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Recently, Kichler and MenschiStochastics Stochastics Reff), 23 (1992)] derived exact stationary prob-
ability densities for linear stochastic delay differential equations. This paper presents an alternative derivation
of these solutions by means of the Fokker-Planck approach introduced by Guilletgis. Rev. 59, 3970
(1999; 61, 4906 (2000]. Applications of this approach, which is argued to have greater generality, are
discussed in the context of stochastic models for population growth and tracking movements.
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[. INTRODUCTION The second part of this paper, Sec. lll, is concerned with
applications of the results obtained in Sec. Il. In particular,
Recently, there has been a growing interest in the effectivo models will be discussed that are well established in the
of noise on dynamical systems with delays. In biologicalliterature: a model for population growth, and a deterministic
systems, both noise and delays are inevitable. Noise is iminodel for rhythmic tracking movements under delayed vi-
manent in any open system involving up-take and dissipatiogual feedback. The former model will be extended to cope
of energy. Delays usually arise due to finite informationWith fluctuations and delays in the dynamics. The latter
transmission times. In this context, delayed visual feedback0del will be extended to account for motor variability. '?
systemg1—9], stochastic resonance and oscillator ensembleS€¢: Il we will also show how to analyze nonlinear SDDE'’s
with delayed interactiongl0—14, synchronization of human t_)y means of the stationary probability density derived for the
movementg 15], field theoretical models of brain activity linear case.
[16—23, and disturbed speech control due to delayed audi-
tory feedbackthe so-called Lee effect; see Reff§,24] and [l. STATIONARY SOLUTIONS OF LINEAR SDDE’S
references therejnhave been studied. Furthermore, as an
alternative to motor control models without deld@5-29, ) ) ] )
stochastic models with delays have been proposed to de- We consider the evolution of a dimensionless random
scribe postural swaj80—34. varlableg’('F’) def_med on 'Fhe real line. Heté denotes time
Despite a potentially wide range of applications for sto-measured in arbitrary unlted_eno,tec,i a_?TU,’). Let /I“’(t,’)
chastic processes with delays, the explicit structures of theflénote & Langevin force witdl' (t")I"'(s"))=o(t" —s'),
stationary probability densities have hardly been studied. Us\f"_he_re<'_> is the ensemble average Iar&j-) is the delta
ing stochastic delay differential equatiof@DDE’s), Mackey distribution[39-41] Furtherr,nore,_le.tr =0 denote the de-
and Nechaev35] and Kichler and Mensch36] succeeded lay. We now assume that (t') satisfies the SDDE
in identifying parameter regimes in which stationary solu-
tio_ns exist._K'm:hIer and Me_nsc_h _also obtained_ statio_nary SO-  —¢'(t')=— Y€ (1) —yaé' (' — 1)+ @F'(t’)
lutions for linear SDDE'’s with finite delays, while Guillouzic dt’
et al. derived stationary solutions for nonlinear SDDE’s in 1)
the limit of very small delays using a Fokker-Planck ap-
proach[37,38. In the present paper, the findings ofdtuer  for t'=t;, and &' (t")=®'(t’) for t’ e[ty—7',t5]. Here
and Mensch and Guillouziet al. will be combined in order y1=0, y,>0, andQ’>0 correspond to friction coefficients
to derive stationary probability densities for linear SDDE’s and the fluctuation strength, respectively!(t') describes
with finite delays by means of the Fokker-Planck approachihe initial condition of the stochastic process in terms of a
In general, the Fokker-Planck approach to stochastic prograph defined ofity— 7’,t,]. For the sake of convenience,
cesses is superior to the approach via stochastic differentigje eliminate the fluctuation streng@’ by introducing new
equations, beca_u_se only in _the former case can Stat_'ona%riablest::Q’t’, 7=Q 7, te=Q't), &(t)=¢'(t/Q"),
probability densities for nonlinear drift forces be obtalned.yl:: YIQ', yy=yhlQ', ®()=0'(t/Q"), and I(t)

For this reason, a theory of time-continuous stochastic pro- ", . : . .
) =" (t/Q")/yQ’. Now time is measured in unit§U
cesses with delays should preferably be based on the theo[—yTU’[Q’], where[Q'] denotes the units in which the fluc-

of Fokker-Planck equations. In order to develop such . ; .
theory of Fokker-Planck equations with delays, a first bu?uatmn strength is described. Then H@) can be trans-

. . . . ) ! .~ formed into
essential step is to discuss the linear case, in which stationary
solutions can be compared with those derived from the cor- q

responding linear SDDE’s. The first part of this paper, Sec. ag(t): — oy (1) — yoé(t— 1)+ (1) )

I, will be devoted to this subject.

