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Giant strongly connected component of directed networks
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We describe how to calculate the sizes of all giant connected components of a directed graph, including the
stronglyconnected one. In particular, the World Wide Web is a directed network. The results are obtained for
graphs with statistically uncorrelated vertices and an arbitrary joint in and out-degree distributionP(ki ,ko). We
show that ifP(ki ,ko) does not factorize, the relative size of the giant strongly connected component deviates
from the product of the relative sizes of the giant in- and out-components. The calculations of the relative sizes
of all the giant components are demonstrated using the simplest examples. We explain that the giant strongly
connected component may be less resilient to random damage than the giant weakly connected one.
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The giant components of a network are components w
relative sizes finite~nonzero! which in the large network
limit. The knowledge of these sizes provides the basic in
mation about the global topology of a network. The und
standing of the topological structure of networks and
change under external action is the central problem of
statistical physics of random networks@1–8#. Actually, this
is the natural generalization of the general percolation the

The most interesting networks in nature, including t
World Wide Web ~WWW!, are directed graphs, i.e., the
vertices are connected by directed edges@6,9–13#. In the
general case, the structure of the directed graph looks as
shown in Fig. 1~all the notions are introduced and explain
in the figure caption. In particular, the World Wide Web h
such a structure@5#.

In Refs. @6,7#, the previous strong results of mathema
cians@14,15# were developed, and the general theory of p
colation phenomena in networks with arbitrary degree dis
butions and statistically uncorrelated~randomly connected!
vertices was proposed. Of course, the last assumption is
true for most of the growing nets in nature. Nevertheless,
direct conclusions of such an approach proved to explain
behavior of some real networks@3#.

Newmanet al. @6# have shown how to find the relativ
sizes of the following giant components of directed grap
with statistically uncorrelated vertices:~i! the giant weakly
connected component~GWCC!, W; ~ii ! the giant in-
component ~GIN!, I; and ~iii ! the giant out-componen
~GOUT!, O. Note that, for brevity and consistency, we u
the definitions of the giant in- and out-components rat
than those in Refs.@5,6# ~see the caption of Fig. 1!.

Here we demonstrate how to calculate the relative sizS,
perhaps the most important part of the directed graph, oits
giant strongly connected component~GSCC! ~iv!. In the
GSCC, every pair of vertices is connected in both directio
i.e., from one of the vertices, one can approach the othe
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moving either along or against the edge directions. This
lows us to completely describe the total structure of direc
graphs with arbitrary degree distributions and statistica
uncorrelated vertices. For the demonstration, we use the
works with the simplest degree distributions providing no
trivial results.

We recall briefly a very useful approach of Ref.@6#. The
Z-transforms~or generating functions! are used. For the un
directed graph,F(x)[(kP(k)xk, and for the directed one
F(x,y)[(ki ,ko

P(ki ,ko)xkiyko @17#. Here, P(k)[P(w)(k)

5(ki
P(ki ,k2ki) is the degree distribution (k5ki1ko is the

total number of connections of a node! and P(ki ,ko) is the
joint distribution of in- and out-degrees. When all the co
nections are inside the network, the average in- and o
degrees are equal,]xF(x,1)ux515]yF(1,y)uy51[z(d).
Therefore the average degree isz52z(d). If one ignores the
directedness of edges, then the degree distribution of the
rected network, in theZ-representation, takes the form
F (w)(x)5F(x,x). In this case, the distribution of the num
ber of connections minus one of any of the end vertices o
randomly chosen edge corresponds toF1

(w)(x)[F (w)8(x)/z.
The giant weakly connected component exists

F1
(w)8(1).1, which corresponds to the well known criteriu

of Molloy and Reed@14#,

(
k

k~k22!P~k!.0. ~1!

The size of the GWCC,W, can be easily obtained from th
relations@6,15#,

W512F~w!~ tc!, tc5F1
~w!~ tc!. ~2!

From Eq.~1!, one sees that the existence of the GWCC c
cially depends on the size of the fraction of dead ends in
network. Indeed,P(1) is the only term in Eq.~1! that pre-
vents the GWCC. In Fig. 2~a!, the evolution of the giant
©2001 The American Physical Society01-1
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connected component of the undirected graph, induced
the change of some control parameter, is schematic
shown. From Eq.~1!, it is also clear that the divergency o
the second moment of the degree distribution makes
GWCC extremely stable@16#. If the exponentg of the
power-law degree distributionP(k);k2g is <3, one has to
remove at random almost all the vertices or edges of
network to eliminate the GWCC@8#.

