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Stochastic resonance in a Hodgkin-Huxley neuron in the absence of external noise
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We study numerically nonlinear responses of a periodically forced Hodgkin-Huxley neuron. The coherence
of the system in the absence of external noise, namely, the ‘‘intrinsic stochastic resonance,’’ is evidenced by the
multimodal aperiodic firing pattern, a bell-shaped curve in the signal-to-noise ratio, and the statistical features
of the mean firing rate. The subthreshold intrinsic oscillations enhance the signal transduction in a manner
different from that in models studied previously.
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One major motivation to study stochastic resonance~SR!
is its application in biology, and particularly in neuroscienc
SR is a process that consists of a noise-induced enhance
of the response of a nonlinear system to a weak, exter
time-periodic modulation in the presence of backgrou
noise. The signal-to-noise ratio~SNR! is maximized by a
nonzero value of the applied noise. Neurons are inhere
stochastic devices for information processing and are e
cient in detecting a weak signal. It has been shown b
experimentally and theoretically that noise can enhance w
signal transduction in sensory neurons via SR@1#. In addition
to direct evidence, when a bell-shaped SNR curve is cle
seen by tuning external noise, another kind of experime
indication for SR is that, in a system of periodically force
sensory neuronsin situ where the external noise cannot b
tuned or even identified@2#, a multimodal interspike interva
histogram~ISIH! ~in which the time intervals between su
cessive spikes are assembled into a histogram! exhibits a
remarkable resemblance to the residence-time distributio
bistable systems driven by a weak periodic signal in the p
ence of external noise@3#. Recently, it was found that, in th
absence of noise, such a multimodal ISIH can still be
tained if the excitability of the neuron is taken into accou
@4–6#. It is the subthreshold intrinsic oscillation, instead
external noise, that enhances signal transduction, and th
regularity residing in the spike train can be attributed to
terministic chaos. Also, a nonzero SNR has been reporte
several experiments when the external noise is switched
@7–9#, which is assumed to stem from the existence of
trinsic or internal noise. Such nonlinear features of excita
oscillators may be viewed as a kind of ‘‘intrinsic stochas
resonance’’~ISR!, namely, stochastic resonance in the a
sence of external noise. The ISR has been demonstrated
bell-shaped SNR curve in the absence of external noise if
bistable discrete map falls into the chaotic region@10#. The
multimodal ISIH in the absence of external noise was
dressed in Ref.@4# by using the FitzHugh-Nagumo~FHN!
model. Recently, ISR near a period doubling bifurcation w
analyzed in the Hindermarsh-Rose~HR! model, by using the
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SNR, maximum Lyapunov exponents, the ISIH, and t
mean firing rate@5,6#. Indeed, ISR was observed in an e
periment on a giant squid axon@4#.

Biologically, the excitability of neural systems plays
fundamental role in neural information processing. The r
of external noise in excitable neural models has been
cussed in recent years@9,11–13#. On the other hand, the
excitability of neurons can lead to intrinsic sub- and sup
threshold oscillations as well as deterministic chaos, wh
appear to have intrinsic stochasticity in neural systems@14#.
Unlike external noise, such intrinsic stochastic behavior c
be tuned by the neural system itself through physiochem
changes, e.g., through the effect of neuromodulators.
cently, it was claimed that neuromodulation is important
understanding signal transduction, pattern formation,
even higher biological functions, such as metalearning
emotion@15#. In this paper, we study ISR using the Hodgki
Huxley ~HH! neural model, which serves as a paradigm
modeling spiking neurons@16#. We show how a weak signa
is enhanced by tuning the subthreshold intrinsic oscillati
It is also indicated that the ISR in the present HH mode
different from that in high-order nonlinear oscillator mode
as their patterns of intrinsic oscillation are different. Mo
importantly, since the HH model is biologically realistic, w
may attribute the ISR to the inherent membrane propertie
neurons, enabling us to understand relevant experim
more reasonably.

The HH model, which is based on the nonlinear cond
tance of ion channels, is described by a set of four tim
dependent variables (V,m,n,h) @16#,

dV

dt
5 f ~V,m,n,h!1I 01I 1 sin~2p f t !, ~1!

dm

dt
5

m`~V!2m

tm~V!
, ~2!

dn

dt
5

n`~V!2n

tn~V!
, ~3!

dh

dt
5

h`~V!2h

th~V!
, ~4!d-
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FIG. 1. ~a! A time series of
membrane potentials of a HH neu
ron subjected to a constant bia
I 053.12, and a signal withI 1

51.02, f 560 Hz. The amplitude
for the signal is enlarged ten time
for better viewing.~b! The corre-
sponding interspike interval histo
gram. ~c! The corresponding
power spectrum density graph.
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f ~V,m,n,h!52gNam
3h~V2VNa!2gKn4~V2VK!