A. Derivation of stationary probability densities
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for t=t, and £(t) =®(t) for te[ty— 7,tp]. In addition, we (”)(At) =(£"(1)E(t— At))g
have (I'(t)['(s))= 8(t—s). Kuchler and Mensch showed
that for natural boundary conditions ang>y,=0 a sta-
tionary solution of Eq.(2) exists if and only if O
<7'\/722— y21<arccos(— vily,)<ml2 [see Ref.[36] Egs.
(2.17) and(2.18]. In particular, fory;=0 we have the con- where PX?(x,t;y,t—At) is the joint probability density in
dition y,7e[0,7/2). To exploit also the results obtained by the stationary case. Using the identiB>C(x)PNE(y,t
Guillouzic et al. [37], we assume for the moment that the — 7|x,t)= stBC(X t;y,t—7) (also see Ref37], p. 3972, we
stochastic proced£q. (2)] is subjected to reflecting bound- can rewrite Eq(5) as

aries at+A. In this case, the process described by &Y.
solves the delay Fokker-Planck equation

- f J Xy PYES(x,y,t— Atydx dy, (6)

72 f y Pty t—ndy

(97) B J "

== yXPE0) =5 2 PEX). (D
J
=15 XPGH + 7’2_7)()( ) We now multiply the left and right hand sides of Eg) by
x", integrate with respect t®, and evaluate the right hand
1 4? side obtained by partial integration. This gives us
f y P(y,t—1|x,t)dy+= —ZP(x,t) (3)
K{P(At=1)= 77 XTI dx

for t=t,, whereP(x,t) denotes the process probability den- 2
sity, S*(x,t) is the probability current, anB(y,t— 7|x,t) is a y1 [ \Be
conditional probability density. BothP(x,t) and P(y,t - —f X"P A (x)dx
—7|X,t) are subjected to the initial conditioR(x,t)= &(x y2 e
—®d(t)) for te[ty— 7,tg]. The stationary solutiofP; of Eq. 71=0
(3) satisfies = KO(At=7,9,=0)==— ®

2y,

A 1 . .
ylxpgt(x)-y- szﬁt(x)f yp@t(y,t— T|X1t)dy+§&7)st(x) Consequently, fory;=0, the stationary 1:1 autocorrelation
A Kg%)(At) for At=ris reciprocal to twice the friction coeffi-
— — SA=const. 4) cient y,, irrespective of the delay length This result was
previously derived by Kehler and Mensch, who used an

approach different from the Fokker-Planck approach pre-
We have not been able to solve Hd) with respect to sgrﬁ)ted herél71]. PP P

Ps(x) for finite boundariest A. However, as we will show
below, a solution can be found in the limk—o. For this
reason, we solve the SDD®) for natural boundary condi-
tions (NBC's). To this end, we assume that if the stationary
solution PYEC of Eq. (2) exists, it can be derived as the
distribution Pg(x) in the limit A—c. This implies that

We now solve Eq(5) with respect toPN°“(x). To this
end, we consider Eq5) in the form of Eq.(7) and—in line
with the work of Kichler and Mensch, who showed that the
stationary solution of the Eq(2) is a Gaussian process
[36]—we use the ansatz

PNBC(x) solves the integrodifferential equation N(7)
PYEC(x) = —exp{~\(7)x%, 9
Y PY00+ 3P0 [y Py -y —
PREC(x tly, t— 1) = \/Texp{—a(r)[x—b( 7Y%,
- NBC NBC_ 10)
+5 Pt () =—8"¥=0. (5 (
PREC(x,ty,t— 1)
Note that the stationary probability curre8YE® vanishes,
NBC(y_ _ ot . va(r)N(7)
ggg;e\use we havBg~ ~(x— *£%)=0 (a normalization condi _ - exp{—a(m)[x—b(r)y]2—r(P)y3}.
Before solving Eq(5) with respect taP §>“(x), we would (11)

like to stress a fundamental property of E§), which will

support the validity of our approach. Let us define the staNote that this ansatz involves three coefficientsa, andb
tionaryn:1 autocorrelat|on<(”)(At) of the random variable which, in general, depend on the detayBy substituting Eq.
&(t) forn=1 by (9) into the right hand side of Eq7), and Eq.(11) into the
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left hand side of Eq(7), and by carrying out the integration ishes. Consequently, the Gaussian distribufi®g. (9)] con-

with respect toy, we obtain(see the Appendix

a¥ an
—————xexp — X
72(ab2+ \)32 ab?+\

=(N—y)xexp — Ax?}.

12

Equation(12) is satisfied for alix e R if the factors and ex-
ponents of both sides coincide. Consequently, we find the

conditions

a3/2b

=\A—7y, andab’+x=a. (13

72 (ab?+ )2

Using Eg.(13), we can expresa(r) andb(7) in terms of
A\ (7) and obtain

N(7) AT =1
a(T)= m and b(T)= T
Y2
(14

According to Kichler and Mensch, foty,> y,=0 the vari-
ancecd?(7) of the process given by E@2) reads

Y28V Y= vin v~ 74
2y vi-[yat+ vacodVy;— vi7)]
with 0< 7'\/722 y21< arccos(- v,/ y,)<; see Ref[36] Eq.
2.28. Note that fory,>vy,=0, and y,=v,=0 equations
similar to Eq.(15) can be derived. Since?(7) is related to
N(7) by o®(7)=1/2\(7), we can therefore expresg ) as
VY5= 7171t v2cod Vv~ ¥i)]

Y2 Sin(Vy2— ¥17) +N Y2~ 71

o?(7)= (15

NGE (16)

verges to a uniform distribution.
In the previous derivation we assumed that Ed) rep-
resents a stationary joint probability density. That is,
PEEC(x,t;y,t— 7) satisfies

f PEEC(x Ly, t— ndx=PXy) and

J PNEC(x,t;y,t— 7)dy=PNEC(x), (18)

WherePSNtBC(-) is given by Eq.(9). The first relation can be

immediately verified. The second relation, however, is only
satisfied forab?+ A\ =a, as can be shown by detailed calcu-
lations similar to those carried out in the Appendix. Conse-
quently, we again encounter the condition on the right hand
side of Eq.(13). Using this condition, we can eliminakein

