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The q model, a random walk model rich in behavior and applications, is investigated. We introduce and
motivate theq model via its application proposed by Coppersngthal. to the flow of stress through granular
matter at rest. For a special value of its parametersqtimeodel has a critical point that we analyze. To
characterize the critical point we imagine that a uniform load has been applied to the top of the granular
medium and we study the evolution with depth of fluctuations in the distribution of load. Close to the critical
point explicit calculation reveals that the evolution of load exhibits scaling behavior analogous to thermody-
namic critical phenomena. The critical behavior is remarkably tractable: the harvest of analytic results includes
scaling functions that describe the evolution of the variance of the load distribution close to the critical point
and of the entire load distribution right at the critical point, values of the associated critical exponents, and
determination of the upper critical dimension. These results are of intrinsic interest as a tractable example of a
random critical point. Of the many applications of thenodel, the critical behavior is particularly relevant to
network models of river basins, as we briefly discuss. Finally we discuss circumstances under which quantum
network models that describe the surface electronic states of a quantum Hall multilayer can be mapped onto the
classicalg model. For mesoscopic multilayers of finite circumference the mapping fails; instead a mapping to
a ferromagnetic supersymmetric spin chain has proved fruitful. We discuss aspects of the superspin mapping
and give an elementary derivation of it making use of operator rather than functional methods.
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. INTRODUCTION cally we call this the ¥ 1 dimensionalj model. The exten-

sion to 2+1 dimensions(relevant to experiments on bead
It is fortunate that in physics the same equations somepacks$ and higher, is straightforward and is discussed in Sec.
times arise in contexts that are apparently very differentV. In the g model it is assumed that the beads sit on a regular
Feynman illustrates this through elementary examples in hikattice shown in Fig. 1. The location of the beads is specified
introductory lectures on physics to impart the lesson that théy the coordinates (the depth of the laygrandn (the loca-
“same equations have the same solutiops]. Our purpose tion of the bead within the laygrNote thatn takes only even
is to study a model, recently dubbed thenodel, that pro- Vvalues fort even; only odd, fot odd. Each bead is assumed
vides another such instance. Thanodel has been used to to be supported by its two nearest neighbors in the layer
describe the merging of tributaries to form rivei|; the  directly below. More precisely, it is assumed that a random
aggregation of diffusing chargg8]; the flow of stress in a fraction f(t) of the load of beadr(,t) is supported by the
granular mediuni4]; and can be mapped onto the abelianneighbor to the left, beadn-1t+1); the remainder, 1
sandpile, a model studied in context of self-organized criti-— f,(t), by the neighbor to the right, bead€ 1t+1). De-
cality [5]. It is also closely related to models that describe thenoting the load on a bead and its weight we may write
surface of a quantum Hall multilayg6,7] and passive scalar .
turbulence8,9]. Here we focus on the application to granu- Wn(t) =Wy (t=D[1—fy_4(t=1)]
lar matter, river networks, and the quantum Hall multilayer. F Wi g (t=1)F g (t—=1) +14(1). (1
Granular matter exhibits fascinating behavior that is little
understood 10]. Examples of granular matter include sand,

n —_—

powders, and agricultural grains stored in silos. An important 1 2 3 4 5 6 7 8 9 10 11 12
problem is the propagation of stress through a granular me- e O O e o O

dium at rest. This has been studied by ingenious experi- NN NS NS NN
ments, in which a vertical load is applied to an amorphous 2 /O\ /O\ /O\ /O\ /O\ /O
pack of beads, and the loads on the beads in the top and® 3 © O O O O O
bottom layers are recorded using carbon pap#&rlZ. Such . \O/ \O/ \O/ \O/ \O/ \O
experiments yield the dlstnb_utlon of load on thg beads and S NS NS NS NSNS
reveal that there are no horizontal correlations in load even 5 O @ O O O O
amongst neighboring beads. Thenodel was introduced by 6 \O/ \O/ \O/ \O/ \O/ \o

Coppersmittet al.to account for the distribution of lodd].

As we shall see, it also correctly predicts the lack of hori-  FIG. 1. Theq model of stress propagation through a bead pack
zontal correlation. in 1+1 dimensions. The beads are assumed to sit on a regular

For simplicity we describe thg model in a plane. Since lattice. Each bead is supported by its two nearest neighbors in the
the vertical and horizontal directions are treated asymmetritayer below.
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The content of Eq(l) is that the load on a bead is the sum of O O O O O
the loads transmitted to it by its neighbors in the layer above ./ N S S
plus its own weight. The last term in E¢l) is called the O @) O O
injection term. Once the fractions are specified, a given load \ \ /
on the top layer can be propagated downward by use of O. je; O, jo; O
Eq. (1) \\ ,/ \ /’ \\ ,’/ \ ,"

In the q model it is assumed that the fractions are ,O\ ,O ,O\ O\
independent, identically distributed random variables. S TN T S
The distribution is assumed to be symmetric abbsatl/2 O\ ,O\ ,O O\ ,O
to avoid introducing a horizontal drift to the flow of stress; N N \ / N
in other words it is assumed(f)=P(1-f). There O O O O
is no other restriction. Thus thge models really constitute FIG. 2. Scheidegger’s modeFor the singulag model the load

an enormous family of models corresponding tozigzags down lines that merge but do not split. In Scheidegger’s
different symmetric distributions P(f). To fully model of river basins these lines are interpreted as tributaries merg-
specify a particular model it is necessary to choosdng to form a river.

the distribution P(f). One obvious possibility is to take
P(f) to be uniformly distributed over the unit interval;
another is to assume that the fractions must be 0 or i

with_eq_ual probability. The latter is called the singular ety of power laws. Scheidegger networks too obey these

distribution. _ laws and are in this statistical sense extremely realistic rep-
Mathematically, theq model is a problem of random |esentations of river basins. An excellent discussion of river

walker_s that co:_;llegce upon contact and fission spontaneousfyasin power laws is given in Reffl8,19. Referencg 18]

The singular distribution corresponds to the case that thgresents some discussion of data; RéB] provides a de-
walkers coalesce but do not fission. tailed comparison between real and Scheidegger networks.
Coppersmith et al. argued that, neglecting injection,  Here we wish to point out that nonsingulamodels too
at sufficient depth the distribution of load would attain can be interpreted as models of river networks. For example,
a steady state[4]. They studied II(w,t—x), the consider a model in which the fractions can take only the

probability distribution of load on beads in a sufficiently values 0, 1/2, and 1 with probability (15)/2, &, and (1
deep layer. For almost all distribution8(f), except the —6)/2, respectively. This model reduces to Scheidegger’s as
singular distribution, it was concluded thdl(w,t—c) 6—0. It produces networks similar to Scheidegger’s except
decays exponentially for larges [4,15]. This agrees with that occasionally streams split to form distributaries. Thus
experiment and constitutes an important success of th#is network is topologically distinct from Scheidegger net-
q model. For the singular distribution, Coppersmihal. ~ Works. More significantly, as we show below, a network with
argued thatII(w,~) follows a power law. Hence they NONZzerodis notscale invariant. This is reminiscent of a river
conjectured that the singular distribution constitutes a'etwork model studied by Narayan and Fisf0]. In their
critical point in the family ofq models. A major goal of “rocky-r.|ver” model too the network is not scalellrj\'/arlant
this paper is to make this analogy to thermodynamicexcem if a model parameter is tuned to a spe(aiical)

critical phenomena precise by detailed analysis of the criticaYalge' Effectively this tuning parameter also contrqls fiver
point splitting. Taken together, these results suggest that river split-

In spite of the success mentioned aboveafiaodel can- ting is a relevant perturbation that spoils the scale invariant

not be considered a complete theory of Stress propagation structure of networks. In this paper we concentrate on show-
! comp y Ss propagal mg that g-model networks with river splitting are not scale
granular matter. This is clear both empirically and on

invariant. We do not explore whether such nonscale invariant

grounds of internal consistency. Since the publication of the ..\ orks are realized in natuféor further discussion and
g model, interesting new ideas on the subject of stress ﬂo"%peculation in this regard, however, see Sec).VII

have appearefB,13-15, but in this paper we restrict atten- A guantum Hall multilayer consists of layers of two-

tion to theq model. This seems justified because g@odel  gimensional electron gases stacked vertically. Multilayers
does capture some elements of the physics correctly and be-

cause it exhibits nontrivial critical behavior that is interesting
in its own right.

ears agd.Networks of tributaries in river basins are known
mpirically to be scale invariant structures that obey a vari-

1 ; . ) .
S . Parenthetically we note that Scheidegger’s model is purely de-
Further motivation to study the model and particularly scriptive in the sense that it is a recipe to draw statistically realistic

its critical point comes from hydrology. To make contact eyorks, Somewhat different in spirit are models that seek to rep-
with that subject consider a singulgrmodel with zero in-  resent physical processes, sometimes very crudely, by which the
jection and imagine that only a few beads in the top layer aretwork forms. Two examples of such models in the recent physics
loaded. The load then zigzags downwards, perhaps along thiérature are Refs[16,17. The model of Leheny and Nagel for
lines shown in Fig. 2. If we interpret these lines as tributariesexample describes an apocalyptic lattice world with discrete time.
merging to form a river we arrive at Scheidegger's md@¢l Each time step brings precipitation, and in its wake, erosion and
that appeared in the hydrology literature more than thirtyavalanches. Realistic networks result.
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tum interference effects become important and there is little
to be learned from the study of the classigathodel. Instead

a mapping to a ferromagnetic supersymmetric spin chain has
proved fruitful in this casd23,26. In Sec. VI we discuss
aspects of this mapping.

A detailed summary of our results is given in Sec. VII.
The reader interested in first obtaining an overview of the
paper or interested only in the results should proceed directly
to Sec. VII.

(G

(a) (b) t

FIG. 3. A quantum Hall multilayeriayers of two-dimensional
electron gases are stacked vertically and a strong perpendicular Coppersmith et al. analyzed the distribution of load
magnetic field is applied. The important electronic states are at thél(w,t—) at very large depth where presumably a steady
edge of each layer. These chiral edge states propagate in the diregtate is achieved4]. Here we study how the distribution
tion shown in(a). A quantum network model for the surface of the evolves as a function of depth to this asymptotic steady state.
multilayer is shown in(b). We assume that a uniform load is applied to the top layer,

Il. CRITICAL BEHAVIOR IN 1 +1 DIMENSIONS

can be realized by fabricating an appropriate GaAs hetero- Wr(t)=1  forall n. 2

structure[21]. They are also realized naturally in some or- |, this section we neglect the weight of each béhe injec-
ganic salts. In a quantum Hall multilayer a sufficiently large;q, term. In partial support of this neglect we note that in
magnetic field is applied_ perpendicula_r to the Iayers so thafe experiment of Ref12] typically a total load of 7600 N

the lowest Landau level in each layer is fully occupied. Un-\ a4 anplied to the bead pack. In comparison we estimate that
der this circumstance fche only important electronic states ifnq weight of a single bead was less than a milliNewton; of
each layer are the chiral edge states that propagate in ORge entire pack, less than 100 N. However, right at the critical
direction only as shown in Fig.(8. These edge states are ngint injection is a relevant perturbation, and at sufficiently
coupled by tunneling between layers. Thus the surface of gyge depth must be taken into account even if the weight of

multilayer is covered by a chiral sheath of coupled edge, single bead is small. We return to the effects of injection in
states. These surface states control the electrical transpagh. v/

properties of the multilayer. A central question from a quan- 14 make the problem tractable we study not the entire

tum transport point of view is whether these surface state§istinytion I1(w,t) but only its lowest nontrivial moment.

are localized or extended in the direction of the field\yjit the neglect of injection it follows that the total load on

[7'2_2'23' ) every layer is the same; tteemodel dynamic$Eq. (1)] just
Figure 3b) shows a network model of the multilayer sur- gy ffies this load. Hence the average load in layer

face introduced by Saul, Kardar, and R¢&fand studied by

many authors subsequently. In this model it is assumed that o

tunneling between edges takes place only at discrete nodes (W(t)>=f dw wiI(w,t)

[dashed vertical lines in Fig.(B)] that appear at regular in- 0

tervals along an edge. The edges are separated by nodes into =1. 3

horizontal segments called links. The wave function has a
definite value on each link. Each node is visited by two in-The |owest nontrivial moment is therefore the variance
coming links and by two outgoing links. Each node is char-
acterized by a X2 S matrix that relates the wave function o
on the outgoing links to the incoming amplitudes. OnceShe (ow?(t))= fo dw Wl (w,t)— 1. (4
matrices are specified, given the wave function through a
vertical slice, we can propagate it to the right. mmatrices
are chosen at random from some ensemble to incorporate t
effect of disorder. To fully specify the model it is necessary
E%ﬁzﬁ%iizgésit;%g;g fi?]r :ﬁ?gg;ﬁ;g{:gg{%goundary :yze this evolution for different digtributioq§(f), particu—

, i larly those that are close to the singular distribution.

The .d|recte'd petvx{or}( .mod'el above is quantum mechgm- Right at the critical point the asymptotic distribution
cal but in the limit of infinite circumference and for a special (w,) is believed to be a power law. If we assume that it
choice of disorder, Saul, Kardar, and Read have shown that oes’ not have a well defined varianc.e, then by analogy to
re_duqes to a:las_smalmodel, theg _moc_jel with uniform dis- critical phenomena we surmise that close to the critical point
tribution of fractions and zero injectiof6]. In Sec. VI we the variance must diver

. ; X ; ge as
discuss some respects in which more generic models of the
multilayer surface, that do not reduce to classical models, 1
still do show behavior similar to the model[24,25. At the (SWA(t—00))~ —. (5)
same time we show that in case of finite circumference quan- 50

Since a uniform load is applied to the top layer the variance
itY that layer vanishes. As the load propagates downward, the
fluctuations must grow and saturate. Our purpose is to ana-
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Here § measures the distance of a distributi®(f) from the  entire correlation function by this method and thereby obtain
singular distribution;s will be defined precisely below. We information on the horizontal correlation length; but here we
also expect that the depth scdlg,, at which the steady state present only a detailed analysis of the variance, related to the
is attained will diverge as the critical point is approached.on-site correlation function via E¢9).

