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Non-Debye dielectric relaxation in biological structures arises from their fractal nature
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What differentiates biological tissues from one another, thereby allowing their accomplishment of a physi-
ological function, is their organization at supracellular and cellular levels. We developed general dielectric
models for Cantoriaror treelike fractal networks of transmission lines that mimic supracellular organization
in numerous biological tissues and tissue surfaces, and which are compatible witim bd@tbh andin vivo
measuring techniques. By varying a set of adjustable physical and geometrical parameters pertaining to the
structure, we could numerically reproduce a variety of dielectric dispersion curves—most of them of a com-
posite type—that suitably described experimental data from relatively organized biological tissues. We there-
fore conclude that the well-documented non-Debye dielectric behavior of biological structures reflects their
self-similar architecture.
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[. INTRODUCTION electrical charge driven by alternating currents of variable
frequencies, known generically aspedancd11] or dielec-
Fractal organization of biological matter, viz, its construc-tric [12] spectroscopyare particularly useful, because of
tion in a repetitive or self-similar mannéd] is a fact of their added capability foin vivo investigationg 13,14
incontestable beauty and source of growing interest for the The interpretation of the results obtained from dielectric
study of biological objects’ architectuf®—4]. This design  spectroscopy studies requires electrical models that relate the
principle is thought to occur as a necessity for keeping to drequency spectra of permittivity and conductivitgiterna-
minimum the amount of genetic information to be transmit-tively, impedance modulus and pha&5,14 to the electri-
ted in the process of organism growifd,3], for optimal cal and structural characteristics of the tissue constituents
functioning of the system with minimal consumption of en- (i.e., the cells. Classical dielectric theories for systems of
ergy [5], or for an increase in the surface/volume ratio in CellS rely on assumptions of high dilution and random distri-
systems involving transport through surfaf&} to cite buta ~ Pution of cells within the sample and predict Debye-type
few of the literature interpretations. frequency-dependent permittivity and conductivity both
The method most widely used for investigating biological Varying between low and high frequency platepl® 15,17.
structures relies on textural analysis of sample sections, frorhhough such models have been successfully applied to dilute
which the observed features can be put in a quantitative forrgell Suspensions or to single ce[ts8], their underlying ap-
such as the fractal dimensidd]. Analysis of histological ~Proximations no longer hold if the particles get closer to
data[2,3,6] suggests that fractal structures in tissues fall intoform more or less orderly aggregates. This may lead to an
two main categoriesl) percolatingor labyrinthine agglom- absence of the low frequency plateau from the dispersion
erations of cellge.g., liver parenchymaand (2) Cantorian ~ Curves, which has recently been well documerhfej19,2q.
structures including branching vascular netwofks e.g., However, with rare exceptionfl4], an electrodynamical
lung, and plants leavisand rough surfaces such as epitheliatréatment of particle aggregates is presently restricted to a
(e.g., skin and cell membranegin, e.g., lymphocyte and two-particle systentsee, for instance, Reff21]).
hepatocyte The second category, which is of special interest  Fortunately, the fractal disposition of cells within most of
in this work, owes its name to a mathematical ConCepplologlcal tissues suggests a possnblg reformulation to the
known as the Cantor bgor se [1], which is obtained by adgregate” problem in terms of total impedance of fractal
repetitive division of a line segment into three or more segN€tworks, which have been used earlier to model electrical
ments and removing the middle on@gg. 1). properties of several systems including percolative structures
Unfortunately, however interesting and stimulating, mor-[22], and rough metal-electrolyte interfad@8—29. Liu was
phological studies tell little, if at all, about how the structure the first to propose a deterministic resistor-capaci®€)
determines the physical properties of a tissue as a whole fetwork based on the Cantor bar model as a possible solution
facilitate its accomplishment of a physiological function. By {0 the century-old problem of “anomalous” AC response of
contrast, techniques based on transport phenomena in dis§RUgh electrode/electrolyte interfacg®3]. Further refine-
dered systemi] appear to answer this question, as transporfn€nts by Kaplaret al.[24,29 considered the effect of dis-
phenomena are presumably affected by the type of structui@der as well as the possibility of interchanging the electrode
involved and by the physical properties of its constituents2nd electrolyte to form the inverse Cantor bar model. Both

[8-10. Of these techniques, those based on transport dsiu's original model and its subsequent modifications pre-
dicted that the impedance behaves at low frequencies as

