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Multifractal random walk
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We introduce a class of multifractal processes, referred to as multifractal random (WHR&S). To our
knowledge, it is the first multifractal process with continuous dilation invariance properties and stationary
increments. MRWSs are very attractive alternative processes to classical cascadelike multifractal models since
they do not involve any particular scale ratio. The MRWSs are indexed by four parameters that are shown to
control in a very direct way the multifractal spectrum and the correlation structure of the increments. We briefly
explain how, in the same way, one can build stationary multifractal processes or positive random measures.
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Multifractal models have been used to account for scale SuX(t) =W, 8 X(t), (4)

invariance properties of various objects in very different do-

mains ranging from the energy dissipation or the velocity

field in turbulent flows[1] to financial datd2]. The scale \yhere InfV,) is a random variable which lag, depends

invariance properties of a deterministic fractal functidt) o1y on . Let us note that this latter equation can be seen as

are generally characterized by the exponghtswhich gov- 5 generalization of Eq3) with H being stochastic. Since Eq.

em the power-law scaling of the absolute moments of it§ )’ can pe jterated, it implicitly imposes the random variable

fluctuations, i.e., W, to have a log infinitely divisible lai8]. It is then easy to
m(qg,l)= Kq|§q, (1) show that the iterative rule satisfied by, implies that the

Fourier transform of5, can be written a&, (k) = G (K). It

where, for instance, one can choosq,|)=2f(t+])  follows that theg-order absolute moments at scalscale
—f(t)|9. When the exponentg, are linear ing, a single |ike

scaling exponent is involved. One hag,=qH andf(t) is

said to bemonofractal If the function{ is no longer linear

in g, f(t) is said to bemultifractal. In the case of a stochastic R

processX(t) with stationary increments, these definitions are m(q,l)=Gy,.(—iq)m(q,L)= m(q,L)(
naturally extended using

|\ F(~ia)
) , (9

L

m(q,H=E(aX()[D=E(X(t+H=X®)[D), (2 .
whereF =In G refers to the cumulant generating function of
where E(-) stands for the expectation. Some very populannw, [7,10]. Thus, identifying this latter equation with Eq.
monofractal stochastic processes are the so-cadlelt (1) one finds¢(q)=F(—iq). In the case of self-similar pro-
similar prgcesseEB].They are defined as processés) that  gsses of exponertt, In(W,) is nonstochastic and has a
have stationary increments and that vefify law) Dirac function law G, (u)=&(u—H In(\)) leading to ¢,

3) =gH. The simplest nonlineali.e., multifracta) case is the
so-called log-normal model that corresponds to a normal

Widely used examples of such processes are fraction@hape forG, and thus to a parabolig, spectrum.

Brownian motions(fBm) and Levy walks. One reason for ~ However, the previous “top to bottom” cascade construc-
their success is that, as it is generally the case in experimefion is, to a large extent, only formal. To the best of our
tal time series, they do not involve any particular scale ratickknowledge, nobody has succeeded in building effectively
[i.e., there is no constraint dror A in Eq. (3)]. In the same such processes yet, mainly because of the strong constraints
spirit, one can try to build multifractal processes that do noin the time-scale half-plane. Indeed, the variab&x(t)
involve any particular scale ratio. A common approach origi-cannot be chosen freely because they must satigk(t)

nally proposed in the field of fully developed turbulence =5 X(t)+6,_,X(t+7y) for all y<\. Multiplicative cas-
[1,4-7] has been to describe such processes in terms of steading processg41-14 that consist in writing Eq(4) start-
chastic equations, in the scale domain, describing the cascaghy from some “coarse” scalé and then iterating it towards
ing process that determines how the fluctuations evolvginer scales have been constructed exclusively using an arbi-

when going from coarse to fine scales. One can state that ”iPary fixed scale ratide.g.,\=%). Such processes possess
fluctuations at scalesand\l (A<1) are relatedfor fixed  neither stationary increments nor continuous dilation invari-
t) through the cascading rule

SuX(t)=A"§X(t), VI,N>0.
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ance properties. Since they involve a particular arbitraryGaussian variables, one shows, using the Wick theorem, that
scale ratio, Eq.(1) holds only for the discrete scaldg the preceding expression reduces to
=\"L.
The goal of this paper is to build a multifractal process 2P (tsyts2)/At (ts2p—1y/\s2p)) /At
X(t), referred to as a multifractal random wdlMRW), with ﬁ s = T =
stationary increments such that E#) holds for alll<L. We P> 552 v P
first build a discretized versioK,;(t=kAt) of this process.
Let us note that the theoretical issue of whether the limit

processX(t) =limy;_oXai(t) is well defined will be ad- wherea/\b refers to the minimum o andb andS,,, to the
dressed in a forthcoming paper. In this paper, we explai P

how it is built and prove that different quantitieg-prder Set of the pe;r;)utitlc[)g]s oft. ... .}. O‘r&;[he other hand,

moments, increment correlation, étcconverge when We have E(e**=1afl)=1I;_;p[ki—k;]™* . Then, when

