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Neural-network analysis of the vibrational spectra of N-acetyl L-alanyl N’-methyl amide
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Density-functional theoryDFT) calculations utilizing the Becke 3LYP hybrid functional have been carried
out for N-acetylL-alanineN’-methylamide and examined with respect to the effect of water on the structure,
the vibrational frequencies, vibrational absorpt{®# ), vibrational circular dichroisnfvVCD), Raman spectra,
and Raman optical activityROA) intensities. The large changes due to hydration in the structures, and the
relative stability of the conformer, reflected in the VA, VCD, Raman spectra, and ROA spectra observed
experimentally, are reproduced by the DFT calculations. A neural network has been constructed for reproduc-
ing the inverse scattering datae infer the structural coordinates from spectroscopic )déitat the DFT
method could produce. The purpose of the network has also been to generate the large set of conformational
states associated with each set of spectroscopic data for a given conformer of the molecule by interpolation.
Finally the neural network performances are used to monitor a sensitivity analysis of the importance of
secondary structures and the influence of the solvent. The neural network is shown to be good in distinguishing
the different conformers of the small alanine peptide, especially in the gas phase.
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I. INTRODUCTION We shall also try here to demonstrate the usefulness of

neural networks for quantum chemistry calculations and
The goal of the present study of applying density-spectroscopy. This is a very promising application to protein
functional theory to peptides for finding the electronic struc-structure and functionality, although at the moment it is only
ture of peptide-bonded amino acids in solution is to underapplicable for small peptides. It is the hope that by calculat-
stand the connection between the structure and the functiang detailed electronic properties and interactions of the pro-
of protein molecules. The study presented in this papetein with its aqueous surroundings in particular states, a net-
serves as a pilot project for the greater goal of deriving funcwork trained on such results should be able to extrapolate
tion from structure in proteins. Up to now electronic struc-and produce many of the other relevant functional states. We
tures of dipeptides and tripeptides in vacuum have been cahkave obvious reasons to believe that an active protein exists
culated and measured by others, and the main conclusidn many functionally important substates, as demonstrated,
from such work has been that “ionic” compounds, e.g., zwit- e.g., by Frauenfeldeet al. [1]. Detailed electronic calcula-
terion molecules, are unstable in vacuum or in the isolatedions can, due to limited computer resources and time, only
state in nonpolar solvents or inert matrices. Thus, to gairtomprise a few of these conformational substates. However,
further insight into the problem via a quantum-mechanicalit seems plausible that a neural network should be able to
analysis of the electronic structure of these biomolecules, wextract essential features of such calculations on a few con-
have added the effect of the solvent in our calculations, i.eformational substate structures and then generate many, if
added explicit water molecules to the peptide structures tmot all, other substate structures that might be of relevance.
simulate the effect of those waters directly hydrogen-bondedhe results of the following study seem to indicate that such
with the polar groups and subsequently embedded these & task is possible.
moleculet N water complexes” within a dielectric medium In the first part of this paper the methodology of the de-
via a continuum model. Here the continuum model has beetuiled electronic calculations is reviewed and connected to
used to try to simulate the effects due to bulk water mol-the spectroscopy of protein structure experiments. Here we
ecules, while the explicit water molecules have been addedive only a short presentation of density-functional theory
to simulate the effects of the water molecules which are inwith the goal to give a feeling for what can be calculated at
direct contact with the peptide. this time [2-29. The development of density-functional
theory with respect to its application to problems in biophys-
ics, for example, the prediction of vibrational circular dichro-

*Corresponding author. ism (VCD), Raman spectra, and Raman optical activity
TPresent address: Steinbeis Center for Genome Informatics, IfROA) spectra, is a very exciting ard80—35. Here one
Neuenheimer Feld 370/42, D-69120 Heidelberg, Germany. must go beyond simple local-density approximat{@DA )

1063-651X/2001/642)/02190%13)/$20.00 64 021905-1 ©2001 The American Physical Society



BOHR, FRIMAND, JALKANEN, NIEMINEN, AND SUHAI PHYSICAL REVIEW E 64 021905

and generalized gradient approximati@GA) and intro- some DFT calculations on hydrateM-acetyli-alanine

duce the electron current density as a variable either expliaN’-methylamide(NALANMA ) which will shed some light

itly or implicitly in addition to the normal variables, the elec- on the effect of water on the structures, vibrational frequen-
tron density and the gradient of the electron density, to treagies, VA, VCD, and Raman and ROA intensities. We have
magnetic field effects. In the second part the neural networlg|so constructed an artificial neural network to solve the in-
application is explained in a more straightforward way andyerse scattering problem of retrieving structural information
more along the line of other applications of neural networksyf the biomolecule from spectroscopic data, that is, vibra-

in biochemistry. The neural networks are first trained and;yng frequencies, VA, VCD, and Raman and ROA intensi-
tested on the peptide molecule in vacuum and then later ofas of isolated NALANMA.

the same molecule in a water solution. It turns out that water
makes the task of predicting conformations from spectro
scopic data harder.

There have appeared a few papers that are similar in spi
to this study. In a paper by Fariselli and Casafl3®] a

We take two routes to get from the spectroscopic data to
‘predict the structure of our test molecule. One route is to use
rt%ensity—functional theoryDFT) at the Becke 3LYP/6-31G

level to calculate all the possible structures and for all of the

neural network is used for predicting contact maps of pro_struct_ures t_h_e correspondl_ng freq_uenmes, VA, VCD, and Ra-
teins from the input of chemico-physical and evolutionaryman |nten3|t_|es and ROA intensities and _then compare them
data. Once a contact map is obtained the protein structur@ the experimental data. The_other route is to train the_ neural
can be derived by minimizatiof87]. Their study shows that networks on a large combination of calcu[ated correlat!ons to
neural networks are better in predicting protein structurednfer or extrapolate new results. When going to large biomol-
than ordinary statistical methods. In another study Pancosk@cules one can determine whether there is a correlation be-
et al. [38] have, on the basis of VCD spectra, used neurafween the best predicted structural details from spectroscopic
networks to obtain structural information about proteins be-data and the data connected to secondary structure stability.
yond the usual secondary structure content that CD and VCDhis is in order to see which spectroscopic data are the most
spectra provide. important in determining the secondary structures.

