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Patchy environment as a factor of complex plankton dynamics
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We study the role of the diffusive interaction in plankton dynamics in a patchy environment. We use a
minimal reaction-diffusion model of the nutrient—plankton—fish food chain to simulate the diffusive interac-
tion between fish-populated and fish-free habitats. We show that such interaction can give rise to spatiotem-
poral plankton patterns. The plankton dynamics depend on the fish predation rate and can exhibit both regular
and chaotic behavior. We show that limit cycle and chaotic attractor coexist in the system. The entire basin of
attraction of the limit cycles is found to be riddled with “holes” leading to the competitive chaotic attractors.
The chaotic dynamics is typical of a wide range of the fish predation rates.
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[. INTRODUCTION first to apply Turing's idea to ecology, having considered the
dissipative instability in the predator-prey interaction of phy-
There is a growing interest in the chaotic dynamics oftoplankton and herbivorous copepods with higher herbivore
ecological systemgl]. In this paper we focus on the chaotic motility. Levin and Segef11] suggested this scenario of spa-
and regular dynamics of plankton populations in a patchyial pattern formation as a possible origin of planktonic
environment. Most of the works concerned with the temporapPatchiness. The usefulness of minimal models has been dem-
behavior of a biological community do not take into accountonstrated in the following studies of plankton patchiness and

its spatial structure. However, the spatial distribution of natuPhytoplankton bloom§12,13,15,1T. Recently, the effects of

ral populations is usually remarkably inhomogeneous. In ter€Xternal hydrodynamical forcing in the appearance of non-

restrial ecosystems, the inhomogeneity of the spatial distrigquilibrium spatiotemporal plankton patterns were st_udied
bution of the populations is to a large extent controlled b 19-21]. Conceptual models have been also applied to inves-

the inhomogeneity of the environment. Very high mobility of tigate the_ plankton pattern _formatlon resuiting f“’m plank-
) ) . tivorous fish school walks without any hydrodynamical forc-
the marine environment would prevent the formation of any.

stable patchy spatial distribution with much longer Iife—timeing [7,22,29 and the formation of irregular self-sustained
than the typical times of the biodynamics. However, in addi_spat|al patterns uncorrelated with the properties of the envi-

. : . i ronment [24,25. Predator-prey limit-cycle oscillations,
tion to very changeable transient spatial patterns, in mar'n'glankton fronts propagation, and the generation and drift of

fnwronmenF tthzre .‘?:LSO exist ]?theésmuchlmqre _stabli stru Jlanktonic  Turing patches were found in a minimal
ures associated with ocean froii3], cyclonic rings[4], phytoplankton-zooplankton interaction moded6,27 that

and. so-called_ me_ddieES]. This fact creats the biolog_ipal . was originally formulated by Scheff¢28]. The emergence
basis for considering the dynamics of marine communities i f diffusion-induced chaos has been found by Pasf2@l

a patchy environment. In_ this connection,_ it should be notz_e long a linear nutrient gradient in the same model without

that the temporal dynamics of a community can depend Si%sh predation

nificantly on the spatial structure of its environm¢6t-8|. In this pap.)er using a one-dimensiondD) minimal
Conceptual minimal models are an appropriate tool for, action-diffusior; model of the nutrient — phytoplankton —

searching and understanding basic mechanisms of spati oplankton — fish food chain we show that:

pattern formation and temporal dynamic behavior of interact- '

ing chemical substances or biological species. Such an ap- o _ _ o

proach goes back to the classic paper by Tufigwhere it (1) The dlffuswe interaction bet_ween different habitats in

has been shown that the nonlinear interaction of at least tw8 Patchy marine environment, while some of the patches are

agents with considerably different diffusion coefficients canPopulated by fish and others may be fish free, can give rise to

give rise to spatial structure. Segel and Jacd@hwere the ~ Plankton spatial patterns; _ _
(2) Plankton dynamics depend on the fish predation rate

and can exhibit regular and chaotic behavior. Coexistence of
*Email address: medvinsky@venus.iteb.serpuknov.su a limit cycle and a chaotic attractor with Cantor setlike ba-
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sins of attraction is characteristic of the model chaotic plank- a)
ton dynamics. The chaotic dynamics is typical for a wide 12
range of parameters.

