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We describe how to calculate the sizes of all giant connected components of a directed graph, including the
strongly connected one. In particular, the World Wide Web is a directed network. The results are obtained for
graphs with statistically uncorrelated vertices and an arbitrary joint in and out-degree distriB(kjok,). We
show that ifP(k; ,k,) does not factorize, the relative size of the giant strongly connected component deviates
from the product of the relative sizes of the giant in- and out-components. The calculations of the relative sizes
of all the giant components are demonstrated using the simplest examples. We explain that the giant strongly
connected component may be less resilient to random damage than the giant weakly connected one.
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The giant components of a network are components wittmoving either along or against the edge directions. This al-
relative sizes finite(nonzerd which in the large network lows us to completely describe the total structure of directed
limit. The knowledge of these sizes provides the basic inforgraphs with arbitrary degree distributions and statistically
mation about the global topology of a network. The under-uncorrelated vertices. For the demonstration, we use the net-
standing of the topological structure of networks and itsworks with the simplest degree distributions providing non-
change under external action is the central problem of théivial results.
statistical physics of random networfs—8]. Actually, this We recall briefly a very useful approach of REsJ. The
is the natural generalization of the general percolation theoryZ-transforms(or generating functionsare used. For the un-

The most interesting networks in nature, including thedirected graph®(x)==,P(k)x*, and for the directed one,
World Wide Web (WWW), are directed graphs, i.e., their ®(X,y)=2y « P(ki ko)x“iy*e [17]. Here, P(k)=P™")(k)
vertices are connected by directed ed§e®-13. In the :Ekip(ki ,k—k;) is the degree distributiorkE& k; + k,, is the
general_ case, the structure of the (_Jllrected graph looks as it {8ta| number of connections of a nodend P(k; k) is the
shown in Fig. 1(all the notions are introduced and explained;qin; gistribution of in- and out-degrees. When all the con-
In t?}e f|gturetcagg|]on. In particular, the World Wide Web haspections are inside the network, the average in- and out-
such a structures). degrees are equal,d, ®(X,1)|y_1= D (Ly)]y1=2D.

In Refs.[6,7], the previous strong results of mathemati'Thgrefore the aveqrage éeg(]reegig o) ¢ (on)é)!éntl)res the

cians[14,13 were developed, and the general theory of P€directedness of edges, then the degree distribution of the di-

goLat'on ph((jan(irrlglga 'ﬂ networkslvzltr[;aa:jbltra}ry degreetd('jsm'rected network, in theZ-representation, takes the form
utions and statistically uncorrelat¢candomly connectg O (x)=d(x,x). In this case, the distribution of the num-

vertices was proposed. .Of course, the last assumption is nBEr of connections minus one of any of the end vertices of a
true for most of the growing nets in nature. Nevertheless, the

) — !
direct conclusions of such an approach proved to explain thEandomly chosen edge correspondsbt’ (x) =" x)/z.
behavior of some real networks]. The giant weakly connected component exists if

Newmanet al. [6] have shown how to find the relative ®{"'(1)>1, which corresponds to the well known criterium
sizes of the following giant components of directed graphsof Molloy and Reed 14],
with statistically uncorrelated vertice§) the giant weakly
connected componenfGWCC), W, (ii) the giant in-
component(GIN), I; and (iii) the giant out-component > k(k—2)P(k)>0. (1)
(GOUT), O. Note that, for brevity and consistency, we use K
the definitions of the giant in- and out-components rather
than those in Refd5,6] (see the caption of Fig.)1 . . .

Here we demonstrate how to calculate the relative Sjze Tr:et_sme[gfltge GWCCW, can be easily obtained from the
perhaps the most important part of the directed graplitsof refationsts, 1o,
giant strongly connected componefGSCQ (iv). In the
QSCC, every pair of vert_ices is connected in both directions, W=1—dW(t,), tC:q)(lm(tc)' )
i.e., from one of the vertices, one can approach the other by