The larger goal is to utilize neural networks for determin-
ing the structural minima. At these minima VA, VCD, and
Raman intensities and ROA intensities are calculated by

Hydration is an important issue in genome research aPFT in order to produce training data, that is, sets of spec-
exemplified by the structural change which occurs as on&oscopic data correlated wiih— ¢ angles for the network.
lowers the relative humidity of DNA below 75%B-DNA  Other methods, such as x-ray crystallography and NMR,
converts toA-DNA). The phosphate groups in thiehelix  have only been utilized to determine the native states of pro-
bind fewer water molecules than do the phosphate groups iteins. Spectroscopic measurements provide the possibility of
the B-helix, hence dehydration favors tiieeform of DNA.  determining the denatured states of proteins. The problem is
The effect of hydration on the binding of proteins to DNA to know the structures and VA, VCD, Raman spectra, and
and RNA is still not well understood and most modeling of ROA spectra of the conformational states of proteins. Pan-
the interaction of proteins with DNA and RNA does not treatcoska and co-workers have utilized neural network method-
the water molecules eXpIICItIy In this work we have not tried o|ogy to find correlations of VCD Spectra with the native
to treat the binding of thg protein with DNA and RNA but states of proteins by utilizing the known NMR and x-ray
study the effect of hydration on the structural and spectrogyystaliographic structurd88]. Our work complements their
scopic changes in small biomolecules, which function asyqr in providing correlations of VA, VCD, Raman specira,
model systems for DNA and protein hydration phenomena, 4 roa spectra and the higher-energy denatured states of

tst;mllaf; totth? r(]effdecttpf hydratl;)n otn tZe ftoirr]ns of IIDNAl Olnce Peptides and proteins. These denatured states can be pro-
€ etiect of hydration 1S understood at the molecuiar 1evey o4 \|nder various experimental conditions, that is, in an

for small peptides and later for proteins we can go on to trya ueous solution under a variety of conditions, for example
to understand the effect of hydration on the binding and rec- q y ’ Pi€,

ognition process in protein-DNA/RNA complexes, and henceft Various pH, sal_t conditions, and by the presence of urea
nd other denaturing agents.

to understand at a molecular level the biological processe§ .
and how they are mediated in aqueous solution and then, N that sense one should be able to predict higher level
ultimately, in the cell. Many of the current models treat hy- INtermediate-energy states during folding processes of bio-
dration macroscopically and do not include the structural andnolecules with the help of neural networks, once they are
electronic effects due to the solvent microscopically or quanirained on known sets of intermediate energy states. The
tum mechanically. Our work here is an attempt to documeng@reat thing about utilizing neural network techniques for the
the hydration effect in proteins at a microscopic level withinverse scattering problem of deriving structural information
the hope of pointing out some of the deficiencies in the curfrom scattering data is that it goes hand in hand with experi-
rent models and to provide some directions and insights intanents and DFT calculations in the sense that one of the tools
possible improvements. can support the other when it fails. This means that where
The effect of hydration on small peptides and amino acidghere is no known structure for the conformational states of
is, in spite of their limited size, still a ubiquitous problem, the protein but measured VA, VCD, Raman spectra, and
hard to calculate, measure, and understand. Here we presd®®A spectra, one should use neural networks.

II. PERSPECTIVES CONCERNING SOLVENT EFFECTS

021905-2



NEURAL-NETWORK ANALYSIS OF THE VIBRATIONAL . .. PHYSICAL REVIEW E 64 021905

[l. DENSITY-FUNCTIONAL ANALYSIS OF HYDRATION culate all properties within the density-functional theory,
EFFECTS ON SMALL PEPTIDES which we can do within the wave-function theory. This is
AND AMINO ACIDS clearly not yet possible. As one attempts to reformulate

wave-function perturbation theory to density-functional per-

turbation theory, one then must address the same problems
The principles of density-functional theory are tightly one addresses when trying to address simple density-

coupled to wave-function theory. It is not a completely inde-functional theory, where one only wishes to determine the

pendent formulation of quantum mechanics. Here we shaljround-state potential-energy surface, thaE[sq(r),ﬁ]_

try to give a brief overview of the early attempts at develop- The first Hohenberg-Kohn theoref,42,43 proves that

ing an independent theory and how the problems were ovethe electron density determines the energy and hence refor-

come by borrowing from wave-function theory. This borrow- mulates the basic equation to solve as one in which one has

ing has helped overcome some of the fundamental problents determine the electron density rather than the wave func-

with a pure and independent density-functional theory, bution. The energy functional can be written as

has also introduced some new problems. One is very funda-

mental, the definition of theorrelation energy In wave- Ev[p]:T[p]+Vne[p]+Vee[p]:f p(F (N dF+Fuklp],

function theory, the correlation energy is defined as the dif-

ference between the exact Hartree-Fock energy and the exact 1)

energy. Clearly this definition is not a good definition for a

pure and independent density-functional theory. Hence othét¥here

definitions for the density-functional theory correlation en-

ergy have been propos¢@9]. Another is the definition of Fuklp]=Tlp]+ Ved p] (2

exchange energy. Within Hartree-Fock theory the exchange

energy(or better named the exchange integiaiclearly de-  andy (f) is the external potential ar@i[p] the kinetic en-

fined. It does not have a purely classical analog and hence #rgy The second Hohenberg-Kohn theorem provides the

is not clearly obvious how to form the exchange energy funcenergy-variational principle which enables one to find the

tional in terms of the electron density. Hence here also somgensity that minimizes this energy functional. The problem is

confusion arises. Here we try to make clear the connectiongat we do not know the functiond, [ p] exactly. Many

between a pure and independent density-functional theorjnctionals have been developed which try to address this

and wave-function theory, first at the Hartree-Fock level andyropjem.

then a more generalized form, the highest being a full-  Here we focus on the total energy functior#lp] ex-

configuration-interaction formulation, which gives us a for- yressed as

malistic way to get the exact energy in theory, but is not

feasible and practical for a many-electron atom, and certainly

not attainable for a polypeptide or protein. E[p]:f p(Pv(F)dF+T[p]+ Ved pl. (3)
Hence we must make approximations. But what one seeks

whenever one makes an approximation is to understand

clearly what one is giving up by making this approximation_ThiS formulation of DFT which introduces orbitals into the

One must make a clear distinction between an assumption @oblem is very similar to that of Kohn and Sham and Parr

premise and an approximation. One further approximatiordnd Yang. This has been done so that one has a good repre-

which is many times overlooked is the Born-Oppenheimersentation for the kinetic energy functionalp] and the

approximation. In many cases in wave-function theory weelectron-electron repulsion functiondld p], that is, the last

work within the Born-Oppenheimer approximation and fail two terms in Eq(3).

