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Many-body interactions and correlations in coarse-grained descriptions of polymer solutions
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We calculate the two-, three-, four-, and five-botbtate-independenteffective potentials between the
centers of masgc.m.’s) of self-avoiding walk polymers by Monte Carlo simulations. For full overlap, these
coarse-grained-body interactions oscillate in sign as-()", and decrease in absolute magnitude with in-
creasingn. We find semiquantitative agreement with a scaling theory, and use this to discuss how the coarse-
grained free energy converges when expanded to arbitrary order in the many-body potentials. We also derive
effective density dependenivo-body potentials that exactly reproduce the pair-correlations between the c.m.
of the self avoiding walk polymers. The density dependence of these pair potentials can be largely understood
from the effects of thalensity independerihree-body potential. Triplet correlations between the c.m. of the
polymers are surprisingly well, but not exactly, described by our coarse-grained effective pair potential picture.
In fact, we demonstrate that a pair potential cannot simultaneously reproduce the two- and three-body corre-
lations in a system with many-body interactions. However, the deviations that do occur in our system are very
small, and can be explained by the direct influence of three-body potentials.
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[. INTRODUCTION ground state electronic energy surface by a sum of one-body,
two-body, and higher order terms. The one-body contribution
An efficient statistical description of condensed matteris the sum of the ground state energies associated with indi-
systems and materials almost invariably involves some devidual, isolated chemical entiti€gatoms, ions, or moleculgs
gree of coarse graining, whereby a large fraction of the initialThe two-body term is made up of the sum of pair potentials
microscopic degrees of freedom are traced out, leaving acting between molecules and higher-order terms correspond
much reduced space of variables associated with the compot® isolated clusters of three or more molecules. The sum of
ite entities or pseudoparticles. The latter are then coupled viground state energies of individual molecules does not con-
effective interactions that result from the partial averagingtribute to the forces between them, and can hence be ignored
over the initial microscopic degrees of freedom. The reducin the description of collective equilibrium or transport pro-
tion of the initial multicomponent system to a coarse-grainectesses that do not involve chemical reactions. In the simplest
system with a substantially smaller set of composite particlesase of rare-gas atoms, the pairwise interactions would in-
implies that the resulting effective interactions may involveclude overlap repulsion at short range and dispersion forces
three-body and higher-order contributions, even if the origi-at long range, while triplet interactions would include,
nal multicomponent system involved only pairwise additiveamong others, the Axilrod-Teller triple dipole dispersion po-
forces, like Coulombic interactions. Alternatively, one may tential [2], which contributes very significantly to the ther-
wish to retain the simplicity of pairwise additivity of the modynamic and transport properties of the heavier rare gases
effective interactions, but the price to pay is that such effecin their condensed statg3,4]. The effect of the higher-order
tive pair potentials are then state dependent, e.g., are funiteractions can be approximately incorporated into an effec-
tions of the temperature and/or density. The reason for this igve pair potential, which differs from the bare pair potential,
that the effective interaction energy is a free energy associvalid for an isolated pair of molecules, and becomes density
ated with the averaged-out degrees of freedom, which gerdependenf5,6].
erally has an entropic component. Similarly, in metals an effective interaction between ions
There are many examples of the coarse-graining procemay be determined by tracing out the conduction electrons,
dure that has just been outlined. In molecular systems thasing perturbation theory or response thepfy8]. Treating
forces between nuclei result from gradients of the electronithe ion-electron coupling to lowest ordéinear response
ground state energy surface, which depends parametricallgads to a structure-independent volume term and to a pair-
on the nuclear coordinates, and adjusts adiabatically to the&ise screened effective potential between “dressed” ions or
slow motion of the latter within the Born-Oppenheimer ap-pseudo-atoms, which both depend on the macroscopic con-
proximation. This scenario is mimicked, at least at the leveduction electron density. The two-body level is generally suf-
of valence electrons, iab initio molecular dynamics simu- ficient for alkali and other simple metals, in part because of a
lations pioneered by Car and Parrindlld. However, in situ-  quantum interference effect that strongly decreases the mag-
ations where no strong covalent or hydrogen bonding isiitude of the higher-order response terf@& For multiva-
present, the more common route is to represent the totdént and transition metals many-body effective interactions
can no longer be neglectéd], and a fullab initio treatment
may be necessafl0].
*Email address: bolhuis@its.chem.uva.nl Coarse-graining becomes crucial in the highly asymmetric
"Email address: ardlouis@theor.ch.cam.ac.uk systems of soft matter, involving macromolecules or colloi-
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dal particles, as well as molecular scale entities, like solventive pair potentiab (r;p), wherep is the number of polymer
molecules or ions. The latter are traced out to derive effectiveoils per unit volume. Although (r;p) was not found to
interactions between the electric double-layers associatechange dramatically with, the p dependence o is very
with charged surfacegolloids, membranes, ejd.11]. The  significant for the accurate determination of the osmotic
microscopic ions play a role similar to valence electrons inproperties of dilute and semidilute polymer solutions.
metals, but with the important difference that quantum de- In this paper we adopt a somewhat different point of view,
generacy effects are absent, and that finite temperature eRy determining state-independent effective pair, triplet, qua-
tropic effects control the width of the electric double layers,druplet, and quintuplet interactions; these many-body inter-
with a resulting density and temperature dependence of thctions are determined by successively considering clusters
effective interactions between the mesoscopic colloidal par©f 2 3, 4, and 5 SAW polymer chains, determining the cor-
ticles. A good example of a such a pair potential is provided®SPondingn-body distribution functions, from which an ef-
by the classic Derjaguin-Landau-Verwey-Overbeek effectivdective n-body potential is derived. Triplet interactions be-
pair potential between spherical charged colloidal particledWeen the cores of star polymers have recently been
[11]. Three-body interactions can be derived in similar fash-determined in a similar waj25]. The next step taken in this
ion [12]. However, the averaging over the microion degrees®@per is to relate the low-densitytate-independenpair and
of freedom also leads to a structure-independent, but statddplet interactions to the density-dependent effective interac-
dependent volume term, part of which is associated with th&ions determined in our earlier wof23,24. A final section
self-energy of individual double layers, and which is remi- Will be devoted to an analy§|s _of three—body cor_rel_atlons as
niscent of the volume term in metdl3,14); this term has a Measured by bond-angle distributions and deviations from
profound effect on the phase diagram of charge-stabilized1® Kirkwood superposition approximati¢26]. The conver-
colloids[14,15). gence of the series afbody interactions is assessed on the
Another important class of effective interactions of en-basis of scaling arguments in the appendixes.
tropic origin, which follow from averaging over the configu-
rations of nonadsorbing polymers and small colloidal par- [l. SIMULATION MODELS AND METHODS

