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Long-time fluctuations in a dynamical model of stock market indices
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Financial time series typically exhibit strong fluctuations that cannot be described by a Gaussian distribution.
Recent empirical studies of stock market indices examined whether the distriR{tiprof returnsr (7) after
some timer can be described by(&uncated Lévy-stable distributior_ ,(r) with some index 8<a<2. While
the Levy distribution cannot be expressed in a closed form, one can identify its parameters by testing the
dependence of the central peak heightraas well as the power-law decay of the tails. In an earlier sf&dy
N. Mantegna and H. E. Stanley, Natuteondon 376, 46 (1995] it was found that the behavior of the central
peak ofP(r) for the Standard & Poor 500 index is consistent with theyLeistribution witha=1.4. In a more
recent study P. Gopikrishnaret al, Phys. Rev. B60, 5305(1999] it was found that the tails dP(r) exhibit
a power-law decay, with an exponemt=3, thus deviating from the vy distribution. In this paper we study
the distribution of returns in a generic model that describes the dynamics of stock market indices. For the
distributionsP(r) generated by this model, we observe that the scaling of the central peak is consistent with
a Levy distribution while the tails exhibit a power-law distribution with an exponent2, namely, beyond the
range of Ley-stable distributions. Our results are in agreement with both empirical studies and reconcile the
apparent disagreement between their results.
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[. INTRODUCTION when 0<a<2 (which clearly exhibits an infinite variange
This is unlike the case of a distribution with a finite variance,
Financial time series are generated by complex dynamicakhich leads to a Gaussian distribution of the sum, according
processes that exhibit strong correlations between many dés the central limit theorem. The kg distribution thus ex-
grees of freedom. The efforts to understand the dynamics dfibits an infinite variance. However, in practical applications
economic systems have involved empirical studies in whiclits tail is truncated due to an upper cutoff in the power-law
the temporal fluctuations of the prices of individual compa-distribution that generated [i.2]. Although the Ley distri-
nies as well as of stock market indices such as the Standatzlition cannot be expressed in a closed f¢ir8l, it has two
& Poor 500(S&P500 were examinedl1—8]. These fluctua- scaling properties that can be used in order to examine
tions can be characterized by the distribution of stock marketvhether a distributior(r) obtained from empirical data or
returns as well as the volatility, which quantifies the magni-numerical simulations is éruncated Levy distribution and
tude of the market fluctuations. to calculate its index & a<2. The first property involves
Consider a stock market inda/(t). Its value is propor- the dependence of the central peak height on the tinend
tional to the average of the market valuds, i=1,... N  takes the forni13]
(given by the stock price of each firm times the number of its _1/
outstanding sharg®f the N stocks that are included in this L (r=0)~71"" 2

index. The fluctuations iV can be expressed in terms of the

returns after a period of time (say, in minutes given by Thus, if the distribution of returnB(r) is a(truncated Levy

distribution, the value ofr can be obtained from the slope of
_ _ the graph ofP(r=0) vs 7 on a log-log scale. The second
r(r)=InW(t+7)—InW(t). (1) property involves the power-law decay of the tails of the
distribution which follows[13]
For any value ofr one can examine the distributid?(r) of
the returnsr(7). The number of independent data points Lo(r)~r—17a 3
available in the distribution is given by/r, whereT is the
time period covered in the available data set. It was observe@iherefore, if the distributiorP(r) is a (truncatedl Lévy dis-
long ago that such distributions exhibit slowly decaying tails,tribution, the value ofx can also be obtained from the slope
unlike the Gaussian or exponential distributions. Moreoverpf the tail of P(r) vsr on a log-log scale. Obviously, a i
the shape of the distribution was found to exhibit a self-distribution should satisfy the scaling relations for both the
similar form for different choices of. It was proposed by central peak and the tail, with the same exponent
Mandelbrof9] thatP(r) may be expressed by a\estable The distributionP(r) of the returng (7) for the S&P500
distributionL ,(r), where 0< <2 [10,11. Mathematically, stock market index was recently studied for a rangerof
the Levy distributionL ,(r) is the limit n—oe of the distri-  values, using the data for the six-year period of 198489
bution of the sum of independent stochastic variables takenThe scaling of the central peak height vsvas examined
from a power-law distribution of the fornp(r)~r~1"¢  within the range of &7<1000 min yielding a straight line
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in the log-log scale over three orders of magnitude, with aconsistent with a truncated g distribution with the same
slope that corresponds te=1.4. It was thus concluded that value of «. However, for larger values of the tail of P(r)