2gL~V2VL!, ~5!

whereV is the membrane potential,m and h the activation
and inactivation variables of the sodium current, andn the
activation variable of the potassium current. The parame
gNa, gK , andgL are the maximum conductances per surfa
unit for the sodium, potassium, and leak currents, andVNa,
VK , and VL are the corresponding reversal potentia
m` ,h` ,n` andtm ,tn ,th represent the saturation values a
the relaxation times of the gating variables. Detailed val
of the parameters can be found in Ref.@16#. The system is
subject to two external currentsI 0 andI 1 sin(2p f t). Because
I 0 is independent of time, changing it is equivalent to cha
ing the reversal potential of leakage channelVL in Eq. ~1!. In
the following simulation, we tune intrinsic oscillations b
changingI 0 . I 1 sin(2p f t) is a weak periodic signal withI 1
and f being the amplitude and frequency of the signal,
spectively.

Let us see first how the subthreshold intrinsic oscillat
enhances signal transduction~Fig. 1!. We chooseI 151.02
and f 560 Hz. This signal is too weak to excite a neuron~the
threshold isI 151.5). If a constant bias is applied to th
system, the additive constant bias is still unable to excite
neuron if I 0 is small. In this case, the neuron experience
subthreshold oscillation. As the constant bias increases
subthreshold oscillation becomes stronger and stron
When the bias exceeds the threshold (I 052.75), the neuron
is excited to output the spike train@Fig. 1~a!#. The neuron
does not fire in each period cycle of the external signal, w
several cycles being skipped. Importantly, such skipping
irregular and the spike train is stochastic. We plot the ISIH
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the spike train in Fig. 1~b!. The peaks of the ISIH are roughl
multiples of the forcing period, and the envelope of the IS
decays exponentially except for the first few peaks. Su
stochastic coherent characteristics are also seen in the p
spectrum density~PSD! of the spike train@Fig. 1~c!#. A main
peak located at the forcing frequency and several other pe
located at multiples of the forcing frequency indicate that
input signal is included in the output spike trains. A nonze
SNR, which is calculated from the ratio of the height of t
main peak to its nearby background in the PSD, is s
clearly even in the absence of external noise. Due to
deterministic features of the chaotic firing, there are seve
small peaks atf 85 f /n ~with n52,3,4) which represent the
spikes with intervals ofT85nT (T is the period of the ex-
ternal forcing!. These small peaks are reduced if a we
external noise is applied. Both the ISIH and PSD obtain
here are almost the same as those of SR in noisy bist
model, although the dynamics is deterministic here.

We plot the firing rate as a function ofI 0 andf for a weak
periodic input signal (I 151.02) in Fig. 2, which shows the
dynamic behavior near the threshold. When the frequenc
the signal ranges from 45 to 65 Hz, the system first exp
ences chaotic firing asI 0 increases to cross the threshold.
is in this frequency region that ISR is present. This feature
quite different from the usual SR, due to the fact that the H
model has specific frequency of intrinsic oscillation whi
plays a crucial role in ISR.

The dynamical features of the ISR can be seen in Fig
where we plot the maximum Lyapunov exponentsl, the pro-
jection of the membrane potential, and the interspike in
vals. Beyond the threshold, regions with positive~chaotic
regions! and negative ~mode-locked regions! maximum
Lyapunov exponents appear alternately asI 0 increases@Fig.
3~a!#, until a steady state is reached@17#. In the chaotic re-
3-2



be
as
at

ize
-

on

in
ear

the
ld
In
to
ose
be

nce

om-
c-
owhe

be
ge
g

STOCHASTIC RESONANCE IN A HODGKIN-HUXLEY . . . PHYSICAL REVIEW E64 021913
gions, the ratio of the number of output spikes to the num
of signal periods is irrational. We can also examine this c
by the projection of membrane potentials at times separ
by the signal period, as plotted in Fig. 3~b!. Chaotic regions
are those with many projection points and are character
by multimodal ISI’s@Fig. 3~c!#. These results show that cha
otic firing behaviors can be obtained by changing the c

FIG. 2. The mean firing rate for the parameter region ofI 0 vs f,
with I 151.5. The mean firing rate is calculated by dividing t
number of output spikes in 1500 signal periods by 1500. The la
ing m:n on some flat surfaces shows where there are on averan
spikes perm signal periods, which is the reciprocal of the firin
rate.
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stant bias on a periodically forced HH neuron.
As shown in Fig. 3, ISR in the HH model behaves

some manner differently from that in second order nonlin
oscillation models. In the FHN and HR models@4–6#, there
exists a large region of subthreshold bifurcation where
period doubling bifurcation is obvious; while subthresho
period doubling is hardly observed for the HH model.
addition, different intrinsic patterns in the HH model lead
different phase diagrams and dynamical features from th
in other models. For example, intrinsic oscillations can
chaotic when tuningI 0 in the HR model@5#, while such
chaotic intrinsic oscillations cannot be found in the abse
of periodic forcing in the HH model.

