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Noise properties of stochastic processes and entropy production
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Based on a Fokker-Planck description of external Ornstein-Uhlenbeck noise and cross-correlated noise
processes driving a dynamical system we examine the interplay of the properties of noise processes and the
dissipative characteristic of the dynamical system in the steady state entropy production and flux. Our analysis
is illustrated with appropriate examples.
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I. INTRODUCTION Il. THE NOISE PROCESSES AND ENTROPY
PRODUCTION
A dynamical system in contact with a reservoir has been a A. Fokker-Planck description

subject of wide attention in dissipative dynamics and irre-
versible thermodynamics. The focal theme lies on the pos- ) ] o
sible link between the rate of phase space volume contraction 1he Langevin equations of motion in phase space for an
and the thermodynamically inspired quantities like entropy’\-degrees-of-freedom system that is driven by the external
production, entropy flux, and Onsager coefficients etcC0lOr Noise processy; can be written as

[1-11]. While on the other hand it has been argued that the

1. External Ornstein-Uhlenbeck noise processes

entropy production is related to the intrinsic properties of qi:ﬁ:pi,

phase space structure of the dynamical systems through the Ipi

Lyapunov exponentg6—11], the traditional wisdom asserts

that entropy production in a class of thermostatted Hamil- pi=— ﬁ_ yipi+ 71 i=1 N (1)
tonian system is defind@] as the work per unit timéin the L

leading order done on the system by an external constraint ]

under nonequilibrium steady state condition. Recently baseyhereN is the number of degrees of freedom of the system,
on a Markovian description of a stochastic process, Daem#i 1S the damping constant fath degree of freedom, and
and Nicolis[12], have critically analyzed the two aspects %i:Pi aré the corresponding coordinate and the momentum,

from the consideration of an information entropy balance'€SPectively. While the presence gf imparts a dissipative

equation. charagter in_the_: dy_namics, thg_stc_;chastic foroi)p@nsures_a
The object of the present paper is to extend the treatme n(_)nlc_al dlstr|t_)ut|o_n at _eq_“"'b.”“m When _the fluctugt!on-
to color [13] and cross-correlated noise procesgbs, 15 lissipation relation is satisfiet is Hamiltonian of an ini-
. . . _tially the conservative system and is given by
and to search for an appropriate signature of an intrinsic
interplay between the noise properties of these processes and N 2
the dissipative characteristics Qf the dynamical system _in the H :E Z_' +V{qgiht). 2)
steady state entropy production and flux. We specifically i=1
consider the overall system to be open, i.e., the noises are of
external origin such that they do not, in general, satisfy! "€ masses of all the degrees of freedom have been set to
fluctuation-dissipation relations. Whenever possible we al!Mty- V({di},t) is the potential of the Hamiltonian system.
low ourselves to make a fair comparison with the standard 1h€ term; in Eq. (1) refers to an external, Gaussian
results for closed systems. qolor noise fc_)r theth dggree of freedom and follows the two
The organization of the paper is as follows: In Sec. II WetIme correlation function
consider two types of external stationary and Gaussian noise Do
processes, namely, the anstem-UhIenbeck and cross- () pi(t))= —Lelt=tlin ®)
correlated noise processes in terms of a Fokker-Planck de- Ti
scription and setup an entropy balance equation to identify ) L 0. )
the drift term, which reveals that in addition to dissipation WN€re7i is the correlation time anDy is the noise strength.

constant it contains the essential properties of noise prol '€ ime evolution ofy; can be conveniently expressed in

cesses. Section Il is devoted to explicit examples to calcutems of the white noise procegg) for theith component

late the entropy production. The paper is concluded in Sec. 5
IV. o __m NP e 4)
7]| Ti Ti |1
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(£))=0. whereL; contains the dissipative term as well as the external
applied deterministic force, if anyg;(X;) is the coupling
In case there exists no fluctuation-dissipation relation bepetween the system and the multiplicative procésand »;
tweeny; andz; the system described by the Ef) is some-  are white Gaussian noise processes with the following corre-

times termed as thermodynamically ofdé6]. lation between them;
Equation (4) implies that#; can be treated as a phase
space variable on the same footinggas p; . Thus the origi- (&i()¢g(t"))=2D{;8(t—t") 5,
nal 2N dimensional stochastic systefh,3) now becomes a
3N dimensional Markovian process where Ef) and (4) (mi(O) (1)) =20 6(t—1") 5,