From Eq.(1), one sees that the existence of the GWCC cru-

*Electronic address: sdorogov@fc.up.pt cially depends on the size of the fraction of dead ends in the
'Electronic address: jfmendes@fc.up.pt network. IndeedP(1) is the only term in Eq(1) that pre-
*Electronic address: alnis@samaln.ioffe.rssi.ru vents the GWCC. In Fig. (@), the evolution of the giant
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FIG. 1. General structure of a directed network in the situation
when the giant strongly connected component is present. Also the
structure of the WWW(compare with Fig. 9 of Refl5]). If one
ignores the directedness of edges, the network consists gfiahe
weakly connected compond@WCC) (actually, the usual percola-
tive clustey and disconnect componenSC). Accounting for the
directedness of edges, the GWCC contains the following compo-
nents:(a) the giant strongly connected compond@SCQ, that is
the set of vertices reachable from its every vertex by a directed control parameter
path. (b) the giant out-componenGOUT), the set of vertices ap- . o )
proachable from the GSCC by a directed pat). the giant in- FIG. 2. Schematic plots of the variations of :_:1II the giant com-
component(GIN), contains all vertices from which the GSCC is POnents vs some control parameter for the undirected net@rk
approachable(d) the tendrils the rest of the GWCC, i.e., the ver- and for _the directed oné). In the undlre_cted_graph, the_meanlngs
tices which have no access to the GSCC and are not reachable frofh the giant connected compongi@CO), i.e., its percolative clus-
it. In particular, it includes something like “tendrils[5] going out € @nd the GWCC, coincide.
of GIN or coming in the GOUT, but also there are “tubes” going
from the GIN to the GOUT without passage through GSCC and
numerous clusters which are only “weakly” connected. Note that k%o (2kiko—ki—ko) P(ki ko)
the definitions of the GIN and GOUT in the present paper differ
from the definitions of Refd.5,6]. Here the GSCC is included into
both the GIN and GOUT, so the GSCC is the interception of the :Zkz( ki(ko=1)P(ki ko)

GIN and GOUT. We have to introduce the new definitions for the e

sake of brevity and logical presentati¢see the calculations in the
texd). :22( Ko(ki —1)P(k: ,ko)>0. 3

NET

connected component of the undirected graph, induced bl this case, there exist the nontrivial solutions of the equa-
the change of some control parameter, is schematicall{ions

shown. From Eq(1), it is also clear that the divergency of 0 ©)

the second moment of the degree distribution makes the Xe=Pi(Xe), Y=L (Ye)- 4)

GWCC extremely gtaple{l@]. I theisgponenty of the They have the following meaningg;<<1 is the probability
power-law degree distributioR(k)~k™” is <3, one has to . o

t d | t all th i d f ththat the connected component, obtained by mowgginst
rertnovi? r?n .orr: atrTOéV\?C € vertices or edges ot g,e edge directions starting from a randomly chosen edge, is
network to .? 'minate the (] dv th q finite. y,<1 is the probability that the connected component,

In a similar way, 't, IS easy to study the ,GIN and GOUT obtained by movinglongthe edge directions starting from a

components of the directed netwdik]. One introduces the randomly chosen edge, is finite. The(k; .k )in and
Z-transform of the out-degree distribution of the vertex, ap- yko ge, . ' 170/ e
proachable by following a randomly chosen edge when on& (Ki .Ko)y.’ are the probabilities that a vertex wikhincom-
moves along  the edge direction, <I>(1°)(y) ing and kg outgoing ng'l?r? _have dﬁnlte in- and out}
=0, (x,Y),_1 /2. Also, q>(1')(X)E&y®(x,y)|y:1/z(d) components, respectively. The in- and out-components of a

. LA . vertex are sets of vertices that are approachable from this
corresponds to the in-degree distribution of the vertex Wh'cmertex moving against and along the edges, respectively, plus
one can approach movinggainstthe edge direction. The t ' ’

e , he vertex itself. Summation of these expressions over
GIN and GOUT are present if®{)'(1)=d{?(1) (k k,) yields the total probabilities that the in- and out-
=&iydb(x,y)|X:1'y:1/z(d)>1, that is[6], components of a randomly chosen vertex are finite, respec-
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tively. Therefore, they are equal ®(x¢,1) and®(ly,), 1
respectively. Thus, the relative sizes of the GIN and GOUT W
are
= I=0
I=1-®P(X,1), O=1-Dd(ly.). (5 o)
D) s
Here we show that from Ed4), it is possible to find not %) T

only I andO, but also the relative siz8 of the GSCC using
the considerations similar to Rd6]. Suppose that a vertex
hask; incoming andk, outgoing edges. They are assumed to
be statistically independent. Then the probability that all the N . . ;
incoming edges come from finite in-componentx:j's The 0 0.1 0.2 0.3 0.4 0.5
probability that this vertex has the infinite in-component is P

equal to - x';i , that is, at least one of tHe incoming edges FIG. 3. Relative sizes of the GWCGA), GSCC ), GIN (1),
has to come from the GIN. Similarly,—ly'é“ is the probabil- GOUT (O), and TENDRILS(T) vs the parametep for the directed

ity that the vertex has the infinite out-component. The verte rg(phk";”thp;ie) ;?ﬁt?r'zabliv:g?é n- gr(lg) Z?t'?ggriea dl')sf:'(b luuon
belongs to the GSCC if its in- and out-components are both >, ' "2 ° PLoko™ %k