Thus To analyze the evolution of the correlation function we
write
£ - (6)
corr _<p' 1
g Calt+ 1) = 2 (Wo(t+ D)W n(t-+1))

&corr IS @ vertical correlation length that diverges as the criti-
cal point is approached. Combining E@S) and (6) we ex-
pect that close to the critical point the fluctuations must have
a scaling form

1
N ; (W 1(DWname 1 (D T2 (D) Fremea (b))

+others
(W)= —FL) (7) !
(‘)"9 ' = N ; <Wn+1(t)Wn+m+1(t)><fn+1(t)fn+m+1(t)>
To be consistent with Eq(5) we expect that the scaling + others. (10)

function F(u)—const asu—o. For short times we expect

that the system should behave as it would at the criticalry gptain the second line of E¢L0) we have used Eq1).

point. T?/(Z& dependence shoulg canceﬁl/‘pa”d SO We expedtqyr terms result; we have written only one for illustration.

F(u)~u®? for u<1 so that(ow*(t))~t"% at the critical 14 gptain the third line it is crucial to observe tha,(t)

point. . ) ) ) . depends only on fractions in the layers above. It is not cor-
In the remainder of this section we will confirm that Eq. yg|ated with the fractions in layer allowing us to factorize

(7) and these inferences are valid. We will determine thgpe average as shown.

exponentsy and ¢ and the scaling functiodF(u). To perform the average we need information about the

As an aside to experts we note that it may have been morgistribution P(f). By symmetry for any choice of distribu-
natural to name the exponents—(3—7)/o and ¢—vzZ.  ign

These names follow from a more general scaling hypothesis
for the entire distributiofEq. (174)]. However in this sec- 1 1
tion we have elected to make the more restricted hypothesis <f>:f df fP(f)==. (11
Eqg. (7) and to give the exponents single letter names taking 0 2
care to avoid common exponent names such,ag, andy.
Finally we should emphasize that although for definite-For the variance we write
ness we have assumed that a uniform load is applied to the
top layer, it is easy to show that at sufficient depth, in the 1
scaling limit, the dynamics of the load fluctuations are insen- < ( f— >
sitive to the precise distribution of load applied to the top
layer.

2 €
>:Z’ (12

where € is a parameter that characterizes the distribution
P(f). For exampleg=1/3 for the uniform distribution. For
the singular distribution the parameter takes its maximum
Consider the correlation function possible valuee=1. Since the fractions for different beads
are assumed to be independently distributed we conclude

A. Disorder average

1
Cm(1)= 5 2 (Wa(O)Wn (D). ®)

1 €
<fn(tl)fm(t2)>: Z +Z 5n,m5tl,t2- (13
We assume there af¢ beads in each layer and we impose
periodic boundary conditions in the horizontal direction. Ul-
timately we are interested in taking—o. Note thatm is
even for botht= even and= odd. In terms of the correla-
tion function the variance is given by Co(t+1)=
m

Substituting Eq(13) in Eqg. (10) we obtain

% + 2 5m,0) Cm(t)+others
(owW(t)) =co(t) — 1. €)

1 e 1 €
E+§5m,0 Cm(t)+ Z_Z5m,2 Crm—2(1)

The correlation function obeys a remarkably simple evolu-
tion equation Eqg. (15) below]. This equation can be solved
by straightforward classical analysis; the exact formal solu-
tion is given by Eq(38). Thus it is not difficult to obtain the

1

+7- §6m,_2)cm+z<t>. (14

026107-4



DYNAMICS AND CRITICAL BEHAVIOR OF THE g MODEL PHYSICAL REVIEW E 64 026107

In the second line of Eq(14) the other terms have been N
unveiled. Recall tham takes even integer values. It is con- C(0)=; a ot (22)
venient to replacen—m/2 to obtain

The correlation vector at depthis then

_(1 € ) 1 € )
Cn(t+1)=| 5+ 5 8mo|Cm(t)+| 7= 7 8ma|Cma(t) c=3 Na o (23)
_ S
1 A

+ Z—Eam,l)cmﬂ(t). (15

A complication we must negotiate is th&t is non-
Hermitian. According to the standard theory of biorthogonal
expansion(briefly recounted in Appendix Ato execute the
plan above we mugirovethat the eigenvectors &f span the
vector space. Then we must find the eigenvectord bf

cy(t—0)=1 forall m. (16) called the left eigenvectors ¢ in this context. The eigen-
values ofH™ are the complex conjugate of the eigenvalues of
The initial condition follows from the definition of,, [Eq.  H. Thus
(8)] and the assumed uniform load on the top layer. Note that
the distribution P(f) enters the evolution equation only
through the parameter. Since the parameter takes its maxi-
mum valuee=1 for the singular distribution we may define

Equation(15) is the main result of this section. It governs
the evolution of the correlation function. We wish to solve it
subject to the initial condition

HTy =2y, (24)

where g denotes the left eigenvector with eigenvahe.
Having completed these tasks we may write the complete-
S=1—¢ (17)  hess relation

as the distance of a distributid®(f) from the critical point.
an(h) P > ()" 5= (25

B. Scattering solution ) ) o
. . . Using Eq.(25) we conclude that the expansion coefficients
_ It is easy to verify that a steady state solution to Bdp) in Eq. (22) are determined by the left eigenvectors,
is

1 a =2, (¥h)*cm(0). (26)
1—€’ m

COZ

Implementing the plan we first write the eigenvalue equa-
c,=1 for n#0. (18 tion for H

Assuming this is the unique steady state towards which our 1 1 1

initial condition evolves, Eq(18) reveals that the variance §¢i‘+ Z¢i‘+l+ Z(f)i‘,l:)\(ﬁ? for |r|=2,

does diverge as the singular distribution is approached. Us-

ing Eq.(9) 11 1-e K
. 9t 7Tt o= NPy,

l1-€ (27)

1 1+e 1 1
~5 aseol (19 > ¢3+Z¢51+Z¢§=>\¢3,

Comparing Eq(5) we see that the exponedit= 1. Equation 1, 1-e , 1, \

(18) also reveals that in steady state the fluctuations in load §¢1+ T¢0+ Z¢2:)‘¢1'

are uncorrelated for all pairs of beads including neighbors.

This is in agreement with experimefit2]. Note that fore=0 Eq.(27) may be interpreted as the Schro
A full solution of evolution dynamics needs more work. dinger equation for a free particle on a tightbinding lattice,

Schematically Eq(15) states familiar from elementary solid state physics. For nonzero

the particle may be viewed as scattering off (aon-
c(t+1)=Hc(t). (20) Hermitian barrier at the origin. Thus we seek a solution of

The strategy we adopt here is to seek the eigenvectark of the scattering form

oL =T(k)e*k"  for n=1,
=A(k) for n=0,

He"=\o", (21)

and to expand the initial correlation vectofO) in terms of . .
the eigenvectors, =e*"+R(k)e k" for n<—1. (28)
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Here O0<k<. The first line of EQ.(27) then yields the
eigenvalue

1 1
NKk)= §+ = cosk.

5 (29

The next three lines yield the scattering coefficients

i sink

A(k)= , ,
) (1—€)e'*+ e—cosk

T(k)=(1—e)A(K), (30)
R(K)=(1—e)A(K)—1.

There are also scattering solutions to E2j) corresponding
to the fictitious particle coming in from the right

# ¥ =e k4 R(k)€X"  for n=1,
=A(k)
=T(k)e '

for n=0,

for n=<—1. (3D

By symmetry the scattering coefficients for this state are also

given by Eq.(30).
There are no bound state solutions to E2j). The scat-

PHYSICAL REVIEW E 64 026107

wg_)k: e_ik”+7?,(k)eik”
= A(k)
=T(k)e ' "

for n=1,
for n=0,
n<s-1. (39
The scattering coefficients are given by

i(1—e)sink

k)= .
A (e—cosk)+(1—e)ek’

T(k)=A(k), (35
R(k)=A(k)—1.

Having found the left and right eigenvectors, by analogy
with Eq. (25), we now posit the completeness relation

=dk _ _
fo o W oy B = G (36)

The proof of this completeness relation, an important ele-
ment of the analysis, is carried out in Appendix A.

The expansion of the initial correlation vector indicated
schematically in Eq(22) may now be written

cm(0)= f;%[a<+><k>¢$:’k+a“’(k)¢§;’k]. (37

tering solutions we have found all have real eigenvalues. In ) i
principle, sinceH is non-Hermitian, complex eigenvalues are 1€ correlation vector at depthis now

also possible. However, it turns out there are no solutions
with complex eigenvalue that are biorthonormalizable. It will
be seen that the scattering solutions we have found constitute

a complete set.
The next step is to find the left eigenvectors that obey

1 A 1 A 1 A A
E(//r+z¢/r+l+zwr71:)\lpr for |r|>2’

1 1 1
El//}il"‘ Z'P)lﬁ' ZW}GZ)\‘//}ilv
(32

1+e 1-e€ 1-€
> Yot Vit A= N,

1 1 1
SVt U0t V=N

Equation(32) is the transpose of E427). The left eigenvec-
tors are

¢E1+)k: T(k)eikn
= A(k)

— eikn+ R(k)efikn

for n=1,
for n=0,

for ns—1 (33

and

mdk
C(t) = fo %x(k)t[a<+><k>¢ﬁ;’k+a<*><k>¢$;>k]
(39)

as previously shown schematically in E@3).
The expansion coefficientgk), obtained using the com-
pleteness relatiofEqg. (36)], are

+ oo

ak= X ¢ (0)y{,

+

aOk= 2 e (0)y ),

(39

as previously indicated schematically in Eg6). To ensure
convergence of the sums in E@®9) we setc,,(0)— e~ 7™M

and taken— 0 at the end. Using Eq$33), (34), and(35) we
perform the sums exactly to obtain

aMk)=al(k)

—ik—7n eik—7]
= A" +2A(0)* | e e

=2mA(K)* 8(K)+[1— A(K)* i cot;. (40)

The last line of Eq.(40) is obtained by taking the limity
—0.
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Substituting Eq(40) in Eqg. (38) and making use of Egs.
(28), (29), (30), (31), and(35) we finally obtain

€ (7™
<[
7)o

Equation(41) is the exact expression for the evolution of
Co(t) that we sought.
Finally we would like to reexpress E@4l) in terms of

1
1—-€

cog 1 (k/2)
€2~ (2e—1)cofk

Co(t)

standard special functions. Some of the manipulations will

prove useful later in the analysis of injection. Introduce zhe
transform

0

1 1
co(2)= 2, Zeo(= 775
—ifwdk : cog(k/2) 1 |
mJo  €—(2e—1)co(k/2) 1—zcos(k/2)

(42)
The k integral may now be performédo yield

_ 1 €2
T(1-e)(1-2) (1-e)(2e-1)(1—a(e)2)

Co(2)
B €
(1-2e)V1-z(1—a(e)2)

For brevity a(e)=¢€?/(2e—1). Upon inversion of thez
transform(details relegated to Appendix)Bve obtain

( 2¢—1\ 7"
X— .
62

(44)

(43

1
1-€

1

Xt+1

1 )
—— | dx(x—1)"%?

Co(t) el

Comparing an integral representation for the hypergeometric

function[27]

o0

I'(c)

Te—b)r(p) ), Hx-D

F(a,b,c;s)=

X X2 C(x—s) 72, (45)

valid for Rec>Reb>0 and|s|<1, we conclude

€

1 I'(1/2T'(t+3/2)
1—€ me

T(t+2)

(owW(t))=

TE

2€
XF| 1t+3/2t+2;
€

- (46)

2Extend the range from 0 to2 Then use the standard trick for

turning an angular integral into a contour integral around the unit

circle in the plane via the substitutiogﬂe”‘. See, for example,
[27], p. 409.

PHYSICAL REVIEW E 64 026107

F(u)

.8

o

.7

> 4 6 8 10"

FIG. 4. The scaling functiotF(u) describes the growth of load
fluctuations with depth for the£1 dimensionaly model close to
the critical point[see Eqs(7) and(50)]. Injection is neglected.

Equation(46) is the final result of this section. It is an exact
formula for the evolution of fluctuations with depth, in terms
of known special functions. As a practical matter E@kl)
and (44) are equivalent to Eq(46) and will prove more
useful.

C. Scaling limit

Equation(46) gives the exact evolution of load fluctua-
tions for theq model without injection. It is valid for alf and
all distributions,P(f). From our point of view however it is
more interesting to examine the scaling limit of large depth
behavior near the critical point.

To derive the scaling limit we start with Eq44)—Eq.
(41) would have served just as well—and consider the limit
t>1 and 6=1—€e—0. We do not make any assumption
about the relationship betweé¢rand 16. We obtain

1 1~
<52W(t)>~ (_s_ _j ds S*l/Zeft |n(1+S)(S+ 52)71
7Jo

1 1 (=
~—— —f ds s Y% t5(s+ §%) 1. (47
) mJo

In the first line of Eq.(47) we have changed the integration
variable fromx to s=x—1. Again changing the integration

variable froms to s=s/ 5% we obtain

Y.

e
1+s2

1 2
(52W(t)>=(—s 1-— (48)

Comparing Eq.(7) we conclude that close to the critical
point and in the large depth lim{5?w(t)) does indeed have
a scaling form with exponents

=1,

o=2 (49

and scaling function

o U

— 2 *
]—"(u)—l—;fo ds (50)

1+s?
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Figure 4 shows a plot af(u). As anticipated the asymptotic 6—0 limit of the more general scaling hypothesis for the
behavior of the scaling function is entire distribution close to the critical poidEqg. (174)].
However for this section we have elected to make the more

1 restricted hypothesis, Eq53), and to give the exponents
Fuy~1-—== for u—= . 429 J g

Jmu single character names.
u . ; L "
In this section too we neglect injection. At the critical
2 point injection is a relevant perturbation. The form we derive
~—\/G for u—0. (51 is therefore a transient that will break down at sufficient
Vm depth. Provided the injection is weak however that depth

could be very great.