Eq. (11), and obtain

NBC(x, by, t—7)=

a(t)yl— b2( 7)
n
X exp{—a(7)[x2+y?—2b(7)xy]}.
(19

We now return to the calculation of thel autocorrela-
tion [Eq. (8)] for v,=0. Substituting Eq(9) into Eq.(8), for

Let us briefly discuss the results obtained so far. In thqn particular, we obtain

limit of a vanishing delay, that is, for—0, we obtain

N(0)= v+ v, b(0)=1, anda— . The corresponding sta-

tionary solutionPY>(x) with A(0)= y,+ 7, coincides with

the stationary probability density of an ordinary Ornstein-
Uhlenbeck process. Furthermore, the conditional probability

density [Eq. (10)] converges to as-distribution, that is,
lim e PAEC(x, ]y, t— 7) = 8(x—Y). Similarly, the Jomt prob-
ability density[Eqg. (11)] converges like Ilmwﬁ'g‘t (x,t;y,t
—7)=8(x—y)Py>(y). Consequently, Eq7) reduces to

(71+ ¥2)XP ()= =5 aXPNB% ), a7

2

which is a well-known expression in the theory of ordinary

Ornstein-Uhlenbeck processes. For small detagnd vy,
=0, we can expand (7) given by Eq.(16) into a Taylor

series, and thus reobtain the results obtained by Guillouzic

et al. (Ref.[37] Eq.(31)). From Eq.(16) it follows that in the
limit 77 arccos(- 71/72)/\/722— 721 the coefficient (7) van-

=0 we obtain
KO (7;9,=0)
0 forn even
= n[135(n_2)]
1,200 D12\ (1) (=12 for n odd.
(20
K(ry1=0)=((D (=)
2
2 Y2 (1)
3[1+si
_3L+sinty,)] o1

4 ycog y,7)

Using Eq.(11), we can also determing m autocorrelations
C(mM(At) for At=r defined by

CHM(n):=(E"(VEM(t— 1)
fﬁ Jl XMyM PNEC(x,t;y, t— 7)dx dy.

(22

For example, fory;=0, the autocorrelatio€?'?)(7) reads
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FIG. 1. Variances computed from the time-discrete stochastic FIG. 2. Shifted fourth moments computed from the time-
delay equatior(26) (diamonds and from Eq.(15) (solid line) for ~ discrete stochastic delay equati¢26) (diamond$ and from the
different delaysr. A singularity occurs at the critical delay=1.  Fokker-Planck approach solutigsolid line) given by Egs(9) and

(16) for different delaysr.

| 1 3b3(7)
Cgf'z)(T; 71:0)=<§2(t)§2(t_7')>st:4a(7.))\ -

T +— =712, which implies a critical delay.= 1 [cf. our comment
T AN(T) following Eq. (2) abovd. Our simulation was based on an

(23 ensemble oN=10000 realizations of,,. As an initial con-
dition (the graph defined oh— 7,0]) we used a series of
.2 2 i random numbers selected from a Gaussian distribution with
=[c?(1)]*+—. (24 L
275 unit variance. The random numbeng, were calculated by

means of a Box-Muller algorithm. For each realizatiorépf
Note that to obtain Eq(24) from Eq. (23), we usedo?(7) we iterated Eq(26) n;=5000 times, assuming that the set
=1/2\(7) and Eq.(14). {&n,} would reflect the stationary behavior of the ensemble.
The stationary solution of the stochastic procss. (2)]  From the ensemblf,, } we calculated the meavl g ym, the
. f ,
give dn by quS'(g)_(ﬁl) and Eqs.(14)| a'."d(l‘? ﬁan also ble varianceo?,,,, and the shifted fourth and sixth momefitg]
used to describe the stationary solution of the original sto-, .. '
y J defined by My pum=([&n,—(£0)]%) and Mg numi=([£n,

chastic procesgEq. (1)]. To this end, we substitute the vari- 6 ! T
ablesy,, v, and 7 by y,/Q’, y4/Q’, and Q' ', which —(én1°). The diamonds in Figs. 1, 2, and 3 represent the

gives us numerical results forrﬁum, M4 num: @ndMg m for different
delays.
1 \/752_ 3’12'[7’i+ ¥4 cog ‘/Yéz— 7127-')] According to the Fokker-Planck approa@®PA), the sta-
N7 )=— , tionary solution is a Gaussian distribution. Consequently, the
Q' yhsin(Vyh2— yi2r )+ 2 — v, shifted moments can be expressed in terms of the variance
0'2: M 4,FPA: 3[(7'2]2 and M 6,FPA: 15:0'2]3, Whel’602 iS de'
A7) Q'N(7)—7v} scribed by Eq(15). These analytical results are depicted as
a(r')= 5, b(r)=——— solid lines in Figs. 1 ¢?), 2 (M4 epa), and Fig. 3 Mg rpa).
( Q'\N(7")— 71) Y5 By comparison, we realize that the numerical simulations of
1_ -
Y2 501
(25)
’ [ ! ! ’ 401
for 0=r \/'yzz— y12< arccos(yi/y,) <. z
. §301
B. Numerics €
<
In line with the Euler method for ordinary Langevin equa- L20
tions[16,41,43, we discretized the SDDR) in terms of a %
time-discrete stochastic delay equation %40
€ne1=Ent A(niént Yobn-m)+ VAW, =0 (26) Beee

