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Ordering dynamics of the driven lattice-gas model
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The evolution of a two-dimensional driven lattice-gas model is studied dn,ari, lattice. Scaling argu-
ments and extensive numerical simulations are used to show that starting from random initial configuration the
model evolves via two stage&a) an early stage in which alternating stripes of particles and vacancies are
formed along the direction of the driving field, andb) a stripe coarsening stage, in which the number of
stripes is reduced and their average width increases. The number of stripes formed at the end of the first stage
is shown to be a function dIX/L;”, with ¢=0.2. Thus, depending on this parameter, the resulting state could
be either single or multistriped. In the second, stripe coarsening stage, the coarsening time is found to be
proportional toL,, becoming infinitely long in the thermodynamic limit. This implies that the multistriped
state is thermodynamicallstable The results put previous studies of the model in a more general framework.
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I. INTRODUCTION ergy difference between the two configurations after and be-
fore the particle exchange is denoted b¥1.

Driven diffusive systems have been extensively studied in The model has been studied extensively for nearly two
recent years. They serve as a fruitful framework for studyingdecade$4]. Monte Carlo simulations suggest that tie )
the statistical mechanics of systems far from thermal equilibphase diagram of the model is composed of two phases: A
rium. Driven by an external field these systems reach #jgh temperature disordered phase in which the particle den-
steady state with a non-vanishing current and as such do ngfty is homogeneous, and a low temperature phase in which
satisfy detailed balance. Studies of these models have rgpe system orders and phase separates into high density and
vealed many differences between such systems and systefggy gensity regimes. It was found that in this phase the par-
in thermal = equilibrium. For example, several Oneé-yjaq eyolve towards a striped structure parallel to the direc-
dimensional driven diffusive systems with local OIynamICStion of the driving field. Numerical studies indicate that a

exhibit long range order and spontaneous symmetry brea Slow coarsening takes place in this stéie-8). As the mag-

ng. Such.phenor.nena cannot occur in thermal eqUIIIbrIumnitude of the driving field is increased, the transition tem-
when the interactions are short randéq?].

Many studies of driven diffusive systems have focused orperature between the two.phases increases and saturates at
a driven lattice-gaglsing) model. The model was introduced about 1'_41—0 [9], whereT,, is the Onsager temperature cor-
by Katz, Lebowitz, and Spohi8] and is often referred to as "esponding t&E=0. _ _ _
the “standard model.” Ind=2 dimensions the model is de- Recent Monte Carlo simulations of this model suggest
fined on anL, X L, lattice. Each of the lattice sitésis either that the evolution of the gtriped phase is rather complex_. For
occupied by a particle or is vacant. A macroscopic configu@ square system the stripes are found not to coarsen in the
ration is characterized by a set of Occupation num@erﬁ thermOdynamiC ||m|t, yleldlng a mUltiStriped ordered state.
wheren;=0,1 represents a vacant or an occupied site, reThis phase was termed extraordinary or “stringyt0]. On
spectively. Usually the model is studied with an equal numthe other hand systems with large aspect ratje; L, , were
ber of occupied and vacant sites. An enefgy —>;;,nin;  found to evolve toward a single stripe phase.
is associated with each configuration. Here the sum is over In order to get a better understanding of the nature of the
(ij ) nearest neighbor sites. The energy represents an attragrdered phase of the driven lattice gas model we carry out in
tive interaction between the particles. Periodic boundaryhis paper a finite size scaling analysis of the evolution pro-
conditions are imposed in both directions. An external drivecess starting from a fully disordered state. We find that the
is introduced through a fielt that biases the motion of the model evolves via two stages:
particles in the—y direction. The periodic boundary condi-  (a) an earlystripe formationstage in which stripes are
tions in this direction results in a current of particles throughformed from the initially disordered state; and
the system along the field direction. Specifically the dynam- (b) astripe coarseningtage in which the multistripe con-
ics of the model is defined through the exchange of nearegiguration formed in the early stage coarsen by reducing the
neighbor particles with a rate number of stripes and increasing their average width. A typi-
cal evolution of such a system is shown in Fig. 1.