Il. MODEL

We consider the 1D two-component basic marine food
chain model where at any poiktand timer, the dynamics
of phytoplanktonP(X,7) and zooplanktorH(X,7) popula-
tions are given by the following reaction-diffusion equations
[26,28-30:

P rp[1- D) AP b 1
it K| Cy+P Pe @
M_CP L e pan 2
dr  Co+P czrn2z MU @

3

Here,F is the fish predation rate on zooplankton. The param- : g
etersR, K, M, and 1A denote the intrinsic growth rate, car- 0 ; ; ; : ;
rying capacity of phytoplankton, the death rate, and yield 0.2 0.3 0.4 0.5 0.6 0.7 0.8
coefficient of phytoplankton to zooplankton, respectively. f

The constantC,, C,, and C; parametrize the saturating
functional responsé® andD are the diffusion coefficients
of phytoplankton and zooplankton, respectively.is the

FIG. 1. Solution diagrams of the mode(8) and (4) for the
following set of parameters:=5, a=5, b=5, m=0.6, n=0.4.

Laol The d d f1h lank This set of parameters is used throughout the work. The curves
aplace operator. The dependence of the zooplankton gra%ﬁsplay the steady-state solutions for different valuek Bfdenotes

ing rate on phytoplankton is of type II, while the zooplankton 4 Hopf bifurcation.
predation by fish follows a sigmoidal functional response of

type Ill (according tg28,31]). The model can be simplified
by introducing dimensionless variables. Following Pascua
[29], we introducep=P/K andh=AH/K. Space is scaled
by the size of the numerical meshk, wherelL is the total
length of the considered area akd-1 is the number of
nodes of the mesh. Thuk/k is the scale of the expected
patterns. Time is scaled by a characteristic value of the ph
toplankton growth rat®,. Thus,x=kX/L, andt=R,7. As a
result, Eqs(1) and(2) become

Prganisms[32]. However, in natural waters it is turbulent
diffusion that is supposed to dominate plankton mixigg).
Taking this into account, we consider both phytoplankton
and zooplankton as passive contaminants of the water turbu-
lent motion. In this caseél,=d,=d. Using the relationship
between turbulent diffusivity and the scale of the phenom-
Yenon in the sed 30], with the minimum phytoplankton
growth rateR, given by 10° sec ! (cf. [33]), the charac-
teristic lengthL/k of about Zxm typical of plankton patterns,
one can show thal is about 5< 10" 2.

a_p:rp(l_p)_ ap h+d,Ap, (3) For numerical integration of Eqg3) and (4), a simple
Jt 1+bp explicit difference scheme is used. The 1D space is divided
into a grid of 64 finite-difference cells of unit length. The
dh ap h he f nh? +d AR 4 border between habitats divides the space into two patches.
at 1+bp —mh= n2+h2 M ) The time step is set equal to 18 Repetition of the integra-

tion with smaller step size showed that the numerical results
where the new parameters are R/R,, a=C;K/(C,Ry), did not change, ensuring the accuracy of the chosen time
b=K/C,, m=M/R,, n=CzA/K, dpzkzDP/(LZRO)! dy, step. The plankton dynamics is investigated with no-flux
=k?Dy/(L,Ry), f=FA/(C3Ry). boundary conditions. The initial distributions fbrandp are
Considering the dynamics of the plankton community in auniform and the same for both the habitats.
spatially structured marine environment suggests that the pa-

rameters in Eq9.3) and(4) are coordinate dependent. In this IIl. THE DEPENDENCE OF THE SPATIOTEMPORAL

paper we assume that the inhomogeneity of the environmerlgl_ANKTON DYNAMICS ON THE FISH PREDATION RATE
affect only the fish population, i.e., the fish predation rate

=f(x), whereas all other parameters are constant. For the Figure 1 demonstrates the solution diagrams of the sys-
sake of simplicity, we assume thétis equal to a certain tems(3) and(4), i.e., the dependence of the steady-state so-
constant value in the fish-populated patches, othenfise lution (underd,=d,=0) on the fish predation rate. One can
=0. see that the phytoplankton-dominated stationary states are
The diffusion terms in Eq9l) and(2) often describe the typical for high fish predation raté When loweringf, an
spatial mixing of the species due to the self-motion of theunstable and another stable steady-state appear, which makes
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spatial coordinatet is time. The
darker regions correspond to
lower plankton densities.