ticles, are the depletion forces that have received much Many properties of polymers in a good solvent are well
renewed interest in recent yed(5,17. Depletion pair po- described by models that ignore all microscopic details of the

tentials depend strongly on the concentration of the deF)Ie'tl_ntermolecular interactions, except their excluded volume.

ant; recent attempts have been made to compute the threEbr that reason polymers are often modeled as self-avoiding
body interactions from simulations or density functional walks on a lattice 2729, a model lending itself well to

theory[18]. Volume terms arising from the depletion poten- efficient computer simulations. We consider the situation of

tial picture may have an important effect on the osmotic : . ; .
equation of state, but they are not expected to influence th'(\aI athermal SAW chains of lengthon a simple cubic lattice

phase behavior in these uncharged systEts of M sites. The bead or segment concentration is given by

The present paper is concerned with a coarse-grained d%-: N_L{\II\;IMW_PHI]e thel polymer Chﬁm C(t)ngen(;r%tlotr;] IS gl\:jgn
scription of dilute and semidilute solutions of polymers in yp= - [N€ polymers are characterized by their radius

; ; o . of gyrationR, which, for an isolated polymer, scales
ood solvent. Whereas tracing out the microscopic ions in & 9 '
g v g ou ! pic 1 ! ~L", wherev~0.59 is the Flory exponef27-29. We also

charged colloidal suspension has many analogies with the
liquid metal problem, the coarse graining of neutral poly-define an overlap concentratigrf = 1/5 7R at which there
mers, achieved by integrating out the internal monomerids on average one polymer per sphere of rays Solutions
degrees of freedom, resembles more closely the case of eMth p/p* <1 are called dilute, while solutions with/p*
fective potentials between neutral atoms and molecules, ob~1 andc<1 are called semidilute. When the monomer den-
tained by tracing out the internal electronic degrees of freesity c becomes appreciable, the solution moves from the se-
dom. The basic idea explored here, which goes back to Florgnidilute to the melt regime. In this paper we will focus on
and Krigbaum[19], is to represent a set of polymers, eachdensitiesp/p* <2, i.e., the dilute regime and the beginning
made up ofL monomers or segments, as single particlesof the semidilute regime.