Majumdar and Sir¢28] have analyzed the scaling limit of
IT(w,t) when injection is present; however it does not ap-
pear straightforward to take the injectien0 limit in their
expression. It would also be desirable for the case of non-
5 zero injection to have a simple explicit formula for the cross-

(2w(t))= ——t. (52)  over ofII(w,t) from the transient we deriieq. (53)] to the
Jr injection dominated, large depth limit. Presumably this can
be accomplished by extracting the suitable limit of the results
This behavior must persist at all depths right at the criticalof Ref. [28], or by direct calculation, but we do not attempt it
point as will be explicitly confirmed in Sec. Ill. here. The case of zero injection has also been previously
In summary, we have shown that the singular distributiongnalyzed by Majumdar and Huse in a continuum time model.

is an isolated critical point in the space@models. There is  Their results are in agreement with the scaling limit of our
a (vertica) correlation length that diverges as the critical exact expressiof29].

point is approached. We have determined the exponénts
and ¢ and the scaling functiotF(x) introduced in Egs(5),
(6), and(7). In context of river networks we have found that
any q model with stream splittinghence nonzer®) has a As in Sec. Il we assume a uniform load is applied to the
(possibly very long correlation length in the direction of top layer[Eg.(2)]. To obtain the distributiodl (w,t) follow-
flow. Such a network is therefore not scale invariant on sufing Ref.[3] we consider the quantities

ficiently long scales.

We conclude that the saturation depth scalg~ 1/6%. For
very great depthg>¢.,,, the fluctuations saturate to the
value 16 as found earlier by analysis of the steady sf&ig.
(19)]. For small depths, ¥t< &, they grow as

A. Disorder average

r
Z.(p,t)=1{ expi wy(t) ), 54
IIl. CRITICAL POINT DISTRIBUTION (Pt < P pnzl nl )> 4
sible to analyze the dynamics of the entire distribution
IT(w,t). Since there is no vertical length scale at the critical Z1(p,t)={(expipw,(t))
point we expect that in the large depth, scaling limit .
1 = ePMI(w,t). (55)
(w,t)= t—wH(th). (53) w=0

Note that for the criticaj model without injection the load
Equation(53) implies that at the critical point the variance on a site is an integer. Thig (p,t) is the discrete Fourier or
should grow ag %Y~ in the scaling limitt>1. From Eq.  z transform of the distributiodI(w,t); p is the transform
(7) we had surmized that the variance would grovi 4% for domain variable conjugate to. Z,(p,t) similarly encodes
6=0. Hence the exponents ¢ of the preceding section and the joint probability distribution of load on neighboring sites
o,Y of this section are not independent; they satisfy theand so on.
relation 3Y + w+ 0/ o=0. Below we calculate the exponents  For the business at hand the imaginary parZdfp,t),
o andY, explicitly verify the exponent relationship and ob-
tain the scaling functiorH(s). Z(p,t)y=ImZ.(p,t) (56)

Again as an aside to experts we note that the exponents . ) , )

and Y might more naturally have been writtem is especially valuable. It is evident from E@5) that

—tlvzo, Y— —1lvzo. These expressions follow from the o
Zi(p,)= X sin(pw)IL(w,1). (57

w=0
3Strictly, to analyze a river network the appropriate initial condi-
tion is to load a fraction of randomly chosen sites in the) layer,
rather than the uniform load analyzed here. However we do not 2 [
expect our conclusion regarding correlation lengths is sensitive to _f dksinknsinkm= 8, (58)
initial conditions. mJo

By using Fourier’s identity
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and Eq.(57) we can extract the distributiohl(w,t) from
Z1(p,t) via

2 (m
== fo dp sin(pw) Z4(p,1) (59

forw=1,2,3... . Wecannot obtaidl(w=0,) in this way
from Z,(p,t), but we can obtain it from the normalization of
(w,t);

M(w—0t)=1— 21 (w,t). (60)

The benefit of considering the quantitigs(p,t) is that

they obey a simple linear evolution equation. Following Ref.

[3] write

Z(pt+1)= < expipZ1 W, (t+ 1)>

= < expi P[ wq(t)f,(t)+ ngz Wp(t)

+Wr+l(t)[1_fr+1(t)]]>- (61)

To obtain the second line we have used thmodel evolu-
tion Eqg. (1). Since the weights in layer depend only on

fractions in the preceding layers we can perform the average

over f(t) andf,, ,(t) separately in Eq(61):

1
(expipwy (1) f (1)1, = 5[ L+ expipws(1)],

. 1 .
<eXpIpWr+1(t)[1—fr+1]>fr+l=§[1+explpwr+1(t)].
(62)
Substituting Eqg.(62) in Eqg. (61) we obtain the evolution
equation

1 1 1
Zr(p!t+ 1)= er—l(p!t)+ Ezr(plt)+ er+l(p!t)v
(63)

where we have again made use of horizontal translational

invariance.

Note that Eq(63) is linear. Hence it is obeyed separately

by the real and imaginary parts & Z therefore evolves
according to

1 1 1
Z(p,t+1) :er—l(Pat)+ EZr(pit)"_ ZZH—l(P-t)-
(64)
Equation(64) is reminiscent of a tight-binding lattice Schro

dinger equation for a free particle on a half lif@nce the
site indexr=1).

PHYSICAL REVIEW E 64 026107

The main results of this subsection are E&S) and(59)
that define the relationship betweHri{w,t) and Z;(p,t) and
Eq. (64) that controls the evolution of,(p,t) with depth.

B. Solution and scaling limit

We wish to solve Eq(64) subject to the initial condition

Z.(p,t—0)=sinpr. (65

This follows from the assumed uniform load applied to the

top layer and Eqs54) and(56). Schematically, Eq.64) has
the form

Z(pt+1)=2 HZy(p,t). (66)

It is easy to verify that our initial condition is an eigenfunc-

tion of H;
: 11 .
> H,ssinps=| =+ =cosp| sinpr. (67)
s 2 2
Hence Eq.(64) has the remarkably simple solution
11 b
Z(p,t)= §+ Ecos,o sinpr. (68

Substituting Eq(68) in Eqg. (59) we obtain the desired ex-
pression for

11 v
=+ -cosp| sinp (69

2 (m )
H(W,t)=;JO dp sin(pw) 5t5

forw=1,23....

The integral ovelp can be performed exactly by a stan-

dard contour integration tricksee footnote Pto yield

1 (2t)!
w0 = G —w) =1+ w)!

1 (2t)!
St (t=1—w)I(t+1+w)!

for w=1,2,...t—-1

1 (2t)!
Tt (tF 1wl (t—1+w)!

for w=t,t+1=0 for w>t+1. (70

We now use Eqgs(60) and (70) to obtainII(w—0,). The
sum proves tractable and yields

1 (2t+1)!

[I(w—0t)=1- ;m

(71)

Equationg70) and(71) are the exact expressions fld(w,t)
for the criticalg model without injection.
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Much more interesting than the exact formula is the scaliNear the critical point we expect that the mean square load
ing limit of large depth. We now assunie-1 but we will  should have a scaling form
make no assumptions about the relative sizevandt. To

derive this limit we return to Eq69) and write 1
69 (W2(t)) = —C(t8%,(al 25 E (1) "), (79
(E+ 1cos )t~e"’2’4 (72) ’
2 27 We can guess all the exponents and obtain some features

. ) ) of the scaling function from simple arguments. The load on a
justified (inside the integralfor larget. Hence we obtain a particular bead at depthis a random linear combination of

Gaussian integral the weights of the beads in the layer above plus a term, due
1 (n to the applied load, that does not depend on the weights,
II(w,t)= _f dp Sin(pw)peftpzm Hence the scaling function has to be of the form
T) -7
wA(t —i}'w“’ +m/\/t t5%)+ ﬂic to¢
— %ﬂe—wzlt (73) < ( )>_50 ( ) 50+p, ( 50+K ( )
7 132 '
(1)
Comparing Eqs(53) and (73) we see that at large depif + 59+2K£(t5‘p)- (79)

has the anticipated scaling form with exponents
In the limit of zero injection Eq(79) should reduce to our

w=1 Y=-— 5 (74)  resultin Sec. Il. Thus
=1, ¢=2 (80)
and scaling function
and F has the same forrfEq. (50)] as in Sec. Il justifying
4 o the recycling of these particular symbols.
H(s)=—=se *. (795 By rewriting the average weight at depthiEq. (77)] as
Jr
& 1+16%1)/ 8% we conjecture
Equation(73) holds forw=1. In the same large depth =2, 81)

limit
To obtainu we imagine that the system is very close to
i i (76) the critical point. Then for times that are not too long, effec-
VAt tively, it will behave as it would right at the critical point. At
that point the weight of each bead zigzags down lines that
The distribution of load thus consists of a spike at zero loadnerge but do not split. If we add the squares of the loads on
followed by smooth behavior for nonzero load given by Eq.all the beads on layerwe will obtain the sum, over all the
(73). At great depths it is extremely probable that the load orbeads above layey of their squared deviation from the av-
a given bead is zero; most of the weight of the distribution iserage weight(l) plus other terms. Hencé=,w,(t)?)
in the spike. =(81%)Nt+ other pieces that do not depend @#i %). Here
From the distribution of load, Eq73), it is easy to con- N is the number of beads in a layer. By translational invari-
firm that its variancd Eq. (4)] grows without bound as the ance we conclude
square root of depth, as we had earlier inferred from the ) 5
scaling functionF [cf. Eq. (52)]. (Wa(t))~( ol “)t+ (others. (82
It is instructive that the exact formula, Eq30) and(71),
is so cumbersome; the scaling limit, E¢83), (74), and(75),
emerges only when we plumb the depths.

M(w—0)~1—

In Eq. (82) “others” represents contributions faw?(t)) that
do not depend oKé12). Comparing Eqs(82) and (79) we
see that for small values of its argument

IV. EFFECT OF INJECTION M(u)=~u (83

In this section we consider thg model in 1+1 dimen-  and the exponent
sions taking into account injection. We will assume that the
weights of the beads are independent and identically distrib- n=1, (84)
uted with mear{l) and variance §12). To probe the behav-
ior of the model we will assume that a uniform load is ap-needed to cancel thé dependence at small depths.
plied to the top layefEq. (2)]. We will study how the mean With the exponents in hand we can analyz_e the be_havior
square loadw?(t)) evolves with depth since the mean load Of (W?(t)) at small depthgcompared to 1#). This behavior

has the trivial variation would persist out to all depths right at the critical point. For
the term independent of injection we have already obtained
(w(t))=1+(I)t. (77)  the exact result, Eq52). For the term that depends 64l ?)
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we have just worked out the behavior in this limit, including of the needed technical elements have already been described
the precise coefficiedEq. (82)]. For the term that is propor- in Sec. Il. Here we shall focus on the new complications
tional to(I) we argue that for small, K(u)~u®?to cancel introduced by consideration of injection.

the § dependence, leading to Following the method of Sec. Il B we first obtain the evo-
, lution equation for the correlation function, now including
(W2(1))~(1)t*?+ (others. (89 injection. Schematically this equation has the form
Similarly the contribution of the term that is proportional to
(12 is Cr(t1)= 2 HiniCo( 1) + &m(D), (88)

2 2,512
(W2(1))~(1)*t>*+ (others. (88 WwhereHp, is the same matrix as in E4L5). The effect of

The last result has a simple interpretation. We have see'rqJectlon appears in the inhomogeneous tegn Explicitly

in Sec. Il that without injection at the critical point the mean En=2(1)+ (2t+ 1){(1Y24+(512) 6, _o. (89)
weight at deptht is 1; the mean square weight/t. With m=217 {7408 o
injection the average weight at sufficient depth~igl )t. If Our strategy to solve Ed88) is to first expand:(t) and

we assume that uniform injection does not change the distrig(t) in terms of the right eigenvectors 6f,
bution, only its scale, then since the mean is inflated by a
factor (1)t, the mean square should be inflated by a factor
(1Y?t?, leading to Eq.(86). The same interpretation can be
used to derive the behavior of the last term in E9) in the
limit t>1/62, the opposite of the limit we have so far con- As discussed before, the expansion amplitumeandé, are
sidered. In that limit, in the absence of injection, the fluctua-calculated by use of the left eigenvectors

tions saturate at the valuesl/Hence we expect this term to

behave as (=3 (W cnV; EO=3 (Ph)*£nlt).