At—0. At—0, the general expression of the moments is
Writing Eq. (4) for a log-normal cascadd | at the small-

est scale suggests that a good candidate might be such that E(X(ty)- - - X(tzp))

OatXar(KAL) = €5 KIWa[ K], Wheree,, is a Gaussian vari- 2p oAt . At

able andw, [ k]=e“s!X is a log-normal variable, i.e., i f‘s(l) Py f Sepm1rrse) |

0

X E(e22=10a0K]1) AP,

- 2Pp! Se$, 0

t/At t/At

_ _ wAt[K

XaD)= 2 osXarD)= 2, exdKle™s™,  (§) <1 plui—u)™, 10

i<j
with X,;(0)=0 andt=KAt. Moreover, we will choose,; _ .
and w,, to be decorrelated ane,; to be a white noise of Wherep(t)=limy_opat/At]. In the special case, =t,
variancea2At. Obviously, we need to correlate tag [k]'s — " =t2p=!, @ simple scaling argument leads to the con-
otherwiseX y; would simply converge towards a Brownian tinuous dilation invariance property
motion. Since, in the case of cascadelike processes, it has

been showri14—1§ that the covariance of the logarithm of oo l)—K |\ P-2p(p- 10 Vi<l 11
the increments decreases logarithmically, it seems natural to m(2p,1)=Kzp L ' B 1D
choose
5 where we have denoted the prefactor
coM(wai K1, wal ko]) =N2In pal [k —kol], (7)
1 1
with sz:Lpa2p(2p—1)!!f dulmf du,[1 |ui—ui|—‘“2.
0 0 i<
- for |k|<L/At—1 i inuati i i
palKl= ([K[+1)At ®) By analytllcal continuation, we thus obtain the followigg
] spectrum:
1 otherwise,
{g=[9—a(q—2)r\?]/2. (12

i.e., thew,k]'s are correlated up to a distance lofand
their variance\? In(L/At) goes to+ when At goes to 0
[18]. For the variance oK,; to converge, a quick computa-
tion shows that we need to choose

We have illustrated this scaling behavior in Fig. 1. Thus,
the MRW X(t) is a multifractal process with stationary in-
crements and with continuous dilation invariance properties
up to the scald.. Let us note that above this scale>(L),
one gets from Eq(10) that {,=q/2, i.e., the process scales
like a simple Brownian motion, as if the, k]'s were not

E(wadk])=—r vanws[k])=—rA?In(L/At), (9)

with r=1 (this value will be changed latgrfor which we

find varX(t))=ot. correlated, though, of cours¥(t) is not Gaussian. Indeed,
Let us compute the moments of the increments of thd<zp IS merely the moment of orderp20f2the random vari-
MRW X(t) USing the definition O'D(At(t), one gets ableX(L) that is infinite forp>1+(1/2)\ ) Consequently,

the pdf of X(L) has fat tails. In Fig. 2, we illustrate that the

EXai(ty) - - - Xar(tm) cascade picture of Eq4) accounts very well for the evolu-

tion of the probability density function of the increments at

/At /At different scales. One shows that the smaller the sgatee
=k2=l = -kZ,l E(eadki] - - €adKm]) fatter the tails of the pdf 0B X(t).

! m Let us study the correlation structure of the increments of

X E(e@atlkal+ - +onlknly X(t). SinceZ,=1, one can prove that they are decorrelated

(though not independentLet
Sincee,; is a zero mean Gaussian process, this expression is
0 if mis odd. Letm=2p. Since thee,,[k]’s are 5-correlated Cap(l, 1) =(|8,X(1)|?| 5,X(0)]2P), (13
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MULTIFRACTAL RANDOM WALK

400

(a)

200

(=]

MRW sample
(=)

—500
—1000
0 2x10* ax1o* sxto?
time
of ' o
o O
(b) Dooooooﬂggogggg
o 000 ©o?® 00°% 50388
= 000000002020
o —10f g0°°° 00 ,0%0°
~— ° ooo ooooo
EN 000 o ° o °
of ° o ° o ©
Q 000 o ©
'—‘—20-0 o
Q
oO
° . |H=1/2