are written in a compact form

<§i(t)77j(t’)>:<§i(t’)77j(t)>:2)\|1 VD aljé(t t’ )5”1

Xi=Fi(X)+¢ 5 )
where whereDj; and a;; correspond to the strength of multiplica-
q fori=1,...N tive and additive noises, respectivelyrepresents the cross
' o correlation between them with the limitsO\<1. The cross
X;=4 Pi for i=N+1,... . N correlation between these noise processes is known to cause
7 for i=2N+1,... N symmetry breaking leading to nonequilibrium phase transi-
tions[14] in spatially extended systems and generate inter-
_ . esting ratchet motiofl5] in systems with symmetric poten-
Fi=Xisn fori=1,... N, tial under isothermal condition.
N(X ) The Fokker-Planck equation corresponding to Langevin
Fi=— %_ y X+ X,y for i=N Eq. (8) can be written as
|
N 92
JIP(X) P
+1,... N, - _ +
- > 7% (F P) E Di—s et (10)
X; D} .
Fi=- P { for i=2N+1,... 3, where the drift for theth componenf; is
I I
( i) o
and Fi= L({X}t )+v| D || gi(Xj) +\ji Ve;iD ii
<§|(t)§|(t,)>:0 for i=1,...,2N 2
+D,¢”79i(xi)+2)\ Y agi(X;) 11
(GOGH))=28t—t") for i=2N+1,...,3N. (6) X iveiDi = (11)

The Fokker-Planck equatidd 3] corresponding to Lange- \yhere,=1 stands for the Stratonovich ame=0 for the Ito

vin Eq. (5) can be written as convention, respectively. Diffusion coefficierd; within
small noise approximation can be written as

aP(x ) 2 (F P+ 2 b 9°P @
“oN+1 X2 Di= a;i+ D0 (Xie) + 2\ Va;iDjigi(Xie),  (12)
whereD;=D?/72. wheree in X;, refers to the steady state valueXy, i.e., X;e

P(X,t) is the extended phase space probability distribuis a solution of
tion function. The extension is due to the inclusion Nf
noise variables due to the external agency as phase variables. Fi({Xi))=0 i=1,... N (13
We conclude by pointing out that the above formulation con-
tains the thermodynamically closed system as a special case The choice of specific forms of nonlinearity in({X;},t)
where the internal noise strengiH is related to dissipation results in typical features of nonequilibrium phase transitions

v, through the reIaﬂorD? :kT, whereT refers to the equi- in model systems. For the present purpose, however, we re-
librium temperature of the reservoir. tain a general structure for the rest of the treatment.

2. Cross-correlated noise processes B. Information entropy production

Next we consider a dynamical system driven by both ad- Information entropySis formally defined in terms of the
ditive and multiplicative noise processgs and {;, respec- phase space distribution functidh(X,t) through the well-
tively. The Langevin equation for this process, in generalknown relation
can be written as

X=Li({X}D+gi(X)&+7 i=1,...N, (8 B _J X PX.DInPX.L). 14
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The above definition allows us to have an evolution equa- dln Py
tion for entropy. To this end we observe from E¢&0) [or Y=Fo— > Di—x— (22)
(7)] and (14) that ' '
ds J 2P Here we have assumed for simplicity that is not af-
qi —f dX —2 W(FiPHZ Di——|InP. fected by the additional forcing. The leading order influence
! : : X is taken into account through the additional drift term in Eq.
15 (2.

Under steady state conditio®® & Pg) andh=0, the sec-

Performi tial int ti f the right hand side of th
erforming parhas integra‘ion of the right hant Sice o eond and the third terms in Eg21) vanish yielding

above Eq(15) and then dropping boundary terrtsnce the
probability density tends to zero 8%|— =), one obtains the

following form of information entropy balance: V- ¢Ps=0. (23
ds 1
E:f dXPVx: F+2i Dif P where 7= /P. The steady state condition therefore reduces
to an equilibrium condition (=0) if
The first term in Eq(16) has no definite sign while the
second term is positive definitely, because of positive defi- $=0. (24)
niteness oD; . Therefore the second one can be identified as

the entropy productionSy) [12], (In the next section we shall consider two explicit examples
to show thatyy=0). This suggests a formal relation between