1
(W(1))~ (1)t (87)

cm(t>=§ ay(t) o §m<t>=§ L. (90

(91)

In Sec. IIB we have calculated the amplitudes foy(t
We can check some of these deductions by making con=*0). We founda*)(k,t—0)=a‘")(k,t—0)=a(k,t—0)
tact with Majumdar and Sire, who have analyzed the entiravith
distribution of load at the critical poirj28]. Following these

authors let us imagine that the injection term is very small, a(k,t—0)=2mAK)* 5(k)+[1— A(K)*]i cotE.
with the squared meafi )?, significantly smaller than the ’ 2
variance( 512). According to our analysis ultimately the fluc- (92

tuations at the critical point should grow &%, but the depth L . 4

at which thet>? term[Eq. (86)] overtakes the term linear in Ijer((i)A(k) 1S gﬂven by Eq.(_35). Similarly £)(k,t—0)

t [Eq. (82)] could be very great; it diverges ag Y3 Ma- ¢ (k,t=0)=¢(k,t—0) with

jumdar and Sire arrived at the same value 4/3 for this cross-

over exponent. Moreover, since they argued that right at the(k,t) =(512) A(k)* +{2(1)+ (2t+ 1){I )2}[ 27 A(K)* 8(k)

critical point (the only case they considepethere is only

one independent exponent, we have made contact with their K

entire analysis as regards exponents. +[1-A(k)*]i cotz
In summary we anticipate that near the critical point the

mean square load will follow the scaling forfiq. (78)]. Substituting the expansions E(P1) into the evolution

Using simple arguments we have conjectured values for aftq (gg) shows that the dynamics of the amplitudes for dif-
the exponent$Egs. (80), (81), and(84)] and guessed Some tarent right eigenvectors is decoupled and is given by
features of the scaling function. As a check we have made

contact with the critical point analysis of Majumdar and Sire a,(t+1)=Nay(t)+&(t). (94)
and recovered the known value of the crossover exponent,

4/3[28]. In the remainder of this section we will fully con- To solve this dynamics we introduce théransforms

firm the deductions we have made above. We will obtain an

exact formula for the evolution of the mean square load; the

. (93

©

— t
exponentsf, ¢, w, andx; and the scaling functiod. ax(2>—t§0 a(1)z,
A. Disorder average and exact solution ”
_ t
As in Sec. Il our strategy is to analyze the evolution of the &(2) Zo &z, (95)

correlation function c,(t); the mean-squared weight
(W?(t))=cy(t). The analysis is given in outline since most to obtain
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a,(t—0) z&(2) M(u) /u”r(1/2)
a(2)= x1—2)\ l—)\z)\' (96)
0.8
Combining Egs(90) and (96) we conclude 0.7
a,(t—0) z&(2) 0.
D=2 [Tt 1o |Phe 9D
A 0.5
More explicitly 0.4
= a(k,t—0)A(K) = &(k,2)AK) | 5 1 6 8 10 °
CO(Z)_ZJO dkT)\(k)_’_zzfo dkT)\(k)
(99 FIG. 5. Growth of load fluctuations with depth for thet1

] o dimensionab-model close to the critical point. The scaling function
Herecy(2) is theztransform ofcy(t); A(K) is given by EQ.  A(u) gives the contribution due to fluctuations in the weight of
(30); N(k), by Eq.(29); anda(k,t—0), by Eq.(92). £(k,z)  beaddEqgs.(79) and(102)]. HereM(u)/+/u is plotted as a function

is to be obtained by transforming Eq(93). of u.
Now all the pieces have been assembled. It remains to
perform thek integral and invert the transform. Thek inte- B. Scaling limit

grals may be performed by the standard contour integration
method mentioned in footnote 2. Thdransforms can all be
inverted as illustrated in Appendix B.

After much calculation we find

More interesting than the exact results is the scaling be-
havior that emerges fae>1 andé=1—e—0. To derive this
behavior it is useful to express the hypergeometric functions
in Eq. (100 via the integral representation, E@5). The
204\ — 2 2 asymptotic behavior of F; has been analyzed in Sec. IIC
(WAD)=F (L) +{AIM(t, &) +{)K(t, &) +(1) L(t’(egg) [cf. Egs.(47) and (48)]. The corresponding analysis bf,
andI'F is very similar and finally leads to

with
F(t,e€) 1[1 2 dy(u)
— € 1 ’6_)3 _; lu ’
F(te)= 1~ —TFy,
2 (1—e) M(t,e€) ! 1+4q>()+4q>()J
€ —€ JE)— —= 1 — —u u)+— u)r,
M(t,e)=— +— [[tF+F,], 52 ot w2
(1—e)? ™ ¢
(100 (102
2 € 4 Kito)— —|2us2- g %o
K(t,e)=EtJr(l_e)g—EF[tFlJer], (’G)Hg Ut2—— @y (u)— —Pa(u)
L(t,e) dr2ed-ed, 2¢ 2 T[(42—t)F 1 , 16,
1E: - — — -
(1_6)5 (1_6)3 3776 1 L(t,f) 55 2+2u+u 37T[U q)l(u)+2uq)2(u)

+(8t—5)F,+8F3]. +20,0)]
3(u

We have put an overline dﬁ(t,e) to avoid confusion with a

hypergeometric function. For brevity we have written . .
yperg y Hereu=t4§2. For brevity we have written

[(1/2)T(t+3/2) B
= R o e_u
F(t+2) cbn(u):f ds . (103
0o (1+s8)"
B 3 2e—-1
Fn=F| n.t+ E'HZ’ €2 (103 Comparing Eqgs(79) to (102 we conclude that the expo-

nents aref=1, o=2, k=1, andu=1 as conjectured. It is
in Eq. (100). also straightforward to extract the scaling functiahgu),
Equations(100) is the final result of this section. It gives M(u), K(u), and £(u) from Eq. (102. The scaling func-
the evolution of load fluctuations for tteemodel with injec-  tions are plotted in Figs. 4, 5, 6, and 7, respectively.
tion in 1+ 1 dimensions. It holds for any distribution of frac-  The asymptotics of the integratb,(u) are analyzed in
tions P(f) and at any depth. Appendix C. Using those results we conclude that for small
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0.6

0.4

FIG. 6. Growth of load fluctuations with depth for the+1

PHYSICAL REVIEW E 64 026107

L(u)~u?.

Substituting the small asymptotics in Eq(79) we obtain
the behavior for depths small compared té21/

2 %i 1/2 2 13/2 2 16 5/2
(w=(t)) \/;t +( 4l )t+<|>3\/;t +(I) 15\/;t .

(106)

This behavior would persist for all depths right at the critical
point. Note that Eq(106) agrees with the forms conjectured
in Egs.(82), (85), and(86) (including the numerical coeffi-

cient in the first cage It is hardly necessary to add that Eq.
(106 is consistent with the critical point analysis of Majum-

dimensionaly model close to the critical point. The scaling function dar and Sire since it leads, by the arguments given earlier in
K(u) gives a contribution proportional to the average weight ofthjs section, to their crossover exponent f28].

beadqEgs.(79) and(102]. Here(u)/u is plotted as a function of

u.

Fu)=~ \/i_ul’z,

aa
M(u)=~u,
(104
8
K(uy~——=u®?,
(u) 307
1
L(u)~——=u?
(u) 15vn
For largeu
Fu)~1,
M)~ = (105
u)~—u,
J
K(u)=~2u,
L{u)/u”2
0.6
0.5
0.4
0.3
/ 2 4 6 8 10 °

FIG. 7. Growth of load fluctuations with depth for therl

dimensionaly model close to the critical point. The scaling function

The largeu asymptotics give the behavior at depths large
compared to 1%. We find

12 1 1

- 1/2 - 2742

5\/# +<|>52t+<|> 5t.
(107

The term proportional tél )2 has the form anticipated in Eq.
(87); at the greatest depths this term is dominant.

In summary we have shown that the singular distribution
is an isolated critical point. Near the critical point the fluc-
tuations in load have the scaling form E{9). We have
derived this scaling form and all the exponents. The results
are in agreement with expectations based on simpen-
rigorous arguments.

(w2(t)>=%+<5|2>

V. HIGHER DIMENSIONS

We now turn to theq model inD+1 dimensions. The
quantum Hall multilayer and river networks are both 1
dimensional systems; bead packs however are described by
the 2+ 1 dimensional model. The behavior of the model as
a function ofD is of intrinsic interest moreover. We will find
that right at the critical point the growth exponents vary
smoothly with dimension foD<2. Above D=2 they be-
come fixed, revealind@ =2 as the upper critical dimension
for the critical case. Off the critical point we expect the fluc-
tuations to grow according to a scaling functigiix) [Eq.
(7)]. We will study how the function and exponents vary with
dimensionality belowD = 2. For simplicity in this section we
neglect injection.

A. Model and disorder average

First we must generalize the description of tpenodel,
so far confined to + 1 dimensions. The case oft2L dimen-
sions is easy to visualize. Figure 8 illustrates a square lattice
composed of two interpenetrating square sublattices. The co-

ordinates of siteﬁz(nl,nz) are both even for the black
sites; both odd for the gray. The displacements from a site on

L(u) gives a contribution proportional to the square of the averag@ither §ub|attice to its four nearest neighb0r§ on akteer
weight of bead$Egs.(79) and(102)]. Here£(u)/u? is plotted as a §ublatt|ce are£1,+1). We will denote these displacements

function of u.

u. In the g model planes of such square lattices are stacked
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1
(fo)=—=- (110
" @ o o L ] o 2°
N NS NS N
! @ .\ @ /.,\ We write
/ \\ / Y // \\ /- \\
2 @ o [ ) [ ] [
\\\ // \\ '// \.\ / \\_\ / 2 _ 1 €
3 /.\ e e o (0= * o0 (111)
S / N/ N Y
4 @ [ } @ [ ) o . . o
W N S wheree is a parameter that characterizes the distribution of
5 Q@ Qo ractions. From the sum constraint it follows
O ,.\ e o fractions. From th int E4.08) it foll
/ ‘.»x /,/ ’/, \ / b
¢ @ [ ] [ [ J
N SN S NN S <f - f- >= i _ —E i (112
7 ®@ e e @ U2l 2D (oD 1) 2D

o [ [ [ o .
8 for u;#u,. The fractions are assumed to be independently
FIG. 8. Horizontal slice through the+21 dimensionalymodel. ~ and identically distributed for different beads.

Beads occupy the eveblack or odd(gray) sublattice in alternate For the singular distribution all the fractions are zero ex-
layers. Each bead is supported by its four nearest neighbors in tieept one. The probability for each fraction to be one i1/2
layer below. It is easy to calculate=2P—1 for the singular distribution

using Eq.(111) and to verify Eqs(110 and (112 are satis-

vertically. The beads alternately occupy only even or oddied. Sincee=2°—1 for the singular distribution we shall
sublattices. Denoting the depth of a layefor t even only ~ used, defined by
the even sublattice is occupied; foodd, only the odd sub-
lattice. Viewed in three dimensions the beads occupy a body- €
centered cubic structure. In the same sense, Fig. 1 can be 6=1- (2°—1)’ (113
viewed as a body-centered square structure.

Now consider & dimensional simple cubic lattice. The 55 our measure of the distance of a distribution from the
co-ordinates of a site are specified by (n;,n,, ... ,Np) critical point.
wheren; are integers. For the even sublattice thare even; As before it is useful to consider the correlation function
for the odd sublattice, they are odd. Each site Hasi@arest
neighbors on the other sublattice. We denote the displace- - - -
ments (-1,£1,...,*) to these neighboré. TheD+1 di- c(m,t)=26 (w(n,w(n+m,t)). (114
mensionalg model consists oD dimensional cubic lattices
stacked in the “vertical’t direction. In alternaté slices only
the even or odd sublattices are occupied by beads.

It is assumed that a random fraction of the load on ea
bead is supported by its*neighbors in the layer below. The
fractions must sum to one;

Note thatm is a D dimensional vector with even integer

entries for botht even andt odd. The correlation function
CIf'herefore lives on a simple cubic lattice Ihdimensions. By

rescaling, as in Sec. Il A, we reduce the lattice constant of

this lattice to one so that the components of the vegtare
now integers. The variance in load is related to the on-site

> fi=1. (108 correlation by
u
(6WA(1))=c(m—0t)—1. (115
Heref is the fraction of load transmitted by the bead to the
neighbor separated by a horizontal displacement. ¢ience Following the discussion of Sec. IIA and using Egs.
the dynamics of the model is governed by (109, (110, (111), and (112 it is easy to show that the
correlation function evolves with depth according to
- I I - 1 . 1 . -
wiit+1)=3 fii-Gowr-uy. (109  c(mi+l)=gomi+ oo gm c(m+b,t) (119
- Z

> c(m+b,t)+---

Equation (109 is the D+ 1 dimensional generalization of

Eq_ (1) 2D+2 b=nnn

The fractions for a particular bead are assumed to be 1
drawn from a distribution that is symmetric with respect to +— > c(m+bt)+ ic(rﬁ,t) o
direction and respects the constraint Etp8). It follows 220 o b
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€ 1 - .1 1 .1 .
- e C m+b,t 5‘ o = —< 1+ = elpb+_ e|p.b+...
(2D_1) 2Pt Egnn ( om0 Sp) ZD{ 2 p=hn 22 b;nn
€ 1 N o 1 o
BN Cc ITH‘b,t o PRI + — e|pb
(ZD_]—) 20+2 Bgnn ( ) heb=o0 2D b:;..n }
e 1 - _ (1+cospy) (1+cosp)  (1+cospp)
_(2D_1) zﬁk;:nz nc(m+brt)5rﬁ+6:0- - 2 2 2 (1271

While reading Eq(116) it is useful to recall that the corre- is a “structure factor” for the cubic lattice. It will also prove
lation function lives on &D dimensional cubic lattice. For convenientto define

D=2 each site has four nearest neighbors and four next-

nearest neighbors. For genef| each site has2 nearest G(|5,z)=
neighbors; 2C(D,2) next nearest neighbors;*@(D,3)

third nearest neighbors; and@(D,D) Dth nearest neigh- R A

bors. In Eq.(116) b denotes the displacement from a site to Both S(p) andG(p,z) have helpful physical interpretations
any of these neighbors; nn denotes nearest neighbor; nniat we shall make use of below. For the moment we rear-

_ (122
1-z9p)

next nearest; and so forth. range Eq(120) to obtain
In the next section we will solve Eq(116) for c(m - -
—0,t) subject to the initial condition that a uniform load has c(p,z2)=c(p,t—0)G(p,2)
been applied to the top layer. Thagm,t—0)=1 for all m. +(1-8)zo(m—0,2)[1-S(p)]1G(p,2).
B. Solution (123
It is easy to verify that By inverting the Fourier transform we can turn E#23) into
1 an expression foc(rﬁ—>0,z). After further rearrangement
. ~  for m=0
c(mt—x)=1 6 (117 f C(.t—0)G(5.2)
1 otherwise . (2m)P .= P,
c(m—0,2)= pE:
is a steady state solution to Ed.16). Equation(117) shows . f p el -
that the varianced ow?) saturates at sufficient depth in all 1-(1-9)z (ZW)D[l S(P)IG(p.2)
dimensions for all distributions except the singular. (124)

We now calculate the evolution of the variance with depth

using a methoq different from that of Sec[&0]. Firs_t wez  Equation(124) is a general expression fafm— 0,z) for an
transform the(discrete t dependence of the correlation func- arbitrary initial condition. For uniform loading of the top

tion, layer
. S - _ Do
c(mz)=2, c(mbz, (118 c(p,t—0)=(2m)"5(p). (129
t=0
It follows from Egs.(121) and (122 that G(p—0,z) = 1/(1
and Fourier transform the space dependence, —2); hence Eq(124) simplifies to
o(p.2)=% e e(m,2). (119 c(rﬁ—>0,z)=(1—z)_1[1—(1—5)Zf -
(2m)°

The use of the same symbol for the correlation and its trans- -1

forms, although customary, is potentially confusing. For ex- ><[1—S(|5)]G(|5,z)
ample,c(p,t—0) denotes the Fourier transformaffm, t) at

t=0; noztransform is implied. . . —
Performing both transforms on EL16) we obtain Equation(126), together with the definitions of the structure

factor [Eq. (121)] and G(ﬁ,z) [Eqg. (122)], constitutes an
_ exact formal evaluation of the variance with depth. To obtain
zc(m—0,z). (8w?(t)) explicitly it only remains to perform the integral
(120 overﬁ and to invert thez transform. We return to this task in
the next section. We conclude this section with a useful in-
Here terpretation ofS(ﬁ) and G(ﬁ,z).

