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Zero-frequency critical bulk viscosity: Is the amplitude ratio truly universal?
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~Received 15 March 2001; published 23 July 2001!

It was shown by Onuki that the zero-frequency bulk viscosity is associated with a universal amplitude ratio
that was calculated to be around 0.10. We show that the sound attenuation data can be used to extract a value
for this universal number and we find this number to be around 0.18, reasonably close to Onuki’s estimate.
However, we argue that a reconsideration of this amplitude ratio shows that this ratio is not truly universal. It
has a logarithmic correction instead.
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It was shown by Onuki@1,2# that the zero-frequency bul
viscosityhB diverges near the liquid gas critical point. Fu
ther, it was established that if the critical point fluctuatio
decay with a relaxation rateG5G0j2(31xh), wherej is the
correlation length,xh is the small viscosity exponent, andCs
is the zero-frequency sound velocity, then there is a unive
combination given by

hB

r

G0

Cs
2j (31xh)

5RB . ~1!

From ane expansion Onuki found thatRB is to be 0.087 and
from a three-dimensional calculation he found it to be 0.
The points that we want to make in this note are as follo

~i! The ultrasound attenuation data of Roe and Meyer@3#
yield a value ofRB ~with xh50) which is fairly close to the
value predicted by Onuki@12#.

~ii ! The bulk viscosity is related to the frequenc
dependent specific heat and using an exponentiation du
Nicoll @4# for the scaling function of the specific heat, w
show thatRB is not truly universal. There is a logarithmi
correction and we show that the data of Roe and Meyer o
some support for this logarithmic factor. From the data it
impossible to say at present whether it favors the universa
of RB or the logarithmic scale breaking that we believe e
ists. Accurate measurements of the zero-frequency bulk
cosity would consequently be very helpful to resolve t
issue.

Since bulk viscosity is a slightly nonstandard concept,
will explain our point of view in a somewhat detailed ma
ner. We claim that bulk viscosity will be generated from t
pressure gradient term when the relaxation between pres
and density fluctuations is correctly handled@5#. It is the
delayed response of the density fluctuation@6# to an imposed
pressure fluctuation that causes the damping of sound~apart
from the purely Stokes damping!. This means that apart from
the Stokes damping, all other damping should emerge f
the two linear equations

]

]t
dr1r0~¹W •vW !50 ~2!
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, ~3!

where dr and dP are fluctuations in density and pressu
about a constant background. In terms of the density
entropy fluctuations

dP5S ]P

]r D
S

dr1S ]P

]SD
r

dS5kSdr1S ]P

]SD
r

dS, ~4!

wherekS5(]P/]r)S is the isentropic bulk modulus.
A time derivative of Eq.~3! yields

]2vW

]t2
5¹W „kS~¹W •vW !…2¹W S ]P

]SD
r

1

r0
d˙S. ~5!

The second term on the right-hand side of the above equa
is a damping term and can be shown to give rise to
Kirchoff damping @7#, which we will ignore here. The firs
term on the right-hand side is the sound speed ifkS is a
constant. This is generally true except when the system
very close to its critical point. Near the critical point th
relaxation of the density fluctuations is very slow@8,9# and
the frequency of the sound can resonate@10# with the decay
rate of the density fluctuations. This gives rise to a freque
dependence inkS that now has real and imaginary parts a
can be written as

kS5kS
r 1 ivkS

im . ~6!

With the above discussion in mind, we can now write E
~2! and ~3! as

]2r

]t2
52r0¹W •vẆ 5¹W •~¹W dP!5kS¹2dr. ~7!

The term in the right-hand side of Eq.~7! leads to damping
because of theiv factor in Eq. ~6! and defines the bulk
viscosity as

hB~v!5rkS
im~v!. ~8!
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The dispersion relation that we get from Eq.~7! is

v25CS
2k21 ivkS

imk2, ~9!

where CS
25kS

r (v). Writing v5CS(k11 ik2), equating real
and imaginary parts in Eq.~9!, and rememberingk2!k1, we
find, v2.CS

2k1
21 ivkS

im5CS
2(k1

22k2
212ik1k2).CS

2k1
2

12ik1k2CS
2 , which leads tok2 /k15vkS

im/2CS
2 . The attenu-

ation per unit wavelength isk2 and hence the attenuation p
wavelength is

al5
k2

k1
5

vkS
im

2CS
2

. ~10!