: 1 [9Pg\? d
S=2 Difp_ X dx, (177 FoandD;as
i s i

It is immediately apparent thatPg refers to a current/

aP)Z
(9_Xi . (16)

alnPg

in the steady state. The subscripbf Py refers to steady Fo=2, D X
i

state. It is therefore evident from E(L7) that i

(25

whereP4 may now be referred to as tleguilibrium density
function in phase spacé&. contains dissipation constamt
_ _ Depending on the problem it also depends on the correlation
So= — Stiux - (18  time 7; of the color noise or on the cross correlatian
between the noise processes.
Note that since we consider the system to be dissipative, To consider the information entropy balance equation in
V«-F is negative and therefor®, turns out to be positive. presence of external forcing we first differentiate E&4)
with respect to time and use E1). Following Ref.[12]
C. Influence of external perturbation one can show that in the new steady si@epresence oh
It is now interesting to examine the entropy production,” 0), the entropy productions;), and the flux 8 Sq,,) like
when the dissipative system is thrown away from the stead§e'™ms balance each other as follows:
state due to an additional weak applied force. To this end we

consider the drift~; due to external force so that the total Sy=—ASqux (26)
drift F has now two contributions:

.Sflux:f dXPy(X)Vx-F=Vyx-F,

F(X)=Fo(X)+hFy(X). (19 W
Whenh=0, P=Pg, the deviation ofP from Py in pres- o g P\?
ence of nonzero smali can be explicitly taken into account Sh_;;* Djj | dXP (9_xi|n|:>_s (27)
once we make use of the identity for the diffusion tdr2]
PP 3| _ainP, L[ 0P 0 and
ﬁxlz (?X| &X, (9X| S&Xi PS ’ ] aln PS
Asﬂuxzhzf dX5PVX-F1+h2f dX(E FliT)B ,
When P=P, the second term in Eq20) vanishes. In ! 28
presence of additional forcing the E({.0) becomes, (28)
P hv D d J P where we have putéP=P—Pq.
ot —Vx ¢yP—hVy-F,P+ i Diﬁ_)(i PS,;_xiFs ' In the following section we shall work out the specific
(21) cases to provide explicit expressions for the entropy produc-
tion and some related quantities due to external forcing for
where is defined as different kinds of open systems mentioned in the last section.
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IIl. APPLICATIONS

A. Entropy production in a system driven by an external color
noise

PHYSICAL REVIEW E 64 026110

X
TU=—aX,+bw?X,+ bez—bX3+73. (36)

HereT is again a constant to be determined. Putting Eq.

To illustrate the theory we now consider a damped hqr-(33) in Eq. (36) and comparing the coefficients &, X»,

monic oscillator driven by an external, Gaussian Ornstein

Uhlenbeck noisey;. The noise correlation o# is given by
Eq. (30).

(-h:pl:
P1=—widi— v+ 71, (29
DO ,
(O m(t)=—e Irlm, (30

wherewy is the frequency of the oscillator.

and X3 we find

Fa=—wib, Tb=-a+by,

and

1
I=—b+-.
T

(37)

The physically allowed solutions fa, b, andI" are as

follows:

1

1 1
To make notation consistent with E@&) we would like to a=5| - %4— P E\/y2—4w07 (+y— \/y2—4w02),
let X;, X,, and X5 correspond tagy,, p;, and n; respec-
tively. 1 1
The relevant equations of motion are therefore as follows b= — %+ -5 |v?— 4w,
.
X1=F1=Xe, and
XZZFZZ_ngl_’}/Xz'f'Xg, Y 1
r=>+ E\/y2—4w3. (38)

(31)

where(; is a -correlated noise

(L3O s(t))=26(t—t").
Therefore, for the Langevin Eq31) the Fokker-Planck
Eq. (7) becomes

JP aP

J
. 4 2 _
ot X5 X, + aXz(wOXl+ YXo—X3)P

19 .p DO 92P -
+ ;0_)(3( 3 )+? Pl (32

We now use the following transformation
U=aX;+bX,+ X3, (33

wherea andb are constants to be determined.
Then under steady state condition E82) reduces to the
following form:

d PPs
75 (TUPs+ D=0,

(39

where

(39

and

Ps, the stationary solution of Eq34) is then given by

P.=N V%2 (39)
Here Ny is the normalization constant. By virtue of Eq.
(39 ¢ corresponding to Eq22) is therefore