to mention and to understand the consequences of this. Not The early pure DFT models, for example, the Thomas-

all properties are calculable or even meaningful with theFermi model, had the seemingly insurmountable problem of

Born-Oppenheimer approximation. A case in point is thetrying to find the kinetic energy functiondl[p] and the

magnetic dipole moment and the derivative of the magneti€lectron-electron repulsion functiondld p]. In terms of the

dipole moment with respect to the nuclear velocities, that isspin orbital and occupation numbers, the exact expression for

the atomic axial tensor of Stephef$0] and Buckingham the ground-state kinetic enerdyis known:

et al. [41]. To calculate the VCD spectra one requires these

non-Born-Oppenheimer properties. Hence one must have a N

clear understanding on how to go beyond the Born- T=Z ni{ ¢il—3V2 &), 4

Oppenheimer approximation within the realm of a pure and :

independent density-functional theory also. Finally the con-

cepts of perturbation theory and finite field perturbationwhere the¢; andn; are the natural spin orbitals and their

theory need to be generalized if one wishes to be able toccupation numbers, respectively. Note that the Pauli prin-

calculate all of the properties within the density-functionalciple requires that €n;<1. Using the Hohenberg-Kohn

theory which one can currently calculate within wave-theorem, the kinetic energy functioriglp] is a functional of

function theory. If the DFT is to achieve its goal, that is, to the total electron density. Here we have expressed the total

surplant wave-function theory, then one must be able to calelectron density in terms of orbitals,

A. Standard formula

021905-3



BOHR, FRIMAND, JALKANEN, NIEMINEN, AND SUHAI PHYSICAL REVIEW E 64 021905

N
p(N=2 ni > |hi(F,9)]2 (5) E[p]=Ts[p]+f p(Nu(F)di+Jed p]+Exclp], (10

where the exchange-correlational functiokal is given by

This helps us get insight into how to deal with the klnetlc,[he following expression:

energy functional. By assuming the system td\beoninter-
acting electrons these expressions simplify to Exc=T[p]l-Tdp]+Ved p1-Jdod p]. (11)

N A The Egc which we have used in this work is a hybrid
Ts=2i (il =2V i), (6) exchange-correlation functional, the Becke 3LYB3LYP)
functional, defined by the following expression:
where the¢; are the natural spin orbitals and their occupa- _xc _ —x X X X c
tion numbers are now 1 for the occupied orbitals and 0 for Egsivp=Eipat0-20Er—Eipa) +0.78Ezgs T Eving
the virtual orbitals, respectively. Using the Hohenberg-Kohn +0.81(ES, p— ESyna)- (12)
theorem, the kinetic energy functiondl p] is a functional
of the total electron density. Here we have expressed the totghis functional has been implemented in the Cambridge
electron density in terms of orbitals, Analytical Derivatives PackagécAppPAC), Gaussian, and a
variety of other wave-function(orbital) based density-

. N . functional-based codes. The first term is the local exchange
p(r)=zi 25 | i(F.8)%. () functional,EX, », defined by
. . 3 3 1/3
But how do we deal with the electron-electron repulsion EX :__(_) Jp4’3d3f (13)
functional? The classical expression for the electron-electron LbA 2\4m

repulsion would give us the term ) , , i
where p is the electron density. This functional was devel-

1 [ p(F)p(F)) oped to reproduce the exchange energy of a uniform electron
Jee[P(F)]:Ef - dridr;. (8) gas. The second term adds an admixture of Hartree-Fock
local exchange to the LDA local exchange term. The
Here one gets the classical Coulomb repulsion integral bu;t_'O ?:r:ref?c;;c’ﬂ(alr?r?el_Egg?at?‘%irfunggf ':2' |g§§s ':ﬁefungtrlt?gz
ones loses or does not get the term that comes from e)ifock orbitals by the Kohn-Sha)r/r; orbitalsp
change, which one gets when one uses wave-function theory; y ’

that is, the term one gets when one uses one-electron spin 1 B (X)) bF (Xp) i (%) (%)
-5 2 J | j i i d
i

Fij

orbitals and an antisymmetric wave function that satisfies theE{sz
Pauli principle with respect to the exchange of two particles, M2
usually a Slater determinant. This is a term that one gets at (14)

the Hartree-Fock level using a Slater determinant and ariseFhe third term includes an admixture of Becke’s gradient

from the exchange of particles, hence the name exchange . X X .
energy or exchange integral. It is a purely quantum effect duqéz;irr?ggo&EBecke%’ to the LDA exchange. Th&gecessis

to the fermion nature of electrons, indistinguishability of
identical particles. How to formulate this term in terms of p*3x
orjly the electron density is similar to the p.roblem we had Efeckess ELDA— yJ Tr6ventSo
with how to form the general electron kinetic energy func- (1+6ysinh™x)
tional in terms of only the density. But by forming the den-
sity in terms of orbitals, we are able to obtain an approximat

X10%5.

2
d3F, (15

wherex=p~#JVp| and y is a parameter chosen to fit the
%nown exchange energies of the noble gas atoms, which

form for the electron kinetic energy in terms of orbitals. Becke defines as 0.0042 Hartrees. The fourth term accounts

Similarly an gxchange energy functional can be obtained "or the VWN3 local correlation functiof44]. Vosko, Wilk,
terms of orbitals. One can use expressions from wave-

; T and Nusair(VWN) proposed the following functional form
function theory to generate approximations to the exact func; . . }
. e X for the correlational functional:
tionals when the density is formed from orbitals. Then all of

the remaining errors can be lumped in the expression which ()

f
has been called the exchange-correlational functional. The ESWN(rS,g’):Eg(rS)Jra(rS){% [1+B(re) ™,

exchange-correlational energy functional then becomes ( (16)
E[P]ZTS[P]‘FJ p(Mv(A)di+Jed pl+ T pl—Tdp] wherea(rs) is the spin stiffness an@(rg) is chosen to sat-
isfy e.(rs,1)=€.(rg), namely,
+V -J 9 ,
ee[P] ee[P] ( ) ., fc(rs)_fg(rs)
1+B(rg)=1"(0) —————— 17
or a(ry)
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For more details on the VWN and VWN3 functionals we optimized structures. The relative energies of these com-
refer the interested reader to the original pgddi, the book  plexes are compared with the isolated molecule values. The
by Parr and Yang on density-functional theory, and finally togoal has been to model biomolecules by explicitly adding
the Gaussian andADPAC user's manuals and source code water molecules to provide calculations that can be used to
for direct implementation. Finally the last term adds an ad-ritically evaluate solvent models and specific models devel-
mixture of the Lee, Yang, and P&lrYP) correlation correc-  gped for water. The H-bonding picture as exemplified by
tion [13]. ] o some of the simple water models is clearly wrong, and we