(126)

¢(p.2)=C(Pt—0) +2AP.DS(P) + 5
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Equation (116) with e—0 resembles the Schdimger ¢(m—0z) at z=1 and integrating along the cut. In that

equation for a particle on B dimensional cubic lattice with integralc(rﬁ—>0 7) is weighted by a factor that decays ex-
hopping to the nearest neighbors, the next nearest neighborns:emely rapidly ’away frone=1 at large depths.

and so on to thé®th nearest neighbgrs. It is not difficult to Our goal therefore is to analyze tle>1 behavior of

see that the eigenstates of this Sclinger equation are

plane wavesS(p) is the dispersion relation, the eigenvalue f dp 1

at wave vectop. From Eq.(121) we see that the energy G(2)= (2m)P 1-29p)’
level spectrum is a continuous band between zero and one.

The momentum space Green's function for this tight-since by a straightforward rearrangement the integral in Eq.

(131

binding lattice would normally be written (126) simplifies to
- dp L 1 1
G(p,E)=—=. (127) f 1— G ,z=(1——)G )+ —.
E—S(p) (277)'3[ S(P]G(p.2) ;|G@+7

. (132
Comparing Eq.(127) to Eq. (122 we see thaiG(p,z) is o . .
essentially the Green's function wit— 1/z. It is familiar ~ INSight into the behavior 06(z) can be gained by expand-

from quantum mechanics that the real space Green’s functioig S(p) aroundp=0 to obtain

at the origin, R
G(2) f dp ! (133
Z)~ = .
(2m)P (1—2)+p?/4

dp

(2m)° E-S(p)’ _ _ _ ]

If we setz=1 in Eq. (133 the integrand diverges gs—0
regarded as a function dtompleX E, has a branch cut for D=<2; it is regular in more than two dimensions. Thus in
running fromE=0 to E=1, the interval that supports the more than two dimensionS(z) has a branch point a&=1
eigenvalue band. It is not difficult to use the familiar argu-but there is no actual divergence. In two dimensions or less
ments to conclude that, regarded as a function of complethere is an actual divergence.

G(m—0E)= f (128

z, c(m—0,z) has a branch cut along the lire=1 to Thg leading b_ehavior oG(z) abqve two dimensions is
(onto which the segme®,1] maps under the transformation thus simply obtained by setting=1 in Eq. (131):
E—1/z). The analytic properties of(m—0,z) will prove G(z2)~G(1) for D>2. (134

useful in the next section.

In two dimensions we can obtain the singularity by recog-
C. Scaling limit nizing G(z) to be a Jacobi elliptic integral. Square lattice
Green'’s functions are known to be related to Jacobi’s elliptic
functions; but since our lattice features next-nearest neighbor
hopping, in addition to the customary nearest neighbor hop-
ping, we outline the analysis in Appendix D. The result is
that forz—1

In this section we study the evolution of the variance in
the large depth scaling limit. Thus-1 and§é is zero or very
close to it throughout.

An advantage of studying the large depth limit is that we

do not have to calculate(rﬁ—>0,z) exactly; it is only neces-
sary to calculate the leading behavioras 1. One way to 1
understand this is to consider the critical ca&e0. In this G(z)=——_In(1-2) for D=2. (135
case we expect that at great depth

For D <2 we obtain the singular behavior @f(z) in Appen-

c(m—0f)~t*. (129 gix D. The result is
It is easy to show that fof (t) =t*, the z transform isI"(x I'(1-D/2)
+1)/(1—2)*"? plus less singular terms. Thus for a function G(z)=————(1-2)P? 1 for D<2. (139
that behaves af for larget also thez transform is VP
T(x+1) An important feature revealed by this calculation is that the
t*e X+lJr(less singulay. (130 singular behavior 0fG(z) is controlled by the long wave-
(1-2) length behavior ofG(p,z) for all D<2; it breaks down as

_ _ _ . D—2. Although it is instructive to do the calculation for
If we know the leading singularity af(m—0,z) asz—1 we  continuousD to examine theD— 2 limit, the only case that

can use Eq(130 to read off the large depth behavior. is physically relevant is of course the integer dimensibn
Another way to see that we only need the behavior of=1
C(rﬁ*)O,Z) asz—1 is to consider inverting the transform Equipped with the leading behavior 6f(z) in all dimen-

by the contour integral method of Appendix B. This is ac-sions we now obtain the long time behavior(@w?(t)). At
complished by folding the contour over the branch point ofthe critical point we sets=0 and substitute Eq9132),
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(134), (135, and(136) in Eq. (126). Except in two dimen-

C
sions thez transforms may be inverted by inspection of Eq.
(130). For two dimensions we must resort to the method of o
Appendix B and finally obtain / 1
v : ¢

wD
<b\N2(t)>=7TD’21sin(7)tD’2 for D<2 1 ' 2

/ )
_ b for D=2 g \ 4

Int A
1 o

th for D>2. (137

B

As indicated by the simple steady state solution, at the criti-
cal point the fluctuations grow without bound as a power of tunneling site
t for all dimensions. The exponent becomes independent of
D for D>2 revealingD =2 as the upper critical dimension.
By substituting Eqs(132) and(136) in Eq. (126) we can

also obtain the behavior ddw?(t)) away from the critical VI. QUANTUM HALL MULTILAYER
point for less than two dimensions. Inverting thegansform A. Models

by the method of Appendix B we find

FIG. 9. Elementary vertex of the Saul, Kardar, and Read model.

In this section we turn to the chiral wave models that are
believed to adequately describe the surface electronic states
of a quantum Hall multilayer. We begin by examining the

(é\’\’z(t»: Eﬂt&o)- (138 circumstances under which the quantum network model of
Saul, Kardar, and Redd] discussed in Sec. | is equivalent
to aq model.
Here the exponents Following Saul, Kardar, and Read, the first step is to iden-

tify pairs of links (joined by vertical gray bars in Fig.) &s
“beads.” The “load” on a bead is the total probability that
(139 the electron is on either of its two constituent links. Load
propagates from left to right now rather than top to bottom as
it did in our earlier depictions of thg model. For this reason
and the scaling function we will label the vertical co-ordinate and the horizontal
co-ordinatet here(see Fig. 3.
To analyze how load propagates consider an elementary

" D S
Flu)= i_ 2 f ds 1 exp— us’ (140 vertex of the Saul, Kardar, and Read model shown in Fig. 9.
D @DJo 1+¢? qaP The wave function amplitudes are related via
. _ _ _ &2 1
with gp=T'(1— D/2)sin(@D/2)/y/7° a dimension dependent é =S ik (141
3 2

constant. Again, only the result f&r=1 is physically mean-

ingful; in this case Eq(140) coincides with the result of Sec. ) . )
1. hereSis a random X2 su?2) rotation matrix. Saul, Kardar,

In summary the main results of this section are that for alfnd Read assumed tigmatrices were drawn from the in-
distributions, except the singular, at sufficient depth the loayariant distribution for the €@) group [31]2- The 2|Oad3 on
fluctuations saturate andn agreement with experiment beadsA, B, and C are, respectively|i|”+[4o|”, |y
there are no horizontal correlations in loggt. (117)]. The  +|®2l? and|@s|?+|¢4|?. By unitarity ||+ [¢o|*=| ¢3|?
saturation value of the load variance diverges as the criticat | #a|”. Thus beadA sends a fractioff of its load to neigh-
point is approached. At the critical point the load fluctuationsPor B and the remainder 1 f to neighborC. _
grow without bound as a power of deftiq. (137)]. Below A key feature of the Saul, Kardar, and Read model is that
two dimensions this exponent depends on dimensionalitythe distribution of the fractions?(f) is independent of the
above two dimensions it is constant, revealDeg 2 as the input amplitudesy; and . This follows from the assumed
critical dimension. At the critical dimension the growth of group invariant distribution for th& matrices. It is this fea-
fluctuations is tempered by a logarithmic factor as might beure that allows the Saul, Kardar, and Read model to be
expected at a critical dimension. We have also evaluated thH@apped onto & model.
scaling function that describes the growth and saturation of To derive the distribution of the fractions recall that an
load fluctuations near the critical point fer<<2. su2) matrix may be parametrize®=xy+ix - o with (Xg,X)
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real and subject ta3+x%=1. If we takey;=1,4,=0 then B. Wave-packet dynamics

f=x5+x5. From the invariant distribution for $&) matrices, In this section we briefly discuss wave-packet dynamics
for the models of the previous section. Mathematically this
L1, problem is identical to the motion of a wave packet in a
P(Xg,X)= ;5(Xo+ x?—1), (142 crystal with noise(temporal randomnegslt also bears for-
mal resemblance to the directed polymer model, an impor-
tant problem in statistical mechanics. Hence it is a problem
of general interest and has been studied since at least the
> 1970s from various points of viesee Ref[6] and refer-
Now suppose the wave function is known through thegnces therein A considerable amount is now known.
vertical slicet=0. We could propagate the wave functibn For the Saul, Kardar, and Read model wave-packet dy-
slices to the rlg_ht using the quantum Saul, Kard_ar, an(_d Reaﬁamics can be studied using the mapping to gheodel:
model. Alternatively we could calculate the load in the initial i, qeed the mapping was introduced for this purpose. In this

layer and propagate it to the right using emodel with  gection we will formulate the problem and summarize known
uniform distribution. Either way the load we obtain in layer (g its. These results reveal that thenodel and the con-

would be the same statistically. This is the sense in which thg, ,um wave model introduced in the last section behave in
Saul, Kardar, and Read model is equivalent toqheodgl. qualitatively similar ways.
Note that theg model does not keep track of phase infor- * cqnsider an electron localizedrt0 att=0. This wave

mation. Thg mappil_']g i_s use_ful only under circumst_anges thaﬁacket can be propagated to the right using @43). As it
the phase information is unimportant. Below we will discussyqhagates it will broaden and its mean position will deflect.
some problems of wave packet dynamics for which the mapr i jnteresting to know how the breadth and deflection grow
ping is useful. The mapping can also be used to study verti;i, gisplacement and to analyze the distribution of “load”
cal transport in the quantum Hall multilayer in the limit of 4 sufficiently great displacement that a steady state is
large circumference but we do not discuss that applicationg,ched.
here. _ , _ . The root mean square width of the wave packet grows as
_An obvious circumstance when the phase information ishe square root of the displacement. This was derived for the
important and the mapping cannot be used is if periodiGontinuum model in the 197082] and it is easy to show
boundary conditions are imposed in the horizontairec- 4t the same form is obtained in the Saul, Kardar, and Read
tion, as would be appropriate for a multilayer in the fully ,4e| The root mean square deflection grows as the fourth
phase-coherent, mesoscopic regime. Phase information {5t of the displacement. This result has been obtained nu-
needed to match the wave function after it is propagateqherically and analytically for both the Saul, Kardar, and
around the circumference. We will develop this point in aRead[6,30,34 and continuum modelk33,24.
more technical way in Sec. VIC. _ To compare the distribution of load, for the continuum
Another case in which a quantum network model will ., 1q|\ve define the load on an edgenagt) = |y, (t)|2. The

map ﬁnto a mg)del isl i tger;ﬁve .function? arrf]ﬂ matrices d asymptotic distribution of load,] (w,t— ) was obtained by
are chosen to be real and tenatrices are further assumed ¢, ,hersmjthet al. for the g model[4]. For various distribu-

to be distributed over the subgroup of rotations aboutythe tions of the fractionsP(f), they found thafl(w,t— ) de-

axis with appropriate invariant measure. The fraction distrl-Ca od exponentially withy with a power law prefactor that
bution P(f) = (1/m)f~ ¥4 1— )2 for the q model that re- Y p y p p

Its. F distributi . " h L depended on the distributidd(f). For the uniform distribu-
sults. For most distributions of tii@matrix however itis not o he prefactor was a constant. The corresponding result
possible to obtain even the limited mapping between th

guantum network model and the classigahodel obtainable or the continuum wave model was obtained by R28] by
in this and in the Saul, Kardar, and Read case. mapping the problem onto an(@yl) quantum ferromagnet.

. | . Here too the result for the load distribution is an exponential
Finally we present a convenient continuum model of thewith a prefactor linear iw.

multilayer surface governed by the ScHirger equation

it is not difficult to show that the fractiohfollows the uni-
form distribution,P(f)=1 for 0<f<1.