In a similar way, it is easy to study the GIN and GOU
components of the directed network@6#. One introduces the
Z-transform of the out-degree distribution of the vertex, a
proachable by following a randomly chosen edge when
moves along the edge direction, F1

(o)(y)
[]xF(x,y)ux51 /z(d). Also, F1

( i )(x)[]yF(x,y)uy51 /z(d)

corresponds to the in-degree distribution of the vertex wh
one can approach movingagainst the edge direction. The

GIN and GOUT are present ifF1
( i )8(1)5F1

(o)8(1)
5]xy

2 F(x,y)ux51,y51 /z(d).1, that is@6#,

FIG. 1. General structure of a directed network in the situat
when the giant strongly connected component is present. Also
structure of the WWW~compare with Fig. 9 of Ref.@5#!. If one
ignores the directedness of edges, the network consists of thegiant
weakly connected component~GWCC! ~actually, the usual percola
tive cluster! and disconnect components~DC!. Accounting for the
directedness of edges, the GWCC contains the following com
nents:~a! the giant strongly connected component~GSCC!, that is
the set of vertices reachable from its every vertex by a direc
path. ~b! the giant out-component~GOUT!, the set of vertices ap
proachable from the GSCC by a directed path.~c! the giant in-
component~GIN!, contains all vertices from which the GSCC
approachable.~d! the tendrils, the rest of the GWCC, i.e., the ver
tices which have no access to the GSCC and are not reachable
it. In particular, it includes something like ‘‘tendrils’’@5# going out
of GIN or coming in the GOUT, but also there are ‘‘tubes’’ goin
from the GIN to the GOUT without passage through GSCC a
numerous clusters which are only ‘‘weakly’’ connected. Note th
the definitions of the GIN and GOUT in the present paper dif
from the definitions of Refs.@5,6#. Here the GSCC is included into
both the GIN and GOUT, so the GSCC is the interception of
GIN and GOUT. We have to introduce the new definitions for t
sake of brevity and logical presentation~see the calculations in th
text!.
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In this case, there exist the nontrivial solutions of the eq
tions

xc5F1
~ i !~xc!, yc5F1

~o!~yc!. ~4!

They have the following meanings:xc,1 is the probability
that the connected component, obtained by movingagainst
the edge directions starting from a randomly chosen edg
finite. yc,1 is the probability that the connected compone
obtained by movingalong the edge directions starting from
randomly chosen edge, is finite. ThenP(ki ,ko)xc

ki and

P(ki ,ko)yc
ko are the probabilities that a vertex withki incom-

ing and ko outgoing edges have finite in- and ou
components, respectively. The in- and out-components
vertex are sets of vertices that are approachable from
vertex moving against and along the edges, respectively,
the vertex itself. Summation of these expressions o
(ki ,ko) yields the total probabilities that the in- and ou
components of a randomly chosen vertex are finite, resp
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FIG. 2. Schematic plots of the variations of all the giant co
ponents vs some control parameter for the undirected network~a!
and for the directed one~b!. In the undirected graph, the meaning
of the giant connected component~GCC!, i.e., its percolative clus-
ter, and the GWCC, coincide.
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tively. Therefore, they are equal toF(xc,1) and F(1,yc),
respectively. Thus, the relative sizes of the GIN and GO
are

I 512F~xc,1!, O512F~1,yc!. ~5!

Here we show that from Eq.~4!, it is possible to find not
only I andO, but also the relative sizeS of the GSCC using
the considerations similar to Ref.@6#. Suppose that a verte
haski incoming andko outgoing edges. They are assumed
be statistically independent. Then the probability that all
incoming edges come from finite in-components isxc

ki . The
probability that this vertex has the infinite in-component
equal to 12xc

ki , that is, at least one of theki incoming edges

has to come from the GIN. Similarly, 12yc
ko is the probabil-

ity that the vertex has the infinite out-component. The ver
belongs to the GSCC if its in- and out-components are b
infinite; the corresponding probability is equal to (12xc

ki)

3(12yc
ko). Then the total probability that a vertex belong

to the GSCC is equal to(ki ,ko
P(ki ,ko)(12xc

ki)(12yc
ko).

Finally, the relative size of the GSCC takes the form

S5 (
ki ,ko

P~ki ,ko!~12xc
ki !~12yc

ko!

