier calculations are a convenient check for the given
and Rahmarn2] (PR) to allow for changes in both the vol- method.
ume and the shape of the cell. Three edge vectors of the MD
cell are regarded as dynamical variables, and the coordinate I. ONE-DIMENSIONAL CHAIN
and momentum of a particle are expressed in scaled forms.
As a resu|t' the Lagrangian has a time-dependent metric ten- To illustrate the idea of intrOdUCing additional dimen-
sor. Many encouraging results have been obtained in Mions, consider a set & classical particles of masa and
simulations of structure phase transitidi#s-4], in spite of  lattice periodd constituting the ideal atomic chain with the
the fact that Lagrangians of “scaled” models have not beercoordinates’=id,, i=1, .. .N and cyclic boundary condi-
obtained from first principles. The latter partly explains sometions. If the particles interact via a pairwise potenigr),
shortcomings of the PR method pointed out by several aveach experiences equal but opposite forégs=X;_;f;;
thors: it does not reduce to the Andersen result as a special 2j<iVi¢(xi°—xJ°)¢O. These forces exactly compensate as
case, it is not invariant under modular transformation, thea result of periodic boundary conditions. To reveal the stress,
consistency between the condition of mechanical equilibriunbend the atomic chain, thereby introducing an additional de-
and the virial theorem is only verified in the largelimit, gree of freedonisee Fig. 1 Assuming the curvature radius
and it has spurious cell rotatigf5—8]. More complicated R to be the same for all particles, their new positions
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FR in Eq. (3) is the radial component of the resulting force
F E caused by internal stress of the chain.
* x The solution of these equations of motion conserves the
‘P ———\-—-““5.""\0 total energy of the system associated with the Lagrangian Eq.
(2),
S m N N
H=2 2 (R+uv)+2 ¢(s;)). )
2 i=1 i>]
R

Fictitious dynamics of a linear chain can be obtained now

FIG. 1. Balance of forces on a curved linear chain of atoms withby substi_tu.t!orsi—>xi. i,n Egs.(2) and(S). It should be noted, .
coordinategR,s;]. Preliminary compression due to a mismatch in that the initial transition from a straight to a curved atomic

the lattice constanti, #0) is revealed by the radial component of oW defined by the Lagrangian of E) results in a change
force Fg as a result of curvature. of the potential energy caused by the replacement of rectilin-
ear distanceg;; by segments;; . In principle, if the radius
[Rsin(s/R),Rcos/R)] in Cartesian coordinates can be of curvatureR is large enough theé error involved in bringing
) . . ; . -
written as[R,s;] in the curvilinear coordinate frame of cir- N the interaction~ ¢’ (x;;) (x;; /R)~ is negligible. Neverthe-
cular arcs and radiusR. Now the radial component of the less, the inverse conversion from a curved atomic row to a

overall force appears as a result of the curvatges Fig. 1,  fictitious 1D one compensates this inaccuracy, so that3g.
is not formally constrained to large radius.

1 Now introduce an external tension fortacting on atoms
FR:§ 24 fijsij D of the chain. The cell containiny atoms being under the
' cyclic boundary conditions$,, ; =x9+ Nd is seen within the
wheres;; =s;—s;, |Sij /R|<1. This force acts to make every angledy=Nd/R. This angle re_main_s constant while the ra-
atom move along the radius of curvature, decreasing thdius and the row period changeé=dR/R. Hence, the equa-
stress and transferring a part of elastic energy of the chaitions of motion for the atoms with external foréeare ob-
stored by the initial compressidir extensionto radial ki-  tained from Eq.(3) by replacingo by o+fd, and the
netic energy. As a result the chain period will oscillate neaimodified equations of motion conserve the energy
the equilibrium value determined by vanishing stréBg)

N N
=0. m .
The Lagrangian for the curved atomic chain with the ther- H=75 2 (R*+vd)+ .Z B(|xij]) + T ONR, ®
mal vibration of atoms taken into account can be written as .
mY . N . R
L= 2 (R+o))= 2 ¢(Isy)), ) VITXTXR
2 i=1 i>]
. The last term in Eq(5), being equal tdNd, is written in
D=5 —s E the form displaying the direct dependenceRn
TR The average of the system over tinkepeing conserved,

