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Multifractal random walk
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We introduce a class of multifractal processes, referred to as multifractal random walks~MRWs!. To our
knowledge, it is the first multifractal process with continuous dilation invariance properties and stationary
increments. MRWs are very attractive alternative processes to classical cascadelike multifractal models since
they do not involve any particular scale ratio. The MRWs are indexed by four parameters that are shown to
control in a very direct way the multifractal spectrum and the correlation structure of the increments. We briefly
explain how, in the same way, one can build stationary multifractal processes or positive random measures.
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Multifractal models have been used to account for sc
invariance properties of various objects in very different d
mains ranging from the energy dissipation or the veloc
field in turbulent flows@1# to financial data@2#. The scale
invariance properties of a deterministic fractal functionf (t)
are generally characterized by the exponentszq , which gov-
ern the power-law scaling of the absolute moments of
fluctuations, i.e.,

m~q,l !5Kql zq, ~1!

where, for instance, one can choosem(q,l )5( tu f (t1 l )
2 f (t)uq. When the exponentszq are linear inq, a single
scaling exponentH is involved. One haszq5qH and f (t) is
said to bemonofractal. If the functionzq is no longer linear
in q, f (t) is said to bemultifractal. In the case of a stochasti
processX(t) with stationary increments, these definitions a
naturally extended using

m~q,l !5E„ud lX~ t !uq
…5E„uX~ t1 l !2X~ t !uq

…, ~2!

where E~•! stands for the expectation. Some very popu
monofractal stochastic processes are the so-calledself-
similar processes@3#. They are defined as processesX(t) that
have stationary increments and that verify~in law!

dl lX~ t !5lHd lX~ t !, ; l ,l.0. ~3!

Widely used examples of such processes are fractio
Brownian motions~fBm! and Levy walks. One reason fo
their success is that, as it is generally the case in experim
tal time series, they do not involve any particular scale ra
@i.e., there is no constraint onl or l in Eq. ~3!#. In the same
spirit, one can try to build multifractal processes that do
involve any particular scale ratio. A common approach ori
nally proposed in the field of fully developed turbulen
@1,4–7# has been to describe such processes in terms of
chastic equations, in the scale domain, describing the cas
ing process that determines how the fluctuations evo
when going from coarse to fine scales. One can state tha
fluctuations at scalesl andl l (l,1) are related~for fixed
t) through the cascading rule
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dl lX~ t !5Wld lX~ t !, ~4!

where ln(Wl) is a random variable which lawGl depends
only onl. Let us note that this latter equation can be seen
a generalization of Eq.~3! with H being stochastic. Since Eq
~4! can be iterated, it implicitly imposes the random variab
Wl to have a log infinitely divisible law@8#. It is then easy to
show that the iterative rule satisfied byWl implies that the

Fourier transform ofGl can be written asĜl(k)5Ĝln l(k). It
follows that theq-order absolute moments at scalel scale
like

m~q,l !5Ĝl /L~2 iq !m~q,L !5m~q,L !S l

L D F(2 iq)

, ~5!

whereF5 ln Ĝ refers to the cumulant generating function
ln Wl @7,10#. Thus, identifying this latter equation with Eq
~1!, one findsz(q)5F(2 iq). In the case of self-similar pro
cesses of exponentH, ln(Wl) is nonstochastic and has
Dirac function law Gl(u)5d„u2H ln(l)… leading to zq

5qH. The simplest nonlinear~i.e., multifractal! case is the
so-called log-normal model that corresponds to a norm
shape forGl and thus to a paraboliczq spectrum.

However, the previous ‘‘top to bottom’’ cascade constru
tion is, to a large extent, only formal. To the best of o
knowledge, nobody has succeeded in building effectiv
such processes yet, mainly because of the strong constr
in the time-scale half-plane. Indeed, the variablesdlX(t)
cannot be chosen freely because they must satisfydlX(t)
5dgX(t)1dl2gX(t1g) for all g<l. Multiplicative cas-
cading processes@11–14# that consist in writing Eq.~4! start-
ing from some ‘‘coarse’’ scaleL and then iterating it towards
finer scales have been constructed exclusively using an a
trary fixed scale ratio~e.g., l5 1

2 ). Such processes posse
neither stationary increments nor continuous dilation inva
©2001 The American Physical Society03-1
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ance properties. Since they involve a particular arbitr
scale ratio, Eq.~1! holds only for the discrete scalesl n
5lnL.