interacting with each other through an effective interaction When modeling the semidilute regime, it is important to
between their centers of magsm.’s). The important point, take sufficiently long polymer chains. The first reason is that
realized by Grosbergt al. [20], is that the effective pair for studying the semidilute regime one needs a large polymer
interaction remains finite, even for infinitely long polymers. densityp together with a low monomer density We found
Monte Carlo simulationf21] and renormalization group cal- earlier that the monomer density at the overlap concen-
culations [22] show that for two isolated nonintersecting tration p* scales roughly like[24] c*~4L %8 for SAW
polymer coils, the effective potential between their c.m.’s ispolymers on a simple cubic lattice. Throughout this paper we
of order XgT in the scaling limit, i.e., fol. going to infinity, =~ use polymers of length =500 for whichc~0.05 atp/p*
while the range of the interaction is of the order of the radius=2, so that we are still clearly in the semidilute regime. In
of gyrationR, of the polymers. Recently we have extendedcontrast, forL=100 the monomer density is~0.2 at

this investigation by simulating large systems of self-p/p* =2, suggesting that a meaningful semidilute regime
avoiding walk (SAW) polymers at finite concentration does not exist for such short polymers.

[23,24]. The resulting c.m. pair distribution functiog(r) The second reason for using long polymer chains is that
was then inverted to yield a concentration-dependent effeove want to study properties—particularly the effective po-
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tentials between polymer chains—in the scaling regime,
where all length dependence is completely capture®py

In a previous papd24] we established that two properties of
the effective potential relevant to thermodynamics, namely,
the second-virial coefficienB, between two polymers and
the effective pair potential between c.m.’s, multiplied by the

square of the c.m. distancév(r) are very close to the scal-
ing limit for L=500 polymers, the length we will use in this
paper.

Simulations were done with the Monte Carlo pivot algo-
rithm [21,30 combined with simple translational moves. For

concentrationsp>p* we also use configurational bias
Monte Carlo(MC) algorithms[31,32. ForL =500 polymers
we find that the radius of gyration of an isolated coilRg
=16.50-0.03. We used a simulation box of sizk
=(240), and varied the number of polymers frdw=2 for
the two-body calculations thl= 6400, which corresponds to
plp*=8.9.

Since we are dealing with athermal chains consisting o

monomers interacting only via hard-core repulsion, we s
the reciprocal temperatugg=1/kgT=1 throughout this pa-
per.

IIl. DENSITY INDEPENDENT MANY-BODY
INTERACTIONS

A. Expanding the coarse-grained free energy in a series of
many-body interactions

Following the discussion ifi33], the Helmholtz free en-
ergy F of a set ofN polymers of length_ with their c.m.’s
distributed according to the set of coordinafeg, in a vol-
umeV, can be written as the following expansion:

N
FINNV i =FONNV) + > w@(r; 1)

i1<iy

N
+ 2wl )
i1<i,<ig 12

+o Wy (1)

).

'N

el

FIG. 1. The three variablds 1,,r 13,1 23} that characterize a trip-
let configuration. The angl® between the vectors;, andr 3 is
related to the distancgys by r3;=r3,+r;— 21, 1500S6.

single isolated polymer, which is independent of the position
of its c.m. in a homogeneous solution; translational invari-
nce also implies that there is no one-body term in the ex-
Eansion. Each subsequent temf(r; ,r;, ....r;) is de-
ined as the free energy af polymers with their c.m.
positions at{r; ,r;,, ... .r; } minus the contributions of all

lower-order terms. In other words, it is the contribution to the
free energy oh polymers that is not included in the sum of
all lower-order terms. For instance, the two-body term
w®(r;;) can be defined as the difference between the
coarse-grained free energyfor two particles with their c.m.
distance held at;;=|r;—r;|, and the free energy of the same
two polymers when they are infinitely apart. Here we use the
translational and rotational invariance of a homogeneous sys-
tem to reduce the number of degrees of freedom. Similarly,
the three-body term for a given triplet configuration
{ri.rj.ri can be written in terms of only three variablese
Fig. 1) as