P(r) takes the form of a truncated \ distributionL ,(r)  exhibits a power-law decay consistent wiif>2, and thus
with the indexa=1.4. More recently the data set was ex- deviates from the hey distribution. These results are in
tended to cover a 13-year peri¢t984—96 and was exam- agreement with the empirical analysis of the central peak
ined using a scaling analysis of the tail of the distributionPresented in Ref1] as well as with the more recent analysis
P(r) of the returnsr(7) for 7 in the range between 1 min of the tails presented in Ref2]. They thus reconcile the
and 4 days[2]. It was found that the tail oP(r) vsr on a apparent dlsagreemen_t between these two empirical studies.
log-log scale exhibits a straight line domain, indicating a_ '€ Paper is organized as follows. In Sec. Il we present
power-law dependence given by E). However, the slope the model. Simulations gnd results are reported in Sec. lll,
was found to be consistent witk in the range 2.5« followed by a summary in Sec. V.

< 3.5, where the precise value depends on details such as the

value of 7 and the fitting procedure. Clearly, these values of Il. THE MODEL
« are well outside the Ley-stable range of & a<2. There- The model[14,15,17 describes the evolution in discrete
fore, not only is the distributiof(r) not a Levy distribution  time of N dynamic variablesw;(t), i=1,... N. At each

with a=1.4—it is not a Ley distribution at all. This result time stept, an integeri is chosen randomly in the range 1
appears to be in disagreement with the conclusions of Reki<N, which is the index of the dynamic variablg to be
[1]. We thus observe that while the central peak maintains itsipdated at that time step. A random multiplicative factor
Levy features the tails show a noniebehavior. In order to A (t) is then drawn from a given distributidi () ), which is
understand these puzzling results one needs to combine thie@dependent of andt and satisfied ,II(\)d\=1. This can
oretical studies, suitable models, and simulations of stocke, for example, a uniform distribution in the rangg,
market dynamics, complementary to the empirical analysis.<\<\,,x, Where\ ,;, and\ .« are predefined limits. The

In this paper we study the distribution of the retuf(g) system is then updated according to the following stochastic
in a dynamical model that describes the time evolution ofime evolution equation:
stock market indice$14—17. The model consists of dy-

namic variablesv;, i=1, ... N that represent the capitali- w;(t+1)=N(t)w;(t),
zation (total market valuesof N firms. The dynamics repre-
sents the increaséor decreaseby a random factom (t) wi(t+1)=w;(t), j=1,...N; j#i. (4)

[taken from a predefined distributidi(\)] of the valuew;
of the firmi between times andt+ 1. The dynamical rules This is an asynchronous update mechanism. The average
also enforce a lower bound on thg'’s, which is a certain  value of the system components at titnis given by
fraction O<c<1 of the momentary average of thg’s. This
lower bound may represent the minimal requirements for a _ 1 N
company stock to be publicly traded. It turns out that after W=y > wi(t). )
some equilibration time they;’s exhibit a power-law distri- =1
bution of the formp(w)~w~1~% [17]. For any given value
of N, the exponentr>0 is a monotonically increasing func-
tion of c. Sincer (7) can be considered as a sumrmafandom
variables taken from a power-law distributign(w), one
may expect it to converge to the e distribution L ,(r)
with the same exponeni. Since the power-law distribution
is truncated from above, the tail of the resultingvieistri-
bution is also expected to be truncafd@]. Clearly, the dy-
namics is much more complicated. One reason for this is that
the r random variables are not completely independent— ) ) L
they are taken from a finite set ®f values of thew,'s. where _O£c<1_ is a constant factor. 'I_'hls constraint is im-
Moreover, these values slowly change during the calculatioR©S€d immediately after steg) by setting
of r(7), because at each time step one ofuhs is updated. _