_ (jf )~ " [which represents the constant-phase-an@eA)
*FAX: +81 88 8802310. law with j=(—1)"? and 5 being a function of the fractal
Electronic address: vraicu@pop.med.kochi-ms.ac.jp dimensiond of the interfacé—a result that Sapovadt al.
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EE ER EE EN a detailed study of branching deep-tissue structures and tis-
- . N . sue surfaces by using a general Cantorian model based on
I —

the transmission line formalism in which, unlike most of the
previous models, the line characteristics are distributed prop-
erties and are generally complex quantities. This facility is
required since most parts of the real biological tissues are
neither pure conductors nor pure dielectrics as considered in
the case of metal/electrolyte interfaces. To allow for different
branch geometries and/or intrinsic structufssich as the
vessel walls in the case of vascular tieese branch longi-
tudinal and transverse electrical properties are let to scale
independently, rather than being correlated as in the previous
reports. Under these provisions, and upon proper choices of
sets of electrical and geometrical parameters, we succeeded
in stimulating a variety of composite dielectric dispersion
spectra that are very similar to those obtained in experimen-
tal studies.

Details of our proposed model are given in Sec. Il of this
paper, for an electrode-tissue configuration compatible with
in vitro investigations and for two additional configurations
pertaining toin vivo studies of vascular trees and roughly
surfaced epithelia. Models of the second type have not been
proposed before; yet, most of the recent experimental studies
on tissues are performead vivo and would require consid-
eration of pertinent models. In Sec. Ill, computer simulations
of dispersion spectra are carried out for some particular cases
thought of as illustrative for the dielectric behavior of bio-
logical structures. Comparative results for electrode configu-
rations compatible withn vitro and in vivo situations are
also presented. The dispersion spectra predicted by the
present model are discussed in Sec. IV in connection with

FIG. 1. Four-stage Cantor bétop) and two Cantorian struc- Ii_teratur_e data and with the results we obt_ained from simula-
tures: fractal treelike vascular systefmiddle), and section of a tions with lumped-elemer(i.e., RQ Cantorian networks. In
tissue/fluid rough interfacébottom. The Cantor set is obtained by 2addition, some interesting findings regarding the uniqueness
dividing a line segment into, for instance, three segments and reof the results of measurements on Cantorian fractals are dis-
moving the middle one, then repeating the operations for each recussed, and possible directions for future development are
maining segment, and so on, until the desired level is reached. outlined. Section V concludes the paper summarizing the

Tissue

main results.
[27] and Blunt[28] showed to be valid under limited condi-
tions only. The way into the biological field has been opened Il. GENERAL ELECTRICAL MODEL
for the Cantorian models by Sapo\&6|, and later by Dis- FOR CANTORIAN FRACTALS

sado and co-workei8,29] who outlined the basic principles
of applying fractal models in biodielectric studies. In spite of
its remarkable potential of modeling biological structures Figure 2 schematizes a typical situation for impedance
[2—4], however, the fractal approach has been largely disremeasurements of Cantorian-type fractal structures compat-
garded by biodielectricians, or, in the rare cases that it reible with in vitro investigationgsee latex. For simplicity, we
ceived attention, it was met by skepticigsee Ref[15] for  only illustrate the case fdi=2 daughter branches emerging
a typical opinion. This is because, while previous works on from parent branch at each branching point with all branches
fractal structures have mostly sought to identify factors leadsituated in the same plane, but the general admittance equa-
ing to the existence of the CPA law at low frequencies, nations introduced in the next section hold for adyalue and
biological system has been identified whose dielectric propany spatial orientation of the branches. For identification of
erties show plain CPA behavior over a wide frequency rangeeach branch, we usa as generation index within the tree,
In fact, biological tissues’ dielectric response is usually moreand n for individuals within their generation. For a system
complex—sometimes composed twfo (or more elements consisting ofM generations of branches wil= 2, m varies
of a CPA- or Debye-type, or combinations of th¢h®,20.  from 0 to M-1, while n varies from 0 toN"-1.
Grounded on a superficial reasoning, this may imply fractal The equivalent circuit of the Cantorian structures in Fig. 2
models inadequacy. (called hereinafter “Model 1) can be thought of as treelike

To clarify whether the fractal approach still has a role tonetwork of transmission lines, in which parallel combina-
play in the interpretation of biodielectric data, we undertooktions of N branches of generation index+ 1 provide termi-

A. Problem formulation
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ties of the investigated system. For example, for rough sur-
faces, the underlying tissue provides termination admittances
for the structure, while for a vascular tree in the lung, the
terminal admittance represents the alveolar region including
blood capillaries in the alveolar walls. If frequency depen-
dent, the termination admittance will contribute additional
subdispersions to the overall spectra, as also does any fre-
guency dependence in the transverse conduci@ficer lon-
gitudinal resistanc&®* . However, we will avoid such details
in the present work, which intends to setup a framework for
more detailed future analyses and reveal the main features of
electrical phenomena occurring in dense biological systems.