W(3)(I’ij ,rjk,rki)=.7:(N=3,V,rij ,r]‘k,rki)_F(O)(N:S,V)
—wW(r) =W (ry) —w@(r). (3

In other words, it is that part of the effective interaction
between three polymers that cannot be described by volume
and pair interaction terms alone. In principle, this procedure

In the scaling limit, each term in the series is independent ofay be continued until, for a system with polymers, the

L as long as thex-tuple c.m. coordinate@ril,riz- . ~rin} are
expressed in units d®y, the radius of gyration at zero den-

sity. Note that this coarse-grained free energy includes a
implicit statistical average over all the monomeric degrees o

freedom for a fixed configuratiofr;} of the c.m. The full

free energy of the underlying polymer system can be calcu

lated as follows:

F(N,V)=—In f f dr;...dryexd — AN,V {riH],
2

so that Eq(1) can be viewed as an expansion of the effective

interaction between the c.m. in terms @ntropig many-
body interactionsF(®)(N,V) is the so-called volume term,

the contribution to the free energy that is independent of the
configuration{r;} [14]. Here it includes the free energy of a

Nth term determines the total coarse-grained free energy. In
practice, this approach is not feasible because the number of
H—tuple coordinates increases rapidly with as does the

omplexity of each higher-order term, so that the series in

g. (1) quickly becomes intractable. Instead, one hopes to
show that the series converges fast enough that only a few
low-order terms are needed to obtain a desired accuracy. We
now turn to the derivation of these density-independent po-
tentials for our system of SAW polymers.

B. Two-body interactions

There is a general relationship between phe 0 limit of
n-body correlation functions and thebody potential[33].
For the two-body case this reduces to

lim g,(r)=exd —w®(r)], (4)

p—0
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0.05 | C. Three-body interactions
20 M~ s TSmms N

0.00 | At Just as the two-body interactions follow from the low-
K s density limit of the pair correlations, so also the three-body
I or triplet interactions between the c.m. of three polymers can
r-="" be derived by taking the low-density limit of the three-body

1.5

= 190 distribution function
= 1 15 4
2 1
05 /R, g3(rlvr2!r3):Zf f e*f({ri})drél...drN, (5)
00 | SR TR e I
Lo where F({r;}) is the coarse-grained free energ@) and Z
o SEE _____ -~ =exd —F] is the configurational integral for the c.m. coor-
| o ] > 3 dinates defined in Eq2). (Since the effective interactions
/R already include an average over monomeric degrees of free-

dom, this configurational integral is equivalent to that of the
FIG. 2. Effective potentialsv™(r) for n=2 (solid line, n=3  full polymer systen). Taking the low-density limit for a ho-

(dashed ling n=4 (dash-dotted ling andn=5 (symbol with error ~ mogeneous system gives

bar atr=0). Inset: relative potentialaw(™(r) for n=3 (dashed

line), n=4 (dash-dotted ling andn=>5 (symbol with error bar at

r=0).

—WO(r .31 1) = lim In 93(M12,7 23, 13)

127 23,013 p—0 92(r12)92(r23)92(r13) |
whereg,(r) is the pair distribution function. Although this (6)
definition resembles that of the potential of mean force
(PMP), usually defined asw”MF(r)= —In[g,(r)] for any den-  Theg,(r) ensure that the contributions due to the pair inter-
sity, they are only equivalent in the limit of infinite dilution. actions are subtracted from the triplet interactimf. Eq.
Strictly speaking, the PMF is not a potential but simply a(3)]. For our homogeneous system the three-body potential
restatement of the pair correlations. Consider the simplesiepends only on the three variablgs,,r 53,113} shown in
case, namely, a system with no higher-order-@) interac-  Fig. 1. Even then, calculating the triplet interaction
tions. If one were to use a finite density PMF as a pair pOW(3)(r12,r23'rl3) for every possible triplet arrangement is
tential at that same finite density, the resulting pair correlavery cumbersome. We therefore confine ourselves to con-
tions would not be those of the system used to derive théigurations that make up an equilateral triangle. Instead of
PMF. In contrast, the potential defined in Ed) is the cor-  three variables, the potential now depends only on the length
rect pair potential that would exactly reproduce the pair corr of each side of the triangle, simplifying the calculation of
relations of the original system. Eq. (6) to