) ) ~corresponds to the equilibrium state where the strain van-
The equations of motion are found from the Lagrang'anishes:ﬂ'?):(o)/N+f(d)zo The radius oscillates near the

Eq. (2): equilibrium value with the frequencwg that depends on
R initial values of curvature radiuR, and periodd,. Accord-
éi:Ui+Si§1 ing to Eq.(3) these values determine the andglg=d, /R,

(constant during the evolution far,=0). The expansion of
the radial force in Eq(3) over small deviation oR from the
. 1 R equilibrium  value gives wr~wydy/Ry, Where wg
Vit T m 2 Vi(sij)—vig. 3 =[¢"({(d))/m]¥2is the frequency of harmonic oscillation of
a particle in the row. Ifdy~(d) the frequency of the radial
T oscillation becomesg~v¢/R, whereuvg is the sound veloc-
NmR= R’ ity.
It should be noted that the potential term in the value of
N in Eq. (3) is the interaction between neighboring halves of
o=m> vi-> Vié(si))S;; - the ideal atomic chain cut in any place. The conventional
i=1 > Lagrangian formalism for an ideal infinite chain eliminates
) . . the interaction of this kind providing the equilibrium exists
These equations describe the thermal motion of everyor any lattice period. The latter has to be obtained from the

the circle radiuR. The right-hand part of the equation fér  finite temperature The introduction of additional degree of

026112-2



CONSTANT PRESSURE MOLECULAR DYNAMIG . .. PHYSICAL REVIEW E 64 026112

freedom enables us to supplement the conventional conditioginetic energies are equalNmR)=(MO?) =kgT (kg is

of equilibrium that sets the forces acting on every atom tahe Boltzmann constant, aridis the temperatujeregardless

zero by the additional one of vanishing internal stress, andy the values of the both parameters. As above, the frequency

completes the problem of equilibrium in the frame of the 5¢ the yolume fluctuation is determined by the value of the

unified Lagrangian formalism. radiusR: wg~vs/R. The comparison of this frequency with

wo~(NmuZ/MQ?)Y2 taken from Ref[8] defines the rela-

tionship between the two free parametdvs~Nm(R/Q)?.

According to Ref.[1] the frequency value should beg
The approach developed can be easily generalized to thev/L, L=0Y which reduces t&R~L.

3D case when considering only isoshape fluctuations of the

cell. The crystal is taken to lie on the surface of a 4D cylin-

der of radiusR. Similarly to the one-dimensional case, an ||, VARIABLE-CELL-SHAPE MOLECULAR DYNAMICS

artificial curvature reveals an internal stress in the crystal. As

a result the cell volume and coordinates fluctuate as the ra- Basically, the extra degrees of flexibility introduced by an
dius of the cylinder fluctuates. In full analogy with E@)  independent curvature for the crystal with respect to every

II. ISOSHAPE MOLECULAR DYNAMICS
UNDER CONSTANT PRESSURE

we have coordinate axisX, Y, and Z are insufficient to guarantee a
] proper trend to equilibrium. In particular, the vanishing of

. R the radial forces due to the change of curvature related to

ri:vi+ri§’ every axis still leaves some residual stress. To resolve this,

consider relaxation of an ideal 2D crystal with a mismatch in
_ 1 R the lattice constants. Introducing independent curvatures
vi= - > Vig(rij) —Vvig, (6)  along the axeX andY, the crystal turns out to be stretched
' on the surface of the two hypercylinders in 4D configuration
1 space of radiuR,, andRy,, respectively. As before, curva-
NmR= §(0—3pQ). tures reveal the radial forcesxx=2i>jgb’(rij)xizj/rij and
ayy=2i>j¢’(rij)yi2j/rij directed along respective radius.
The expression According to Eq.(3) each atom coordinate evolves 3$x;
N =R/ Ryx andy; /y;=Ry, /Ry, while the both radii change
o=m>, viZ_E &' (rij)r; (7)  independently. Assuming relaxation of the stress along both
i=1 i>] directions by means of radius decredee increasg until a
state in whicho,,=o,,=0 is achieved, there are still pos-

represents the kinetic and virial contribution to the mternaISible equal but opposite stresses along axésand Y’ ro-

pressure. In analogy with tension fort@volved in the 1D - L

case the hydrostatic external presspiis introduced here. tated throu_gh_ the angla#=/4 1o the_|n|t|al frameXY..
The time evolution of a system governed by E@.and Actually_, within the new frame the tensian,/ anngl axis