As a general rule we shall comply within the calculations
below, the lettersn, n andk are summation or multiplication
indexes whenever they appear as subscripts of some sym-
bols, and power exponents when appearing as superscripts.
The same rule applies to the lettdrwith the specification
that this also appears as an independent symbol standing for
the branching degree, as defined above.

As one can readily see, the electrode configuration shown
in Fig. 2 (Model 1), though easy to understand and intu-
} itively appealing, can only be applied invasive studies,

by L, which constitute a significant drawback from the biophysi-
cist’s point of view. More precisely, for a vascular tree, ac-
r0* /A cess of theE; electrode to the interior of the trunk can only
1o Shansts Bianid be gained after sectioning the latter, a procedure that would
= 820 affect the viability of the whole system. Similarly, for the
igl,o* 2.1 T roughly surfaced epithelia, placing one electrode under the
@ . o - skin would require skin excision. On the contrary, by placing
o 82,1 the measuring electrodes on that side of the tissue that is
e o naturally accessible to the investigator, as shown in Figs. 3
&0 s _L, (Model 2) and 4(Model 3), one would avoid the problem of
ri® 85" invasiveness for both types of systems discussed, and would
“:'i"; ryv o T therefore be able to study the tisstiasvivo. In these two
@ Sl - cases, the equivalent circuits are modified as follows. For the
? 25" vascular tre€Fig. 3), the two subtrees consisting of branches

from generation 1 upward are serially connected, while for
the rough interfacéFig. 4), the two subtrees are connected in
parallel.(A very rigorous electrical modeling of the structure

_ _ ) presented in Fig. 4 should consider also a serial coupling
(Model 1) on Cantorian deep-tissue structufesp) and interfaces .
(middle), and corresponding electrical circuit modeled as a fractafeimizg;:eatgvrgic:{ar::ég )S?:Sgg:ﬁtz;isest g]eccl)(rar\]/SIle())(f ;?g;
network of transmission linedbottom. Geometrical characteristics ) !

* .
of the first and second branch generations are also shown. Dashgﬁ’ndUCtanCGie was added in parallel to the whole network
lines signify that* andg* are distributed parametefise., R* and  t0 account for the current flow between electrodes through

G* per unit length, while the asterisk indicates that they are com- Other pathways than the fractal network. This additional con-

plex quantities. Other symbols are described in the text. ductance has an experimental support, and has been previ-
ously investigated by us in connection with a superficial fluid

nal admittances for each member of tmeh generation. In layer in'gervening between the tissue surface and the tip of the

this sense, electrical componenfs, andg, , in the figure ~ M€asufing prob¢19].

should be regarded as distributed parameters representing the _ o

longitudinal (complex resistance per unit length of liree., B. Input admittance of an individual branch modeled

R* /Lmn), and the transversecomplex conductance per as a transmission line

unit length of line or the conductance between the lateral According to the general theory of transmission lines

face of the line and the ground electrode., Gy, /L n)- [30], the input admittance measured at the downstream end

The termination admittanc@= G+ jwCy of the last gen- of line m, n having the characteristic admittand&,, ,,

eration of branchesindex M-1) could be either a constant propagation constant, ,, and terminated by an admittance

capacitance or conductance, or a more complicated;, due toN daughter branche§ndex m+ 1), may be ex-

frequency-dependent parameter, depending on the peculiapressed as

FIG. 2. Possible geometrical disposition of the measuring elec
trodes(E, andE,) compatible within vitro dielectric measurements
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FIG. 3. Top: Possible geometrical disposition of the measuring 1€
electrodegE; andE,) compatible within vivo dielectric measure- r, 2* T
ments on Cantorian deep-tissue structutdkodel 2. Bottom: | =5 ____ —-
Equivalent electrical circuit for the fractal network of transmission r 1* 2, *
lines shown at the tof5,= G;¢+ j wCj, is a stray conductance that I 2.2

directly connects the two electroddge., outside the fractal

‘f‘ ”
“route” ). Other symbols, same as in Fig. 2. @ g e S —

V. Yt+Km,ntanr(')’m,an,n)
M1+ (Y /K o) tanh v nLmn)

)

FIG. 4. Top: Possible geometrical disposition of the measuring
electrodes compatible witin vivo dielectric measurements on Can-

with the transmission characteristics given by torlap tls_sue/ﬂwd interface@vodel 3. Botto_m:_Equ_lvaIent electri-
cal circuit for the fractal network of transmission lines shown at the