In our simulations we calculate/®)(r) from the loga-
rithm of the overlap probability as a function of c.m. distance
[cf. Eq.(4)]. Although the arguments above were made for a
free energy in a continuous space, they easily carry over for
the lattice model we simulate. In fact, the c.m. lives on a grid
finer than the original SAW lattice polymers, so that ourwhere we also used E@4). We expect that for =0, i.e.,
results are already closer to the continuum limit. The overlagcomplete overlap, the three-body interaction will be stron-
probability is determined by sampling the configurations ofgest, while for large the interaction should vanish.
two polymers infinitely apart with the pivot algorithm, and, ~ We calculatedv®)(r) for threeL=500 SAW polymers
after every 1000 pivot moves, searching for any monomeon a lattice. At this infinite dilutiongs(r) is simply the
overlaps as a function of the c.m. distance. The effectivgrobability that three polymers in a configuration
potential calculated in this manner has a near Gaussian shape,,,r,3,r3;} do not overlap. In the Monte Carlo simulation
with a value at full overlap ofv(?(0)=1.88+0.01 for our  we integrate over the monomeric degrees of freedom by per-
L=500 polymers, very close to the scaling limit estimateforming pivot moves. Once every 1000 MC steps we move
w(®)(0)=1.80+0.05[24], and a range of the order &, the polymers into a triangular configuration and check for
[23,24], as shown in Fig. 2. This picture agrees with earlieroverlap. The results are plotted in Fig. 2. Since the total free
renormalization group22] and simulatiorf21] studies. Note energy increases with the number of polymers, a more rel-
that in the scaling limit the potentials depend onlyRy, so  evant measure of the three-body interactions is the relative
that the free energy cost of completely overlapping the c.mpotential Aw®)(r)=w®(r)/3w®(r) that denotes the
of two polymers is independent of their lendth That this  strength of the three-body interaction relative to that of the
free energy cost at complete overlap should depend weaklyvo-body interactions. As shown in the inset of Fig. 2, the
on polymer length follows from their fractal natuf&9], but  relative contribution of the three-body potential to the total
more sophisticated scaling theory arguméd26y are needed free energy is quite small, only about 9% of the contribution
to prove thaw(?)(0)«=L° [23,24. from the pair potentials.

w®(r)=—1lim[Ings(r)—3w®(r)], (7)
p—0
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D. Four-body interactions The same probably holds for the higher-order interactions.

Next we tumn to the four-body interactions. Again, even However, ourL =500 calculations should still be very near
| ! fhe scaling limit.

for a homogeneous phase, the total number of relevant coo
dinates makes the calculation of the full interaction prohibi- IV. EFFECTIVE DENSITY-DEPENDENT PAIR

tively cqmplex. To restrllct the number of coord_mates in our INTERACTIONS

calculations we determine the four-body potential by placing

the four polymer c.m.’s on a regular tetrahedron and deter- From the previous section we see that explicitly
mining the nonoverlap probability as a function of the IengthCﬁ|CU|atlng the  density-independent interactions

r of each side of the tetrahedron. The four-body potential igVt (rll ri, -..ri,) becomes rapidly more complex with

then defined as increasing ordem. Calculating all higher-order terms is
Y 3) @ therefore impossible. In this section, we describe a way to
wW(r) = —glmoln[g4(r)]—4w (N)=6w=(r) (8 include the average effect of all higher-order terms by ex-

tending the relationship between the pair interactions and the
pair correlations to finite density. This leads to alensity-
since the tetrahedral configuration includes four equilateraflependeneffective pair interactiom(r;p).
triangles (three-body interactionsand six edgestwo-body
interactions. The full and relative four-body interaction, A. Inverting pair correlations to derive density-dependent pair
AWA () =w(r)/[4w®(r) +6w@(r)], are plotted in potentials
Fig. 2. Note that the four-body interaction is smaller in ab-  Although for finite densities there is no known direct
solute magnitude and has the opposite sign to the three-bodynctional relationship of the type of E¢4), there is a theo-
interaction. The relative contribution of the four-body inter- rem which states that for any given pair-correlation function
actions to the total free energy is less than 5% of the totad,(r) and density, there existgup to an additive constant
potential, and also less than the relative three-body contribua unique pair potential(r;p) that exactly reproduces,(r)
tion. at that density34,35. If the originalg,(r) is generated by a
system with only pair interactions, their ; p) =w®(r) will
be independent of density. If there are any higher-order in-
teractions in the original system that influence the structure,
Calculating the five-body interaction is even more com-then this equivalence will only hold for I|m v(r p)
plicated than the four-body interaction, and so we only_
evaluate it at full overlap—when all the c.m.’s coincide—
where we expect its contribution to be largest. More gener:
ally, for any nth order term the interaction at full overlap is
given by