04 06 08 1
(see also Refl43] Sec. 5. Accordingly, time was measured delay [Tul
in steps ofA (i.e., t=iA and 7=mA) and the fluctuation FIG. 3. Shifted sixth moments computed from the time-discrete
force was approximated by the random numbeys We  stochastic delay equatiof26) (diamonds and from the Fokker-
usedA=0.01, and focused on the effect of the delay term,Planck approach solutiafsolid line) given by Eqs(9) and(16) for

that is, we puty;=0 and y,#0. In detail, we usedy, different delaysr.
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[2] - -
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5 b O
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= 8

%0.8- 5

067 3 6]

0.4 g

g 0.2 ~

c d N o]

g o0

@ 0.2 0.4 [0 0.8 1

£ delay [TU]

0 02 04 06 08 1
FIG. 4. Circles denote mean values obtained from the time- delay [TU]

discrete stochastic delay equatid@6) for different delays 7. _ ) _
Crosses and diamonds correspond to the rad§ /M, gpa and FIG. 6. Comparison of the 2:2 autocorrelation obtained from
Mg num/ Mg pa, TESpectively. See the text for details. numerical simulationgdiamond$ and from the Fokker-Planck ap-

proach solution24) for different delays.

the delay Langevin equatiof2) are in agreement with the .
Fokker-Planck solutiopEq. (9)] derived from Eq(5). Fig. 4  °(7) [cf. Eq.(23)], and can only bﬁBgetermmed by means of
shows the meaM o, Of the set{¢, } (circles as well as the explicit ansat{Eq. (11)] for Po™(x,ty,t—17) [cf. Eq.

H 2:2 2 £2 H
the ratiosM 4 pym/M 4 gpa (Crosses and Mg um/ Mg rpa (dia- (22). In detail, we CompUte@gum)::@nfgnrm) usmg our
monds. Both ratios, M num/ M. roa a0 M g nur/ Mg pps, are  Simulation scheme[Eq. (26)], and calculatedC{2) by
close to unity, WithMg /Mg epa having larger deviations means of Eqs(15) and (24); see Fig. 6. Again, theoretical
from unity thanM n,/M4 rpa. Figure 5 shows the 3:1 au- and numerical results were found to be in excellent agree-
tocorrelation Eq. (21)] computed from the time-discrete sto- ment.
chastic delay equatiof26) as((gnf)?’fnf,m} (diamond$ and
from the analytical Fokker-Planck soluti¢ig. (21)] (solid [1l. APPLICATIONS AND SPECIAL NONLINEAR CASES
line). Again, analytical and numerical results were found to
be in good agreement. The 1:1 autocorrelatgp &, - m)
was also computed and found to be approximately constant

with (&, &, _m)~0.31 for all delaysre[0,1), which is in In many cases, the evolution of the size of a population is
ot determined by two contrasting effects. On the one hand,

small populations typically grow exponentialiialthusian

: ) . law). On the other hand, when approaching critical popula-
densﬂyPﬁBC().() [see Eq.(9)],' and thenh.l%cautogorrelatmns tion sizes growth rates of populations usually decréaatu-
[Eq. (20)], which can be derived from®g™"(x) via EAs.(7)  ration effect and population sizes converge to stable station-
and (8), irrespective of the explicit structure of the joint ary yalues; see, e.g., Refel4,45. A prominent model that
probability densityPs”(x,t;y,t—7) given by Eq.(11. I can account for these observations is given by
order to verify the explicit structure oPNeC(x,t;y,t—7)
and, in particular, the parametexér) andb(7) described by d , ) ) L
Egs. (14) and (16), we studied the 2:2 autocorrelation EN(t )=KN(t")G(N(t")) for t'=ty,  (27)
C2)(7,y,=0), which involves the parametee(r) and

A. Stochastic time lag model for population growth—
weak nonlinearities and strong noise

line with Eq. (8) for y;=0 andy,= /2.
So far, our simulations verified the stationary probability

andN(tj) =Ng>0, whereN denotes the population sizk,

>0 is the so-called intrinsic rate of increase, @) with
G(z*)=0 for a particular z*>0 describes the self-
regulation of the population dynamics leading to a saturation
effect and a stable stationary population sikg=z*
[44,46,47. Two special cases are worth mentioning: the lo-
gistic model withG(z):=(1—z/z*) [44,45 and the Gomp-
ertz model withG(z):=—In(z/z") [46—48. They can be
viewed as special cases 6f(z):=[1—(z/z*)*"9/(1—q)

for g=0 andg—1 [49]. Fluctuations of the population dy-
namics can be modeled in various ways. For example, it has
. . . . been suggested to consider extendisige-dependeptran-
0'4de|ay0'6 O'B[TU] ! dom forces which leads to

4

3:1 autocorrelation
v @

—_
1

VAN

o

02
FIG. 5. Comparison of the 3:1 autocorrelation obtained from
numerical simulation¢diamond$, and from the Fokker-Planck ap- —N(t")=k N(t")G(N(t"))+ Q' N(t")T'(t"), (28
dt’

proach solution21) for different delays.
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whereI''(t’) denotes a Langevin fordd6,47,5Q or repre- Ws(N)AN=Pg(X)dx=Ws(N)
sents a Poisson procefs8], and Q' corresponds to the

strength of the fluctuations. In line with Sec. Il, in this paper, 1 N

I''(t") is assumed to be a Langevin force. The multiplicative :Npst '”Z_*

noise term can be interpreted, for example, as evolutionary

disasters proportional to the population si¥d48] or as a 1 N[N =\(7")In(N/Z*)

random contribution to the growth functio® (i.e., kG =~/ — , (32
—kG++Q'T’) [50]. Note that the stochastic process de- N T |z

scribed by Eq.(28) is subjected to mixed boundary condi- .