2 % * * * top. G.=Gje+jwCi, is a stray conductance that connects the two
K n:gm,n/r =Gn /Rm n 2) electrodes outside of the fractal “route.” Other symbols, same as in
Fig. 2.
72 gmn mn_G* R* /LZ ©))

Next, assume thaBy, , and Ry, , change from one gen- =(A_ of") 'L,,,, whereo} is the transverse and is the
eration of branches to another by some factors to be deflnqdngnudmau equivalent complex conductivity,, , andAm n
below, due to changes in vessel size, position, and orientatiogre the length and the transverse sectional area of the branch,
with respect to the ground electrode. Because of selfwhile the factorF,,, depends on the branch dimensions
similarity, if the properties of any single branch are known,other tharl_, , and on its distance and orientation relative to
then the properties of all other branches can be calculateghe ground e|ectr0d€§|f for example, the branch is a cylin-
recurrently. In particular, we shall relate t@&%, , andRy,,  der of radiusp, coaxial with a cylindrical ground electrode
of any branchm, nto those of the trunk of the tree, namely, of radiusp,,, thenF =27/ In(p,/p,).) Consequently, one can
Gg0andRg , (or simply Gy andRg). For this, we transiently write down the following relations for transversal conduc-
employ the definitions G, ,=FnnLmaot and Ry,  tance and longitudinal resistance:
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mnlmn the choice of model parameters, which may depend upon the

* _ * ’ ’ . .y . . . . .

Cmn=CGog 1 — o peculiarities of each tissue. However, we will not stick in this
0.0-00 section to any particular tissue, as the main goal herein is to

e Frnm-kL i unm-kg unveil the dielectric “signature” of Cantorian structures. For
-0

for m=1 this, we will make some approximations to be described be-
k=1 Fk—l,[n/Nm‘k+1]Lk—1,[n/Nm_k+1] |OW.
=G{ for mn=0, 4 ;
0 “ 1. Symmetrical tree
. « Aoobmn It is assumed that all branches in the same generation
Rmnn= % Annloo have the same size and that the diameter and length of
o branches only change by constant factors from one genera-
- ﬁ Ay 1nm-k+ 11l pnm-kg _ tion to another, which appears to be quite acceptable for the
=Ry - —, for m=1 case of a vascular tree at le§&t. Consequently, thé, and
k=1 Ay rninm-kiLk—1pnnm—k+1g - ;
' ’ | ratios in Eqs(4) and(5) are constants independent of order
=R} for m,n=0, (5) m, n In addition to thisF ratio is also considered constant,

though the parametdé¥ accounts for the position and orien-
where the symbd] ] extracts the integer part of the number it tation of the vessels with regard to the measuring electrodes,
contains. which might not be the same for all branches of the same
The last forms of Eqs(4) and (5) together with Eq(1) generation. On these assumptions, we have
provide means for computing the input admittance of any

branchm, n as we shall detail in the next section. Finnm-kgL i frnm-k) — a—const
C. Total admittance of the fractal networks Fr—1nnm—ter b1 prynm—ke1g ,
To compute the total admittance of the structures pre- A1 prnm—k+ 1L fnm-kg
sented in Fig. 2, as measured betwégrandE,, first con- : : =b=const

. . . A e -
sider the youngest generation of branckieslex M-1) and k[n/NMZKI=k— 1 n/Nm-kE ]

compute their input admittances from EG) by ascribing o, any 1<k=m, and the multiple products in Eq&) and

values(see sections Il A and Ill ARto the real and imagi- (5) could be replaced by the simpler quanti@sandb™, so
nary parts of terminal admittancds Then, the total admit- ¢

tance of each group dfl branches having the same mother

branch provides terminal admittance&,= 3y Ym nnik, Gk ,=Gkam (4

for the generationm=M-2; the process can be iterated '

down to the generatiom=0 (i.e., the trunk of the treauntil and

the input admittance of the whole structure is obtained . . ,

(Y structure™ YO,O) . Rm,n =Rgb (3
The admittance of the structures presented in Figs. 3 and

4 is computed by following the same procedure, except fofo" @ny 0<sm=M-—1 and Osn<=N"-1.

the last step for which the iteration ends at generation 1.