(7) occurs in the (81+ 2)-dimensional phase space on a sur-X » for instance, concurs with the same compression,

face corresponding to the constant enekyThe Hamil-  &long the other axiyy’. The conditiono,= o, =0 is ful-
tonianH can be easily written from Ed5) by substitution filled whgrea&rxyio._To exclude_thls tension, consider the
3D variables instead of 1D ones deformation process in the coordinate systéhY’. Now, as

before, we can introduce the curvatures along the new axes

mXN o, N D and consider independent deformation aloxg and Y'.

H=>5 ;1 (R +”i)+gj $(rij) +pOy R, Since the deformationsx//x/ =Ry /Rax and yily|
_ =Ry,y,/Ry_,y, along .both axes diffgr only by sign, we can

: R introduce Ry, /Ry,=Ryx IRyxr=—Ryy/ IRy The re-

Vi=hi—hig (®  verse rotation of coordinate fram¢'Y” to XY transforms

. . _ the equations of deformation tq/y;=R,,/R,, andy;/x;
QN IS thg value of conste_mt s<_)l|d angle gnder which t.he cell_ Ry /Ry At the same time the components of tensor
is seen in 4D space during time evolution. Introducing the,  '"— . = and Tyryr=0 transform too,,=—a,,=0
basic vectorsy , a,, andag defining the MD cell, this angle 5.4 Tay= o (1) XigYig /T -

is equal tod’ = O/R°=(ay[,a5])/R®. The last term in E. This evaluation enables us to modify the initial equation
(8), being equal tqp(2, is written in a form displaying the of deformation by introducing an additional degree of free-
direct dependence oR. dom. Relaxation within the coordinate systeXi$andX'Y’

SinceR/R= /34, the equations of motion, Eq&7) and  could be introduced independently as operating in the differ-
(8), are almost the same as those obtained by Anddien ent phase spaces. As a result, the velocities of the coordinate
The radiusR, similar to the effective mass of the pistbhin deformation due to the two kinds of curvature can be con-
Ref. [1], is a free parameter determining the time scale ofsidered as additive and the final deformation for a 2D lattice
volume fluctuation. Of course, in equilibrium, the respectivecan be defined as
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R R of orientation and state of rotation of the cell. The compo-
X R—XX i+ R_ny" nents of vectorsy, a,, andag that span the edges of the
XX Xy MD cell evolve according to
. R R R
_ Yy Xy . a
Yi—R—yin+ R_nyi- 9 A= Ao, k=123 (14)
Y ya

Deformation of the basic cell vectors obeying E@)  Meanwhile, the cell volume is defined only by the diagonal
changes the cell volume. It is easy to show that the rate ofomponents of the curvature radius. It is easy to see that the

this change is given by 3D analog of Egq.(10) still stands: Q=Q3 R, /R,,.
. . Therefore, only the diagonal components of radius of curva-
Q:Q(@ju ﬁ) (10) ture contribute to the last term of the Hamiltonian of Eq.
Re Ry’ (12), proving the physical irrelevance of the orientation of
the cell.
containing only the diagonal component of the curvature ra- The temperature of the system is defined as the time av-
dius. erage
With both relations of Eq99) and(10), the final expres-
sion for the Hamiltonian in the 3D case can be constructed in N 5
the same way as the Hamiltonian E4) in the 1D case. We keT=\ 3876 21 (2Kgtmui) ), (15
get "
m N 21 N WhereKR=mEaﬁR§5/2 is the kinetic energy related to the
= — 2 ay - radial motion of a particle.
H=2 a,JE:l 2 Rt o % rlyRay +i2>:J i) The first term in Eq(11) is an analog of the kinetic en-
+pePR.R.R ergy with effective mas®V in the PR method2]. Although
PON"RuxRyyRzz, the “effective” mass of each radius vibration mode is equal