E. Five-body interactions

w®(r). At finite densitiesv (r;p) must change since the
structure is no longer equal to the one generateav/{3(r)
alone. Therefore (r;p) must be density dependent.
In fact, this is what we found in two previous papers
[23,24), where we used the hypernetted-ch&iiNC) ap-
n proximation from liquid state theor§36] to extractv(r;p)
w™(0)=—lim[Ing,(0)]— 2 ( )W(m)(o), (99  from computer simulations of thgy(r)'s between the c.m.’s
= m of SAW polymers. For completeness, we show these effec-
tive pair interactions in Fig. 3. As expected, there is a clear
density dependence. Without going into much detail about
the inversion ofv (r;p) from g,(r), we do want to point out
overlap of the c.m. of polymers. As long as the particles are that the process can be very subtle. As illustrated in Fig. 4,
equidistant from each other, the same combinatorial expreshe g,(r)’'s generated ap=p* by v(r;p=0) anduv(r;p
sion holds for finiter. For the five-body term we find that =p*) are very similar. Any technique to derivdr;p) from
w(®)(0)=—0.4+0.15, while the relative contribution of the g,(r) must be significantly more accurate than the difference
five-body terms is given byw®)(0)/[5w®(0)+10w®)(0)  between they,(r)’s shown in the figure. The accuracy of the
+10w(?)(0)]=0.026+0.01. Again, the relative contribution techniques we use has been discussed in [Réf, and will
of the five-body term to the free energy is smaller and ofbe analyzed in much more detail in another publicaf®n.
opposite sign to those of the four-body terms. Going beyond Any approximation that correctly reproduces the pair cor-
the five-body interaction, even at complete overlap becomerelations will also predict the correct thermodynamics
increasingly difficult. For example, for the five-body interac- through the compressibility equatiof36,38. For our
tion, of the 16 overlap checks, each attempted after 1000density-dependeni(r;p) this is indeed the case, since we
pivot moves, only about 30 resulted in nonoverlap. For thdound good agreement between the equation of $EGS
six-body interaction we estimate that3#MC overlap at- II/p generated by the effective potentials in Fig. 3 and the
tempts would be needed. Another problem arises from finit&OS of the underlying SAW polymer solution. In contrast,
monomer density. As more and more polymers overlap, théhev (r;p=0) potential underestimates the EOS, and we find
monomer density increases, so that in practice for a givemean-field fluid behaviofl/p~p at largep instead of the
polymer lengthL, only a finite number of multiple overlaps correctIl/p~ p'2 scaling. So, even though the=0 poten-
are possible. We found previously that the largest finite-sizeial results in pair correlationg,(r) that are similar to the
corrections to the scaling limit were at=0 forw(?)(0) [24].  trueg,(r)’s, the effective thermodynamics can differ signifi-

m=n—1

p—0

where Iimpﬁogn(O) is the normalized probability of full
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9 FIG. 5. The density-dependent excess potentiglér;p) deter-

mined for several densities from the SAW simulations are denoted
by the smooth spline fit curves. The open circles with error bars
correspond to the evaluation of E@.1) at p=0, the line through
them is to guide the eye.