1000
2000
3000
4000
5000

1000
2000
3000
4000

5000 ===
10 20 30 4 40 50 60 10 20 30 x 40 50 60

the system bistable. Further lowerifighe bistability disap- uted systems with different local dynamics.

pears in a saddle-node bifurcation. For a lower valug af In order to demonstrate the dependence of the plankton

point H, a Hopf bifurcation occurs, destabilizing the spatial patterns on the fish predation rate in more detail, we

zooplankton-dominated steady-state while creating a stableonstruct the pattern bifurcation diagram. Figure 3 shows the

limit cycle. Particularly, it means that in the absence of fishplankton abundance as a function of positiofthe horizon-

(f=0), the local kinetics of the system is oscillatdfgr all ~ tal axig calculated at=5000 for different values of (the

other parameters, as in Fig. Notice that ad,=d,,, both a  vertical axig from f=0 to f=0.395. One can see that for the

stable steady state and a stable limit cycle of a “point” sys-fish-populated habitat, the structures with larger inner scale

tem are kept for a homogeneous distribution. characteristics for the smalldrtransform into small-scale
The sophisticated treatment of local properties of modelsrregular patterns a$ is growing, and then to the nearly

similar to the modelg3) and (4) have been carried out in homogeneous plankton distributions as the local dynamics of

works[20,28,34,3% the system passes through the Hopf bifurcation, cf. Fig. 1. In
Let us consider the simplest example of a spatially struceontrast, in the fish-free habitat the Hopf bifurcation is not

tured ecosystem consisting of two patches only. The dynamaccompanied by essential changes in plankton spatial struc-

ics in both the patches obeys E¢3) and(4), and in one of ture (Fig. 3.

the patchest=0, i.e., fish is absentfor example, due to

local changes in temperature or §a|iDu'tFigure 2 shows IV. TEMPORAL DYNAMICS OF THE PLANKTON

three sets of the 1D plankton spatial patterns that have been ABUNDANCE

emerged from initially(at t=0) homogeneous plankton dis-

tributions as a result of the diffusion interaction of the habitat  To study temporal dynamics of the plankton abundance,

populated by fish(for x<32) with f=0.05 [Fig. 2a)], f  we use value$p;(t)| and|h(t)|, i.e., the length of the vec-

=0.18 [Fig. 2(b)], and f=0.395[Fig. 2(c)], and the patch tors characterizing phytoplankton and zooplankton density

(x>32) where fish is absent £0). It is readily seer(cf. ~ distributions in each of the habitats:

Fig. 1) that the valuesd=0.05 andf=0.18 correspond to

oscillatory plankton kinetics, whilé=0.395 corresponds to Pi(t) =[Pir(t),Pi2(t), - . . Pik(t) ], 6)
the zooplankton-dominated steady state. One can see that
increase of the fish predation rate is followed by transitions hi(t) =[h;1(t),hjo(t), ... hi(t)], (6)

from rather regular plankton patteriisee Fig. 2a) for f

=0.05) to irregular onegFig. 2(b) for f=0.18] and then to wherei=1 corresponds to the fish-populated habitat? to
virtually unstructured plankton distribution&ig. 2(c) for f  the fish-free onek is the number of cells of the numerical
=0.399 in the fish-populated habitat, and from regulaig. ~ mesh.

2(a)] to irregular [Figs. 2b),2(c)] patterns in the fish-free It emerges that the temporal dynamics |pf| and |h;|
habitat. Note that the interaction between the patches is eslepends significantly on the fish predation ratés an ex-
sential to disturb the initially homogeneous distributions,ample, Figs. &) and 4b) demonstrate the temporal dynam-
otherwise no pattern could occur. Hence, pattern formatioics of zooplankton densities for fish-populated and fish-free
may be due to diffusive interactions of the spatially distrib- patches, correspondingly. There exist three main types of the
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FIG. 3. Pattern bifurcation diagrams for phytoplankton and zooplankton obtained after 500 000 itexasdhs; spatial coordinaté,is
the fish predation rate. These diagrams are shown in the same gray color scale as patterns in Fig. 2.

dynamics:(i) regular oscillationgwhenf is smal); (ii) ir-

appear in the fish-free habitdétvhen f undergoes further

regular oscillations in both fish-populated and fish-freegrowth and becomes larger than the critical value character-
pgtches(asf'increaseb (iii ) virtually cpn;tant plankton dgn- istic of the Hopf bifurcation; see Fig.)1The temporal be-
sity in the fish-populated patch while irregular oscillations havior of the phytoplankton density;| is qualitatively the
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FIG. 4. Three main types of oscillations of the valybg(t)|
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same. Notice the increase of the averaged in time level of
zooplankton ag is growing (Fig. 4). It is likely due to dif-
fusion of phytoplankton that zooplankton is grazing on from
the fish-free habitat where phytoplankton abundance is
higher (not shown into the fish-populated one where phy-
toplankton abundance is lower.