Then, the total admittance is computed by using the formulas

for the series or parallel arrangements, depending upon the The intrinsic dielectric dispersions of the cells constitut-

case. ing the fractal structure are not considered, as they may only
It is to be mentioned that, in practice, the number of sub-affect the shape of the dispersion curves at relatively high

structures lying beneath each electrode cannot, in general, eequencies while our interest here is in elucidating the effect

rigorously specified. In addition to this, the electrodes geomef tissue architecture. Accordingly, constant values were cho-

etry may also affect the results of measurements. Our modeken for the real and imaginary parts of the electrical param-

thus describes the reality only on average. In fact this limi-etersRy , G§, and T. In particular, G,=Re(Gg) was ne-

tation is not purely theoretical; it has an experimental originglected to reflect the relatively low conductivity of the

and reflects the difficulty to control the position relative to membranes of the cells bordering the structdre., the

the electrodes of substructures within the tissue. The possiblsranch wall, while Co= Im(G§)/w (with w being the angular

implications of such dependence of measurement results Gfequency was varied as described below. Al&}; was re-

the expenmental cond!tlons shoul_d not be dlsregar(:jed, _""”Hlaced by the quantitylLo/(Aga?), where of =0

we will turn our attention onto this matter later on in this +jwsge, With o, ande, the longitudinal electrical proper-

work ties of the branch, and,=28.854x 10" **F/m.

2. Homogeneous branches

lIl. RESULTS B. Computer simulations for the in vitro network model

A. Approximations The dispersion curves obtained from simulations with the

To compute the total admittance of the structures disnhetwork model compatible with in vitro measuremetfgy.
cussed above, one needs to be more specific with regard 8 are shown in Figs. 5-7, for different sets of model param-
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L . FIG. 6. Formation of the low frequency side of a nonclassical-
FIG. 5. Effect of variation of the geometrical paramelede- d Y

' : . . type dispersion curve upon increasing the number of tree branches
fined in the text upon the simulated frequency spectra of relatlquI of the structure shown in Fig. @.e., Model 3. Model param-
permittivity and loss tangent of Model (Fig. 2. R} , computed P X

¢ —06S/ —70 andL /A —3.2% 100 m-L T eters, as described in the legend to Fig. 5. Also addelid lines,
Es_eg tj—XTL:(():m)UcL:c_)mbute;nffoLn;: . ng OanoOG_ > OXS Ort?ler' oa simulations by GDFEq. (6)] with the parameters given in Table I.
- T T)» T ’ T . 3

rameters are shown in the inset. Also addsdlid lineg, simula- . . .
tions by the GDHEq. (6)] with parameters given in Table I. refer to the low and high frequencigsespectively and g

are real constants between 0 andfl;is the characteristic
eters that were considered as illustrative for the present worffequency; and\ is a dimensional constant. Aided by analy-
The data(points represented as relative dielectric constantSis With this function, the results presented in Fig. 5 reveal
and loss tangent vs frequency, were calculated by using #e following. _ _

value of 9.4 mm for the measuring cell constft8], which (i) For subunitaryb values, dispersion curves of a pure
approaches the values for the probes employed in most d?ebye typeli.e., Eq.(6) with a=p=0] were generated,
our previous studies of tissuésee, e.g.[19]). yvhlch are characterlzgd by an abrupt decay of the permittiv-

As seen in Fig. 5, a family of dispersion curves with re-ity between low and high frequency plateaus, and by a rela-
markable properties can be obtained upon variation of th&vely narrow pick of the loss tangent. -
model parametel defined above. These curves were fitted to  (ii) Values ofb significantly larger than unity bring about
a general dispersion functioi®DF) to be defined momen- broadening of the permittivity curve, accompanied by a loss
tarily, and the best-fit parameters were collected in Table fangent curve flattening over a wide frequency range. As the
together with the parameters corresponding to the subsequeftvest frequency available in biodielectric measurements
figures. A special case of the GDF, which is relevant to thehardly goes down to values of 1 mHz or so, due to technical
present work and which incorporates the Debye-tjp#] limitations as well as to_unav0|dable exp_erlmental a_rtlfacts
functions and the “universal” respong@2] as its particular  (Such as electrode polarizatiprthe plateau in the permittiv-
cases, readl0]: ity predicted by our simulations with the fractal model usu-
ally escapes experimental observation. This justifies our sim-
plified representation of data by a descending straight line in
Fig. 5(i.e., Eq. 6 witha=1—-8=1/2).