In this Becke 3LYP functional, the coefficients for the fee| that conclusions based on these models can be critically
admixtures have been determined by Becke by fitting to atayaluated utilizing the better models of wafét.,32,48.
omiza_ltion energies, ionizgtion potentials, proton affinities, Various models have been developed for ,imﬁlicitly and
T e s 10m <oris o €PIEUY (aking it account waer at various vk

9 %3]. At the molecular mechanics level, the force field can be

tional in his original work rather than the VWN3 and LYP. arametrized against experimental data measured on the
The fact that the same coefficients work well with differentp 9 P

functionals to some extent lends credence for using such @olecule'in the aqueous'solution. The force field is then npt
mixture of Hartree-Fock and DFT exchange. This hybridnecessarlly useful for doing calculations on the molecule in

functional has been used extensively by various groupSther solvents.
where accurate Hessians are required to model the VA, The hydrated structures presented here for NALANMA

VCD, Raman spectra, and ROA spectra. Other less accura@n be used to test the various water models before one uses

functionals may be appropriate for simple energy and gradithem in expensive molecular-dynamic simulations on pro-

ent calculations, but for property surfaces that involve electeins and nucleic acids. The work is a part of our collabora-

tric field, magnetic field, and nuclear displacement perturbative work at the German Cancer Research Center, the Tech-

tions along with their couplings, these more accuratenical University of Denmark, and Helsinki University of

functionals are essential. Technology to model proteins and nucleic acids along with

Becke 3LYP level analytical Hessian, atomic polar tensowvarious ligands in the presence of water.

(APT), atomic axial tensor§AAT), and electric dipole—

electric dipole polarizability derivativeDEDPD) calcula-  C. Methods for density-functional and vibrational calculations

tions havg also been implementedaAUSSIANog Finite field Vibrational absorption and vibrational circular dichroism

perturbatlon _theory has been used.to calp_ulate EDEDPD res'pectra are related to molecular dipole and rotational

quired to simulate the Raman intensities. The eIectrlcStrengths via

dipole—magnetic dipole polarizabilitietEDMDP) and the

electric dipole—electric quadrapole polarizabiliifDEQP 87N,

have been calculated withioAbPAC [45]. The derivatives e(v)= WZ vDifi(v;,v), (19
i . c(2.303 4

with respect to nuclear displacements have been calculated

with the finite differences techniques. The Becke 3LYP level

force fields have been shown to be more accurate than re- 327N, _

stricted Hartree-FockRHF) level Hessians which must be Ae(v)= mz vRifi(vi, ), (19

scaled to get good agreement with both experimental fre-

guencies and VA and VCD intensiti€30,46,47. The nature N .

of the normal modes has been shown to depend on the scafl€ré€ andAe= ¢ — eg are molar extinction and differen-

ing scheme one chooses to scale the Hessian. The advantéoqaé extinction coefficients, respectivel); andR; are the

of the Becke 3LYP level of theory is that the Hessians ap- ole anﬂ r.()tat'orj?l stEngthg of tiith tran_5|t|on.of wave
pear to be accurate enough to predict the VA and VCD in_numt_)ers vi In cm -, f(w ’ﬂ, is a normalized line-shape
tensities when coupled with accurate APT and distributeJunCt'on' and.NA IS Avogadro S number. For a fun_dgmental
origin (DO) gauge atomic axial tensors without scaling. The(OHl) _transmon_lnvcl)lvmg thath normal mode within the
number of molecules for which the Becke 3LYP Hessiand!rmonic approximation

have been calculated and the associated VA and VCD spec-

tra predicted has been quite limited. The good agreement | h N A
shown to date has included only a small number of func- i_<2_wi)§ﬁ: [% el Hx% SM“"‘Pa’B]’
tional groups and the comparison has been with measure- (20)
ments of the VA and VCD spectra of molecules in nonpolar

solvents.

N-acetylL-alanine N’-methylamide (NALANMA ). This Na!
molecule can in a sense be considered as a three amino acid (21
peptide since the alanine molecule is capped at both ends.

In this work we present results on the small peptide R —72|m >, [E SxaiPAﬁH > s, ’iMAI’B
B | \a e B

wheref w; is the energy of theth normal mode, the, , ;
matrix interrelates normal coordinat€¥ to the Cartesian

We present here optimized structures of NALANMA with displacement coordinates, ,, where\ specifies a nucleus
four water molecules starting from our 6-31®ecke 3LYP anda=X, Y, or z,

B. Effects of water solvent

021905-5
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XM=Z S Qi - (22)

Phs and M}, (@,8=x,y,2) are the APT and AAT of
nucleus\. P} ; is defined by

1% -~ -
sz[WWG(R)l(ﬁe.)ﬁw@(R»]

:2< ((we(fo

Ry

7 ) ) +
Xy Ii0|(,U~e|)ﬁ|lﬂG(Ro)> Z,€8,4,

(23

where yg(R) is the electronic wave function of the ground

state G, R specifies nuclear coordinateé0 specifies the
equilibrium geometryg,, is the electric dipole moment op-
erator, iig,=—€Xr; is the electronic contribution t@,,
Z,e is the charge on nucleus anszﬁ is given by

i
M g=1% 5+ mZy €apRY(Z00), (24)

|2B=<(&f§(R))a(MG(R(”BB)) > (25
Na Ry B,BZO

By

where zﬂG(ﬁo ,Bp) is the ground-state electronic wave func-

tion in the equilibrium structurefi0 in the presence of the
perturbation— (up.9 sB g, Wheregig,,qis the electronic con-
tribution to the magnetic dipole moment operawrzﬁ is
origin dependent. Its origin dependence is given by

;o
(M2 )0= (M* )0 +m% €aysY\Phe (20

whereY is the vector from 0 to Ofor the tensor of nucleus

PHYSICAL REVIEW E 64 021905

while EJZ the measure of the anisotropy of the polarizability
tensor derivative, is given by

h2__ 1 A Nay 2 A Aay\ 2
B] - 5{(Sha,jax)?_s)\a,jay§() + (S)\a,ja’x)?_ S)\a,jaz?)