Our studies yield two main results:

(1) The number of stripes that are formed at the end of the
initial stripe formation stage strongly depends on the aspect
Here 8 is an inverse temperaturelike parameter, anl ratio of the system. In particular we find that the number of
=(-1,0,1) for a particle attempting to hop along, orthogo-stripesm scales asm~LX/L§f’, with ¢=0.2. This implies
nal to, or against the direction of the driving field. The en-that for narrow systemsLQ/L;f’s 1) a single stripe is formed

W=min{1l,exg — BAH—EAy)}. (1)
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FIG. 1. A typical evolution of a system of size,=L,=100 e
from a random initial condition. Configurations from times 50,
(b) 2000, and(c) 500 000 Monte Carlo sweeps are shown. Hére o+2 : : ‘
=2 andE==. One can clearly observe the two steps of the coars- 0 250 500 750
ening process described in the text. L

at the end of the first stage, while for wide L~:yster‘n§/(_§j5 40

>1) the resulting structure is multistriped. (b) o
(2) Simple arguments are presented to show that during 20 °

the stripe coarsening stage the average width of the stripes .

grows with time as t(L,)® This behavior is verified by m 1o, .

extensive numerical simulations. Therefore, the coarsening 6

of the stripes becomes slower as the system size in the di- .

rection of the drive is increased. This implies that in the

thermodynamic limit a multiple striped configuration is in 50 100 250 500

fact stable. We note that similar phenomena of arrested L

striped configurations have been observed in previous studies g5 o (a) The stripe formation time, (in Monte Carlo sweeps

of coarsening of other models with striped structures perperjotted against., , for systems witi_,=100. The behavior is con-

dicular to the direction of the drivgl1]. sistent withg;=1. (b) The number of stripes formed at the end of
The paper is organized as follows: In Sec. Il the stripehe first stage in square systems of various sized =L, , plot-

formation stage is discussed. Section Il considers the stripgd on a log-log scale. The straight line correspondsntel %82

coarsening stage. We end with a summary and discussion efere the error estimate for each measurement is of order 1.

the implications of our results to other related works in Sec.

V.

L L
A (3)
/s Le

where¢=¢, /¢ . Using the estimates for the exponents

The evolution of the driven lattice gas model in the earlyand @| one hasp=0.2.
stripe formation stage has received some attenf®n8]. Specifically, for a square system, wherg=L,=L, Eq. 3
Numerical simulations indicate that the domain growth pro-implies m~LY~¢. Since ¢<1 we find that the number of
cess that takes place in this stage is highly anisotropic. Thetripes grows as the system size is increased, and one always
typical domain size in the direction of the drive and thereaches a multistriped state. The stripe densitl,,, van-
direction perpendicular to it grow differently. In particular it jshes in the thermodynamic limit.
has been observe@,7] that the typical domain size parallel  To verify these results Monte Carlo simulations are per-
to the drive grows roughly ag,~t#l with ¢ =1, while the  formed for various system sizes, starting from a random ini-
typical domain size perpendicular to the drive grows roughlytial condition. The Monte Carlo procedure we use is stan-
as /~1%, ¢, =0.2. This behavior is very different from dard. At each time step a pair of neighboring sites is chosen
that of a nondriven system evolving towards equilibrium. Itrandomly and updated according to the rdiegiven in Eq.
is well known that in such a system, when the dynamics ig1). Throughout the paper we uge=~ andg8=2, for which
conserving, as is the case here, the average linear domaile system is ordered. We have checked that the main fea-
size¢ grows ag'*[12]. The difference in behavior is due to tures of this study are unchanged for other values of the
the inherent anisotropy induced by the drive. parameters as long as the system is in the ordered phase. We

The number of stripes formed in the system at the end ofirst verify the growth law ot with L . In order to evaluate
the stripe formation stage can be estimated using the resultg, the equal-time correlation of two sites at a distahge2
described above. For a stripe to form in the system the sizg the drive direction is measured and averaged over the
of a domain along the direction of the drivg(t) must be of sample. The timé, is estimated by the time at which the
the order of the system sidg,. Since/(t)~t¥l the time  average measured correlation reaches the value of 0.4. The