One can see a clear correspondence between the three
types of the temporal behavior of the densitieg (Fig. 4)
and the spatiotemporal patterns in Fig. 2. Namely, regular
and irregular patterns lead to regular and irregular oscilla-
tions of|p;| and|h;|, respectively, while nearly homogeneous
patterns lead to virtually constant plankton density. It should
be mentioned that not only a type of temporal behavior but
also the range of regular oscillations|pf| and|h;| depends
on the fish predation ratd-ig. 5).

It is noteworthy that in contrast to regular regimes irregu-
lar ones are characterized by positive values of at least four
first Lyapunov exponentgsee Appendix, Tables | and)ll
This implies high-dimensional chaos responsible for the ir-
regular plankton dynamics.

In order to demonstrate the chaotic nature of the plankton
dynamics in more detail we study the dependence of the
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i =0 12 =0.04 . =0.08 i £0.12 , =0.16 TABLE IlI. Values of \,. a,b,c,d correspond to the zooplank-
ton distributions shown in Fig. 8.
" " 1" 11 "
10 10 10 10 10 Zooplankton distributions a b c
g 9 g 9 9 b 0.0163
8 s s q s ﬁ e c 0.0169  0.0172
= E = < =, d 0.0164  0.0160  0.0165
51 6 6 B 6
5 5 5 s 5 turn, fish-school behavior is found to be dependent on the
4 4 4 4 4 plankton spatiotemporal dynamid¢g,14,16,18,23,3[7 The
. 3 . 3L . ik . 3\ . results presented in this paper show that plankton patchiness
0 5

can be due to fish abundance gradients in the patchy envi-
ronment. Hence, fish-plankton interplay, along with hydrody-
namic factord19-21 can be considered as an essential el-
ement of spatiotemporal plankton community functioning.
o o . . Plankton communities often show large fluctuations in
plankton oscillations on initial conditions. Figure 6 Shows g1y 7g0plankton and algal biomass. Such irregular patterns
two attractors obtained at slightly different initial zooplank- can be sometimes explained by inaccurate sampling or by
1®€Sochastic environmental effects on the population under

n . . . . .
can lead to both regular oscillations of the plankton abun-é;tUdy' At the same time, irregularity in plankton dynamics

dance[Fig. 6a] and the chaotic plankton dynamics. Thus can be due to the chaotic rather than stochastic nature of the

there are two basins of attraction, one associated with each 8{°C€SSes underlying spati(_)t_emporal chang_es in the plankton
the two attractors. ’ abundance. Unfortunately, it is not easy to find experimental

Interestingly, there is a large region of the initial zoop- SUPPOrt for chaos in aquatic communities. However, the
lankton densities for which the basin of attraction to the limitanalysis of field datg36] indicates that the recorded dynam-
cycle is interleaved in a complicated way with the basin oficS qf diatom communities can be chaopc. Our results show
chaotic attractor. To demonstrate this, we consider the plandhat irregular plankton dynamics can arise as a result of the
ton dynamics starting from a sequence of initial zooplanktorfoexistence of at least two attractors with Cantor setlike ba-
densities. Figure 7 shows which initial conditions lying in SiNS of attfactlc.)n. It is difficult .|f not |mpos,5|ble to predict
the range between 0.3 and 2.7 lead to the limit cy&lig. wh|c_h b{;\sm W|II_ attract a_pamcular trajectory unless_\_/ery
6(a)] and which ones to the chaotic attracfig. 6(b)]; ini- precise information is available abogt the initial conditions
tial conditions that approach the chaotic attractor are shadege® Fig. 7. Even weak external noise renders the system
white while all the initial densities leading to regular oscil- Unpredictable. Our results also show that chaotic plankton
lations are shaded black. One can see that zooming in on a
section of the whole rangdfor example, 1.&|h;(0)
=1|h,(0)|=<2.55) reveals additional structure and shows that
the seemingly continuous black zones are in fact broken inta

eyl oyl Ipyl Iy [

FIG. 5. The dependence of regular oscillations|f(t)| and
|hi(t)| on the fish predation rates.