A A A
+ (S)\a,j ay)‘/l_ S)\a,j azza)z—’_ 6[(8)\a,jax§/1)2

+(Shaj @ys)*+ (Shajers) 1} (29
ays andS,,; are defined by
o PWe(RE; E,) _dap,(R)
By &X)\aé’Eﬂé’Ey IiZIiO,ElfO,Ey:O Xy o 'i:'io
(30)
and
Xna= 20 810, Qi (31)

where W denotes the ground-state energy,, is the
nuclear Cartesian coordinates with the indexeferring to
the nucleus, and is thex,y,zspace coordinates.E,, is the
a component of the electric field. The role played3y, ; is
to map normal coordinate®; into CartesianX;, index i
referring to the mode.

2. Raman optical activity (ROA)

Calculating the ROA intensities is slightly more involved
because they involve third-order derivatives with respect to
the energy. The quantity of interest in the present work is the
circular intensity differentia(CID) given by

R L
Ia_la

a” TR L
I+,

A (32

wherel T and1% correspond to the scattered intensities with

\. Equation(26) permits alternative gauges in the calculationlinear « polarization in right and left circularly incident light,

of the set of (\/I’D‘[B)0 tensors. IfY*=0, and hence 8 0’, for
all A the gauge is termed the common origl®O) gauge. If
Y*=RY, so that in the calculation of\’,)° 0" is placed at
the equilibrium position of nucleus, the gauge is termed the
DO gaug€g41,54-58.

D. Raman and ROA calculations

1. Raman intensities

respectively. The detailed formulas fdr, are derived in
Refs.[57,58.

E. Results for the DFT calculations

In Table | we present the relative energies of isolated
NALANMA and with four bound water molecules. The val-
ues of¢g and ¢ (measures of secondary structure in proteins
are also given. The starting structures for the bound water
optimizations were the 6-31GBecke 3LYP optimized ge-

The Raman intensities are proportional to the Raman scagmetries. To each of these structures four water molecules

tering activity defined by

|[em=g;(45a7 +7B7), 27

gj being the generacy of thgh transition.Ej2 is the mean
polarizability derivative tensor defined by

—2_1 A A Nay2
a;= §(S}\a,jax>1<1+s)\a,jay§/l+s)\a,ja'z?) ) (29)

were added by the Insight progragBiosym Technologies,
San Diego, CA The details of these calculations and the
VA, VCD, Raman spectra, and ROA spectra for this mol-
ecule will be presented in a future publication. The structures
and energetics of the molecule are greatly affected by the
solvent, consistent with large changes in the VCD spectra
when one changes the solvent from carbon tetrachloride to
water. Note also that th€S® and CE* conformers both con-
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TABLE I. NALANMA with four bound water molecules, 6-31GB3LYP relative energies.

Energy Energy
Conformer & s (kcal/mole Conformer &° WP (kcal/mole
ng —-82 72 0.000 P -94 128 0.000
c —157 165 1.433 crystal —98 112 5.864
C?X 74 —-60 2.612 C?X' 59 —122 4.134

B» ~136 23 3.181 Bl —151 116 1.886

o 68 25 5.817 a 61 52 2.754

aR —-60 —-40 5.652 ag —-82 —44 2.465

ap 57 —133 6.467 ap 67 —-111 3.715

ap —169 —38 6.853 ap —153 —-92 15.140

dsolated NALANMA, 6-31G B3LYP relative energies.
bBNALANMA with four bound water molecules, 6-3TGB3LYP relative energies.

verge to the same structure, which is the lowest-energy strue—0 group of residud with the NH group of residué

ture of NALANMA with four bound water molecules found +3 in the tripeptide, and the=£O group of residué with

by us to date. the NH group of residue+ 4 in the quadrapeptide. These are
In Table | we see the eight stategonformers of  important interactions and give stabilizing interactions for

NALANMA which are characterized by thep,¢y values  the G, and the 3, and 3.6 helical structures found in the

found for NALANMA in the isolated state. Note that when dipeptide, tripeptide, and quadrapeptide, respectively. Hence

this molecule is in aqueous solution, two of these locali one wants to be able to identify spectroscopic markers for
minima collapse into a single minimum. Each of these IocalI[

o . : “these and other secondary structural elements in peptides and
minima (state$ has various substates due to the various ori-

. : roteins, it is important to have the correct model com-
entations of the water moleculésnvironment Hence the P P

- . 0pounds and structural features. Similarly if we want to be
energy Iand_sc_ape has been r?nod!ﬂed.by the aqueous envir nE)Ie to identify tertiary features, then we must use even
ment, as similarly are proteins in either the cytoplasm o '

embedded in the various membranes in the cell. This can blgrger model compounds and the specific structusézies

seen in theP_. and crystal structures with similars and ¢ of these model compounds. Rather than synthesizing ring

values, but different energies. These differences are due gjructures which make these structures stable and one of the
the different orientations of the water molecules, that is, dif-/OW-€nergy structures or the global minimum, we can simu-
ferent H-bonding patterns. late the spectra of these specistate$ and present the the-
The structures in Table | are the intrinsic stable structure§retical data to the training network. This is similar to the
(states for the dipeptide NALANMA. When one adds one Work of Hagler and Maple in the development of class II
residue, one would now expect<a stable structures for force fields in the Potential Energy Functions Consortium of
tripeptide NALA),NMA. Here one assumes that the only Biosym Technologies Inc. in the late 1980s and early 1990s.
stable structures are those which are allowed for the simpleFhere they supplemented the experimental data with high
dipeptide NALANMA, and the combinations off ,¢;) and level ab initio calculationg59]. Here we use the same idea
(di+1,¢;4+1), Wherei=1 to 8, define the 64 stable struc- to generate data for use in training neural networks to iden-
tures. But here one would miss any new structure that resultsfy secondary and tertiary structural elements in peptides
from interactions not present in the simple dipeptide monoand proteins. In the next section we present the neural net-
mer NALANMA. Similarly when one adds yet one more work theory that we have used in this work.
residue to get the quadrapeptide (LA );NMA, one would
expect now & 8x8 possible stable structures. Here again)y. NEURAL NETWORK ANALYSIS OF SPECTROSCOPIC
one would miss those structures at the tripeptide level men- AND STRUCTURAL CORRELATIONS
tioned earlier and also any new stable strudgir@hich was
stabilized by interactions present in the quadrapeptide struc-
tures, but not found in the smaller dipeptide and tripeptide. The inverse scattering problem in an experimental situa-
Note that our model system NALANMA is actually a capped tion is defined by the situation of not having direct structural
L-alanine. By capping the zwitterionit-alanine with an information about a given object but with information pro-
N-acetyl group (CHCO-) on the N-terminus end, we form a vided indirectly by the projections of the object in different
peptide bond and now have the=© group of residua scattering planes, e.g., as scattering data in specific direc-
—1. Similarly, by capping the C-terminus end with an tions.
N-methyl amide group (-NHCEJ, we form a peptide bond In abstract mathematical terms the inverse scattering
and now have the NH group of residu¢ 1. Hence we have problem given, for example, in the bimolecular structure
the possible H-bond interaction of the=D group of residue measurements mentioned above can be described by the in-
i with the NH group of residué+2 in the dipeptide, the tegral expression