512F~xc,1!2F~1,yc!1F~xc ,yc!. ~6!

Therefore,F(xc ,yc) is equal to the probability that both th
in- and out-components of a vertex are finite. One can w
F(xc ,yc)512W1T. Knowing W, S, I, andO, it is easy to
obtain the relative size of thetendrils,

T5W1S2I 2O. ~7!

Equations~2! and~4!–~7! allow us to obtain all the gian
components of the directed networks with arbitrary joint
and out-degree distributions and statistically uncorrela
vertices. It is useful to rewrite the main Eq.~6! in the form

S5IO1F~xc ,yc!2F~xc,1!F~1,yc!. ~8!

If the joint distribution of in- and out-degrees factorize
P(ki ,ko)5Pi(ki)Po(ko), Eq. ~8! takes the simple formS
5IO, otherwise, such factorizing ofS is impossible. At the
threshold,xc5yc51, and I, O, and S simultaneously ap-
proach zero.

We have no intention to calculate the sizes of the gi
components for real networks, for instance, with the WW
for the following reasons:~i! They are nonequilibrium
~growing!; ~ii ! there are some correlations between their v
tices; and~iii ! their joint degree distributions are unknow
yet ~nevertheless, see the attempt of the calculation ofI and
O for the WWW in Ref.@6#!. Instead of this, for demonstra
tion, we consider two of the simplest nontrivial equilibriu
nets. In the first of them, the joint in- and out-degree dis
bution factorizes: P(ki ,ko)5P(ki)P(ko), where P(k)
5@p(dk,01dk,1)1(122p)dk,3#.

The results are the dependence of the sizes of the g
components onp and are shown in Fig. 3 and, schematical
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in Fig. 2~b!. The curvesI (p)5O(p) approach the threshold
linearly, andS(p) quadratically, but the range of the qua
dratic dependence is narrow. Over a wide range ofp, S(p)
'1/22p ~see also the next case in Fig. 4!.

In real growing nets, the joint in- and out-degree distrib
tions do not factorize just because of their growth@12,18,19#.
Therefore, for comparison, we calculate the sizes of the g
components for the network with the distributionP(ki ,ko)
5p(dki ,0

dko,11dki ,1
dko,0)1(122p)dki ,3

dko,3 . This means
that large in- and out-degrees correlate, as well as smal
and out-degrees. The results are plotted in Fig. 4@see also the
schematic plot in Fig. 2~b!# @20#. One sees that, in this cas
the size of the GSCC noticeably differs from the productIO.
We should note that a similar deviation is present in
WWW. From the data of Ref.@5# for the WWW, I'0.490,
O'0.489, soIO'0.240, which is less than the measur
valueS'0.277, but is not far from it.

FIG. 3. Relative sizes of the GWCC (W), GSCC (S), GIN (I ),
GOUT (O), and TENDRILS~T! vs the parameterp for the directed
graph with the factorizable joint in- and out-degree distributi
P(ki ,ko)5P(ki)P(ko), where P(k)5@p(dk,01dk,1)1(1
22p)dk,3# In this case,S5IO, I 5O.

FIG. 4. Relative sizes of the GWCC (W), GSCC (S), GIN (I ),
GOUT (O), and TENDRILS~T! vs the parameterp for the directed
graph with the joint in- and out-degree distributionP(ki ,ko)
5p(dki ,0

dko,11dki ,1
dko,0)1(122p)dki ,3

dko,3 that does not factor-
ize. This form of the distribution means that if a node is of lar
in-degree, then its out-degree is also large. Also, if the degree
node is small, the out-degree is small too. The dashed curve sh
the productIO ~compare with the curve forS). In the particular
case that we consider here,I 5O.
1-3
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Figures 2–4 demonstrate that, in the wide enough ra
of parameters, the following situation may be realized. T
directed graphs may have the GWCC and, simultaneou
may not have the GSCC. Only the stability of the GWCC
random damage was discussed yet@8#. Nevertheless, just the
stability of the GSCC is the most important, e.g., for t
WWW. Is it possible that the GSCC are less resilient to fa
ures than the GWCC? Let us briefly discuss this problem

One can see from Eq.~3! that the GSCC is extremel
resilient if the averagêkiko& diverges. Let us consider tw
limiting situations. In the first one, the joint in- and ou
degree distribution factorizes, so^kiko&5^ki&

