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Zero-frequency critical bulk viscosity: Is the amplitude ratio truly universal?
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It was shown by Onuki that the zero-frequency bulk viscosity is associated with a universal amplitude ratio
that was calculated to be around 0.10. We show that the sound attenuation data can be used to extract a value
for this universal number and we find this number to be around 0.18, reasonably close to Onuki's estimate.
However, we argue that a reconsideration of this amplitude ratio shows that this ratio is not truly universal. It
has a logarithmic correction instead.
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It was shown by Onukjil1,2] that the zero-frequency bulk o V 5P
viscosity g diverges near the liquid gas critical point. Fur- —_—=——, 3
ther, it was established that if the critical point fluctuations g Po
decay with a relaxation ratB=T"g¢~ C%2) where¢ is the
correlation lengthx,, is the small viscosity exponent, aj
is the zero-frequency sound velocity, then there is a univers
combination given by

where §p and P are fluctuations in density and pressure
bout a constant background. In terms of the density and
ntropy fluctuations
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] . ] whereks=(dP/dp)s is the isentropic bulk modulus.
From ane expansion Onuki found th&g is to be 0.087 and A time derivative of Eq(3) yields

from a three-dimensional calculation he found it to be 0.13.
The points that we want to make in this note are as follows.

(i) The ultrasound attenuation data of Roe and M¢@ér 20 . (oP\ 1 .
yield a value ofRg (with x,=0) which is fairly close to the —2=V(KS(V-U))—V(£) —d6S (5)
value predicted by OnuKil2]. ot pPo

(i) The bulk viscosity is related to the frequency-
dependent specific heat and using an exponentiation due

Nicoll [4] for the scaling function of the specific heat, we . . . > .
show thatRg is not truly universal. There is a logarithmic Kirchoff damp_mg[?], Wh'c.h we will ignore here. Th? first
ferm on the right-hand side is the sound speeddfis a

correction and we show that the data of Roe and Meyer offe tant. This i v t t when th e |

some support for this logarithmic factor. From the data it isCOns aln : tIS 'tIS ggtr)er? y .rltJeNexcept)h W e_? Ie SYi ?rr? IS

impossible to say at present whether it favors the universalit ery close 1o Its critical point. INear the critical point the
elaxation of the density fluctuations is very sl$¢&;9] and

of Rg or the logarithmic scale breaking that we believe ex- .
ists. Accurate measurements of the zero-frequency bulk vist-he frequency of the sound can resondR] with the decay

cosity would consequently be very helpful to resolve therate of the de_nsny fluctuations. This gives rise to a frequency
issue. dependence irg that now has real and imaginary parts and

Since bulk viscosity is a slightly nonstandard concept, wesan be written as
will explain our point of view in a somewhat detailed man-
ner. We claim that bulk viscosity will be generated from the
pressure gradient term when the relaxation between pressure
and density fluctuations is correctly handiggl. It is the With the above discussion in mind, we can now write Eqs.
delayed response of the density fluctuafi6hto an imposed (2) and(3) as ’
pressure fluctuation that causes the damping of séapart
from the purely Stokes dampingrhis means that apart from #p )
the Stokes damping, all other damping should emerge from L _poﬁ.gzﬁ.(ﬁgp): ksV25p. (7)
the two linear equations at?

{lgwe second term on the right-hand side of the above equation
IS a damping term and can be shown to give rise to the

Kks= Kgti wKiSm . (6)

P The term in the right-hand side of E({) leads to damping
— Sp+po(V-0)=0 (2)  because of théw factor in Eq.(6) and defines the bulk
ot viscosity as

and 7(w)=pKd(w). ®)
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FIG. 1. The plot of attenuation per wavelength vs reduced

frequencyQ = w/2T yx° for O <1. We have ignored the small ex-
ponentx,, in the relaxation rate. The slope is seen to be about 0.18.

The dispersion relation that we get from E@) is

w?=CU%+iwk'Mk?, (9)
where C2= k(). Writing o= Cg(k;+ik,), equating real
and imaginary parts in Eq9), and remembering,<k;, we
find, w?=C¥i+iwnd=CHki—k+ 2ik kp) = C2k]
+2ik,k,C3, which leads tdk, /k,= wka"/2C3. The attenu-

ation per unit wavelength is, and hence the attenuation per

wavelength is

im
ky wks
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This attenuation comes entirely from critical fluctuations.