A. The inverse scattering issue
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B,(F,t)=fVAJ(F’,t)C”(ﬂf’,t)dV’, (33) 1 i

whereB; is the detector signal function localized at a dis- = Input layer

tancer away from a source described by a functignlocal-
ized atr’ and integrated over the source volursie The
convolution functionC;; is a Green’s-function matrix. The
problem, as it has been formulated here, is mathematically
unsolvable and is about determining the source funcfion
from the detector functioB. The C matrix contains the de- b
tector’s projections of the sour¢€0]. The infrared absorp- o ¥
tion spectroscopy and optical polarization experiments for
determination of the structure of a biomolecule are typical FIG. 1. A schematic picture of a perceptron neural network with
situations of inverse scattering problems. three layers of neurons: an input layer, a hidden layer, and an output
layer. Each of the neurons will be connected to all the neurons in
the next and/or the previous layer. The input is here frequéngy
dipole strength D;), and rotational strengthR().

In this section we discuss the application of neural net-
works to the problem of inverse scattering where the structecular biology datd62—65 and its rather simple structure,
tural information of small biomolecules is predicted from poth with respect to the processing of data and the training of
spectroscopic data such as frequency, absorptihpole  which the back-propagation error algoriti@6] is the most
strengthD), and differential absorptiofirotational strength commonly used and the one we shall employ. The training
R) data. The structural data are represented in the form qfrocedure is performed until a cost functiGrhas reached a
dihedral angleg# and ¢). In the second round of calcula- |ocal minimum(and hopefully even a global ohee.g., by a

tions we have also added Raman intensities and ROA intemyradient descent. The cost functi@nis normally written as
sities in the input data. In the following we shall first give a

description of how to utilize the artificial neural network o o

especially with respect to classifying spectroscopic data. C= 1/22 (t'—z")", (39
The basic elements of a neural network, the neurons, are “

proc_essing uni_ts that produce output u_sing a characterist'\(k,hich is simply the squared sum of errdy$eing the correct

”0”"”6‘""? function of a weighted sum of Input data._A ne.’uraltarget value and; the actual value of the output neurons.

network is a group of such processing units, the individual It is important when utilizing neural networks to have a

members of Wh'.Ch can communicate W'th each other th_rougtﬁew basic facts of common knowledge about the architecture
mutual connections. The network will gradually acquire a

global information processing capacity of classifying data by 180
being exposedrained to many pairs of corresponding input .
and output data such that new output can be generated from I
new input. If a set of input values is denoted{xy} and the o °
corresponding output is denoted Ky;} the processing of 90 | J
each neuron in the net can be described as ]

= Hidden layer

= Output layer

B. Methodology

=f X . 3 * ¢
Yi (; W|1X1+77| (34) \I—‘

whereW;; are the weights of the connections leading to the - o %
neuroni andf is the characteristic nonlinear function for the
neuron. The network can be considered as a nonlinear map -90 2
between the input and output data. The most straightforward

neural networks employed for this study were feed-forward
networks of the multilayered perceptron tygEig. 1) or

more complicated recurrent neural networks equivalent to -180 ' ' ' '

the ones used with real-time recurrent learniRFRL) [61]. -180 -90 0 90 180

The former networks have a unique direction of the data d

stream such that input will be passed through the consecutive

layers towards a specific layer of neurons that produce the £, 2. The corresponding positions of the eight structures de-
output while the latter networks have a set of extra feedbackicted in Fig. 3 of NALANMA. In the Ramachandran plot the di-
connections. The reason for choosing the feed-forward nehedral angles are shown along the two axis. The empty dots are the
work among many other types is due to its known ability tostructures surrounded by explicit water molecules and the black
generalize speech recognition, image processing, and mdets are those without water molecules.

O

021905-8



NEURAL-NETWORK ANALYSIS OF THE VIBRATIONAL . .. PHYSICAL REVIEW E 64 021905

FIG. 3. The structures of the
eight conformers of NALANMA
in ball and stick representation for
NALANMA +four water mol-

ecules: (@ P,, (b) C¥, (0

Bz, (d) af, (& ag, () ap, (9@
ap, (h) crystal[31].

® LY

of the network in relation to the training. First of all C. Evaluation
the network should be dimensioned according to the training
set, i.e., the number of adjustable parametéte synaptic In order to evaluate the performance of the network vari-

weights and thresholdisshould not exceed the number OUS statistical measures have been proposed. In the case of a
of training examples. There is a heuristic rule that thedual-valued output we shall be using the so-called Mathews
number of training examples should be around 1.5 time&oefficient[68]. If we denote the two possible output values
larger than the number of synaptic weights. Basically theby 1 and 2(e.g., signifying an event or no evenand ifp is

ability to learn and recall learned data increases with the siz&€ number of correctly predicted examples oplhe num-

of the hidden layer, while the ability to generalize decrease®er of correctly predicted examples of §,the number of

with an increasing number of hidden neurons above a certaigx@mples of 1 incorrectly predicted, amdthe number of

limit. This fact can clearly be understood when one consider§*@mples of 0 incorrectly predicted, then we define the co-
the network as essentially a curve fitter between point&fficientCy as
depicting relations between input and output data in the

training set. Therefore it is also easy to understand that a _ _ _
network can be overtrained when the training process C={pp—aai/{\(p+a)(p+aq)(p+a)(p+a}. (36)
reaches the point where the spurious data points are memo-

rized. The training process and the construction of the train-

ing set is of greatest importance because the predictiveor complete coincidence with the correct decisididgal
power of the network is dependent on how clearly the trainperformancg the measure is 1 and for complete anticoinci-
ing set is defined and how many patterns are exposed. ThegenceC,, is —1. A poor net will giveC=0, indicating that
problems are nicely elucidated in a previous study wherét does not capture any correlation in the training set in spite
neural networks were applied to the task of water bindingof the fact that it might be able to predict several correct
prediction on proteing67]. values.
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D. Implementation be randomly divided into a training set and a test set being