2. In this case,
if the distributions are of a power-law form then, for th
robustness of the GSCC, the corresponding exponentg i or
go should be<2. This is a very strong requirement. Her
the smallest exponent ofg i andgo is also equal to the expo
nent g of the degree distribution. For the resilience of t
GWCC to random damage, it should beg<3 @8#, which
ensures the divergence of^k2&. Therefore, for such distribu
tions, when 2,min(gi ,go)5g<3, random damage can de
stroy the GSCC, but cannot eliminate the GWCC.
go

rin

. J

e

y

e
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In the other limiting case,P(ki ,ko)5P(ki)dki ,ko
, the cor-

relations between in- and out-degrees are very strong. T
form more resembles the joint degree distributions of the r
growing networks. In such an event,^kiko&5^ki

2&, and the
conditions for the resilience of the GSCC and GWCC,g
<3, coincide. One should note that the real distributions
between the considered limiting cases.

In summary, we have shown how to obtain the size of
giant strongly connected component of the directed netw
with the arbitrary degree distribution and statistically unc
related vertices. This allows us to find all the giant comp
nents of such a graph and to describe its basic struct
Using the simplest examples and the general considerat
we have demonstrated that the correlations between in-
out-degrees subsequently influence the global topology
the network.

S.N.D. thanks PRAXIS XXI~Portugal! for research Grant
No. PRAXIS XXI/BCC/16418/98. S.N.D. and J.F.F.M. we
partially supported by Project No. POCTI/1999/FIS/3314
We also thank P. L. Krapivsky for useful discussions.
on-
sider

un-
nce,

ett.

1.
imi-
ibu-
@1# R. Albert, H. Jeong, and A.-L. Baraba´si, Nature ~London!
~London! 401, 130 ~1999!.

@2# A.-L. Barabási and R. Albert, Science286, 509 ~1999!.
@3# R. Albert, H. Jeong, and A.-L. Baraba´si, Nature ~London!

~London! 406, 378 ~2000!.
@4# R. Albert and A.-L. Baraba´si, Phys. Rev. Lett.85, 5234~2000!.
@5# A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Raja

palan, R. Stata, A. Tomkins, and J. Wiener, inProceedings of
the 9th WWW Conference~Elsevier, Amsterdam, 2000!, p. 309.

@6# M. E. J. Newman, S. H. Strogatz, and D. J. Watts, e-p
cond-mat/0007235.

@7# D. S. Callaway, M. E. J. Newman, S. H. Strogatz, and D
Watts, Phys. Rev. Lett.85, 5468~2000!.

@8# R. Cohen, K. Erez, D. ben-Avraham, and S. Havlin, Phys. R
Lett. 85, 4626~2000!.

@9# S. N. Dorogovtsev, J. F. F. Mendes, and A. N. Samukhin, Ph
Rev. Lett.85, 4633~2000!.

@10# S. N. Dorogovtsev and J. F. F. Mendes, Phys. Rev. E63,
056125~2001!; e-print cond-mat/0012009.

@11# B. Tadic, Physica A293, 273 ~2001!.
@12# P. L. Krapivsky, G. J. Rodgers, and S. Redner, Phys. Rev. L

86, 5401~2001!.
-

t

.

v.

s.

tt.

@13# G. Ergun and G. J. Rodgers, e-print cond-mat/0103423.
@14# M. Molloy and B. Reed, Random Struct. Algorithms6, 161

~1995!.
@15# M. Molloy and B. Reed, Combinatorics, Probab. Comput.7,

295 ~1998!.
@16# Rigorously speaking, to study the resilience of the giant c

nected components to random damage, one has to con
networks with randomly deleted vertices or edges~see Refs.
@7,8#!. Nevertheless, the divergence of the moments of the
damaged network already indicates its anomalous resilie
since it cannot be removed by random damage@7,8#.

@17# S. Janson, T. Luczak, and A. Rucinski,Random Graphs
~Wiley, New York, 2000!.

@18# P. L. Krapivsky, S. Redner, and F. Leyvraz, Phys. Rev. L
85, 4629~2000!.

@19# P. L. Krapivsky and S. Redner, e-print cond-mat/0011094.
@20# Note that even if the average degreez is large, the sizeW of

the GWCC, in principle, may subsequently deviate from
One can easily check this using, e.g., degree distributions s
lar to the distributions considered above. The Poisson distr
tion with large z produces extremely small values 12W
> exp@2z# since there are few dead ends in this case.
1-4