“TU—D dln Ps_0
L T

(40
Since /P defines a currentP defines a zero current
situation or an equilibrium condition. The equilibrium solu-
tion P from Eq.(39) can now be used to calculate the steady
state entropy production as given by Eg7). We thus have

5=, [~ [ 2du 41
So=Ds AR : (41)

Explicit evaluation shows
S=T, (42

wherel is given by Eq.(38). Thus at equilibrium the en-
tropy production is inversely proportional to relaxation time
of the process.

We now introduce an additional weak forcing in the dy-
namics. This may achieved by adding a constant external
force field f. in the dynamics. Eq(31) then becomes

X=Xy, (43

Xo=— 02Xy — yXo+ o+ X3,

026110-4
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Xs D°

N
. {3

X:
3 T

Then the nonequilibrium situatiofmue to additional forc-
ing, F1,="f.) corresponding to Eq43) is governed by

O X (Xt YKo Xg) P (1P
Tt Ry, (9_X2(w°1 ¥Xo—X3) (9_X2(c)
+ J X3P p° P 44
_(9_)(3(3) 2 %2 (44)

Using the transformatio(B3) again in Eq.(44) we have

O P+D(72P
U

S_
Sgu?

d
m(FU)Ps_ 0, (45)

Here,I' and other constants are given by E88). HereF, is

F,=bf.. (46)

The now stationary solution of Eq45) in presence of
external forcing is now given by,

P/_N/ F
s— ex Z_DS

(47)

, 2FU
1’\ 1

whereN’ is the normalization constant.

PH'SICAL REVIEW E 64 026110

We are now in a position to calculate the steady state

entropy flux (ASHUX) due to external forcingH#0) from
Eqg. (28

. dinPg
Asﬂuxzf dx5PV-F1+f dX| 2 Fu—gx—| oP,
1

(48)
puttingh=1.
The components df; in U space can be identified as

Fll:FU and Vu'FlZO. (49)

SP=P,— P denotes the deviation from the initial equi-
librium state due to external forcing. For normalized prob-
ability functionsP{ and Py the first integral in Eq(48) van-
ishes. Thus the entropy production at steady state due to
weak forcing is given by

. : r
S,= —AsﬂuxzD—f F,USPdU.
S

Making use of the definition ofP and integrating explic-
itly we obtain

. b?fE
=5

(50

Putting D from Eq. (35 andb from Eq. (38) we obtain

.Sh_[4—477'+ Y272+ 72( ')/2—4wc2))—27'\/72—4w%(2— 'yT)]fg
4pD°

We now examine specifically the following two limits:
(i) In the Markovian limit7— 0 the above expression re-
duces to the following form:

fe

Sh—ﬁ (52)

For the closed thermodynamic systé{= ykT that re-

duces the above expression to the standard result for entro
production of irreversible thermodynamics for Brownian os

cillator.
(ii) Next we consider an interesting limiting casg— 0,

which implies that for a free Brownian particle we have from

Egs.(37)

1—vyr

, and I'=1v,

(51)

(- yn)?2
5t

~ (53
The above expression depicts an interplay of the dissipa-
tion constanty of the system and the correlation timeof
the noise in determining the entropy production. Two differ-
ent cases are noteworthy;
(@ yr<l or r<1ly:
When relaxation time of the system greater than correla-

Bn time of external noise the entropy productiSn de-
“creases with increase efuntil 7=1/y.

(b) yr>1 or m>1lv:

The entropy productior$, increases with increase of
until 7>1/y. It is interesting to note that in the limiyr
=1 entropy production is zero. A plot of entropy production
in the steady state vs correlation time therefore exhibits a
minimum (see Fig. 1 It is thus apparent that in presence of
the nonequilibrium constraint the properties of noise pro-
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1.5

1.0
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0.0+
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T

FIG. 1. Plot of entropy productioSh vs correlation timer for
the Eq.(53) usingy=1.0, f;=1.0, andD°=1 (units are arbitrary

cesses as well as the dynamic characteristic of the system are

important for entropy production.