tions, that is, we have a reflective boundary at the originWlth

(N=0) and a natural boundary fdd— . The evolution k cogkr')

equation(28) suffers from the tacit assumption that the ef- A7) —— ———— (33
fective growth ratekG is determined by the instantaneous Q'[1+sin(kr")]

population sizeN(t), that is, KG=kG(N(t)). In general, ) )
growth rates depend on the histories of populations whictfnd lIMy_oWs(N) =limy_.Ws(N)=0 for A>0 and k7’
implies that we have to repladeG(N(t')), for example, by (63%3177/2)- In aﬁrtICUIaritfo[)I":Od(lbe.,(;(z!;I?TT/RQ;) [45731

t/ ;L ay , recovers the result obtained by al. (Ref. ,
K[-.N(a)s(t'~a)da  [46,50 or by kfale(N(t 2.208. We can now study the effect ef on the population
—a))s(a)da [47] with a,>a;, wheres(z)=0 weights the  dynamics. To this end, we consider the mean stationary
contributions ofN(t"), and the integrals are often called Vol- population size
terra integrals. When simplifying the \olterra integrals, we

arrive at population dynamics models with constant time lags M) (=] N —\(7")In(N/Z¥)
involving growth functions of the formkG(N(t'—7")), (N)(7")=1/ f -~ dN
where the delayr’ may be related to the so-called egg-to- T Jolz
adult time(or maturation or generation time44,47,53. In- NG
serting this assumption into E(R8) we obtain = /_f exp{—N(7)[In(N/z*)]2}dN.
T Jo
‘ KN(t")G( NH+VQN)I () =
—N(t")=KkN(t")G(N(t"— 7"))+ VQ'N(t")I''(t").
dt’ (t) ( ( GRGEIE Differentiating({N)(7') with respect tor’, we obtain
(29)
d d{N)(\) d\(7")
: —(N)(7")=—— , (35
To study the effect of the delay lengtti on the population dr’ dA dr'

dynamics, we will use the Gompertz term because this al-
lows us to use the result derived in Sec. Il. Since otBGer d(N)(\)
functions, such as the function of the logistic model, are =-

(N) +me[In(N/Z*)]Zwst(N)le<O,

qualitatively similar to the Gompertz function, the findings oA 2\M(T")  Jo
obtained in the following may also carry over to other popu- (36)
lation dynamics models. For the Gompertz term, E2p) ) ,
reads dn(7") kT [1-sin(k7')]
=— - 7'<0 for 7/>0. (37)
dr’ Q'[1+sin(k7")]?
d N(t'— 7' ; "o ;
—N(t")=—kN(t)In ( . ') + \/aN(t’)F’(t’). We can apprgmate fro.m Enj37) that)\(.r ) isa monotoni-
dt’ Z cally decreasing function for’>0, which is in agreement

(300  with our observation in Sec. IIB that the varianee
=1/2\ increases when the delay length is increased. From

Following Refs.[47,48,5Q, we introduce the new variable E?:r éii)e’sitr:;igt]ﬂi?:gﬁy?:ft;h(;a Egﬁpepfgﬁﬁj:?hzi%% b
"(t"):=In(N(t")/z*) for &' € R, and transform Eq(30) int - . ' el
¢'(U):=In(N(t')/z") for &" < R, and transform Eq(30) into ability densityWg(N) for several delays’. We appreciate

that an increase of the time delay [which implies a de-
d o - crease of the decay coefficient cf. Eq. (37)] results in a
55 (t)=—K& (t' =)+ QT (t). (3D shift of the positions of the peaks of the distributiang(N)
toward the origin. In addition, the tails of the distributions
become more pronounced for larger delays; see Fig. 8. As a
Consequently, the stationary probability dengity(x) of the  net effect, there is an increase of the mean véNig cf. Egs.
processt’ exists forkr’ e[0,7/2), and is given by Eqg9)  (35—(37).

and (25 with y;=0 and y,=k. Furthermore, ledVg(N) In sum, the stochastic Gompertz model with delay has
denote the stationary probability density of the SD3B). illustrated that we can take advantage of the stationary prob-
Then, W¢(N) can be derived fronPg(x) by means of ability density derived in Sec. Il in order to analyze nonlinear
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FIG. 7. Probability densitie3V(N) computed from Eq(32) FIG. 8. Probability densitie3Vs(N) as in Fig. 7, but forN
for several delays’ and k=m/2, Q'=1 andz*=1. From this  €[0,4].
follows a critical delay ofr,=1. Population size®\ are depicted

here in dimensionless units. spatio-temporal pattern is often accompanied by an increase

in pattern variability in subcritical or pretransition parameter

SDDE's, provided that the nonlinearities are weak in thereglmes[18,58—63. In this section, we will discuss the pre-

sense that we can transform the nonlinear equations into ”nt_ransition variability of a system that is known to exhibit
q elay induced transitions from fixed point behavior to oscil-

e?rﬂ?neas.l In add|ttr|]on, we have olb?_erveql an |mpor|tanttheff_eq tory behavior: the human motor control system involved in
of the delay on the mean population size, namely, e Ny, piman g tracking tasks with delayed visual feedback. To
crease of the mean population size when the time delay I$his end, we will analyze a theoretical mod@l, which was

increased. found to be in good qualitative agreement with experimental

N o _ _ findings[8].
B. Pretransition variability of trgcklng .movements Wlth. In unimanual tracking tasks, subjects look at a screen and
delayed feedback—strong nonlinearities and weak noise watch an oscillating target signal. They can move their arm