C. Field theory formulation

—i i'ﬂn(t):mn(t)¢n+1(t)+mﬁ—l(t)lﬂn—l(t)- We have emphasized above that the equivalence between
at the Saul, Kardar, and Read model and ¢gheodel is useful

(143 only when open boundary conditions are imposed in the
horizontalt direction; it breaks down for periodic boundary
Since the equation is first order ingiven the wave function conditions needed to describe transport in phase-coherent
at a fixedt slice we can use it to propagate the wave functionmultilayers. The importance of boundary conditions is also
to the right, just as in the discrete network model. In thereflected in field theory formulations of these models. In Ref.
transverse direction the model is discrete and second orddR4] the continuum model with open boundary conditions
Disorder is incorporated by taking the hopping elementsvas mapped onto a Heisenberg ferromagnet. In contrast,
m,(t) to be random. For a discussion of the relationshipwith periodic boundary conditions a mapping to a supersym-
between onsite and hopping disorder see H@#,26. Evi-  metric analogue of the Heisenberg ferromagnet was obtained
dently this model cannot be reduced to a classicalodel.  in Refs.[23,26.
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In this section we derive the supersymmetric spin represubject toSR(t—0)=1. FromSE 'SF=1 it is easy to verify
sentation following the operator methods of Re¥4]. This  the useful result
derivation highlights the role of boundary conditions, the
feature we wish to emphasize here. It only makes use of
operator methods and is in this sense more elementary than
the functional methods of Ref26]. Moreover mappings to
supersymmetric spin models have recently been used fruiMe define
fully not only to study the multilayer but also to provide R R-1 R
nonperturbative insights into various other problems of elec- Cn(t) =S¢ “(1)CaSk(1) (149
tron localization[35—37. It is hoped that the present deriva-

e Rt

tion, with its emphasis on boundary conditibasd its use of anclj\l SImLI)arIy folrcn (t)'t.h finite t ture field th

operator methods will prove of interest in this broader con- ow by ana ogy’W| Inite temperature ne edse]
we write the Green’s function

i%SE‘1=SE‘1<t>HE<t>. (148

text also.
cAl 1) R R RT 1/ R ’
1. Fermion representation G(n,tin",t )_Tr[SF(T)Cn(t)Cn’(t N/Zg(T)  for t>t
We wish to evaluatés(n,t;n’,t’), the Green’s function =TS} T)cR(t) ekt 11z
for the continuum model governed by the Salinger equa-
tion, for t<t’,

J R/TY — R
—i EG(n,t;n’,t’):mn(t)G(nnL 1t:n',t") Ze(D) =TS (150
ZE(T) is analogous to the partition function in finite tem-
+m;_1()G(n—1t;n",t") perature field theory. It is easy to verify th@ obeys the
differential Eq.(144) by making use of Eq4147) and(148)

—16(t=t") 6nn (144 and the commutation relation
and subject to the periodic boundary condition [HE(t),cﬁ]: —mn(t)CEH—m:—l(t)CE—l- (151
G(n,t+T;n",t")=G(n,t;n’,t"). (1495 However,

Here T is the period in thet direction. In Ref.[24], the G(n,T;n’,t’):Tr[Sﬁ(T)Sﬁ’1(T)C,FfSE(T)c§,T(t’)]/ZE(T)
Green'’s function was calculated subject to the chiral bound-

ary condition,G(n,t;n’,t’)=0 for t<t’, leading to a sim- =TI ST (") cRZR(T)
pler field theory formulation. .
The key idea is to reinterpret the co-ordinatas time. =-G(n,0;n",t"). (152

Equation (144) then describes a particle on a one- L .
dimensional lattice with noise. In second quantized notatior;rhus G obeys antiperiodic rather than periodic boundary

the (time-dependeptHamiltonian that governs the motion of cHondyltlong. This problem is fixed by adding a term to the
this fictitious particle is amiltonian

R Rt R RT R HR(t)—>HR(t)+z > cRTeR (153
HF(t)=; [ma()cRTeR,  +mi_ (t)cRTeR . F F T< e

(146 Alternatively we may replace ¥ STr in Eq. (150. By STr

we mean the trace of an operator over all states with an even
umber of fermions minus the trace over states with an odd
umber of fermions.

We also need an expression for the complex conjugate of
the Green'’s function since our ultimate purpose is to calcu-
late the disorder average ¢6(n,t;n’,t")|?, the diffusion
J propagator. _To this.end we .complex conjugate Elgﬂ4) to
—j —SE(t):HE(t)Sﬁ(t) (147 obtain the differential equation obeyed B . Comparison

at to Eq.(144) reveals that we should consid&ifermions gov-
erned by the Hamiltonian

HerecR' creates a Fermion at site of annihilates it. The

reasons for the superscript on the Fermion Hamiltonian an
on the creation and annihilation operators will become ap-
parent shortly.

The S matrix for this model obeys

4For the effect of boundary conditions on the supersymmetry Argy— At A * AT A
mapping for models such as the Chalker model of the quantum Hall HE() ; [MA(t)Cr1C My (D€ Cr . (159
transition see Ref$36] and[37] where the random hopping model

in one dimension is analyzed with periodic and ogecattering ~ G*(n,t;n’,t") is then given by the right hand side of Eq.
boundary conditions, respectively. (150 if we replaceR— A and Tr—STr.
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As might be expected the Hamiltonian for tAdermions 3. Supersymmetry

is related to that for th® fermions via a particle hole trans- We now develop an expression for the diffusion suitable
formation. This symmetry between thefermions and thé\ ¢, 5yeraging over disorder. In Appendix E it is shown that
holes leads to an §2) symmetry in the fermion sector of the

complete field theory formulation that we obtain belfig. ZE(T)ZS(T) =1. (158
(171)]. It is also at the root of the supersymmetry of the field
theory formulation. Thus we consider a model that includes batandR fermi-

In summary the Green'’s function with periodic boundary ons and bosons governed by the Hamiltonian
conditions may be generated from the second quantized

Hamiltonian,HR(t) [Egs. (153 and(146)] using the defini- Hsusy(t) =HE(t) +HE(H) +HE(t) + HE(t)

tion Eg. (150. The complex conjugate of the Green’s func-

tion may be obtained similarly using the Hamiltonigl(t) = > [My(H)A,+mE (DA, (159
n

[Eq. (154)]. Equation(150) and itsA fermion analogue pro-
vide exact formal expressions for the Green’s function for aHere
particular realization of the random tunneling,(t). These
expressions are not particularly convenient to average since A =cRIGR AT AL pRTpR AT pA 160
m,(t) appears in both numerator and denominator. n=Cn Cnr1~ Cns1CntPn By~ bniaby. (160
_ The correspondiné matrix obeys
2. Boson representation

Alternatively we could interpret Eq144) as a time de- 0 _
. . . . - —= =H 1
pendent Schidinger equation for bosonic particles on a one- | 5t SsusvD) =Hsusv() Ssusv(t) (161
dimensional lattice. The corresponding “time”-dependent

bosonic Hamiltonian in second quantized notation is subject toSgysy(t—0)=1. Aformal solution to Eq(161) is
given by
HE(D =2 [my(t)bR'BR, 1 +my 1 (HBR'BR 1. [
n Ssusy(t) - P exp dtl HSUSY(tl) . (162)
(155 0
Here bﬁ* creates arR boson at siten; bﬁ annihilates it. HereP is the chronological ordering operator.
The Green'’s function is now defined as Hence the diffusion is given by
G(n,t;n,t") =TI SRMbRODBR () VZRT) for t>t'  |G(n,tin’,t')[2= ST Ssysd TICh(t)ch(t)ch (1) ey (1)]
=TI S5(T)by (t")bR(1) I/ ZE(T) for t>t’
for t<t’, =STi[ SsusvT)Cy, () (1 )eR(tEA(t)]
ZH(T)=TrS§(T). (156) for t<t'. (163

Here S§ is the bosonicS matrix andZg(T) is the bosonic  The content of Eq(163) is that to calculate the diffusion we

analog of the partition function. must create or annihilate a pair RfandA fermions(depend-
For greater rigor we must regulate the traces to ensuring on the time order Then we must propagate this state in

convergence but for brevity we do not discuss this explicitlyaccordance witiHg,sy and perform arS matrix weighted

here. trace. The Hamiltoniai 5,5y is noninteracting but it is ran-
The complex conjugate of the Green’s function is generdom and time dependent.
ated similarly if instead of theR bosons we consideA Equation(163) is an exact formal expression for the dif-
bosons governed by fusion. Note the lack of a denominator, eliminated by virtue
of Eq. (158). This feature allows us to perform the average
Hg(t)= _ ; [mn(t)bﬁl 1bﬁ+ m* (t)b’n“bﬁJr . over disorder easily. For example,
(157 (Ssusv(t)) =exf — Hsuswt] (164

The main result of this subsection is E@56). It provides  with
a formal bosonic expression for the exact Green’s function 5
for a particular realization of random tunnelingy,(t). A _ + +
similar expression fo66* may be obtained by working with Hsusv=7 2 (AnAnt Ann). (169
the Hamiltonian Eq(157). Like their fermionic counterparts
these bosonic expressions are not particularly well suited foHere we have assumed that the tunnelingt) is a Gauss-
averaging over disorder. ian white noise process with zero mean and variance
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(MEOOME())=DS(t—t') Sy Sap. (166 K, =bRbAT=K,+iK,,
K_=b"bR=K,—iK,,
Herem(M(t)= real part ofm,(t); m®)(t)= imaginary part (169
of my(t). 1 RTWR_ pATHA
Recall that for a single Gaussian random variagléhe Ky=5 (07D +b™b%+1),

phase averag@")=e~ V"2, Equation(164) is analogous to

this result but with the added complications tl&at;sy is an 1

ordered exponential, not a simple exponential, and the aver- K= E(bRTbR_bATbA_ 1);

age is over a random process rather than a single random

variable. To derive Eq.165) it is simplest to expand the time and the mixed bilinears,

ordered exponentidEq. (162 ] and average term by term.
Proceeding in this manner we obtain an expression for the M.=bRTcR  M.=bATcA

average diffusion 1 : 2 :

L,=bATcRT  L,=bRTcAT, (170

(IG(n,t;n" t")|?)=STr{exd — Hsus( T—t+1t")]cRch

In Egs. (168), (169, and (170 the site indices have been

suppressed for brevity. In terms of these bilinears we may

write

X expl — Hsysv(t—t')chTcR™}

for t>t’. (167

Hsusy=—2D> (Jns1-IntIn+1dn=Jn)

A similar expression may be written for the caset’. The "
content of Eq(167) is that to calculate thaveragediffusion R .
we must creatéor for the other time order, annihilata pair +2D (Kppa- Kot Koy 1Kn+Kp)
of RandA fermions and propagate the resulting state accord- "
ing to the effective Hamiltoniafi{ssy. In contrast taH gysy
the effective Hamiltonian is not time dependent or random +D§n: MIMP+MEFIMP +H.c)
but it is interacting.

This completes our formulation of the continuum directed W (D). @ @)
wave model of Sec. VIA as a superspin field theory. The +D§n: (Lpfiln/+LifLy”+He). (171
main results are the superspin Hamilton[&y. (165)] and

Eq. (167 that ;hows how mtt_erestlng co_rrelatlon functions Here H.c. denotes Hermitian conjugate am@HKn
are calculated in the superspin formulation. The usefulness K2 KZ_KX. KX—KY. .KY
of this formulation depends on the extent to which the super- ""n+1%n  “n+1%n “n+1n- . .
spin model can be analyzed. It is instructive to study _the commutation 'relatlons
In the remainder of this section we discuss the form and‘c.)tr bI|I.nea|I’S at thet same t.sma (tp):t“e?tears at tdlffergnt
symmetry of the superspin Hamiltoni§&q. (165)]. To this SItes Simply commute or anticomm is easy to verify
that J,, J_, and J, satisfy angular momentum or @)

end it is helpful to introduce special notation for the boson : ) )
and fermion bilinears of whichts,sy is composed. We de- commutation relations andicommutes with the other three.
note the fermion bilinears Similarly K, , K_, andK, satisfy the s(l,1) or hyperbolic
angular momentum algebra—essentially the angular momen-
tum algebra but with a sign change for tke ,K_ commu-
J,=cRTeAT=g + idy, tator[39]. K commutes with the other three. The anticommu-
tators ofL;, L], M;, andM/ are linear combinations of the
K’s andJ’s. The commutators of thé's or K’s with the L’s
Jo=cfcR=3,-13y, or M’s are linear combinations of the’'s and M’s. Hence
(168  these bilinears constitute a superalgebra. Tee@ndK'’s are
commuting elements of the superalgebra; e and M's,
anticommuting elements. The superalgebra is calldglu
2). It includes the Lie algebras &) and sul,1) as subalge-
bras.