In realistic neural systems, external noises cannot be c
pleted switched off, and thus a mixed effect of external flu
tuations and deterministic chaos would be expected. We n
consider a system subject to an external noiseh(t), which
satisfies

dh~ t !

dt
52

h~ t !

tc
1

j~ t !

tc
~6!

with

^h~ t !h~ t1t!&5~D/tc!exp~2t/tc!, ~7!

l-
u-

pa-
FIG. 3. The dynamical behaviors of the ne
ron as a function ofI 0 with I 151.02, f 560 Hz.
~a! The maximum Lyapunov exponentsl, ~b! the
projections of membrane potentials at times se
rated by the signal periodT, and~c! the interspike
interval histogram.
3-3
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wherej(t) is the Gaussian white noise with varianceD and
tc ~50.1 ms! is the correlation time. Equation~6! describes a
zero-mean Ornstein-Uhlenbeck~OU! stochastic process@18#.

One feature of SR is to enhance the ability to transmit
encode signals in the system, which can be measured
the signal-to-noise ratio. When there is no noise~not shown
here!, the peak-to-base ratio of the power spectrum reac
maxima for all mode-locked regions. When a weak OU no
is applied, the output SNR first increases to a maximum
then decreases asI 0 increases~Fig. 4!. Not all combinations
of parameters (I 0 ,I 1 , f ) give this bell-shaped curve, but onc
the suitable parameters are chosen, the bell-shaped curv
be obtained for any value of noise intensityD provided that
D is not too large. IfD is very large, the curve become
flattened. We may split the bell-shaped SNR curve into th
regions: the rising region, the top plateau region, and
falling region. In the absence of noise, multimodal firin
patterns and mode-locked patterns occur alternately in
rising region; in the presence of noise, the mode-lock
states are destroyed so that almost only multimodal st
appear. The chaoticity is like an extra noise that decrea
the SNR. The falling region is another chaotic firing sta
the intrinsic bursting. The output spikes are not related to
signal but to the excitability of the system. The present b
shaped SNR curve may be compared with the effect of SR
various experiments@7–9#.

From the SNR, we find that the signal enhancement ef
is independent of chaotic noise strength~controlled by deter-
ministic input!, and the stochasticity is generated by the
trinsic dynamical property of the excitable system. We c
compare this with conventional SR. For conventional S
similar bell-shaped curves are observed@12#. We note thatI 0
plays a similar role toD, although they are obviously differ
ent things.

To see and to analyze the role ofI 0 in the parameter rang
of ISR, we plot the mean firing rate~number of spikes pe
number of signal periods! versusI 0 for a moderate noise

FIG. 4. The output signal-to-noise ratio for different consta
bias I 0 with I 151.02, f 560 Hz, with OU noise ofD50.01 and
0.1.
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D55 in Fig. 5~a!. In the absence of external noise, there a
some mode-locked states where the firing rate is unchan
~‘‘steps’’! as well as chaotic regions between the flat ‘‘step
@the dotted line in Fig. 5~a!#. The whole structure of the
staircase is complicated, but the upward trend is clear.
comparison, we also plot the mean firing rate versus
noise intensityD in Fig. 5~b!, whereI 0 is chosen such tha
the neuron exhibits multimodal firings forD50.

To understand better as well as to compare the dat
Figs. 5~a! and 5~b!, it is helpful to employ a Kramer-type
formula for the probability rate of state switching in mult
stable systems when the system is periodically forced@9,19#:

R~ t !5exp$~2U/Dtot!@12a cos~2p f t !#%, ~8!

whereU is an effective barrier height,Dtot is the effective
total noise intensity, anda is a constant. The mean firing rat
can be obtained as

t

FIG. 5. I 151.2 andf 560 Hz. The mean firing rate is calculate
by the method described in Fig. 2.~a! The mean firing rate vs the
constant biasI 0 with D50 ~dotted line! and~scattered squares! and
its fitting by Eq. ~11! ~solid line!. ~b! The mean firing rate vs the
external noise intensityD with I 051.58 ~scattered circles!, and its
fitting by Eq. ~10! ~solid line!.
3-4
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STOCHASTIC RESONANCE IN A HODGKIN-HUXLEY . . . PHYSICAL REVIEW E64 021913
R5^R~ t !&5exp @~2U/Dtot!#B0~aU/Dtot! ~9!