(iii) Further increase i leads to important changes in
the lower side of the dispersion spectra, so that the permit-
tivity curve shows two CPA-type portiorige., straight lines
where the permittivitye is relative to the value of free space of different slopeg to which two flat(constank regions of
(£0=8.854< 10 '2F/m), o is the conductivity, and andh  the loss tangent are associated. Again, this non-Debye behav-

e*=e—jol(2nfeq)

—ent - + 6
=t Giier Gt P j2nfey O
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B plotted in Fig. 6. It is seen how the low-frequency CPA com-
S T ponent is progressively built upon addition of responses from
ié I different generations of branches. From the comparison be-
_ tween Figs. 5 and 6 fdo= 10, one can also infer that varia-
1 tion of C, leaves the parameterin Eq. (6) unchangedi.e.,
it preserves the type of responsehile modifying the val-
ues of the other parameteisee Table)l
Keeping the parametér constant and varying the param-
etera, which defines the ratio between the longitudinal re-
sistance of successive tree branches, one obtains dispersion
curves of a composite type, in fact, combinations of the
known types of dispersion, as shown in Fig(sée also the
corresponding rows of Table.IThus, by increasing the pa-
rametera, the single Debye dispersion transforms into a
combination of a Debye-type term at low frequencies and a
Cole-Cole type one at high frequencies. Largeralues in-
troduce a component of an unclassified type between the two
- . Debye-type dispersions, which has itself a composite nature.
Lo ) . For this latter case, a proper fit by one or two GDF terms
Lo, | was, evidently, not possible.
o e Variation of other model parameters could be also studied
(as we actually dig but this reveals dispersion curves of the
same types as those already discussed.

o
T
o

2R
o
—_—— B —

oo

log,, (rel. permittivity)

O = N W s Ao

o Model t (a=0.1)
v Modell (a=1) B
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C. Simulations for the in vivo network models
log,, [frequency(Hz)]

As mentioned above, in the practice of dielectric measure-
FIG. 7. Effect of variation of the geometrical paramedaspon ~ ments on biological tissues) vivo techniques are generally
the simulated frequency spectra of relative permittivity and losspreferred to thén vitro ones. It was therefore of interest for
tangent of the Cantorian structures in Fig(Nodel I). Model pa-  this study to find out the differences that may occur between
rameters, as described in the legend to Fig. 5. Also addelid  the results ofin vivo (Figs. 3 and 4 andin vitro (Fig. 2
lines), simulations by GDHEQ. 6 with the parameters listed in measurements of the same Cantorian structure.
Table I. The comparative results for all three models presented in
this paper are shown in Fig. 8. As seen, the parallel-type
ior of permittivity evolves into a low-frequency plateau that combination of the two subtreegdodel 3) gives a much
may not be experimentally detectable, and the general distigher permittivity than both thm vitro (Model 1) and thein
persion functiorfEq. (6)] could be a good representation of vivo-series(Model 2) configurations throughout the investi-
the experimental data over a very wide frequency range, agated frequency range, while differences betweensthal-
illustrated in Fig. 5. As the asymptotic behavior of GIEEg.  ues for Models 1 and 2 occurred at high frequencies only, as
(6)] for a+ B<1 is of the formf ™« for low frequencies and reflected by different values of the, in Table Il. On the
f~(1=A) for high frequencies, the two CPA characteristicsother hand, the low frequency sides of the loss tangent spec-
have slopes-a and— (1— 8). This type of response may be tra of bothin vivo cases differed markedly from those ob-
regarded as a generalization of Jonscher’s universal respontned for the Model 1, owing to very different values taken
[32,33. by the o; parametersee Table . Furthermore, almost no
To further illustrate the way a general dispersion spectrundifference was found between the Model 2 and Model 1 for
arises from the fractal model, the results of simulations forGj,=0+0j, while Model 3 gave still distinct results in this
different values of the number of branch generatibhare case, as reflected by the parameters presented in Table IlI.

TABLE |. Parameters corresponding to the best-fit simulations by(&qlines) of the data(points in
Figs. 5-7.

Fig. No. Dispersion type a; B, Ay fa(Hz2) a, B, A, fo(H2 e, o (SIM

5 Debye 0.00 0.00 1410° 2.5x10* 25 4.1x10°°
5 CPA(Universa) 0.50 0.50 1 1.&10° 0.35 1.5x10°8
5 General 0.30 0.36 15 700t 0.15 6.5¢10 *
6 General 0.30 0.38 2010 3.7x10° 0.46 6.0x10 *
7 Debye 0.00 0.00 1:810° 1.2x10* 0.18 1.4x10°©
7 DebyerCole-Cole 0.00 0.00 4%10° 4.0<10° 0.00 0.38 13.9 1.810° 1.55 1.3x10°®
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S~ T T T T T T hold true for biological tissues over an indefinite frequency
g |-oosQobs, . range, but it appears rather good at subradio frequencies, to
%oy ™ which our above discussion refers.