Further insight into the superalgebra is obtained by con-
sidering the Hilbert space at a single site. This is a direct
product of the four-dimensional fermion space and the infi-
nite dimensional two-boson space. The fermion space may
be decomposed into irreducible representations of tli2) su

the boson bilinears, algebra. The fermion vacuum and the state with o#ndA

1
JZ=§(CRTCR+ cAfchA-1),

1
J= E(CRTCR— cATeA+1):
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fermions present constitute a doublet or spin one-half repretribution we posit that the variance will saturate at sufficient
sentation; the two states with one fermion present are sindepth. Both the saturation depth and the saturated variance
glets. The boson space similarly decomposes into an infinitare expected to diverge as the distribution approaches the
of infinite dimensional irreducible representations ofsingular distribution. We introducé, a measure of the dis-
thesu1,1) algebra® The single site Hilbert space thus decom-tance of a distributiorP(f) from the singular distribution,
poses rather simply into irreducible representations of thgng conjecture that the saturation deptl, will diverge as
direct sum of the s@) and sii1,1) algebra. These subspaces 1/s5¢: the saturated variance, ass4/ More specifically, we

do not constitute a representation of the whole superalgebraxpect that close to the critical point the variance will have a
The anticommuting elements mix different irreducible repre-scaling form, Eq(7). For the singular distribution we expect
sentations of s2) and sii1,1). In particular they mix repre- that the variance will grow indefinitely as a power of the
sentations with different spins—a celebrated feature of Sudepth. Close to the critical point and at depths shallow com-
persymmetry. It is not difficult to decompose the single sitepared to the saturation depth the variance should grow as it
Hilbert space into blocks irreducible under the superalgebrajould right at the critical point. From this and from EQ)
however this would carry us too far afield. More details onye deduce a relationship between the critical exponénts
the superalgebra are given in RdR6] and references ang , and the exponent that describes the growth of the

therein. ) variance right at the critical point; namely we expect that at
Finally we define the critical point the variance will grow a&&'¢. In Secs. 11 B
and Il C we derive an exact formula for the variance as a
Jo=> T 172 function of depth[Eq. (46)]_and study its scallng limit t(
n >1, 6—0 but with té¥ arbitrary. These calculations bear

out all the expectations enumerated above, provide the pre-
Here 7 denotes any element of the superalgebra such.as cise form of the scaling functiofEq. (50) and Fig. 4 and

K,, L, etc. After some algebra we find yield the exact exponenf&q. (49)].
In Sec. Il we characterize the critical point more fully by
[Hsusys Jiotl =0 (173 analyzing the evolution with depth of the entire distribution

of load right at the critical point in £1 dimensions. In the
revealing the supersymmetry of the field theory formulation.absence of injection the critical point is a simple model of
random walkers that coalesce upon contact; hence it is quite
VII. SUMMARY AND CONCLUSION straightforward to derive these results. We present them be-
cause they illuminate the results of the previous section. At
Much of this paper is concerned with the behavior of thejarge depth it is found that the distribution of load consists of
g model close to the critical point. To probe this behavior weg large spike at zero load together with a smooth [fags.
imagine that a uniform load is applied to the top layer. The(73) and (76)]. It is overwhelmingly probable that the load
assumption of uniform load is for convenience; in the scalingon a bead is zero; most of the weight of the distribution is in
limit the behavior of the load at sufficient depth is insenSitivethe Spike_ The smooth part follows the anticipated Sca“ng
to the initial distribution. As the load propagates downwardigrm [Eq. (53)]. Its width grows as the square root of the
fluctuations develop in the distribution of load. Coppersmithdepth, consistent with the exponent found in Sec. Il to de-
et al. [4] studied the entire distribution of load at very great scribe the growth of the variance of load at the critical point.
depth where it was presumed that a steady state had been|n Sec. |V the effect of injection is included. For simplic-
reached. In contrast we study only the variance of the distrii-[y we consider only 31 dimensions. We assume that the
bution of load but we analyze its evolution with depth. Ouryeights of the beads are independent and identically distrib-
purpose is to study this evolution for all distributions of the yted random variables. The behavior of the mean load is still
fractionsP(f) particularly those close to the singular distri- pot very interesting. It grows linearly with depf&q. (77)].
bution (the critical poin. Close to the critical point we conjecture that the variance
In Sec. Il we consider the model in 1+1 dimensions  wjll have the form Eq.(78). We are able to deduce all the
without injection (the weight of the beads is neglecteth  exponents in Eq(78) and to obtain some limiting behaviors
this case the average load does not vary with depth since thg the scaling function through simpl@onrigourous argu-
total load is the same in every layer; it is merely redistributedments. These conjectures are all verified by the exact calcu-
by theg-model dynamics. For the growth of the variance, by|ation of Secs. IV A and IV B that provides the precise form
analogy to critical phenomena, we make the following hy-of the scaling functionEgs. (99), (102, and (103] and
potheses: For all distribution8(f) except the singular dis- yields all the exponenttEgs. (80), (81), and(84)]. We find
that beyond a crossover depth the variafmermalized by
the squared mearsaturates. The saturation value and the

SLet [n+m,n) denote a state withn+m) R bosons anch A crossover depth both diverge as the critical point is ap-
bosons on the site. The infinite dimensional subspacemwitiixed ~ Proached. At depths less than the crossover depth the vari-

integer andn=0,1,2 ..., for m=0, or n=—m,—m+1,=m  ance grows as it would right at the critical po[fiq. (106)].

+2, ..., form<O0, is invariant under the fou operators. These The behavior at the critical point has many crossovers if the

subspaces corresponding to different valuesnafonstitute the ir-  weight of the beads is small compared to the applied load. In

reducible representations of the(si1) algebra. this case at first the variance grows as the square root of the
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depth as it was found to do in Sec. Il in the absence ohere. Claudiret al. have also studied the horizontal steady
injection. At greater depths there are crossovers to growth astate correlations of thge model without injection away from
t andt®?, as first the effects of large rare fluctuations in thethe critical point[8]. They employ a continuum limit and
weight of a bead and then mean injection assert themselved(rive at conclusions similar to Eq19) in Sec. IIB. The
Ultimately at the critical point the variance grows with the main focus of their work however is to explore a tensor
5/2 exponent but the depth at which this behavior sets in cafodel of stress propagation in granular matter, intended to
be very great if the mean injection is small. This depth di-Supplant theg model. _
verges ag|)~*3 The crossover exponent 4/3, deduced by Interprgted in terms of river _networlgs_ our results §how
simple arguments and then via exact calculation in Sec. I\hat allowing a small amount of river splitting in a Scheideg-
agrees with the value previously obtained by a differentder network_irjtroduces a length scale in the vertical direc-
method by Majumdar and Sif&8]. In their work Majumdar  tion. On sufficiently long length scales such a network is not
and Sire only study the behavior right at the critical point.Scale invariant. This resembles the finding of Narayan and
However at this point they calculate the dynamics of theFisher[20]. In their model too there was a parameter that
entire distribution of load whereas we study only the vari-controlled river splitting. Their networks were not scale in-
ance. variant unless river splitting was tuned to zero. However
In Sec. V we turn to the-model inD + 1 dimensions. For their model appears to be in a different universality class as
simplicity we neglect injection in this section. We find that its vertical correlation exponent is different from the value
right at the critical point the variance grows as a power of¢ =2 We obtain here in Sec. Il. Presumably the difference is
depth in all dimensions except t}&q. (137)]. The power is because their rule _for stream splitting was nonlocal and de-
given by D/2 for D<2. For all dimensions above two the pendeql on the entire history of the network upstream from
growth is linear. This shows th@=2 is the upper critical the Split

dimension for this problem. Fob=2 we find a linear Taken together with the model of Narayan and Fisher it
growth of the variance tempered by a log factor as might béPpears that river splitting is a perturbation that spoils the
expected at the critical dimension. scale invariance of river networks. It is therefore interesting

An intriguing feature of the critical behavior we obtain is to ask whether such networks exist in Nature. River deltas

that it is exhibited at all. For ordinary continuous phase tran@ré one possibility. Traced backwards they may constitute
sitions the renormalization group provides a framework toh€tworks of merging streams that occasionally split. Even for
understand the critical behavior. We are not aware of anyVer basins it might be interesting to examine the extent to
such framework for the; model. which streams split. In this context it is yvorth noting that

Random critical points are notoriously difficult to analyze S0me of the data against which river scaling laws are tested
in general. The feature that allows us to analyzeqimeodel ~ @ré based not on actual maps of the river network but on
is that the two point load correlation functiddefined by —Networks that are indirectly inferred according to certain
Egs.(8) and(114)] evolves with depth according to a simple rules from digital eleva'gon data obtame_d from satellite im-
linear equation. In Sec. Il we analyze the evolution by ex-29es. The rules by which the network is inferred from the
panding in the eigenvectors of an appropriate linear operatoflévation maps exclude the possibility of splittif].
There are some subtleties posed by the non-Hermiticity of N Summary they model is rich in applications and behav-
the linear operator, making it necessary to prove that itd0" and yet analytically tractable by elementary means, a
eigenvectors are completéurther complicated by the infi- qomblnatlon of circumstances that mwtes_further explora-
nite dimensionality of the vector spacélonetheless we like tion. Among the many problems that remain open we con-
this approach because it parallels transfer matrix methodéude by mentioning two: For thg model beyond the satu-
used for equilibrium critical phenomena. We find that therano_n depth th_ere is no c_orrelatlon in the horizontal direction
large depth scaling behavior is controlled by the low energyPUt in the vertical direction there are very strong and long
long wavelength eigenfunctions of the non-Hermitian'@nged correlationf40]. We have not obtained the precise
“Hamiltonian.” Another virtue of this approach is that with form of these vertical correlations for temodel either in
about the same effort it yields both the variance and théteady state_or at the critical p_omt. It would be very interest-
correlation functions. However we have left analysis of thelnd (@nd straightforwargito obtain these forms and the cross-
correlation functions open for later work. Here we focus en-OVer between them. Second it would be interesting to obtain
tirely on the variance of the load. In Sec. V we analyze thghe dy_namlcs of the entire distribution oflload near_the criti-
variance using another technique based on transform met/§@! point. We have not attempted to do this except right at the
ods. critical point.

Our analysis, neglecting injection, confirms that the A natural s_call_ng hy_pothe_5|s is that the full distribution of
model has essentially no horizontal correlations in the steadi@d, neglecting injection, will be of the form
state for any distribution except the singular. This agrees
with experiments on bead packs. The bulk of our results I(w,t,8)=w~TI(ws",t5"). (174
however are concerned with tigemodel close to the critical
point. Bead pack experiments such as those of H&f.ap- The exponents in Eql74) are 7=2, vz=2, ando=1.
pear to be far from the critical point. We estimalte'0.5 for ~ Their values are fixed by our result for the variance away
this experiment. It is not obvious how to tune the parametefrom the critical point derived in Sec. Il and the result for the
for bead packs to access the critical behavior we analyzentire distribution at the critical poinf=0 derived in Sec.
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lll. We also know that forx—0 andy—0, the presently question raised above; afid) they emphasize the interesting
unknown functionQ has the asymptotic behavior structure of the horizontal correlation function, including in-
jection, at great depth.
Although the goals are a bit different, there are points of
X 2 intersection between the two papers with regard to technique.
AX,y)~ \/_— - (179  Rajesh and Majumdar too exploit the linearity of the relation
™y that describes the evolution of the correlations with depth
and solve it using the method of Sec. V. An overlapping

to be consistent with the critical point distributipBq. (73)] ~ "esult is a formula for the variance at the critical point in 1
derived in Sec. Il +1 dimensions including injection. At the large depths stud-

In the second part of this paper we turn to chiral wavel€d by Rajesh and Majumdar the last term in our Ed6)
models that are believed to describe the surface electronghould dominate. Rajesh and Majumdar obtain the same ex-
states of a quantum Hall multilayer. In Sec. VI A we discussPonent 5/2 and the same numerical prefactor 16 pro-
circumstances under which the quantum network model o¥iding a nice check on both calculations.

Saul, Kardar, and Reattescribed in the introductignis

equivalent to they model. In Sec. VIB we compare known ACKNOWLEDGMENTS

results about the behavior of tleemodel to a continuum

chiral wave model that cannot be mapped ontq model It is a pleasure to acknowledge stimulating discussions
under any circumstance. The two are found to behave iMith Sue Coppersmith and Onuttom Narayan. We thank
qualitatively similar ways. Onuttom Narayan in particular for patient explanation of

A circumstance under which the mapp|ng to mmode| Refs.[4,13,2q, for enCOUraging us to Study the critical pOint,
is not useful is when periodic boundary conditions must beand for explaining to us the significance of river splitting.
imposed in the chiral direction. Physically this is because offhis work was supported in part by NSF Grant No. DMR
the interference of electron paths that wind around the quar28-04983 and by the Alfred P. Sloan Foundation. H.M. ac-
tum Hall multilayer. Such long range interference cannot b&knowledges the hospitality of the Aspen Center for Physics
captured by the classicglmodel. In this phase-coherent or Where this work was completed.
mesoscopic regime, the chiral wave model has been studied
via a mapping to a supersymmetric spin mofz3,2¢. In APPENDIX A: PROOF OF COMPLETENESS
Sec. VIC we derive this mapping in a way that emphasizes
boundary conditions. Our derivation makes use of operator First let us recall the principles of biorthogonal expansion
methods and is hence more elementary than the derivation ¢$€€, for example, Ref27], p. 884. We discuss the simplest
Ref. [26] that makes use of mixed functional integrals overcase of a finiteNXN dimensional non-Hermitian matrix
Grassman and bosonic variables. We do not attempt furthdimn- Consider its eigenvectors
analysis of the superspin model here; the interested reader
should consult papers on multilayer transport, particularly S H S (A1)
Refs.[41] and[23] that provide a nice overview of the early = mn¥n A m:
work on this problem.