whereB0 is the zeroth order modified Bessel function. Fro
Eq. ~9!, we are motivated to fit Fig. 5~b! with

R~D !5A~D1D0!E exp@2B/~D1D0!# ~10!

whereA50.461,B50.0745,D050.270, andE50.180. We
find thatD0 is nonzero, which implies the existence of bac
ground chaos that produces the multimodal firing whenD
50. ForD.0, the chaos acts like an extra noise. Since i
expected that the effect of changingI 0 will be similar to that
of changing the noise intensity in some sense, we may tr
fit Fig. 5~a! by

R5A1~ I 0!E1 exp~2B1 /I 02I z! ~11!

where A1514.2, B1511.8, Iz522.72, andE1520.751.
The fitting appears to be acceptable and the similarity
tween changingI 0 andD can be seen from the fittings Eq
~10! and~11!. In fact, I 0, together with the sinusoidal signa
drives the system into the chaotic regime. The mixed eff
of the total inputI and the excitability produces a subthres
old chaos that plays the role of noise and enhances the s
detection through a mechanism like SR, so that an unde
able weak signal may become detectable~at least partially!.
In addition, comparing Eq.~11! with Eq. ~9!, one can see tha
increasingI 0 has a similar effect as decreasingU, and the
effect is nonlinear and very complicated.

The noise, signal, and barrier are three elements of SR
bi- or multistable systems, since the constant bias affects
barrier height linearly, no chaotic background can be p
duced. Therefore external noise is necessary for SR in th
systems. In excitable systems, however,I 0 changes the effec
tive barrier height in a nonlinear way, which explains w
there exists the effect of SR even when the external nois
switched off. Certainly, the excitability is a key element
this effect. In excitable systems like the HH neuronal syste
the effective barrier height is not merely a fixed threshold
dependent on the recovery, as the system cannot give
responses during this stage. The recovery rate is not
changed after each discharge of the membrane poten
rather it is dependent on the phase of the input current w
firing happens. For certain parameter values ofI 0 , I 1, andf,
the recovery time scales can become irregular and the co
sponding oscillation is that of the subthreshold chaos m
tioned above. For appropriate parameters, the fluctuation
become chaotic and acts like a noise to enhance the tr
y-

,
I.
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duction of deterministic input via the mechanism of SR. As
result, there exists a stochastic resonance without noise~i.e.,
ISR! in excitable systems.

In conventional SR, the noise and the signal can be
tinguished as two different inputs. However, we cannot se
rate the subthreshold chaos from the signal in our case
there is onlyI 0 or the signal, we can observe either a co
stant or a periodically oscillating subthreshold membrane
tential. The chaos comes from the mixed effect ofI 0, the
signal, and the excitability.I 0 is merely a parameter used fo
observing the ISR in our simulation. We can varyI 1 to ob-
serve a similar effect. However, the necessity of the sig
implies a kind of self-organization in neuronal systems. T
input signal, together with the constant bias, produce
chaos that enhances the detection of the signal itself.
though a random number of cycles are skipped, the timing
the spike trains is still dependent on the signal period, a
thus the precise timing of the stimulation is remember
Recently, it was indicated that some sensory information
encoded in time, rather than firing rate@20#, so that multimo-
dal firing patterns can carry information as usefully as pha
locked ones. For a certain weak sinusoidal signal, we m
consider I 0 as the control parameter, which, biologicall
could be either a constant part of the internal noise or
intrinsic electrical property of the neuron. In the former ca
the internal noise is mainly the stimulus from other neuro
in the network, causing a subthreshold fluctuation in
membrane potential@21#. In the latter case, the electrica
properties including the constant bias of neurons can
modulated by a stimulus from the environment@22#. This
tuning effect is easily found in sensory neurons, and ba
on it the organism can adapt to its environment.

In summary, we have found that excitability is importa
in detecting weak signals in the HH model, via the mech
nism of ISR. This interesting phenomenon is absent in
usual bi- or multistable systems. The resonant oscillation
tween the output and weak external forcing in the absenc
external noise is enhanced by subthreshold intrinsic osc
tions and is demonstrated in a multimodal ISIH, the SN
and the statistics of the mean firing rate. Rather than rely
only on the external noise, a neural system may tune itse
be chaotic to encode weak signals.
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Pacific Institute for Mathematical Sciences and an NSE
grant.
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