The goal of this paper is to build a multifractal proce
X(t), referred to as a multifractal random walk~MRW!, with
stationary increments such that Eq.~1! holds for alll<L. We
first build a discretized versionXDt(t5kDt) of this process.
Let us note that the theoretical issue of whether the li
processX(t)5 limDt→0XDt(t) is well defined will be ad-
dressed in a forthcoming paper. In this paper, we exp
how it is built and prove that different quantities (q-order
moments, increment correlation, etc.! converge when
Dt→0.

Writing Eq. ~4! for a log-normal cascade@1# at the small-
est scale suggests that a good candidate might be such
dDtXDt(kDt)5eDt@k#WDt@k#, whereeDt is a Gaussian vari-
able andWDt@k#5evDt[k] is a log-normal variable, i.e.,

XDt~ t !5 (
k51

t/Dt

dDtXDt~ t !5 (
k51

t/Dt

eDt@k#evDt[k] , ~6!

with XDt(0)50 andt5KDt. Moreover, we will chooseeDt
and vDt to be decorrelated andeDt to be a white noise of
variances2Dt. Obviously, we need to correlate thevDt@k# ’s
otherwiseXDt would simply converge towards a Brownia
motion. Since, in the case of cascadelike processes, it
been shown@14–16# that the covariance of the logarithm o
the increments decreases logarithmically, it seems natur
choose

cov~vDt@k1#,vDt@k2# !5l2 ln rDt@ uk12k2u#, ~7!

with

rDt@k#5H L

~ uku11!Dt
for uku<L/Dt21

1 otherwise,

~8!

i.e., thevDt@k# ’s are correlated up to a distance ofL and
their variancel2 ln(L/Dt) goes to1` when Dt goes to 0
@18#. For the variance ofXDt to converge, a quick computa
tion shows that we need to choose

E~vDt@k# !52r var~vDt@k# !52rl2 ln~L/Dt !, ~9!

with r 51 ~this value will be changed later!, for which we
find var„X(t)…5s2t.

Let us compute the moments of the increments of
MRW X(t). Using the definition ofXDt(t), one gets

E„XDt~ t1!•••XDt~ tm!…

5 (
k151

t1 /Dt

••• (
km51

tm /Dt

E~eDt@k1#•••eDt@km# !

3E~evDt[k1] 1•••1vDt[km] !.

SinceeDt is a zero mean Gaussian process, this expressio
0 if m is odd. Letm52p. Since theeDt@k# ’s ared-correlated
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Gaussian variables, one shows, using the Wick theorem,
the preceding expression reduces to

s2p

2pp!
(SPS2p

(
k151

(tS(1)`tS(2))/Dt

••• (
kp51

(tS(2p21)`tS(2p))/Dt

3E~e2( j 51
p vDt[kj ] !Dtp,

wherea`b refers to the minimum ofa andb andS2p to the
set of the permutations on$1, . . . ,2p%. On the other hand

we have E(e2( j 51
p vDt[kj ] )5) i , jr@ki2kj #

4l2
. Then, when

Dt→0, the general expression of the moments is

E„X~ t1!•••X~ t2p!…

5
s2p

2pp!
(SPS2p

E
0

tS(1)`tS(2)
du1•••E

0

tS(2p21)`tS(2p)
dup

3)
i , j

r~ui2uj !
4l2

, ~10!

where r(t)5 limDt→0 rDt@ t/Dt#. In the special caset15t2
5•••5t2p5 l , a simple scaling argument leads to the co
tinuous dilation invariance property

m~2p,l !5K2pS l

L D p22p(p21)l2

, ; l<L, ~11!

where we have denoted the prefactor

K2p5Lps2p~2p21!!! E
0

1

du1•••E
0

1

dup)
i , j

uui2uj u24l2
.