to Nm, in equilibrium, at temperatur€, 3kgT is contributed
a,B,y=XY,Z. (1D to H by the first term and B/2kgT by the second kinetic
i ) term. Hence, the enthalpy is conserved within the range of
As above, the constant solid angle being equalff  the fluctuation of theK term. The average over the time
= (a[a33])/RyxRyyR;, reduces the last term in E¢LY) o eyolution of the system corresponds to an average in the
the valuepQ. . ~ isobaric-isoenthalpic ensemble to which can be associated a
From the Hamiltonian, Eq(11), the equations of motion  canopnical isothermal-isobaric ensemfte]. Starting from

can be easily found to be initial conditions ri(O),h(O),Raﬁ(O) with respect to the
given energy and pressure the evolution of the system occurs
in (6N+12)D phase space on the surface corresponding to
constant energy. The relaxation time for recovery from im-
balance between the external pressure and the internal stress
_ 1 R is determined now by the values of curvature radius. The
Vig=— = 2 Viagb(rij)—z viyﬂ, (120  comparison of the frequency of cell parameter fluctuation
m = Y Rya 0"R~(Nmu2/WL?)Y? taken from Ref. [8] with wg

: R
— ya
via_ria_E riyR ’
Y ya

~vs/R,z defines the relationship between the two free pa-

. 1 1 R rametersR,, ;~ L (W/Nm)¥2
- Xy ap
NmRY'B_R_a'B Uaﬁ_pﬂgaﬁ_l_zzy (RanyB
) IV. MD COMPUTATIONS
R
+R—B7Jm) . The solid-solid transitions irfHe at high temperature
By

studied in Ref[11] by the PR method have been employed
N here to illustrate the proposed MD technique. It is not the
HereJ,z=2i_(riavig—Tigvio) are the components of the aniion to make detailed comparison with the results of
angular momentum. Six independent components of the Cuet 111], but two examples of fcc-bee transitions are ex-
vature radiu}, s =Rp, are driven by the symmetrical com- 5req o check the validity of the results summarized above.
ponents of the internally generated stress tensor The simulation cell for bcesfcc transition containedy

N &) =686 atoms initially disposed in a bcc structure, with the
Fij lattice constantd,=2.4 A and nonzero components
=m L. — L N (T 13 0 . . p X1
Tap 21 Vialis .2>, ry e (13 a,y, andas,. Small random displacement of the particles

from the lattice sites and zero velocities provided the initial
The coupling of the atomic motion to the cell motion is conditions for the ensuing dynamics. After some time to es-
made through the last term of E@.1), which is independent tablish equilibrium, an MD run with curvature was made.
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FIG. 2. Fluctuation in the curvature radius velocities of a bcc ki 3. Time histories oNPH simulation during fee-bec tran-
crystal of He.(a) The kinetic energy along the additive degrees of gjtion in He crystal. The componert;, of the cell vectora,

freedomKpg. (b) The velocities of CL_Jrvature radius contributed to oyves similarly toR,,.. The cell componenta,, andas, evolve
Kg. Solid line isR,, (the componeng,, behaves in an equivalent as Ry, (dashed curve Evolution of all nondiagonal components
manney. Since the evolution of the componeR{, andR,, looks  looks similar, therefore onlR,, (dotted curvgis shown here.
similar (like that of nondiagonal component'%aﬁ,aa&ﬁ), there
only two component®,, (dashed curveandR,, (dotted curvgare  rium valueTge=3kgT/eN~0.1 after 106 MD steps because
shown. of the large initial radius. The effective magé=20m used
in Ref. [11] corresponds toR,z(0)~L(W/Nm)¥2~3 A

The equations of the motion, E(¢L2), were solved using a The transition bcesfcc also occurs for the sam@,(0)
Verlet-type integration and the potential of Az al. [12], =3.0 A but in much more time.
truncated at a distanag=5.67 A . A conservation oH of To consider more rapid evolution of the cell parameters
10 % in relative value was obtained over integration times ofthe next example of reverse fedcce transition started from
10°At  with the time step At=10"%ml%&)"%  the radiusR,,(0)=1.0 A. Furthermore, the initial lattice
|=2.553 A. The reduced unifs.u.) of energy and time are constantd,=2.8 A for the pressur@* =pd3e=1800 in
e=kg(10.22 K) and (nl%/¢)? respectively. this example was far from the equilibrium value 8.0 A),