The increase of time delays in systems with feedback conor hand, and in doing so they can produce a second signal on
trol can destabilize system states. In several instances, traile screen—a manual response signal. The displacement of
sitions from a stable fixed point behavior to an oscillatorythe manual response signal corresponds to the displacement
behavior can be observed when the delay time or the gain ¢¥f the limb that has to be moved. The task is to match the
delay feedback loops is increased; for example, in semicorfesponse signal with the target signal. The manual response
ductor laser with optical injectiof53], in population dynam- signal is displayed on the screen with a particular fixed delay
ics [44], in the human pupil light refle3], and in tracking  7ex. The tracking movement can then be studied for various
movementg8]. In general, the reduction of the stability of a oscillation frequencie$) of the target signal and for differ-
spatiotemporal pattern exhibited by a system due to changesnt delaysr,;.
of system parameters can be studied both from deterministic Tass et al. developed a deterministic model which de-
and stochastic points of view. In the former case, destabiliscribes the evolution of the relative phagebetween the
zation is revealed by qualitative transitions between charadarget signal and the limb movemet]. According to this
teristic spatiotemporal patterns as mentioned aljbde-57. model, the change of the relative phageer unit time de-

In the latter case, the reduction of the stability of a particularpends on two terms

d , ) , QT') ) ., ar
Wd)(t )=—asin| ¢(t )_T —Bsm(d)(t —T)+T

(38

I 14

with >0, >0, and7’ ~ 7/ (also see beloy The nonlin- asymmetric force-velocity characteristics of eye muscles
earities occurring in E¢(38) are consistent with neurophysi- play a crucial role in the control of eye movements. Such
ological findings. First, in the study of human eye tracking itasymmetric characteristics, in turn, can hardly be explained
was argued that human pursuit systems are more than linebr terms of linear model§65]. Furthermore, to account for
response systems, and that nonlinearities contribute esseexperimentally observed asymmetries of velocity profiles of
tially to the dynamics of these systerf®4]. In a similar hand movements, Bullock and Grossberg introduced a non-
vein, observations of eye movement trajectories indicate thdinear element in their neural model for the control of goal-
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directed movements: a gain signal that interacts in a multiselves to the discussion of the stationary case for weak fluc-
plicative fashion with another neural sigri@6]. As shown tuation forces. More precisely, as suggested in the
in Ref.[7], term | describes the proprioceptive control of the deterministic case with deldy,46,47,69, in the stochastic
tracking movement, and affects the change of the relativease without delayRef. [41], Sec. 5.10 and in the general
phaseg instantaneously, whereas term |l describes the effecstochastic case with deld®5], we consider linear SDDE’s

of the visual control. In the time argument of this expressionas approximations of nonlinear SDDE’s. Consequently, we
we find the delayr’ that was originally proposed to be equal calculate first from Eq(40) the stationary solutiorp, for

to the artificial delayr,,,. However, the model by Tagt al.  Q’'=0, which satisfies

does not incorporate intrinsic delays of the visual and prop-
rioceptive system, which are in the order of 60 ms for eye
movements[64] and in the range of 30-90 ms for limb
movementg§67,68. Since in the tracking experiment the ar- ] o ]
tificially introduced delayr,,, was gradually increased from and is explicitly given by

To= 0 in steps between 25 and 50 i@, we need to take . , . ,

possible interactions between intrinsic delays and the artifi- arctar{ a SIN(Q 700 10f2) = B SIN(Q Tyis 10 2) ]
cial delay into account. To this end, we introduce the effec- a o Q 7505 10f2) + B COL Q g 10/ 2)

tive delaysrys oy aNd 7o, o that describe the total delays of (42
the proprioceptive and visual systems, respectivfdy an . . . .
analogous situation, see Ré8]). Accordingly, we modify Next we linearize Eq(40) with respect togs, and obtain
Eq. (38), and obtain

!
Q Tvis,tot

Q7!
a sin( bsi— %’mt) =—pBsin

d
E%(t’)=—y1§(t’)—yé§(t’—Tcis,tot)Jr JQ'T(t'),

d , . , Q T;,)rop,tot
ekl >=—asm( p(t')— —P2 (43)
s with
—Bsinl ¢t — Tl o)+ —22. (39 ,
' 2 , Q Tprop,tot
y1:=a@ CO§ pg— T and
We assume thaty;s o and 7,4, 1o @re positively correlated (44)

with the artificially introduced delay,; (i.€., d 7y 1of d ey Ol o
>0 andd ., of d7e>0). Since we aim at a discussion of Y2i=P COS{ bt —5- )
motor variability, we extend the deterministic model with a
white noise forcd’(t") with a fluctuation strengt®’. Thus  and E(t"):=¢(t')— ¢g. Furthermore, from Eqs(41) and

we obtain (44), it follows that y,*— y;%= 8%~ a?. In Sec. Il we have
q a0, argued that the inequality5>y;=0 should hold. Conse-
—p(t)=—a sin( H(t')— M‘) quently, here we assumg>a= y,>0/\y,>y; and 2p
dt’ 2 — Q1 o€ [ — T2,m12]=y;>0. The stationary probabil-

ity density of£(t') described by the linearized equati@tB)