mr\_/
Il. THE STRIPE FORMATION STAGE

for this to occur,tg scales, ag ~ Li/“’”. At this time the results, averaged over about 100 samples for each system
typical domain size perpendicular to the drive is size, are shown in Fig.(d). One can see that the behavior of
ts with L is consistent withp=1.
/‘X(ts)~t;”i~L$i/"°”. 2 The number of stripes initially formed in the system is
estimated by performing a Fourier transform of the density in
Thus, the number of stripes formed, scales as the x direction and locating its first peak at a nonzero wave-
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length. This procedure is repeated 40 times for each systewther are balanced on average. Therefore a net transfer of
size. For simplicity we consider only square systems. In Figparticles from one stripe to another is only due to fluctua-
2(b) we plot the location of the peak for square systems as #&ons in the lateral current. The net excess in the number of
function of L. The fitted exponent for slightly over a decade particles transferred at a time intervails then proportional
of system sizes give$~0.18+0.05 that fits rather well with  to L p(/)t. For one stripe to shrink and disappeék,
the values predicted by the argumeft=0.2. The linear de- particles must be transferred so that
pendence ofn on L, for nonsquare systems is also verified
through simulations that are not shown in this paper. VLyp(Nt~7L, . 4

In general, the number of stripes also depends on the
magnitude of the driving field and the temperature. One ca¢ombining this result withp(/)~1// one finds that the
write, based on Eq. 3n=AL,/L{, where the amplitude average stripe width in the system grows as
A(E,B) is introduced. We find that the amplitude is an in- 13
creasing function of both the magnitude of the driving fiéld /(t)w( t ) _ (5)
and the inverse temperatur@. We note that Wheri_f
=AL,, the number of stripes already at the end of the firs

stage is expected to be one. LI'his suggests that the coarsening time scales jthyield-

ing a stable striped structure in the thermodynamic limit.
The scaling form(5) may be verified numerically by
Iil. THE STRIPE COARSENING STAGE studying the two point particle-particle correlation function.

We now turn to the second stage of the ordering processTQ carry out_this analysis we note that in an isotropic system
namely, the coarsening of the stripes formed in the ea”ywthout a d.rlvmg field, the coarsening process is ch_aracter-
stage. We present a simple argument suggesting that the tined by a single length scalt), which could be the linear
tin which stripes coarsen scales linearly with the system siz&1Z€ Of the growing domains. In this case the two-point
parallel to the drivel.,. Moreover, we show that the average particle-particle correlation function obeys a scaling form
stripe width/'(t) scales with time ast(L,)* The fact that
the characteristic time associated with the coarsening process
scales linearly withL, implies that in the thermodynamic C(r,t)=g L)
limit, where L,—~, the coarsening time becomes infinite &(t)
and thus the multistripe structure exists as a thermodynami- . . . .
cally stable state. Our argument relies on two main feature@’herer is the distance betwgen tWC.) points. Dnveni systems,
of the driven system(i) the fact that the ordered domains, on the_: other hand, are non—lsc_Jtroplc, anq correlations alo_ng
namely the stripes, are of the size of the system, aidtige the drive and perpendicular to it behave differently. The typi-

smoothness of the domain walls bounding the stripes. Thi al length scale perpendicular o the d_rlve_ IS given .by EQ.
last feature has been shown to be a result of the dfige- 5). Thus we expect the correlation function in thdirection
16]. In contrast to the nondriven two-dimensional Ising ©© P& ©f the form
model, where the domain walls may be rough, here the driv-
ing field makes the domain walls smooth. C.(xt)=g X @)

We proceed by considering a striped state composed of o - (t/Ly)1’3 '
alternating stripes of particles and vacancies with average
width /. Neighboring stripes of particles interact with each The asymptotic behavior af, (z) for z—0 is expected to
other by an exchange of particles. Since the boundaries afbey Porod’s law, which states thgt (z) =1/2— 5z with
the stripes are smooth, the lateral distance that particles haseme constany. For z—o one should haveg, (z) — 1/4.
to travel in order to move from one stripe to the other is of We now turn to describe numerical studies that support
the order of/. To estimate the coarsening time we assumeour results. Note that the scaling variable in EQ.involves
that within a stripe of vacancies the density of particles isthree parameters. All three parameters are varied in our nu-
low enough so that the particles may be considered as nomaerical studies. This is a demanding computational task, and
interacting. This assumption is qualitatively supported by thea good collapse of the data is a strong conformation of the
configurations observed in simulatiorfsee, e.g, Fig. )1  scaling analysis. In these studies an initial striped configura-
When a particle reaches the boundary it is absorbed in th#on along the drive directioy is considered, and its evolu-
neighboring particle stripe. Thus the lateral motion of thetion is simulated. The two point correlation functién (x,t)
particles within a stripe of vacancies can be considered as ia then calculated, and is shown to obey the scaling fam
one-dimensional random walk in thedirection with two  The widths of the stripes in the initial configuration are ran-
absorbing walls located at=0 andx=/". This problem is domly chosen from a Poisson distribution with a mean width
known as the gambler’s ruin problef7]. The probability /5. The simulations are performed for lattices of three dif-
of such a particle to move from 0 tg is given by p(¢) ferent sizes: 9688, 800x16, and 96& 32. We consider
~1l7. several values of , to demonstrate that this parameter does