IV. DISCUSSION

A. Comparison with the literature data

{1 A [ |

The “general” type of dispersion presented in Figs. 5 and
6 exhibits striking similarities with the data from measure-
ments on the human skisee Fig. 2 of Ref[20]) over a
Sove0es ] wide frequency range, which could be remarkably well fitted
................ to Eq. (6), both for wet(with physiological salineand dry
- - (i.e., untreated skin surface. To be meticulous, however,
o Model 1 ({n Vitro) - . . .
e Model 2 (Series) | there are indications in the above-cited data that two terms of
o Model 3 (Parallel)| | the general typ€Eq. (6)] would be even more suitable. This
GDF is what would have been actually expected for the skin hav-
ing both a rough surface and a network of capillafjgsssi-
bly of a fractal type lying underneath, which, according to
the present model, could well lead to a two-terms dispersion.
Nearly the same type of dispersion as above has been
obtained experimentally for the lung tiss(see, e.g.[34]).
Thus, our model may furnish the necessary link between the
s well-documented fractaltreelike) structure of the airways
10-9-8-7-6-5-4-32-10123456780910 and the blood vessels in the lufg,35], and its non-Debye
dielectric characteristics, although combined dielectric-
morphometric experimental studies would be required for a
FIG. 8. Dispersion spectra of a Cantorian struciareitro (Fig. well-grounded Conclu.S|c.)n in this respect. .
2—Model 1) as compared to those predicted by therivo models Le§s_ expectedl)‘{ within tPe framework of this Paper, char-
presented in Figs. 8Vlodel 2 and 4(Model 3. Also addedsolid acteristics of the general type have been obta_lned_from
lines), simulations by GDFEQ. (6)] with the parameters given in measurements on livgét0,19 as well as on other biological

Table II. C,, and G, apply to Models 2 and 3 only. Other param- tissues/36] whose structure belongs to the class of percola-
eters:R% , computed(see text from o =0.6 S/m, &, =70, and  tion fractals mentioned in the introduction section. However,

Lo/Ag=7.96x1F Mm% T (=G;+jwCy), computed fromC;  the two types of structures may present profound similarities
=1pF, andG;=0S. at the level of the general laws of transport phenomena on
fractal latticeq 37], which may explain our findings.

It should be also mentioned that simple Debye-type dis-
persion curves as shown in Fig. 5 have not been observed in
The near identity between the permittivity curves of ithe 3;5%'361; ottlssslfpe; 6rtT Qlljsblljiitpartiflgﬁjl)é st()iicg.lgs.?r;? ?&Eg?g‘r? tric

vivo series and then vitro models seen in Fig. 8 at frequen- averageb value ~1.7 can be calculated from morphological
cies lower than~ 10 kHz may appear paradoxical when data[38])

judging based on a lumped-circuit-elements model. How-
ever, the paradox is only apparent, as the effect is due to the
distributed parameters formalism used in the present work
and to the particular circumstance that the branch wall con- As stated in the Introduction, literature models for Canto-
ductivity G, has been neglected in our numerical simula-rian systemg23-28 made no allotment for independent
tions. Evidently, this last approximation does not necessarilygcaling of the transversal and longitudinal branch electrical

ARz

log,, (rel. permittivity)

log,, (loss tangent)

T T S O S U
T

log,, [frequency(Hz)]

(For simpliqity, data corresponding 8®,=0+0j were not
plotted in Fig. 8.

B. Distributed vs lumped circuit parameters

TABLE Il. Parameters corresponding to the best-fit simulations by(&qdlines) of the data(points in

Fig. 8.

Model fol B A f. (Hz) en o (S/m)

1 0.41 0.36 310 1810° 5 3.0x10° 1
2(G#0) 0.41 0.26 130 1.810° 18 1.1x1073
2(G=0+0)) 0.41 0.30 140 1.210° 6 2.8x10° 1
3(Gj,#0) 0.41 0.26 420 2810° 35 1.1x1073
3(Gr=0+0j) 0.41 0.29 430 1910 24 1.2x10710
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‘o T T “wavy” than those predicted by Model 1. This seriously re-
= . ‘... M =15 stricts the applicability of RC network models, since experi-
= 4T °°°° e, N,=2 ] mental curves are usually smoother.