_Mappings to superspin models have been useful not only, ¢ontext of biorthogonal expansion these eigenvectors are
in the study of the quantum Hall multilayer but have alsoqieq the right eigenvectors. For simplicity we will assume
recently lead to new nonperturbative results and insights int@, 5+ the right eigenvalues are nondegenerate in this case. The
other important problems of electron localizatif36—37. bad news regarding the right eigenvectors(is:\ may be
Hence it is hoped that our derivation, with its emphasis Obomplex. (i) There is no guarantee that there &tesigen-

boundary conditions and use of elementary operator meﬂ\iectors(needed to span the vector spad#i) Eigenvectors

ods, will be of interest in this general context. corresponding to different eigenvalues are not necessarily or-
Note added While writing this paper we learned of an thogonal.

e-print by Rajesh and Majumdar on spatiotemporal correla- oy consider the left eigenvectors, defined as the eigen-
tions in the Takayasu model and themodel [42]. These o tors ofH ™. (i) If X is a right eigenvalue then* is a left

authors derive many interesting results complementary @5y aiue (Proof: The coefficients for the characteristic
ours. In this paper we concentrate on the behavior close 18y omials ofH and H are complex conjugates of one
the critical point. For theq model, Rajesh and Majumdar o,oey (i) There are as many left eigenvectors as right.

concentrate on Iength scales long compared to our vgruc% ii) Left eigenvectors are orthogonal to right eigenvectors.
correlation lengtit o the Crossovers and ?Ca‘_"f‘g fu_nctlons_ The last point merits elaboration. Le#t; denote the left
that we study are transients that are invisible in their igenvector with left eigenvalue* . Thus

asymptotic formulas. On the other hand they have derived
both vertical and horizontal load correlation functions; this
paper is limited(in practice but not in principleto the study E HTmn‘//)r;:)\* ,%_ (A2)
of the variance of load. Among their interesting findir@s n

they find power law correlations in the vertical direction both

at the critical point and away from it addressing in part aAccording to(iii) above
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Nk N
; (¢“)* $n = O - (A3) Pole Branch Point and cut
Equation (A3) is the biorthogonality relation. It may be K\ 7 K—é\
proved by noting q7 Y o
’ ’ C Cl C2
2, () Humm =12 (4)* ¢
’ ! FIG. 10. Cont fori ting thet fi .
N ; (P B, (Ad) ontours for inverting the transform
dz 1 (1—€)(z+1)? A8
whenceS (yh)* & =0 for A #\". 27 2 2(7-1)2— (1— €)%(z+1)% (A8)

In general there is no guarantee of completeness, but in
this case assume thiteigenvectors have been found. Then Evaluation via Cauchy’s theorem reveals that the integral

we can prove theompleteneseelation equals one as required for completeness.
The remaining eight cases also succumb to this method of
analysis.
2 ()* &n=Omn- (A5)

APPENDIX B: INVERSE z TRANSFORM
The proof follows from the observation that if there dde

eigenvectors, any vectar, may be expanded as Consider the serief(t), t=0,1,2 ... . Itsztransform is

defined as

_ A -
an—; avdh . (A6) f(z)=tzo f(t)Z'. (B1)

Completeness then follows from biorthogonality, E43).

The problem in Sec. Il B presents some complications no
present in the pedagogical discussion above. Among them
are degeneracy, an infinite dimensional vector space and a
continuous spectrum. Nonetheless the broad strategy is the
same. I.n Sec. i B we found _Ieft and right eigenvectors _anqn other cases the inverse transform can be found by per-
we conjectured biorthogonality and completeness relat'on%rming the complex integral
To justify the analysis of Sec. Il B we must prove the com-
pleteness relation. That is the purpose of this Appendix. Note

gomez transforms can be inverted by inspection. For ex-
mple the inverse transform of {laz) ~! is evidently

(1-az) t=f(t)=al. (B2)

that we cannot simply assume completeness is true—because f(t)= E f(_z) (B3)

the matrixH is non-Hermitian there are no theorems to guar- c2mi Z+1

antee it. Nor can we prove completeness by counting eigen-

vectors as in the finite dimensional discussion above. The contourC must enclose the origin but no singularities of
The proof of completeness is remarkably simple and dif(z).

rect. We substitute the exact expressionsyfgr’* and ¢! % For illustration let us analyze

that we have derived, Eq&8), (31), (33), and(34), on the

right hand side of Eq(36) and verify the completeness rela- f(2)=(1-2) YA1-az)™?* (B4)

tion by explicit evaluation of the integral. There are nine
cases to consider correspondingrte-0,n>0,n<0 andm  needed to go from Eq43) to Eq. (44) in Sec. || B. Herea

=0,m<0m>0. >1. f(z) has a pole at I and a branch cut &=1 (see Fig.
For illustration we analyze the case o=0m=0. We  10). We deform the contou€ that encloses the origin to
must evaluate contoursC, andC, that encircle the pole and pass above and
below the branch cut. Hence obtain

2 (m

_ *

WJ; dk A* (kK)A(k), (A7) . o ! dex 1) 2 1 . 1\ -1

(H= a—1%"am 1 ( xtt1 al

where A(k) and A(k) are as given in Eq930) and (35). (B5)

Since the integrand is symmetric knwe extend the range of
integration from— 7 to 7 and substitute— e’ to obtain a  The first term is the contribution of the pole; the second, of
contour integral about the unit circle the branch cut.
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APPENDIX C: ASYMPTOTICS OF @®,(u) T

4
2_ 5/2
4 u —15\/7TU

oo (C9)

T T 2
b, (u)=—— ul?+ —u— —Jmud?+
The asymptotics of the function®,(u) defined by Eq. (W 2 Va 2 3\/;
(103 are needed to obtain the asymptotic behavior of the
scaling functions in Secs. IIC and IV B.

The largeu behavior poses no difficulty. Evidently for smallu. Similarly

NEE

~ L T T 2 3 8

Pn(u)~ 2 Ju as u—e (CY) <D2(u)=z—zu+ 5\/;u3’2—§7ru2+ 1—5\/;u5’2+---
for all n. The smallu behavior is a bit more subtle. More- 37 37 4

over, it turns out that due to cancellations we will need as Dy(u)= 6~ 1_6u+ §u2_ 1—5\/;u5’2+--- )

many as five or six terms in the smallseries for®,, to
obtain the leading behavior of the scaling functions.
For definiteness consider the smalbehavior of

o U

(C10

APPENDIX D: LATTICE GREEN’S FUNCTION

(C2 1. Two dimensions

D, (u)= J ds >

0 (1+59 . , L . .

Consider the Green'’s function in two dimensions for the

The leading term is obtained by setting0, lattice Schrd|,nger equation dlscgs_seq in Sec. VA. The real
space Green’s function at the origin is given by

w -1
1(0)= 7. (€3 _Fﬁf”% 1

2 g(E)= Iy E 4(1+003|o)(1+cosk)
To obtain the next term it is tempting to expand the integrand (D1)

in powers ofu but this leads to divergent integrals. The di-

vergence signals that the asymptotic series is not a simpl&f- EGs.(121) and (128)]. We consider reaE>1. In this
power series ini. appendix we show that

It turns out the next term goes &si. To show this, and to

efficiently obtain many more terms in the series, consider G(E)= éK JLE : (D2)
. e7)(252
9(x)= J; ds(1+sz)' €4 hereK is a complete elliptic integral of the first kind. From

the well-documented properties of these integrals or by di-
We will show thatg(x) is regular abouk=0 and that its rect analysis of Eq(D8) below it follows that asE—1"
asymptotic behavior is a simple power series. To this end we

observe thag(x) obeys the first order differential equation _ i
Q(E)~7TInE_1. (D3)
d5-2 +\7=0 C5
&g Xg(x)+m=0. €9 In Sec. VC we are interested in the behaviorG(z), Eq.

(131, as the real variable—1~. Comparing Eqs(131) to
x=0 is a regular point for this equation; hence we attempt §p1) we see that

series solution

1 1
g(X)=bg+bx+bx2+--- . (Co) G(2)= Eg E— E)' (D4)
We findb;=— d the simpl lati

e find b, Jm and the simple recurrence relation Hence the singularity oB(2) asz_-1 is

2
b,==b, . (C7 1
nTpon2 G(2)=~—In(1-2). (D5)
Evidently bo=g(0)=w/2. Hence we obtain the asymptotic
series Equation(D5) is the main result of this section of the Ap-
pendix.
oo ™, 2 3, T, 4 5 To demonstrate EqD2) we regardp as a complex vari-
9x)=75- Jmx+ 2% §\/;X T 1_5\/;X e able p—x+iy. The integral ovep in Eq. (D1) may be re-

(C8) garded as an integral around the contour sketched in Fig. 11
since the two vertical segments cancel by the periodicity of
Substitutingx— \/u we conclude the integrand and the horizontal segment at infinity makes no
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dp Qp fw
——— dpp° %, D11
2mP (27)PJo PP (b1

since the integrand in EqD10) is isotropic inp. Here Qp
=27PIT'(D/2) is the total solid angle irD dimensions
(some familiar special case$);=2,0,=27,03=4m,0Q,

-7 i =22 The result is
1 1
complex p plane r(1-D/2) o
. . . , G(z)=————(1-2) (D12
FIG. 11. Contour for evaluation of two-dimensional Green’s \/;D

function.

for D<2.
contribution because the integrand vanishes along it. The in- This analysis breaks down in two dimensions and higher
in Eq.(D1) h impl I =i h . . ~ . ;
tegrand in Eq.(D1) has a simple pole gp=iy, wherey because the integrand divergespms . The divergence is

satisties an artifact of the quadratic approximation in Ej33) and of
y JE extending the integral outside the Brillouin zone. The spuri-
cos?‘(§> = cogki2)’ (D6) ous divergence is revealed in E@P12) as a pole in the
Gamma function factor aB—2.
with residue

APPENDIX E: ANALYSIS OF PARTITION FUNCTION

[ 1 k!
(iE 1- Ecos’- 5) . (D7) The purpose of this Appendix is to show that the partition

functions for bosons and fermions cancel. Thus

Hence by Cauchy’s theorem R R
T SE(M) T Se(T)]=1. (ED)

1 (= dk 1 k|72
G(E)= EJ_ ﬂﬂ( 1- Eco§§) : (D8) A similar relation holds for the advanced bosons and fermi-
ons. We discuss the retarded case explicitly. For brevity the

Comparing to the definition of the elliptic integral of the first superscripR will be omitted.

kind We write the fermionS matrix as
/2 Tt
K(k)= f do(1—k?sir? 6) 12 (D9) Se(t)=exp i T > chn>SF(t). (E2
0 n
we obtain Eq(D2). Sr(t) is then governed by the Hamiltonian E446) without
the extra term included in Eq153).
2. Below two dimensions To make further progress we introdueit), the solution

In this section we analyze the singular behaviozasl  t0 the Schrdinger Eq.(144)

of G(2) in less than two dimensions. The approximate long P

wavelength expression fdB, Eq. (133), provides a useful % — n * n
To analyze the divergence =1 we would note that the

integrand in Eq(133) is a sharply peaked Lorentzian. This subject toe]'(t—0)= &y, .

justifies working to quadratic order i8(p) and extending The scattering formula
the range of integratioristrictly confined to the Brillouin
—m<p<mi i i +oo, :
z:o(nleLZ)azllzp 7 in one dimensionto *=o. Result:G(z) CnSF(t)=§|: e'n(t)SF(t)q (E4)

To continue this result to nonintegrBl we use 't Hooft
and Veltman's dimensional regularization trigld3]. We  will prove very useful. To derive it, rewrite EGE4) as
write

Se( " TenSe(D) =2 et (E5)

_([Fs[ P .
G(z)~f0 dsf (ZW)Dexp—s[(l z)+p°]; (D10

and regard it as an ansatz with the functi@h(st) unspeci-
extend the range of integration, outside the Brillouin zonejig(. Making use of Eqs(147), (148), and (151), thet de-
and over allp-space; and replace rivative of the left hand side is
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SF(t)_l{mn(t)Cn+l+ m:— 1(t)cn—l}SF(t)

=E| c{m(t)el, () +mF  (Hel (D). (E6)

To obtain the second line we have made use of the ansatz 1

(E5). Comparing Eq(E®) to thet derivative of the right hand
side of Eq.(E5) we conclude thae'n(t) does obey the Schio
dinger Eq.(E3). This completes the proof of the scattering
formula (E4).

Another relation that will prove useful is

Sr()[0)=0). (E7)
This follows because the Hamiltoni@BEqg. (146)] annihilates
the vacuum;Sg is the (chronologically orderedexponential

of the Hamiltonian.

PHYSICAL REVIEW E 64 026107

(2)

"

n

denotes ei‘ (T

1

O O

(®

2

(c)
w0+ O ()

FIG. 12. Feynman diagrams for the partition functi¢a. Dia-
gram representation of the propaga#d¢T). (b) Second-order dia-

Equipped with these results we write the fermion partitiongrams for the partition function(c) Lowest-order diagrams in the

function as

Z:(T) =Tr{ ex;{ i7> clc,

SF(T)]
=(0ISe(T|0) =2, (OlenSr(T)es|0)

an (Olcn,Cn,Se(T)Ch ch |0)
1N

1

30,

>

,Np N3

(0lCn,Cn,Cn,Se(T)CA € Cn, [0) + -

(E8)

The trace is taken over the entire Fock space including states

with different total numbers of fermions. The alternating
signs are due to the factor e{j('pzncﬁcn] in the trace. The
factorials are because the sums over the site indicese

unrestricted; hence each state gets counted a multiple num-

ber of times.
We now shift theS matrix to the left using the scattering
formula (E4), make use of the adjoint of E¢E7) and calcu-

late the vacuum expectations of the fermion operatorsT

(Wick’s theorem. The result for the second-order term is

Ze(T) e2(T)ep(T)+ (others.

(E9

2

1[2 nm}

2n1 n2

Figure 12b) shows a diagrammatic representation of this

term Note that the diagram series for the partition functio

familiar argument$38] we can write

Ze(T)=exd —Q(T)], (E10
where the “free energy’()(T) has the linked diagram ex-

pansion shown in Fig. 12).

'z

Z((T) contains both connected and unconnected graphs. By

infinite series for the free energy.

We turn now to the boson partition function.
The boson scattering formula

b, Se(t)= E en(t)Ss(t)b, (E11)

can be proved in the same way as Hg4). Equation(E7)
remains true when we replacg —Sg.
The boson partition function is therefore given by

Zg(T)=Tr{Sg(T)}

=(01S5(T)[0)+ 2, (0]bySe(T)by|0)

1
+ 57 n§12 (0lby by, Se(T)by b} [0) -+
(E12

his equation resembles E@E8) but there is an extra
subtlety in the combinatoric factors. In the two-boson case,
for example, for the off-diagonal term#&i{#n,) the factor
(1/2!) is to offset double counting as in the fermion case. For
the diagonal terms, that vanish in the fermion case, there is
no double counting but the factor (1/2!) is needed for nor-
malization.

By shifting Sg(T) to the left by use of the scattering for-
mula we see that the series f@g(T) is the same as for
£(T) except for the minus signs. Hence

Zg(T)y=exd +Q(T)], (E13
whereQ(T) is defined by the diagram series in Fig.(@2

Equations(E10 and(E13) together lead to EqEL), the
result we sought to prove here.
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