The actual neural network to be used here for the inverséisjunct from each other. To be sure about the homogeneity
scattering problem of predicting peptide structures can béf the training and/or test set one performs a cross validation.
constructed from the SNN&tuttgart Neural Network Simu- A neural network trained on the pairs of correlations in the
lator) environment but is actually in this case a speciallytraining set can then have the performance monitored by try-
designed real-valued processing neural network system afig to predict the correlations, i.e., the output numigstsic-
the feed-forward type. The networks are trained on a largeural data in the test set from the corresponding input values.
set of corresponding values of spectroscopic and structural The full set of calculated dat@80 lines of corresponding
data _that are produced from extensive density—functiopal Ca"rnput numbers, three in each line, and an output nuiniser
cullatlons of our model peptide systeNracetylL-alanine  hys divided up into a training set of 384 lines and a test set
N -methylamlde. ) of 96 lines chosen at random from the full set. When one

The input values, the spectroscopic datall,R), t0 the = o\ 5 ates the network there will be both a score for how well
network are encoded by real values in the neurons of th e network has learned the correlations in the training set

input layer. In the second series of calculations we added th&)rediction of the trainin .
. g set output values from the input
Raman(Ra) and ROA(Ro) data to the ¢,D,R) data with the and the score for how well new correlations can be predicted

resulting input being#,D,R,Ra,R0). The input numbers are in the test set.

read into a window with three numberg,D,R) at a time :
- i ; A In Tables IV and V the performance results of different
f f lesy). Th , . ] . : ;
corresponding to a specific pair of output valugs)). The configurations(different sizes of input layer, hidden layer,

input values of the frequency will typically range from 40 to
3500 entl which willqbe ngrmalizy(fd toythe rgange 1—400 and output layerof the feed forward neural network are

and partitioned on 20 neurons so that the first of these 26hown. The best neural network configuration is apparently
input neurons take care of the range 1—20, the next neuron §f€ one with 263 input neurons, 24 hidden neurons, and
21-40, etc. Values that are just below 20 will cause the firs€ight output neurons. The networks are also much better at
neuron to fire maximally while the other neurons are silentsuperclassification with only two output neurons basically
Beside the 20 neurons for coding the frequencies there wiltlassifying stable structures, depending on whether the fre-
similarly be 40 other input neurons for coding the dipole andquency numbers are high or low.
rotation values in the same way. The small network configurations are clearly not able to
The output values, the structural déta ) from the net- comprehend any correlation in the data since the correspond-
work, are encoded into mostly eight neurons in the outpuing scores are of random predictabilifiie., 25% for four
layer, each representing one out of eight sections of the Rautput neurons For eight output neurons a random score is
machandran ploFig. 2) which in turn corresponds to a spe- approximately 12% which is far below the actual scores for
cific range of the dihedral angles. Hence there are eight poshe larger networks. For the larger networks the performance
sible values of output, 1-8, generated in the output layer ang improved by increasing the number of training cycles at
determined by the most active neurons. The actual outpygast up to 2000. In Tables Il and Ill we show a typical
value to be read out from the neurons is the position of theection of the training set, i.e., the 14 first data lines in output
neuron closest to a calculated “center of gravity” of a given classes 1 and 8. When testing the networks a predicted out-

weighted firing pattern. If, for example, an output firing pat-, ;+ yaiue. varying between 1.0 and 8.0, is considered correct
tern appears from a symmetric group of neurons around thl it differs less than 0.5 from the the correct value.

seventh neurorfcontaining the maximal signait will be In Table Il we present the corresponding data of

assigned the output value 7. A simple procedure to CIaSS”)NALANMA in a water solution. Due to the limited amount

an unknown pattern is by the value corresponding to th%f statistics at this stage it is difficult to perform a detailed

largest activation at the output unit that is assigned to th ensitivity analysis but it seems nevertheless possible, on the

pattern. This is th_e_ usual v_vmnerftake:_;-all evaluation O.f th asis of the available amount of data, to deduce that the
output of a classifier and is obvious in the case of binary

. . “neural networks were better in learning the sections in the
outputs but not so obvious for a larger set of output units.

o . i . . (¢,1) plane of secondary structure stability, e.g., there-
In order to facilitate the interpretation of a misclassifica jon around (,4)~(—60,-40), than the other sections.

tion we can group the spectral data in larger superclasses alurthermore, for these stability regions, the lower-frequency

structures, .SUCh as he_llcal structures, th_at have a .naturfr%wodes seem to be more important for the stability than the
one-dimensional order inferred from physical properties of _. ;
.~ high-energy modes since they were more accurately learned.

$his could probably also be due to the dipeptide limitation

to a given conforma.tlon being present or not. which means that the high-frequency modes do not involve
We have also trained a neural network on the same mo;

: . _"the contribution from the helix H bondfom i toi+4) and,

lecular spectroscopy data of NALANMA in a water solution. . .
. therefore, the methods do not contain the most crucial infor-

Here there are only four output states corresponding to fourrnation abouta-helix stability. A forthcoming paper will in-
conformers, which we can possibly use as output values for o - g paper :
the network clude a sensitivity analysis of molet_:ules comprising helix-
' type H-bond modes. Table IV contains the measured scores
(in rounded-off percentagesnd correlation coefficients of
the performances concerning training and testing of various
In this section we shall discuss the performance of theneural network configurations described by the sizes of their

network. The calculated set of numbers from the spectra caneuron layers. The scores are calculated in percentages as the