For the width of a stripe to decrease by one lattice spacnot play an important role in the process. The mean width of
ing, it has to losé., particles. Due to the right-left symmetry the stripes in the initial configurations is taken tog=4.
of the problem, the particle currents from one stripe to theThe two-point particle-particle correlation functi@, (x,t)

(6
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shown, using simple scaling arguments and extensive nu-

0.5r @ merical simulations, that the evolution proceeds via two
0.45 stages: an early, stripe formation stage in which stripes of the
Q size of the system are formed, followed by a second stage in
04 o which the stripes coarsen. While the first stage lasts
Xb ~L,, the system evolves towards a single stripe configura-
c %% tion in the second stage at a time of ordet 3L, . This is a
0.3 % result of the fact that the typical width of stripes in the coars-
% ening stage scales with time agt)~(t/L,)* This result
0.25} * QQ@W‘@%QQQQW@% indicates that the coarsening time of multistriped configura-
K oF tions scales with the system lendth, suggesting that these
021 Poutd” configurations exist as stable states in the thermodynamic
0 10 20 .30 40 50 fimit Ly—ee. - . _
x(ty) ' Thus, starting from a random initial configuration, the

system evolves to one of two types of states, depending on

FIG. 3. The two-point particle-particle correlation functiGn its aspect ratio. Fdl:x/L;fS$l (#=0.2) the stripe formation
is plotted as a function of the scaling variatigt/L,)"?, for sys-  stage leads directly to a single stripe state, whilel_f;gA‘L;’S
tems of size 9688 (marked by x), 800x16 (O), 96032 =1 multistriped states are reached. The coarsening process
(). The times of measurement are chosen arbitraily 3,8 of these states proceeds with a time scale proportioria) to
X 10° Monte Carlo sweeps, respectivelyn the inset,C, as a These results put in a more general framework previous
function of x/t™*is shown for a system of size 98® and times  g,qjies of this model that considered either the early stages
t=0.2(x), 1(0), 2(+) x10° Monte Carlo sweeps. [6—8] of the evolution or the nature of the steady stdfe A
recent study of a square system has shp@j that a mul-
r1?i§triped statgtermed “stringy”) is reached from a random
initial condition. It was suggested that this state is stable. Our
studies indicate that this is indeed the case for an infinitely
large system. However we expect a finite system to coarsen
to a single striped state at a time of the orden_éf_y. The
fact that the steady state of a system with a small aspect
Satio, L/Ly, was found to be composed of a single stripe is

is measured and averaged over 110, 75, and 54 simulatio
for L,=8, 16, and 32, respectively.

The scaling form(7) suggests that data collapse should
take place with respect to the three variabtest, andL, .
This collapse is checked in two steps. First we conslder
=8 and show thaC, is a function ofx/t'® as expected.

obtained for the other system sizes as well. ' . . .
Next, we verify the full scaling fornt7). In Fig. 3 corre- consistent with our scaling picture.

lation functions for the three different system sizes are plot- Finally, note that the slow coarsening of the stripes is a
Y are Plotyirect consequence of stripes spanning the entire system.

o . Yhis is a result of the existence of the drive, and is expected
ated for arbitrarily chosehand the data is then plotted as a to be valid also in higher dimensions. It would be interesting

. . . 1/3 .
function of the scaling variable/(t/L,)™. Again, the qual- to study such processes in high-dimensional systems. We

ity of the.data_l collgpse supports our main result. AIthoughnote however, that already in two dimensions the computa-
computation time limits us to a relatively small systems, Wetiona{I effort wés considerable

believe the quality of the data backs our scaling argument.
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