—2p) by 3] In this caseS=10, I=0.
infinite; the corresponding probability is equal to{X_ ')

X(1-y, ko), Then the total probability that a vertex belongs in Fig. 2b). The curved (p) =0O(p) approach the threshold

i Ko linearly, andS(p) quadratically, but the range of the qua-
to the GSCC I t& « P(ki,ko)(1— 1- .
o me 'S equa ki ko (ki ko) Xc)( ye') dratic dependence is narrow. Over a wide rang®,d®(p)

~1/2—p (see also the next case in Fig. 4
In real growing nets, the joint in- and out-degree distribu-

Finally, the relative size of the GSCC takes the form

S= > P(ki ko) (1—x)(1—y) tions do not factorize just because of their groj#, 18,19.
ki Ko Therefore, for comparison, we calculate the sizes of the giant
=1-D(x,, 1) — DLy +DP(Xe, Vo). (6) components for the network with the distributiéq{(k; , k)

= p(5ki,08k0‘1+ 5ki'15k0,0) +(1-2p) O, 30k,3- This means
Therefore®(x.,y,) is equal to the probability that both the that large in- and out-degrees correlate, as well as small in-
in- and out-components of a vertex are finite. One can writeand out-degrees. The results are plotted in Fige# also the
D(Xe,Ye)=1-W+T. KnowingW, S |, andQ, it is easy to  schematic plot in Fig. ®)] [20]. One sees that, in this case,

obtain the relative size of thendrils the size of the GSCC noticeably differs from the produat
We should note that a similar deviation is present in the
T=W+S-1-0. (7)  WwWw. From the data of Ref5] for the WWW, | ~0.490,

0~0.489, solO~0.240, which is less than the measured

Equations(2) and(4)—(7) allow us to obtain all the giant value S~0.277, but is not far from it.

components of the directed networks with arbitrary joint in-
and out-degree distributions and statistically uncorrelated 1
vertices. It is useful to rewrite the main E@) in the form

S=10+D(Xc,Ye) = P(Xe, DP(Lye). 8 w

If the joint distribution of in- and out-degrees factorizes,
P(k; ko) =P'(k;)P°(k,), Eq. (8) takes the simple forn®
=10, otherwise, such factorizing @& is impossible. At the
threshold,x,=y.=1, andl, O, and S simultaneously ap- \
proach zero. 10

We have no intention to calculate the sizes of the giant N
components for real networks, for instance, with the WWW, 0 . . A
for the following reasons:(i) They are nonequilibrium 0 0.1 0.2 0.3 0.4 0.5
(growing); (ii) there are some correlations between their ver- P

tices; and(iii) their joint degree distributions are unknown g 4. Relative sizes of the GWCGA), GSCC 6), GIN (1),

yet (nevertheless, see the attempt of the calculatiohafd  GouT (0), and TENDRILS(T) vs the parametep for the directed
O for the WWW in Ref.[6]). Instead of this, for demonstra- graph with the joint in- and out-degree distributid®(k; k)

tion, we consider two of the simplest nontrivial equilibrium = p( 8,00 1+ B 18,0 + (1—2p) & 38 5 that does not factor-
nets. In the first of them, the joint in- and out-degree distri-jze This form of the distribution means that if a node is of large
bution factorizes: P(k;,k,)=P(kj)P(k,), where P(K) in-degree, then its out-degree is also large. Also, if the degree of a
=[p(dx ot ok +(1—2p) k3] node is small, the out-degree is small too. The dashed curve shows

The results are the dependence of the sizes of the giafttie productlO (compare with the curve foB). In the particular
components op and are shown in Fig. 3 and, schematically, case that we consider heles O.