E. Neural network results
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TABLE II. N-acetyli-alanine N’-methylamide training-set  TABLE Ill. Neural network training data for peptide with water.
data.
- Frequency IR VCD Raman ROA  Conformer
v(cm %) D; Ri ¢— output  ¢— ¢ section 380 6.43 0 0.00 o1 1
3604.80 17.64 10.32 1 aR 380 8.21 0 1.45 116 1
3599.84 17.34 —12.67 1 aR 379 9.55 1 1.67 94 1
3172.63 5.50 1.63 1 aR 379 6.94 0 1.28 81 1
3158.80 9.83 0.59 1 agr 346 28.59 0 3.46 180 1
3148.93 12.96 2.82 1 aR 340 28.63 1 391 127 1
3125.12 18.99 -8.34 1 ar 335 14.81 0 77.77 57 1
311849  38.93 —-0.03 1 ag 333 51.79 1 22.88 17 1
3111.57 41.49 3.28 1 agR 327 39.80 1 6.28 32 1
3073.43 10.77 17.49 1 aR 326 6.75 0 55.23 633 1
3060.08 10.38 1.86 1 aR 316 2.78 1 0.00 67 1
3052.05 26.70 —4.18 1 aR 316 5.29 0 0.37 117 1
3043.91 71.83 —17.13 1 aR 314 5.07 0 0.00 53 1
1798.76  674.23 —321.40 1 aR 313 5.09 1 0.58 106 1
1789.94  240.50 268.28 1 aR 313 3.28 1 0.58 108 1
3610.52 25.16 1.65 8 csd 311 2.22 1 1.23 110 1
3506.23  168.92 10.48 8 csd 306 351 1 0.27 290 1
3171.22 384 -0.70 8 csa 306 4.49 0 0.22 255 1
3150.76 19.56 2.45 8 csd 380 7.79 0 3.31 79 2
3148.57 20.48 -0.11 8 cs 379 9.20 0 0.65 116 2
3142.24 7.36 —2.47 8 csd 379 7.48 1 0.00 49 2
3138.64 23.91 —4.24 8 cs 379 6.59 0 0.90 57 2
3096.14 46.95 —2.86 8 csd 352 28.07 0 4.38 157 2
3085.30 5.46 6.26 8 cs 344 25.15 0 12.64 89 2
3068.64 9.02 2.25 8 csd 338 20.94 1 35.87 82 2
3066.68 20.25 —4.32 8 csd 336 37.40 0 9.81 47 2
3043.20 83.63 13.02 8 csd 330 34.76 1 8.83 185 2
1785.84  685.88 24.30 8 csd 327 24.52 0 11.29 295 2
1746.35 341.98 —61.38 8 cse 316 2.55 1 0.00 71 2

number of correctly predicted output values over the totakjnce the molecules in this case can access the various con-
number of values. A number is correctly predicted if thesomational states more easily, and in many instances the
corresponding neuron has the value).5 of the correct ,iential-energy surface has a reduced number of minimum
value, which is an integer between one and eight. [48]. In the evaluation of the coefficiei®@ which originally

Table V contains similarly the measured scor@8 a5 meant for binary outputéegative/positive we have
rounded-off percentageand correlation coefficients of the gymmed up contributions for each output class being either

performances concerning the training and testing of the varizrect or not. In doing so we have overcounted false nega-

ous neural network configurations for the peptide with watery; o5 which thus have to be normalized in order to corre-
The network configurations are again described by the size§pond to the interpretation given of E@6).

of their neuron layers. Like in Table V the scores are calcu-
lated in percentage as the number of correctly predicted out-
put values over the total number of values. A number is
correctly predicted if the corresponding neuron has the value Number Training Test

+0.5 of the correct value, which is an integer between oNnQenyork configuration of train  score score Test correlation

TABLE IV. Neural network performance results.

and four. NinX NpigX Nout cycles (%) (%) coefficientC
The results with water are markedly worse than the results
for the molecule in vacuum. This is due to the fact that the  (3x3X4) 100 25 25 0.00
conformer states in solution are less distinguishable.  (3X3x4) 1800 50 30 0.10
Whereas we have data for eight states in vacuum, we have (30X10x8) 1800 60 33 0.21
data for only four states in solution, which makes the net-  (60x20x8) 900 65 40 0.24
work performance less good, even with the same score, since (60x20x8) 1800 74 55 0.41
the number of output states is less. The fact that the soluble (60x 20x 2) 1800 83 68 0.48
states are less distinguishable can be understood in terms of (80x 40x8) 1800 67 51 0.32

functionality of the peptides in real biological surroundings,
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TABLE V. Neural network performance results for peptide with
water.

The network results show that it is possible to train neural
networks on scattering data to predict new correlations fairly
successfully. A high performance is obtained when the net-
work is classifying superclass structures; such structures
(e.g., helical are limited to one location of the Ramachan-

Number Training Test
Network configuration of train  score score Test correlation

Nin X Npig< Nout cycles (%) (%)  coefficientC dran plot. Therefore the networks can be used to predict
(5X10x 3) 100 25 25 0.00 secondary structures and stgbility in larger peptides from
(5% 20x 3) 1800 30 30 0.10 spectral data. In water the various states are much more dif-
(30X 10 6) 1800 34 32 021 f|pult for the network to cIassﬁy. This is because the energy
(60x20x 1) 900 38 35 0.24 dlfferenc_es bet_vveen t_he various cor_1formers mostly are
(60% 20x3) 1800 53 42 0.31 smaller in solution, or in other words, in the gas phase the

minima are more pronounced than in solution. However, it is
the molecules in solution that are the most important to pre-
dict. For larger molecules with more amino acids we expect
the numbers of conformers to grow at least linearly with the

The calculation of the VA and VCD spectra of biological "umber of amino acids.
molecules in the presence of water is now feasible and these
calculations provide benchmarks for simpler models for the
calculation of VA and VCD spectra of larger biological mol-
ecules in an aqueous solution. The 6-31RHF zwitterionic K. J. Jalkanen would like to thank the German Research
structure ofL-alanine reported recently by Barron, Gargaro,Council, the German Cancer Research Center, the Danish
Hecht, and Polavarap{69] did not include water. Their Academy of Sciences, the Technical University of Denmark,
stable zwitterionic structure without water and our reportedand the Finnish Academy of Sciences for research opportu-
structures are quite different. Recently we have also reportexities. We would also like to thank the Human Frontier Sci-
the VA, VCD, Raman spectra, and ROA spectra of theence Program Organizatig@rant no. RG0229/2000-Mor
L-alanine zwitterion in an aqueous solutiiB2—34. financial support for K.J.J.

V. CONCLUSIONS
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