For very low frequency, i.ep<I'g«? we expect the at-
tenuation to be linear in the reduced frequergy’ x> and
hence

w

2T ok’

(11)

a) = Qg

where «q is a constantx=¢"1, and z=3+Xx, is the dy-
namic scaling exponent. As a first approximati@orrect to
lowest order ine=4—D, where D is the dimensionality of
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We now note that near the critical poift., the sound
speed can be written as
aP\?
aT

-V
chv

Ci=T (13
where Cy, is the constant volume specific heat. This is the
only critical quantity in the above expression. Bgthlone
phase regionand (@P/JT)y are noncritical. The response
function which is the specific heat exhibits a lagging effect
near the critical point and hen€g, is frequency dependent.
Consequently, we can write

Cy=Cl+icin (14)

and the use of Eq$13) and (14) leads to

7.
Ty ey
p* (CL)P+(CY)?

sinceCl"<C!,,

.
Iy Cy-icy
p?(CY?

W Ci=w?/k?=(w?/k?(1—2ik,/k;)] and comparing
with the previous form, we get

C&=T

k, 1CV

)

We now need to discuss the scaling behavio€ef At zero
frequency the specific heat diverges near the critical point as
£ wherea is a small exponentfor the gas liquid critical
point «=0.11). Thus,

—alv__

Cy(w=0,k)=Co—— (16)

At finite frequency, the response is limited by the finite fre-
quency as one approaches the critical point. As we lower the

space, we dropx,, and plot the low-frequency data of Roe value of, at a finitew, there comes a temperature at which

and Meyer in the forma, vs Q=w/2l'yx* The result is

I'ok*~w and if k (temperaturgis further lowered, the re-

shown in Fig. 1. The plot is quite linear and bears out oursponse cannot change any more and we have the dynamic

expectation. From equations Edq&l), (10), (8), and(1),
RB: ag. (12)

The slope of Fig. 1 yieldsy=0.18. The lowest-ordes ex-
pansion of Onuki yields 0.087 fdRg .

scaling resulf11]

(_iw)fa/ZV_l

Cy(w,k=0)=Cy (17)
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The passage from Eq@l6) to Eq.(17) is determined by the 0.06 1

scaling functiorF (w/T y«%), such thaCy/(«,®) can be writ- ° o
ten as 7
Ve o
—alv <
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where Q= w/2l' gk and 0>1, F(Q)~(-iQ) " tore- & | p/m a 0.5
produce Eq.(17). These results are general. Similar argu- ® 'y o 1.0
ments give rise to the frequency dependence of shear viscos 583/ a 15
ity [12—16, which has been experimentally verified. 1 .= v 3.0
The simplest form of- () which is inspired by an ex- f ° 35
ponentiation scheme due to Nico#] for the wave-number- °-°°00 A y "
dependent specific heat is @ - ' '
o2f’™  (Dimensionless)
K—alv[l_ iIBQ]—o//V_ 1
C\/(K,(D) = CO y (19)
o <
- o
v 0.05- )
o .7
whereg is a number of order unity, which can be fixed from 6/ v
. A . . 7/
the low-frequency(linean behavior in ) or the high- o e
frequency behavior. In this case, we imagifedetermined g e v
by the low-frequency expansion of the diagrammatic pertur- & a q 7
bation series fo€y(x, ). Expanding Eq(19) for Q<1,we & ¥% Symbol Frequency (MHz)
find § oa”” o 05
< o
<1 /O o 1.0
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From a one-loop calculation3(a/v)=4/37. Comparing
with Egs. (1), (11), and(12), we find FIG. 2. Attenuation per wavelength, vs the reduced frequency
in the “hydrodynamic” region. In (@) we show «, vs Q
41 21 = /2l ok *» using the same data points that were used in Fig. 1.
B731 ko (21 In (b) we showa, vs Q= w/2l" k3" *7In(k,y/k) for the same set of
In » data points as iita). The quality of the straight-line fit is improved

over that in(a).

This is the principal result that we wanted to sh@&.is not

a strict constant, but has a weak dependence dhrough  Fig. 2(b) we show the same set of data points, now plotted

the logarithmic factor. againstw/T g% In(ky/k). The improvement in the quality of
Does the data of Roe and Meyer support this factor? Irihe straight line is visually obvious. While this is not conclu-

Fig. 2 we explore this issue. What is shown in Figp)ds the  sive in any way, it is certainly an issue that can be probed in

plot of @y vs w/T'y«? with z=3+Xx,, (Fig. 1 hadx,=0). In  future measurements.
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