(a)
p(O)=0.4, h{)=1.9024

(b)

p(0)=0.4, h({0)=1.9025

smaller ones. As we try to define more precisely the bound-
ary between the basins of attraction, we see an increasingl nl y
fractured boundaryFig. 7). The basins of attraction from
these zooplankton densities for both regular and chaotic os
cillations are fractal—and are a type of Cantor set. But there 107 10
is a region of initial zooplankton densities adjacent to
h;(0)=h,(0)=2.7 that is continous, nonfractal. All the tra- o I 3r
jectories starting from this region lead to the chaotic attractor=" =
(Fig. 7). 8| T 8h
V. CONCLUDING REMARKS 7t | 71
Recently, we have shown that plankton patchiness can b
influenced by spatiotemporal fish dynamifs,22,23. In B T B
TABLE I. Values of\;. a,b,c,d correspond to the zooplankton 5 ) . 5 ) .
distributions shown in Fig. 8. 0 2 4 B 0 2 4 &
Iy Iy
a b c d o N - .
FIG. 6. Sensitivity to initial conditions. The stable limit cyck
0.0172 0.0166 0.0171 0.0165 and chaotic attractofb) are obtained at slightly different initial

zooplankton densities differing only by 0.0001. Hére0.18.
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FIG. 7. Fractal structure of the attractor basins. Initial conditions 20 40 60 ) 20 40 60
that approach the chaotic attractor are shaded white, and initial X X
conditions leading to regular oscillations are shaded black.

dynamics and corresponding irregular spatial patterns can be (c) (d)
found in a wide region of the values of the fish predation rate

(Figs. 2—4. This may indicate the vital role of chaotic re- x 10 x 10
gimes in the spatiotemporal organization of aquatic ecosys-
tems.
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APPENDIX

The maximal Lyapunov exponeit; is well known to be _ 20 40 &0 ) 20 40 &0
determined in the following way. Ldi(t) andh®(t) be two X X

points in state space with distanczi(t):\|h(t)—h°(t)||, FIG. 8. Four typesd, b, c, andd) of the disturbances of the

6(ty)<1; te[ty,tp] (heret;=450.01;t;=1250) between zooplankton distribution at the moment leading to the four dif-
the two trajectories going through these points at Mo o ent vectori®, h®, h®), andh™® correspondingly.

specify the distancej(t), we use four different vectors

h(t), h(t), hG)(t), andh™)(t) describing zooplankton \yhere

distributions slightly disturbed at the moment as it is

shown in Fig. 8, and the vectdit®)(t) describing undis- (v) (Ul 064)

turbed zooplankton distribution as a “control” one. Than, C=

is determined by w

InS(t)~Ngt;  S(t)<1. t_he t_ime-dependgnt vectovsandw are, for example, speci-

fied in the following way:
The values of\; obtained in four different disturbance situ-
ations(Fig. 8 are given in Table I. One can see that all the

values are close to each other and positive.

v(t)=hO(t)—ht),

w(t)=h©@(t)—ht),

Similarly,
InV,(t)~At. and C' is the transposed matri€. The second Lyapunov
exponent
Here,A\=X\;+\,, andV, is a volume in a state space that
can be defined in different ways. In order to calculate the No=A—N\q.

volumeV,, we use various combinations of the pairs of the
zooplankton vectorhM(t), h®)(t), h®(t), h*)(t), and Examples obtained in such a way values Xf (for \,

h(©(t) specified as above. Here, =0.0172) are given in Table 1I. All these values are positive
and obviously close to each other. The values of Lyapunov
V,=+/de{CC") exponents\z andi4 from the Lyapunov spectrum character-
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izing the plankton dynamics are calculated in the similardynamics. Many authors have reported on an inverse rela-

way. All the values ofA; and \, are also found to be posi-
tive.

tionship between phytoplankton and zooplankton densities,
i.e., phytoplankton density is lower in the regions where

The corresponding Lyapunov exponents for phytoplankzooplankton density is higher andce versa Such an in-
ton are also positive, which is not surprising since the phyverse relationship is an apparent consequence of phytoplank-
toplankton dynamics is closely related to the zooplanktorton grazing by zooplanktofcf. [12]).
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