This attenuation comes entirely from critical fluctuations.
For very low frequency, i.e.,v!G0kz, we expect the at-

tenuation to be linear in the reduced frequencyv/G0kz and
hence

al5a0

v

2G0kz
, ~11!

where a0 is a constant,k5j21, and z531xh is the dy-
namic scaling exponent. As a first approximation~correct to
lowest order ine542D, where D is the dimensionality o
space!, we dropxh and plot the low-frequency data of Ro
and Meyer in the formal vs V5v/2G0kz. The result is
shown in Fig. 1. The plot is quite linear and bears out o
expectation. From equations Eqs.~11!, ~10!, ~8!, and~1!,

RB5a0 . ~12!

The slope of Fig. 1 yieldsa050.18. The lowest-ordere ex-
pansion of Onuki yields 0.087 forRB .

FIG. 1. The plot of attenuation per wavelengthal vs reduced
frequencyV5v/2G0k3 for V,1. We have ignored the small ex
ponentxh in the relaxation rate. The slope is seen to be about 0
02220
r

We now note that near the critical pointTc , the sound
speed can be written as

CS
25T

S ]P

]T D
V

2

r2CV

, ~13!

whereCV is the constant volume specific heat. This is t
only critical quantity in the above expression. Bothr ~one
phase region! and (]P/]T)V are noncritical. The respons
function which is the specific heat exhibits a lagging effe
near the critical point and henceCV is frequency dependent
Consequently, we can write

CV5CV
r 1 iCV

im ~14!

and the use of Eqs.~13! and ~14! leads to

CS
25T

S ]P

]T D
V

2

r2

CV
r 2 iCV

im

~CV
r !21~CV

im!2

sinceCV
im!CV

r ,

CS
2.T

S ]P

]T D
V

2

r2

CV
r 2 iCV

im

~CV
r !2

.

Now CS
25v2/k2.(v2/k1

2(122ik2 /k1)# and comparing
with the previous form, we get

al5
k2

k1
5

1

2

CV
im

CV
r

. ~15!

We now need to discuss the scaling behavior ofCV . At zero
frequency the specific heat diverges near the critical poin
ja/n, wherea is a small exponent~for the gas liquid critical
point a.0.11). Thus,

CV~v50,k!5C0

k2a/n21

a

n

. ~16!

At finite frequency, the response is limited by the finite fr
quency as one approaches the critical point. As we lower
value ofk, at a finitev, there comes a temperature at whi
G0kz;v and if k ~temperature! is further lowered, the re-
sponse cannot change any more and we have the dyn
scaling result@11#

CV~v,k50!5C0

~2 iv!2a/zn21

a

n

. ~17!
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The passage from Eq.~16! to Eq. ~17! is determined by the
scaling functionF(v/G0kz), such thatCV(k,v) can be writ-
ten as

CV~k,v!5C0

k2a/nF~V!21

a

n

, ~18!

whereV5v/2G0kz and V@1, F(V);(2 iV)2a/zn to re-
produce Eq.~17!. These results are general. Similar arg
ments give rise to the frequency dependence of shear vis
ity @12–16#, which has been experimentally verified.

The simplest form ofF(V) which is inspired by an ex-
ponentiation scheme due to Nicoll@4# for the wave-number-
dependent specific heat is

CV~k,v!5C0

k2a/n@12 ibV#2a/n21

a

n

, ~19!

whereb is a number of order unity, which can be fixed fro
the low-frequency ~linear! behavior in V or the high-
frequency behavior. In this case, we imagineb determined
by the low-frequency expansion of the diagrammatic per
bation series forCV(k,v). Expanding Eq.~19! for V!1, we
find

al5b
a

n

v

2G0kz

a

n

k2
a

n
21

.b
a

n

v

2G0kz

1

ln
1

k

for
a

n
!1.

~20!

From a one-loop calculationb(a/n)54/3p. Comparing
with Eqs.~1!, ~11!, and~12!, we find

RB5
4

3p

1

ln
k0

k

. ~21!

This is the principal result that we wanted to show.RB is not
a strict constant, but has a weak dependence onk through
the logarithmic factor.

Does the data of Roe and Meyer support this factor?
Fig. 2 we explore this issue. What is shown in Fig. 2~a! is the
plot of al vs v/G0kz, with z531xh ~Fig. 1 hadxh50). In
02220
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Fig. 2~b! we show the same set of data points, now plot
againstv/G0kz ln(k0 /k). The improvement in the quality o
the straight line is visually obvious. While this is not concl
sive in any way, it is certainly an issue that can be probed
future measurements.

FIG. 2. Attenuation per wavelengthal vs the reduced frequenc
in the ‘‘hydrodynamic’’ region. In ~a! we show al vs V
5v/2G0k31xh using the same data points that were used in Fig
In ~b! we showal vs V5v/2G0k31xh ln(k0 /k) for the same set of
data points as in~a!. The quality of the straight-line fit is improved
over that in~a!.
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