,5,1=0,T
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Figures 2—4 demonstrate that, in the wide enough range In the other limiting case?(k; ,k,) = P(ki)éki Ky the cor-

of parameters, the following situation may be realized. Theg|ations between in- and out-degrees are very strong. This
directed graphs may have the GWCC and, simultaneously,rm more resembles the joint degree distributions of the real
may not have the GSCC. Only the stability of the GWCC ©growing networks. In such an everfk;k,) = (k?), and the

random damage was discussed 84t Nevertheless, just the conditions for the resilience of the GSCC and GWCE,

stability of the GSCC is the most important, e.g., for the T S
WWW. Is it possible that the GSCC are less resilient to fail—g3’ coincide. Ong should_ note that the real distributions are
between the considered limiting cases.

ures than the GWCC? Let us briefly discuss this problem. . .
In summary, we have shown how to obtain the size of the

One can see from Ed3) that the GSCC is extremely . )
resilient if the averagék;k,) diverges. Let us consider two giant strongly connected component of the directed network
limiting situations. In tHeofirst one, the joint in- and out- with the arbitrary degree distribution and statistically uncor-
degree distribution factorizes, $biko’>=(ki)2. In this case, related vertices. This allows us to f|nq aII.the giant compo-
if the distributions are of a power-law form then, for the nepts of su.ch a graph and to describe its basic _struct_ure.
robustness of the GSCC, the corresponding expc;ljrgmr Using the simplest examples and the general considerations
' we have demonstrated that the correlations between in- and

v, should be<2. This is a very strong requirement. Here, .
the smallest exponent gf and y, is also equal to the expo- out-degrees subsequently influence the global topology of
! ° the network.

nent y of the degree distribution. For the resilience of the

GWCC to random damage, it should he=3 [8], which S.N.D. thanks PRAXIS XX[(Portuga] for research Grant
ensures the divergence (#). Therefore, for such distribu- No. PRAXIS XXI/BCC/16418/98. S.N.D. and J.F.F.M. were
tions, when ZXmin(y;,v,)=v=<3, random damage can de- partially supported by Project No. POCTI/1999/FIS/33141.
stroy the GSCC, but cannot eliminate the GWCC. We also thank P. L. Krapivsky for useful discussions.

[1] R. Albert, H. Jeong, and A.-L. Barasia Nature (London [13] G. Ergun and G. J. Rodgers, e-print cond-mat/0103423.

(London 401, 130(1999. [14] M. Molloy and B. Reed, Random Struct. Algorithnés 161
[2] A.-L. Barabai and R. Albert, Scienc286, 509 (1999. (1995.
[3] R. Albert, H. Jeong, and A.-L. Barasia Nature (London [15] M. Molloy and B. Reed, Combinatorics, Probab. Compit.
(London 406, 378(2000. 295(1998.
[4] R. Albert and A.-L. Barabsi, Phys. Rev. Leti85, 5234(2000. [16] Rigorously speaking, to study the resilience of the giant con-
[5] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajago- nected components to random damage, one has to consider
palan, R. Stata, A. Tomkins, and J. WienerFroceedings of networks with randomly deleted vertices or edgsse Refs.
the 9th WWW Conferen¢Elsevier, Amsterdam, 2000p. 309. [7,8]). Nevertheless, the divergence of the moments of the un-
[6] M. E. J. Newman, S. H. Strogatz, and D. J. Watts, e-print damaged network already indicates its anomalous resilience,
cond-mat/0007235. since it cannot be removed by random damggé].
[7] D. S. Callaway, M. E. J. Newman, S. H. Strogatz, and D. J.[17] S. Janson, T. Luczak, and A. RucinskRandom Graphs
Watts, Phys. Rev. LetB5, 5468(2000. (Wiley, New York, 2000.
[8] R. Cohen, K. Erez, D. ben-Avraham, and S. Havlin, Phys. Rev[18] P. L. Krapivsky, S. Redner, and F. Leyvraz, Phys. Rev. Lett.
Lett. 85, 4626(2000. 85, 4629(2000.
[9] S. N. Dorogovtsev, J. F. F. Mendes, and A. N. Samukhin, Phys[19] P. L. Krapivsky and S. Redner, e-print cond-mat/0011094.
Rev. Lett.85, 4633(2000. [20] Note that even if the average degreés large, the sizéV of
[10] S. N. Dorogovtsev and J. F. F. Mendes, Phys. Re\63E the GWCC, in principle, may subsequently deviate from 1.
056125(2001); e-print cond-mat/0012009. One can easily check this using, e.g., degree distributions simi-
[11] B. Tadic, Physica 293 273 (200J. lar to the distributions considered above. The Poisson distribu-
[12] P. L. Krapivsky, G. J. Rodgers, and S. Redner, Phys. Rev. Lett.  tion with large z produces extremely small values—IV
86, 5401(2001). = ex{d —z] since there are few dead ends in this case.

025101-4