Q7 tot is gi i 2 ’
O ot L Ot is given by Eq.(9) [73]. The variancesr* of £(t’) can then
B <¢( Tyis to! 2 Q) be derived from Eq(25), and reads

49 1 C 7O+ %008Cr ]
Note that more elaborate discussions involving colored noise 252 _)‘_a v, SINC7 ) +C '
forces may be carried out by extending the dimensionality of 2 Isitot
the problem[3,35,41. In order to obtain some fundamental Ci= \/m_ (45)

insights into the effect of the artificial delas.,, on the vari-
ability of the phase dynamicfEq. (40)], we confine our- The decay coefficient varies with 7, according to

d _ 7£2C2[ 1+ SlIl( C T\’/is,tot+ 0)] d T\,/is,tot + ﬂ d 7£( T;,)rop,tot’ T\,/is,tot)
d Téxt Q'[ ')’é sin(C T\,/is,tot) +C] * o d Téxt d ')’é d Téxt (46)
A<0 B

with tan@:=+[ y5/C]?—1. On account of the impact of th term, the variance might increase or decrease wignis
increased. However, if thé term can be neglected with respect to fherm, then the increase of the variance with increasing
delay is guaranteed; that is, we obtain
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d
dr!

ext

A<0 = a?>0. (47

A7
In particular, for small delays and target frequendies, Q7 ,7~0 andQ 7 ,~0) we find ps~0, y;~a, andy,~B.
Then, it follows from Eq.(44) that

' ' '
d d)st( Tprop Jtot? Tvis,tot) Tvis Jtot

dr!

ext

et ' QF
d 72( Tprop Jtot? Tvis,tot) _ . Tvis,tot
; =—sin d)st+ 2
dr,

ext

d
+ ~0. (48)
dr.

ext

~0

Consequently, for small delays and low tracking frequenciesef K ()(At) for arbitraryAt. Therefore, future studies focus-
the B term can be neglected. In this case, Ef) reduces to  jng on SDDE-independent derivations of stationary solutions
of linear delay Fokker-Planck equations need to follow ap-
d \ BZC2[1+SIN(Crig 1ort 00) ] A7y 1o 0 proaches different from the SDDE approach.

;T / . ' / ’ As already stated in Sec. |, in general, stationary probabil-
dText Q [,3 Sm(CTvis,tot) + C]Z dText y 9 y P

ity densities of nonlinear stochastic differential equations can
only be derived indirectly using the theory of Fokker-Planck
equations. Consequently, delay Fokker-Planck equations are
the necessary tool for obtaining stationary distributions of
nonlinear SDDE'’s. In addition, following van Kampg&no0],

the derivation of evolution equations of stochastic quantities

In sum, we demonstrated explicitly the application of the. :
. . . in two complementary wayqusing SDDEs and dela
concepts of delay Fokker-Planck equations to linearized S Fokker—PIancFI)< equatiob)llsan )fllelp us?to uncover further dg-

DE's. As an (_axample, we use_d a SDDE that desc_nbes UNEails of the stochastic processes under study. For example, for
manual tracking movements in terms of the relative phasc?]>1 from the SDDE2) it follows that
between the target signal and the limb movement. In line

with the deterministic model that shows that the stability of

(49)

with tan6éy:=a//B?— o2 implying that, with increasing de-
lay 7., the decay coefficient decreases and, consequently,
the variancer? increases.

fixed point behavior is lost when the artificially introduced (XM =—ny (X —ny (X" t)x(t— 7))
time delay is increased beyond a critical value, we found dt
particular conditions in which the variance of the relative +n(x" L OT(1) (50)

phase increases with increasing time delay. However, our
analysis also showed that another scenario is possible: va
ance might decrease with increasing time ddlefy the B
term in Eq.(46)].

r\B\'/hereas from the delay Fokker-Planck equati8hwe ob-
tain

d
IV. DISCUSSION GO = = nyx =y X HOX(t= 7))

We showed that stationary probability densities for linear Fnin—1(x"2(t 51
SDDE's can be derived by means of the corresponding delay n(n=1THD). (5

Eokker-l?lgnck equa'ti.ons. Th? Cr‘;‘;‘ia'Nggep was to find a StaBy virtue of Egs.(50) and (51), we can then calculate the
tionary joint probability density*™*Pg"(x,t;y,t—7) de-  yangient cross-correlations between the stochastic process
pending on a set of parametessif,\) which (i) satisfies the £(t) given by Eq.(2) and the Langevin forc&, and find
self-consistent conditon [ 3PMPNBCHx=h,(y),

J2PAPEECdy=h,(x)=hy(2) =h,(2) =h(2), (ii) is consis- (xMOT(0))=m(x""L(1)), m=1. (52)
tent with the stationary solutiofi.e., h(z)=2*PNEC(2)],