To analyze the distribution of retur(r) we first tune w;(t+1)—maxw;(t+1),cw(t)}, (7)
the parametec (for the given value ofN) to adjust the .
power-law distribution to the economically relevant case ofwherew(t), evaluated just before the application of E4),
a=1.4[1,18. We then examine the distribution of returns is used. This constraint describes the effect of autocatalysis
P(r) for a range of time intervals and test the scaling at the community level. Numerical simulations of the sto-
behavior of the central peak as well as of the tails. It is founcchastic multiplicative process described by E@s.and (7)
that the scaling of the central peak is consistent with a trunshow that thew;’s follow a power-law distribution of the
cated Ley distribution with«=1.4 for a broad range of 1 form
<7=<1000. For small values of, up to aboutr=>50 (for
N=1000) the power-law decay of the tail &(r) is also p(w)=Kw 17« €]

The term on the right-hand side of E() describes the
effect of autocatalysis at the individual level. In addition to
the update rule of Eq4), the value of the updated variable
w;(t+1) is constrained to be larger than or equal to some
lower bound which is proportional to the momentary average
value of thew;’s according to

wi(t+1)=cw(t) (6)
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for a wide range of lower bounds whereK is a normaliza- 10°
tion factor[17]. It was found that the exponeatdepends on
the parameters andN and is insensitive to the shape of the 10° ¢ .
probability distributionII(\). For simplicity, we use\x uni- )
formly distributed in the range 0O\ <1.1. P b
Lh 10° + g ¢
Ill. SIMULATIONS AND RESULTS E: . s
In the simulations below the number of dynamical vari- S o L ° .
ables isN=1000 and the lower cutoff is chosen @s 0.3, & , * N
the value that provides the economically relevant distributon ™ : o ° s
characterized byw=1.4[1,18]. Under these conditions(w) . . * N .
exhibits a power-law distribution within three decades, be- 10 F o °
tweenw,,i,=0.0003 andwv,,,,=0.3. The data for this distri- 1o L °
bution were obtained from a large number of simulations -0.001 -0.0005 0 0.0005 0.001
collecting data at different times within each simulation after 7
some equilibration time. To remove the possible effect of rl/a

inflation, the values of the;’s fed into the distributiorp(w)

. . . l/ﬂ
were normalized such that at any timahe sumS,w(t) FIG. 1. The rescaled distribution of the returd§'P(r (7)/ 7*)

— ) for 7=1, 50, 200, and 1000. In the vicinity of the central peak we
=1, namelyw(t)=1/N [17]. In the analysis of the returns, gpserve a collapse of all four graphs into a similar shape. The tails
there is no need for such a normalization adjustment, due tgy the two smaller values of follow the Levy-stable distribution

the fact that the returns quantify changes relative to the Culyith o=1.4. The tails for the two larger values offall off more
rent value ofw, i.e., they are normalized by definition. sharply and exhibit significant deviations from thé visestable

Consider the time evolution of the averagét). At each ~ Shape.
time step, when Eq4) is applied, neglecting the effect of
the lower cutoff we obtain following the scaling relation of Eq2) means that the index
of the Levy distribution isa=—1/(—0.71)=1.4.
_ _ 1 To characterize the nature of the distributi®(r) we also
w(t+1)=w(t)+ GIMO —1]wi(t). (9)  examine the scaling behavior of the tails. For they éis-
tribution the tail is expected to follow a power-law behavior
iven by Eq.(3). In Fig. 3 we present the tail of the distri-
ution P(r), on a log-log scale for=1. It is found that the
slope is— (1+ a) = — 2.4 which corresponds to a i dis-
tribution with o= 1.4. For larger values of, the tails exhibit
steeper slopes that exceed the domain of theyldistribu-

This can be considered as a generalized random walk WitE
step sizes distributed according to E®). Therefore, the
returns afterr time steps, given by

r(r)=Inw(t+7)—Inw(t), (10)

5

10 T T T T T

are expected to follw a a truncated Ly distributionL ,(r)
[12]. Note that for small time intervals, the returns given by .
Eq. (10) coincide with the relative change given by

~ Wt T)—w(t)

r(r) . (12)
w(t) = 100} 5
A
However, for larger these two expressions provide signifi-
cantly different results.
In Fig. 1 we show the rescaled distributief*P(r/ 7<) 10° | 5
of the returnsr(7) for r=1, 50, 200, and 1000. Near the .

central peak the four rescaled graphs collapse into a simila
shape. The graphs far=1 and 50 maintain a similar res- : . . . . .
caled form in the tails also while for larger values othe 1 10 100 1000 10000
tails go down more sharply.