B. Entropy production in a cross-correlated noise driven
system

PHYSICAL REVIEW E 64 026110

(£1(D) 44 (t"))=2D16(t—t"),
(m(t) (1)) =20aq,6(t—t"),
(£1(D) (1)) = (L (t") (1))

=2N11VDjaq18(t—t'),0sh <1,
(55

where \1; denotes the cross correlation between the two
noise processes.
Equation(10) for this system reduces to

We now turn to the second case where a simple dissipa¥here

tive system is driven by both additive and multiplicative

noises.

Xy =—yX1= {1 X+ 71 (54

Herel in Eqg. (8) corresponds te- yX;. The correlation
between the noise processes are given by,

IP(X d(F.P 9P

( 1):_ (Fq )+ s (56

where the drift term is
Fi=—(y+2Dy;—v)X;+(2—v)A11VDyjay;  (57)

and
D;=DjXie— 2N 11VD a1 X1et+ ayg, (58)
(2—v)\1VDijagy

le™ . (59

y+2D3;—v

Making use of steady state value ¥f, i.e., X, in Eq.
(58) we obtain the following constant diffusion coefficient in
the weak noise limit

1

where
I'=vy+2D3;—v. (61

Now the stationary solution of E@56) is given by

P.= Nle—r’/le[xf—2(2|x1/r’)], (62)
whereN, is the normalization constant.
| is given by
|= (2= »)A 11Dy (63)

Putting Eq.(62) in Eqg. (22) one may show as before that

y=0. (64)

[y + (2= v)Dyas (2= v)Dyy+ 2y= 29\ 3~y (2—»)D 1} ]

(60)
r 2

Thus Py is an equilibrium probability distribution func-
tion.

Using Eq.(62) in Eq. (17) we obtain the standard expres-
sion for entropy production at equilibrium

So=1". (65)

As beforel'’ is a negative divergence of the drift term in
Eqg. (61). Equation(65) carries same message as in Ep)
but for a different system. It is apparent that the cross corre-
lated diffusion coefficienD 1, between the noise processes is
as important as the dissipation factgrthat determines the
steady state entropy production.

To study the effect of additional weak forcing on the sta-
tionary system we again add a constant field of forgén
the Eqg.(54). Due to the additional forcingH;,= f.) in Eq.
(54) we have
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Xy= yXy— {1+ i+ (66)  Where
Then the nonequilibrium situation corresponding to Eq. Fl=f+l. (68)
(66) is given by
aP "X, IP 2P Using the stationary solution of E¢67) in Eq. (28) as in

X Feoy+D1—5, (67)  the preceding section we obtain the expression for entropy
at o 9Xy 9Xq IX1 production in the steady state

5 [v*+(2-»)*Dii +2y(2-)DL1f
[ @117+ (2= v)D a1 (2— v)Dy+2y—2yA 35— \5(2—v)D1}]

(69

One may recover the standard results for a closed systepend on the dissipative characteristics of the dynamics of the
by switching off the multiplicative noise 0;;=0) and phase space of the dynamical system, particularly, the rate of
implementing fluctuation-dissipation relatiom;;=ykT in  phase space volume contraction, but also on the correlation

Eq. (69). We then obtain time and strength of cross correlation of the noises. Since the
steady state entropy production is identified as a drift term in

fé fé the Fokker-Planck description in the present formalism and

Ty KT (70 the correlation time or the strength of cross-correlated noises

make their presence felt in this term, it is not difficult to trace
Equation(69) implies that for finiteD 1, entropy produc- the origin of the role of interplay of dissipation and the prop-
tion is an increasing function of the cross correlatipe.,  erties of the noise processes. In view of the fact that the

\1,) between the two noise processes. Ornstein-Uhlenbeck noise processes or the cross-correlated
noise processes are commonly occurring situations in con-
IV. CONCLUSIONS densed matter physics and chemistry, we hope that the

present analysis will be useful in irreversible thermodynam-

~ In this paper we have examined the role of noise properics in relation to dynamical systems, in general.
ties of stochastic processes in entropy production under a

steady state condition. As specific cases we have considered

Ornsteln—UhIenbeck_ noise \_Nlth finite corr_elatlon time and ACKNOWLEDGMENT
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