and (i) solves the delay Fokker-Planck equation. On thein particular, we havéx(t)T'(t))=1 and, in the stationary
basis of these constraints, we were able to determine all ﬂ‘@se,{xz(t)l“(t))stzo. Relation(52) agrees with the relation
parameters_but one. The decay coeﬁiciﬁn_‘zvas_obtained between cross-correlationgx™(t)I'(t)) and moments
from a detailed analysis of the corresponding linear SDDE(x™(t)) of an Ornstein-Uhlenbeck process without delay. Of
In particular, in this analysis an exact expression for the aucourse, the values of the momen¢g™(t)) and cross-
tocorrelationK {(At) for arbitrary time shiftsAt was de-  correlationgx™(t)I'(t)) will differ. Consequently, in the lin-
rived, and\ was computed ak= 1/2K§)(0) [36]. Itis ob-  ear case, the correlations between the stochastic prgtgss
vious that a delay Fokker-Planck equation of the form of Eqand its noise sourcE(t) can be expressed in terms of higher
(3) does not provide sufficient information for a calculation moments of the proces§t)—irrespective of the delay-.
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This result can be immediately generalized to the nonlineatern. In recognition of the fact that the increase of time de-
case. To this end, let us consider the nonlinear SDDE, lays in feedback loops can result in a breakdown of behav-
g ioral patterns and the emergence of interesting novel
behavioral patterns, we expected to observe a positive corre-
ﬁg(t) =0l&W ]+ gL E(t=n)]+T(D) (53 lation between variability and delay length, that is, a negative
correlation between pattern stability and time delay. We con-
and the corresponding delay Fokker-Planck equd®dr3g, firmed this hypothesis by identifying particular model con-
straints for which an increase of the time delay yields an
increase of variability. To this end, we examined a linearized
SDDE. According to this equation, the change of variability
is determined by two terms; cf. E¢6). The first term(the
e A term) describes change of variability due to an increase of
X fﬁmQZ(V)P(y’t_ 7-|x,t)dy+§ %P(x,t), the effective visual delay when the coefficients of the linear-
ized model are fixedi.e., y5'~const andy,?~const). This
(549 term results in a decrease of the decay coefficierthat is,
in an increase of the variability. The second téthe B term)
describes the impact of the shift of the coefficients of the
linearized model on the variability. The sign of this term is

J _ J J
EP(x,t) =— &gl(x)P(x,t)— 573(x,t)

2

with natural boundary conditions; cf. Sec. Il. Computing the
evolution equations fokx") from Egs. (53) and (54), we

obtain likely to depend on the model parameter values. Therefore,
d there might be a reduction or an increase of variability due to
a<x“>= n{x""1g,(x)) +n{x"" (1) g (x(t— 7))) the impact of this latter term. This example shows us that the
concepts of the theory of ordinary stochastic processes with-
+n(x" DT (1), out delay cannot necessarily be adopted in a one-to-one fash-

(55) ion for stochastic processes with delays. As is well known
d from the theory of deterministic delay equations, systems
a(x”)= n(x""1g,(x)) + n(x""L(t) g (x(t— 7)) with delays can exhibit a variety of striking phenomena that
are absent in systems without delays.
+n(n—1)(x""%(t))

which again lead to Eq(52). In sum, the theory of delay ACKNOWLEDGMENTS
Fokker-Planck equations can uncover properties of time-

continuous stochastic processes with delays that cannot be.we are grateful to Andreas Daffertsh'ofer fqr sharing his
addressed by means of SDDE’s alone. original ideas on stochastic delay equations with us, as well

In addition, we have shown that in special cases nonlinea®s his intuitions regarding the relevance of their application
SDDE'’s can be transformed into linear SDDE's, so that exact® human motor control.
stationary probability densities for the nonlinear case can be
derived. In Sec. Il A, we illustrated this procedure with the
Gompertz population model. We showed that an increase of APPENDIX A: DERIVATION OF EQ. (12)
the time delay_ or maturatipn time results in an increase of the Inserting Eq.(9) in the right hand side®) of Eq. (7)
mean population size. This result does not come as a surprisg a5 s
when we keep in mind that the stationary probabiliti(N)
of the population dynamics and the stationary probability
densityP¢(x) of the linear SDDE1) with v, =0 are related 1
by a transformation which maps the real lines(R) onto the R=—yxPNC(x)— =
positive half line N e[0,)). The monotonic increase of the
variance of the process defined Bricf. Eq. (33)] then cor- N
responds to a monotonic increase of the mean value of the =(N—7y1) \/ =xexp{ — \x?}. (A1)
process defined on the interJdl,~). In view of this consid- m
eration and on account of the fact that the Gompertz growth
L‘g;lcst'%?] aaress gsigta;“’j;é;v 'g]] g:g’;ﬁ'eoﬁﬂﬁgt?cg:ﬂewnc Substituting Eq(11) in the left hand side£) of Eq. (7), we
monotonically decreasing functionsve expect that a simi- obtain
lar effect of the delay on the mean population size can also
be found in other population models. B

Finally, we studigd human motor variability during uni- L= Ex/ﬁf y exp{—a[x—by]2—AyZdy. (A2)
manual tracking with delayed feedback on the basis of a ™ —
theoretical model proposed by Tassal. [7]. Among other
indicators such as relaxation time, performance variability is
an important indicator for the stability of a movement pat-Using the identity

d
5 2P )
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a[x—by]?+Ay?

an
) L= g\/)\aexp{ - xz}

22 ab ab?+\
_ 2 2
=la-— x“+[ab®+N\]|y—x
ab?+\ ab?+\ - , ab I?
X - + —
N ) fwyexp| [ab®+A]|y Xab2+)\ ]dy
=———x*+[ab®+\]|y—x— ., (A3)
ab“+A\ ab“+X\ s - ab an
= Mha\/——x exp, — x?
we find m ab’>+\ ab®+\ ab®+\
R an B \/E a%?p a
L= 7T\/ﬁex% T J A=l e § (A4)
2
% J N yexp{ _[ab?4\]| y—x ab ]dy Finally, we divide Eqs(A1) and (A4) by V\/m, and thus
- ab®+\ obtain Eq.(12).
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