Unlike the PR method with only one free parameigf  thus giving a large amplitude of oscillations of all cell pa-
fective masp here are six. The initial curvature radiig, rameters. After~2400 MD steps the cubic cell dfi=256
=10.0 A with respect to th& axis, being unequal t®,;  atoms in the initialbcc structure withH* =1002.7 trans-
=20.0 A, «,8#Xx,x enables us to emphasize the preferredforms also to a rectangular parallelepiped of fcc phase with
direction of cell deformationd axis). The time history of the
radius velocities for energH* =H/eN=1128.9, pressure
p* =pl3e=2200 and temperaturd* =kgT/e=28.7 is IRy
shown in the lower part of Fig. 2. Initially, in each simulation
the diagonal elements of internal virial pressure fluctuate
about the same values p(), the off-diagonal elements of
the pressure tensor fluctuate about zero. When the structure
transformation occurs, one diagonal element of the internal
stress becomes responsible for cell deformation, while main-
taining the dynamical balance. It is better seen in oscillations

of the velocityR,, along thec axis, whose valueg@veraged
over a limited number of MD steps 10) distinctly diverge
from other ones just after~-2000 MD steps. It results in
successive deformation of the initial cubic MD cell to a rec-
tangular parallelepiped with quadratic section in the plain 0 500 1000 1500 2000
YZ The final ratioa;,/a,, and a;./as, vary from 1 to
~1/\2 while ayy/ayy(0) andag,/as,(0) vary from 1 to MD Steps
0.89. The angular distortion of the cell was negligible. The £ 4. Kinetic energy fluctuations during fedbce transition in
calculations 11] exhibited the same kind of transformation. pe crystal. The contributions of the curvature radius vibration
The upper part of Fig. 2 shows the curve of the radialang the transverse kinetic enerfihe second term in triangular
kinetic energyKg. Oscillations ofKg near the mean value prackets of Eq(15)] are shown separately by the upper and lower
(Kry=Tgx~ 2.0 attenuate too slowly to achieve the equilib- curve.
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respect to the ratia;,/as,~ 2 anda,,/a,,(0)~0.89(Fig.  cells and one can conclude that the Hamiltonian, &), is

3). Because the pressure is isotropic and all components dfivariant under modular transformatig8.

R,;5(0) are equal to each other, which element of the pres- The general treatment reduces to the Andersen case of
sure is mainly responsible for the transformation is purely dsoshape cell fluctuation within the same approach. Because
matter of chance. In this example it depends on initial atomicf its physical transparency, the extension to anisotropic ex-
displacements. Unlike the previous example, the kinetic enternal stress and constant-temperature condition is straight-
ergy Kg drops considerably during the evolution up to anforward. Corresponding results will be discussed elsewhere.

AT The principal difference of the present method with re-
equilibrium value of T§~0.01, as the temperature tends to :
the valueT* = kg T/e = 36.2 (Fig. 4). spect to the PR one is the number of extended degrees of

freedom. In the PR formalism, nine independent components
of the scaling matrix, viz., the components of basic cell vec-
CONCLUSIONS tors, determine the dynamics of the system. Only six of them
gfe necessary to define the shape of the MD cell. The three
remaining parameters describing the orientation of the MD

. TSR . . cell in space are responsible for the physically irrelevant cell
vide essential simplification of calculation for variable-cell- b b oy y

h MD si he di b _ h rotation [8]. Six extended degrees of freedom exploited by
shape MD since the distance between atoms Is not the metnge qnased method avoid this problem regardiess of the

tensor. No special metric formula is required for the Ca|C”|a'symmetry condition for the components of the pressure ten-
tion of the total distance traveled by a particle which can besor, The motion equations are driven by the six free param-
misleading in the PR formalisiv]. eters related to the additional degrees of freedom. The van-

The Hamiltonian, Eq(11), eliminates the cell orientation ishing of each stress tensor component by means of an
from dynamics and fluctuation in the cell shape generated byppropriate curvature provides quite independently the equi-
Eqg. (12) is not determined by the shape of the simulationlibrium value of one of the six cell parameters. Hence, the
cell, which is arbitrary. Accordingly the motion equations areproblem of lattice equilibrium can be solved in full in terms
invariant with respect to the interchange between equivalentf the unified approach.

A constant pressure method has been developed from fir
principles and tested. The equations of motion, @8&), pro-
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