The value ofa that characterizes the distribution can be
obtained from the scaling of the central peak height as a FiG. 2. The height of the central pedk(r(r)=0) vs 7 on a
function of 7, according to Eq(2). In Fig. 2 we show the |og-log scale. For a broad range of nearly three orders of magnitude
height of the pealP(r=0) as a function ofr on a log-log in 7 values up tor=1000, the slope of the straight line is1/a
scale. It is found that the slope of the fit 1s0.71, which  =-0.71, which corresponds to & Wwedistribution witha=1.4.

T
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FIG. 4. The distributiorP(r) of r(7) on a log-log scale, for
=10* The tail exhibits a range of about one order of magnitude
with an apparent power-law behavior. The slope in this range is
consistent with Eq(3) with «=2.5. This value is not only different
from the = 1.4 observed for short times, but is outside the range
for Lévy-stable distributions. This curve strongly resembles the em-
tion, namely,a« becomes larger than 2. As an example, wepirical distributions for the S&P500 presented in R,
present in Fig. 4 the distributioR(r) of r(7) for =10* on
a log-log scale. We identify a range of about one order of 4
magnitude in which the apparent slope-ig1+ «)=—3.5, r(r)= E In
corresponding tar= 2.5, which is outside the domain of the =1
Lévy distribution. It is thus observed that the tails of the
distributionP(r) are much more sensitive to deviations from Where the variablevi(t) is independently picked at any time
a Levy-stable process than is the central peak. t. Note that_the return depends on the normalized quantities

These results are in agreement with the empirical analysig/;; =w;(t)/w(t). It is easy to see that the/’s are not inde-
of the central peak presented in REf] as well as with the pendent since at any timethey satisfy=;w{ =N. This de-
analysis of the tails presented in REH]. They thus reconcile  pendence is particularly apparent for the lavges, since if
the apparent disagreement between these two empirical studne of them turns out to be extremely large the normalization
ies. To relate the parameters of the model more closely to theondition prevents othew;’s from having values in its vi-
empirical studies we note that the typical time required for acinity.
single stock market transaction is of the order of 1 min.
However, the transactions are done simultaneously in all the
stocks included in the index that is analyzed. Therefore, the
single transaction-time unitsay, 1 min roughly corre- Recent empirical studies of the fluctuations in stock mar-
sponds, in the model, to=N time steps. The results of Fig. ket indices have provided conflicting results. In these studies
4 for 7=10* are thus expected to correspond to a time interthe distributionP(r) of stock market returns(7) after time
val of several minutes in the empirical analysis. Indeed, ther was examined. The scaling of the central peal @f) was
value ofa= 2.5 obtained in the numerical simulations is only found to be consistent with @runcated Lévy-stable distri-
slightly lower than the empirical results obtained foin the  bution with indexa=1.4 [1]. However, the scaling of the
range between 1 and 512 min. tails, for a broad range of values between 1 min and a few

In the model we observe significant deviations from thedays, was found to exhibit a power-law behavior with an
Lévy distribution as7 increases toward the order 8f A exponente=3, which is well outside the range of thé \ye
possible explanation is that at this stage some ofnf®are  distribution[2].

FIG. 3. The distributiorP(r) of r(7) on a log-log scale, for
=1. The tail exhibits a range of power-law behavior according to
Eq. (3) with = 1.4, namely, following a ey distribution with the
same value otx.

(12

1+“_1Wi_<t>]
[A(1) ]W(t)’

IV. SUMMARY

already sampled more than once in the sequence tohe In this paper we have examined the distribut®¢r) for
steps required to calculate one instance(ef). This violates a model that describes the dynamics of stock market indices.
the requirement in the construction of(uncated Levy- The model consists of dynamical variables, i=1, ... N,

stable distribution that the random variables should be in- that describe the time-dependent market valuesl difms,
dependent. This starts to introduce significant correlationsvhile their average is the corresponding stock market index.

between the different variables that compoée). It was found that the scaling of the central peak is consistent
Another correlation effect is intrinsic to the calculation of with a Levy distribution and its index can be tuned to the
the returns. Consider the returgr), which is given by economically relevant value at=1.4 by tuning a param-
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eter. The tails of the distributionB(r) of the returnsr(7), of the Levy distribution. These results are fully consistent
for a range ofr values that corresponds to the empirically with the empirical results both for the central peak and for
studied time intervals, were found to exhibit a domain ofthe tails and reconcile the apparent disagreement between
power-law behavior withv>2, which falls outside the range them.
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