By analytical continuation, we thus obtain the followingzq
spectrum:

zq5@q2q~q22!l2#/2. ~12!

We have illustrated this scaling behavior in Fig. 1. Thu
the MRW X(t) is a multifractal process with stationary in
crements and with continuous dilation invariance proper
up to the scaleL. Let us note that above this scale (l @L),
one gets from Eq.~10! that zq5q/2, i.e., the process scale
like a simple Brownian motion, as if thevDt@k# ’s were not
correlated, though, of course,X(t) is not Gaussian. Indeed
K2p is merely the moment of order 2p of the random vari-
ableX(L) that is infinite forp.11(1/2l2). Consequently,
the pdf ofX(L) has fat tails. In Fig. 2, we illustrate that th
cascade picture of Eq.~4! accounts very well for the evolu
tion of the probability density function of the increments
different scales. One shows that the smaller the scalel, the
fatter the tails of the pdf ofd lX(t).

Let us study the correlation structure of the increments
X(t). Sincez251, one can prove that they are decorrelat
~though not independent!. Let

C2p~ l ,t!5^udtX~ l !u2pudtX~0!u2p&, ~13!
3-2
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with t, l . Using the same kind of arguments as above,
can show that

C2p~ l ,t!5@s2p~2p21!!! #2

3E
l

l 1t

du1•••E
l

l 1t

dupE
0

t

dup11•••E
0

t

du2p

3 )
1< i , j <2p

r~ui2uj !
4l2

. ~14!

One shows that

K2p
2 ~t/L !2z2p

@~ l 1t!/L#4l2p2 <C2p~ l ,t!<K2p
2 ~t/L !2z2p

@~ l 2t!/L#4l2p2 ,

and consequently fort! l fixed, using analytical continua
tion one expectsCq( l ,t) to scale like

FIG. 1. ~a! Plot of two realizations of 217 samples of two MRWs
with l250.03, L52048, and whereeDt is ~top plot! a white noise
or ~bottom plot! a fGn @Eq. ~16!# with H5

2
3 . ~b! Log-log plots of

m(q,l ) of the MRW plotted in ~a! ~top plot! versus l for q
51,2,3,4,5.~c! (s) @(1)#: zq spectrum estimation of the MRW
plotted at the top~bottom! in ~a!. These estimations~obtained using
the WTMM method@17#! are in perfect agreement with the the
retical predictions ( ) given by Eq.~12! @Eq. ~17!#.
02610
e

Cq~ l ,t!;Kq
2S t

L D 2zqS l

L D 2l2q2

. ~15!

This behavior is illustrated in Fig. 3.
From the behavior ofCq( l ,t) whenq→0, we can obtain

using Eq.~15! that the covariance of the logarithm of th
increments at scalet and lag l behaves~for t! l ) like
2l2 ln(l/L). Thus, this correlation reflects the correlation
thevDt process and is the same as observed in Refs.@14–16#
for the cascade models. This behavior is checked in Fig.

FIG. 2. ~x! Standardized estimated pdf’s of lndlX(t) for l
54, 32, 256, 2048, and 4096~from top to bottom!. These estima-
tions have been made on 500 realizations of 217 samples each of a
MRW with l250.06 andL52048. Plots have been arbitraril
shifted for illustration purposes. ( ) Theoretical prediction from
the estimated pdf at the largest scale (l 52048) using the cascad
equation~4!.

FIG. 3. ~a! Log-log plots ofCq( l ,t) versusl for q51,2,3. ~b!
Estimation (s) of the power-law exponentCq( l ,t); l nq. It is in
perfect agreement with the theoretical prediction@Eq. ~15!# nq5
2l2q2 ( ).
3-3
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Finally, let us note that one can build MRWs with corr
lated increments by just replacing the white noiseeDt by a
fractional Gaussian noise~fGn!,

eDt
(H)@k#5BH@~k11!Dt#2BH~kDt !, ~16!

whereBH(t) is a fBm with the scaling exponentH and of
variances2t2H, and choosingr 5 1

2 in Eq. ~9!. Then, one can
show that the spectrum of the MRWX(H)(t) is

zq
(H)5qH2q~q21!l2/2 ~17!