-5 0 5
d

FIG. 1. (@) Plot of two realizations of ¥ samples of two MRWs
with A?=0.03, L=2048, and where,, is (top plot a white noise
or (bottom plo} a fGn[Eq. (16)] with Hz%. (b) Log-log plots of
m(q,l) of the MRW plotted in(a) (top plo§ versusl| for g
=1,2,3,45(c) (O) [(+)]: g spectrum estimation of the MRW
plotted at the togbottom) in (a). These estimation®btained using

the WTMM method[17]) are in perfect agreement with the theo-

retical predictions{—) given by Eq.(12) [Eq. (17)].

with 7<<|. Using the same kind of arguments as above, one

can show that

Cop(l, 1) =[0?P(2p—1)!1 ]

|+7 I+7 T T
xfl du1~--fI dupfodup+1~-~fodu2p

(14

One shows that

(7/L)%¢2p

2,29

[(I—7)/L]P

,  (7/L)%en

— 5 <Cyy(l,7)<K3
2P0 (14 7) /L] 21,7 =Kz

and consequently for<| fixed, using analytical continua-
tion one expect&,(l,7) to scale like
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FIG. 2. (x) Standardized estimated pdf's of &X(t) for |
=4, 32, 256, 2048, and 4096om top to bottom. These estima-
tions have been made on 500 realizations Ufsamples each of a
MRW with \?=0.06 andL=2048. Plots have been arbitrarily
shifted for illustration purposes——) Theoretical prediction from
the estimated pdf at the largest scale-2048) using the cascade
equation(4).

r 2§q | 7}\2q2

This behavior is illustrated in Fig. 3.

From the behavior o€(l,7) wheng—0, we can obtain
using Eq.(15) that the covariance of the logarithm of the
increments at scale and lag| behaves(for 7<I) like
—N2In(l/L). Thus, this correlation reflects the correlation of
the w,; process and is the same as observed in Réefs-16
for the cascade models. This behavior is checked in Fig. 4.
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FIG. 3. (a) Log-log plots ofCy(l,7) versusl for q=1,2,3.(b)
Estimation ©) of the power-law exponenty(l,7)~I"a. It is in
perfect agreement with the theoretical predict@&g. (15)] vq=
—N%Q? (—).
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FIG. 4. Estimation Q) of the covariance&c"(l,7) of the loga-

rithm of the increments of an MRW. It is in perfect agreement with

the analytical expressios A2In(l/L) (—).

Finally, let us note that one can build MRWs with corre-

lated increments by just replacing the white noisg by a
fractional Gaussian noiséGn),

efPIK]=By[(k+1)At] - By(kAt), (16)
where B (t) is a fBm with the scaling exponemi and of
variances?t?", and choosing=1% in Eq.(9). Then, one can
show that the spectrum of the MRWM(t) is

{(M=qH-q(g—1r%2 (17)

({{Y=qH at scales>L), and consequently the MRW has
correlated increments. Such a construction is illustrated i
Fig. 1 with H=%. SinceH>3, it leads to a process that is

more regular than the one previously built.
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To summarize, we have built the MRWSs, a class of mul-
tifractal processes, with stationary increments and continu-
ous dilation invariance. Such processes have been shown to
satisfy, in a weak sense, the cascade equa@ionWe do
believe that they should be very helpful in all the fields
where multiscaling is observed. Their construction, using an
aggregation of random variables, makes them very interest-
ing for the modeling of such dynamical processes as turbu-
lence or financial time seri¢49]. From a theoretical point of
view, MRW can be seen as the simplest model that contains
the main ingredients for multifractality, i.e., the logarithms of
amplitude fluctuations are merely but & hoise. Moreover,
they involve four parameters, the correlation lengththe
intermittency parametex?, the variancer?, and the rough-
ness exponeril. They all can be easily estimated using the
{q spectrum and the increment correlations. The construction
of MRWSs can be used as a general framework in which one
can easily build other classes of processes in order to match
some specific experimental situations. For instance, a station-
ary MRW can be obtained by just adding a frictign>0,

e, Xy[kl=(1—7)Xslk—1]+es[k]e®sdd. One can
build a strictly increasing MRWand consequently a stochas-
tic positive multifractal measuyeby just settinge,;= At in

Eqg. (6) and use it as a multifractal time for subordinating a
monofractal processuch as an fBm One can also use laws
other than thélog-)normal fore and/orw. Another interest-

ing point concerns the problem of the existence of a limit
(At—0) stochastic process on the development of a new
stochastic calculus associated with this process. All these

I;i')rospects will be addressed in forthcoming studies.

We acknowledge Alain Arneodo for interesting discus-
sions.
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