E Ty © ..o a =15
= 3 Vvey © . - i ) o
3= v VVV' 33'9 '-.. C,=1pF C. Possible multiplicity of the results
= v I o o - .
B 2t ML °ng:-.. . Determination of permittivitye and conductivityo of bio-
v . . . . .
= "o, C37v%e, logical tissues is usually based on an assumption that simple
o] . . . o
= 1r T, Toor¥er . proportionality relations connect the two quantities to the
v
OE Vo, °°o:. measuredC and G, namely,C=K.qe andG=Ko, Where
v o] . . . .
L of Yo, °23322°°°- keen is the cell constant. Dielectric spectroscopists’ prefer-
A4 L2 A
Y Vvoovvyyy ence for use ot ando over theZ (or Y) modulus and phase
a —_— is generally justified by the independencesoéind o on the
- i sample(and probé geometry and size. This reminiscence
- from dielectric studies of biological cell suspensions tacitly
= ve assumes that the sample is isotropic on large scales, which
s - )
% 0 _o.u..o..o......g.gg,”gs;;;; '_ i means that system’s constituting eleme(nts, the cellg are
v . . . . . .
8 N7 I L ST A SN A T AR o distributed at random, which is generally not so for biologi-
2 v T * e cal tissues. Thus, the uself,, value determined from mea-
= Distributed (b= 3 o e surements on homogeneous saline solutions is no longer ac-
[e] = . .
2ot |, Doty Eb=22)) o o - ceptable, since the true cell constant can be different for
L . = different tissue structures. Unfortunately however, the cell
Lumped (b=15) o ®
v Lumped (b =20) o constant of a given configuration of electrodes placed on a
o particular tissue cannot ke priory known, since it requires
2 0 1 2 3 i 5 6 7 8 9 1'0 the knowledge of tissue equivalent electrical properties. The

latter in turn requires the knowledge of the former, and this
log,, [frequency(Hz)] generates a circular reasoning.
According to the above discussion, neither the impedance,
FIG. 9. Comparison between the dispersion spectra simulategor the permittivity would make any easier the representa-
from the fractal distribution of transmission lines in Fig(Model tion of data from strongly heterogeneo(m large scalés
1) and from its corresponding lumpd&RO) elements network. Pa- biological systems such as the skin and the lung, and one
ra_lmeters not shown in the inset were the same as in the legend 1g,,,,/q expect a multiplicity of results in measurements, de-
Fig. 8. pending on the particular geometry of the measuring cell and
on its position relative to the tissue sample. This is, in fact, in
agreement with our own experience with dielectric measure-
ments on biological tissues, and may have profound implica-
fibns for understanding the process of measurement of physi-
. e . : cal properties of biological systems, with special regard to
ing permittivity at high frequencies,. The advantage of the Fl)mi8ueness: of thegresult)s/. It therefore gppears %hat any

mcltldcling two mdtapcrndent scahnt% parameltargndft?[hpr%- ¢ communication of the results obtained from dielectric mea-
sented by our modeis 1S apparent from analysis ot the data I, e yents on tissues should not only include information on

th_e resu_lts section, .Wh”e p055|ble |_mpI|cat|ons for_b|od|ele_c-the type of probe used and its cell constant but also on probe
tric studies were briefly discussed in the preceeding sectio

There only remains here the identification of those featurerggpnepr;zlons as well as its position relative to the tissue
distinguishing the dispersion spectra of a distribution of co- '
axial lines from those of the RC network models. One of the
previous studie$25] has also considered the Cantorian dis-
tribution of transmission lines, but in addition to presenting The present study is by no means definitive, and further
some of the above-mentioned limitations that study was fodevelopments of the model could take into account; the tree
cused on the low frequency limit of the impedance. asymmetry, which implies that one branch divides into
In Fig. 9 we have plotted the frequency characteristics fobranches of different ordd88,39, and the contribution of

two sets of model parameters corresponding toitheitro  cells to the vascular wall electrical characteristics and to the
model (Model 1) presented in Fig. 2 and its RC version. As terminal admittances. In fact, the equivalent complex con-
seen, Model 1 predicts curves with one or two CPA com- ductance of the vascular wall can be readily incorporated
ponents, depending on the chosen parameters, while the Rto the present model, provided that the precise composition
network predicts a component of a more or less CPA typef the wall is known. Our preliminary investigations along
followed by a rapid, quasi-Debye, drop mat very high these lines, however, revealed that the basic findings of the
frequencies, accompanied by a peak in the loss tangent. It gresent report—uviz., the nonclassical character of the dielec-
seen that, for relatively largb values, the curves obtained tric response of fractal structures—are not essentially altered
from the RC model simulations are significantly more by such refinements in the theory.

characteristicgreflected in our models by the independent
parameters andb), and/or neglected the capacitive compo-
nent along the tree branches—a parameter that is howev
experimentally required, as it ensures finiteness of the limit

D. Model limitations
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V. CONCLUSION proach to the longstanding problem of modeling transport
phenomena in biological structures.
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