(zq
(H)5qH at scales@L), and consequently the MRW ha

correlated increments. Such a construction is illustrated
Fig. 1 with H5 2

3 . SinceH. 1
2 , it leads to a process that i

more regular than the one previously built.

FIG. 4. Estimation (s) of the covarianceC(ln)(l,t) of the loga-
rithm of the increments of an MRW. It is in perfect agreement w
the analytical expression2l2ln(l/L) ( ).
-

-

-
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To summarize, we have built the MRWs, a class of m
tifractal processes, with stationary increments and conti
ous dilation invariance. Such processes have been show
satisfy, in a weak sense, the cascade equation~4!. We do
believe that they should be very helpful in all the fiel
where multiscaling is observed. Their construction, using
aggregation of random variables, makes them very inter
ing for the modeling of such dynamical processes as tur
lence or financial time series@19#. From a theoretical point of
view, MRW can be seen as the simplest model that conta
the main ingredients for multifractality, i.e., the logarithms
amplitude fluctuations are merely but a 1/f noise. Moreover,
they involve four parameters, the correlation lengthL, the
intermittency parameterl2, the variances2, and the rough-
ness exponentH. They all can be easily estimated using t
zq spectrum and the increment correlations. The construc
of MRWs can be used as a general framework in which o
can easily build other classes of processes in order to m
some specific experimental situations. For instance, a sta
ary MRW can be obtained by just adding a frictiong.0,
i.e., XD t

@k#5(12g)XDt@k21#1eDt@k#evDt[k] . One can
build a strictly increasing MRW~and consequently a stocha
tic positive multifractal measure! by just settingeDt5Dt in
Eq. ~6! and use it as a multifractal time for subordinating
monofractal process~such as an fBm!. One can also use law
other than the~log-!normal fore and/orv. Another interest-
ing point concerns the problem of the existence of a lim
(Dt→0) stochastic process on the development of a n
stochastic calculus associated with this process. All th
prospects will be addressed in forthcoming studies.

We acknowledge Alain Arneodo for interesting discu
sions.
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@5# Z.S. She and E. Le´vêque, Phys. Rev. Lett.72, 336 ~1994!.
@6# R. Friedrich and J. Peinke, Phys. Rev. Lett.78, 863 ~1997!.
@7# B. Castaing, Y. Gagne, and E. Hopfinger, Physica D46, 177

~1990!.
@8# Indeed, if one iterates Eq.~4!, ;n, one getsWl5) i 51

n Wl1/n
i

whereWi aren i.i.d. copies. ln(Wl) is thus infinitely divisible
~see@9#!.

@9# W. Feller,An Introduction to Probability Theory and Its Appli
cations~Wiley, New York, 1966!, Vol. 2.
@10# A. Arneodo, S. Roux, and J.F. Muzy, J. Phys. II7, 363~1997!.
@11# B.B. Mandelbrot, J. Fluid Mech.62, 331 ~1974!.
@12# J.P. Kahane and J. Peyrie`re, Adv. Math.22, 131 ~1976!.
@13# C. Meneveau and K.R. Sreenivasan, J. Fluid Mech.224, 429

~1991!.
@14# A. Arneodo, E. Bacry, and J.F. Muzy, J. Math. Phys.39, 4163

~1998!.
@15# A. Arneodo, J.F. Muzy, and D. Sornette, Eur. Phys. J. B2, 277

~1998!.
@16# A. Arneodo, E. Bacry, S. Manneville, and J.F. Muzy, Phy

Rev. Lett.80, 708 ~1998!.
@17# J.F. Muzy, E. Bacry, and A. Arneodo, Phys. Rev. Lett.67, 3515

~1991!.
@18# Note that a direct computation shows that the processv is

exactly a 1/f noise.
@19# J.F. Muzy, J. Delour, and E. Bacry, Eur. Eur. Phys. J. B17, 537

~2000!.
3-4