FIG. 3. The effective polymer pair potential¢r;p) derived at
different densities from an HNC inversion of the c.m. pair distribu-
tion functionsg,(r) of polymer coils depicted in the inséfrom
Ref.[24]) .

cantly. The difference arises from the neglected many-bodylescribes the density dependence of the pair potential that
interactions, as discussed in Appendix B. would reproduce the true pair-correlations induced by the
two-body and three-body potentials. This is a generalization
B. Understanding the density dependence of the effective pair  Of earlier expression§41,42 and neglects terms of order
potential O(p?) and higher. In the literature it has mainly been applied
Gi : . to the Axilrod-Teller interaction for rare-gas fluids, where it
iven the success of the density-dependent pair interac-

L o . . . works remarkably well, see, e.43] and references therein.
tion in describing pair correlations and thermodynamics, we Figure 5 highlights the density dependence by plotting

next turn to the question of whether the density dependence (r:p)=[v(r:p)—w®(r)]/p. For clarity, we have re-

. i i, Uex
gdg[ggrfd)er?tar?waai/-t?(l)rg;tilr{teurggggitg()d from the density placed the rather noisy data by spline fits. For densities

L L : . /p* <1 the curves are close to each other suggesting that
Within the HNC approximation, the following expression P . ; .
due to Reatto and Tai5] and also Attard6] the roughly Imegr de.nsny dependepce in EFD) hoIFis true.
For larger densities into the semidilute regimeg,(r;p) be-

comes smaller in magnitude and the density dependence be-
v(rlz;p)=W(2)(f12)—Pf (exd —wW (57131231 1) comes nonlinear. This nonlinearity is not unexpected, since
Eq. (10) neglects higher-order terms im, as well as the
X ga(r13;0)92(r3;p)drs, (10 effects of four-body and higher-order interaction terms.
6 We can go even further and directly calculate the triplet
' induced density-dependent teup,(r;p) by substituting Eq
14 | , (6) into Eq.(10) to obtain
121 1 bor p):_J im Os(ri2,13.M29)
1L et p—0 92(r 12)92(r13)92(r 23)
%08 i . X g2(r13;p)92(r 23;p)dr 3. (1)
0.6 - v(r;p=0) ] Theg,(r;p), in contrast to they,(r) in the first term in Eq.
0 — - vinp=p¥) | (11), are defined at the density of interest. Evaluating this
i integral is difficult, because the term between brackets can
02 L i become very small. We use a direct MC procedure, where
two polymer coils are held with their c.m. a distancg
0 ; p s apart while we integrate over the position of the third par-
/R ticle. In order to ensure that the integral converges it is cru-

cial to use they,(r) atp=0 [i.e., those between the brackets
FIG. 4. Comparison ofj,(r)’s generated at density=p* by  in Eq. (11)], from the simulation itself, by calculating it on

the low-density potentialv(r;p=0) and the correct potential the fly. This is necessary to avoid small errors in the radial

v(r;p=p*). Note how small the differences are. distribution function that build up during the integration over
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the volume. Theg,(r;p) at finite density are known from 2 L 2
previous calculations. The resulting.,(r;p) for p=0 is 5 bs
plotted in Fig. 5. The results for finite density do not differ
by very much. < 1
In conclusion, the density dependence is mainly caused < r=32 r=2.0
by three-body interactions, at least in the dilute regime. At 051 e Il o
semidilute densities, higher-order many-body interactions 0 e o e
may come into play. ,0 02 04 06 08 1,0 02 04 06 08 f
15 n.5
V. MANY-BODY CORRELATIONS
e 1
If g»(r) is generated by a system with only pair poten- 2
tials, then the exact inversion @f,(r) at any density will os | r=1.0 o5t r=0.5
reproduce the exact pair potential. For such a system, the
inverted pair potential can be used in principle to determine 00 02 04 06 08 1°0 02 04 06 08 1
all higher-order correlation functions of the original system. o/n o/n

In ,Oth,er Wor_ds' for SYStemS with O_nly pair ime,raCtions,' the FIG. 6. The bond angle distributidmn( 6,r.) plotted for several
pair-distribution f_unctlorgz(r) contains enoug_h information . «off radii r. for p=p*. The solid curves denote the effective
to generate all higher-order correlation functi¢ad]. potential results, the dotted curves correspond to the explicit SAW

If a system h?‘S three-body or higher—ord.er interac?tionssimulations and the dashed curves show Kirkwood'’s superposition
then ourv(r;p) still exactly reproduces the pair correlations. gpproximation.

But, as we shall demonstrate in this section, it can no longer

exactly reproduce the higher-order correlations. Nevertheye|| the hond order distribution follows the ideal sine curve
less, we will show that the differences are not very large foiq, e larger angles. At a cutoff radius of= 0.5 the distri-

the case of SAW polymers at the densities we study. bution becomes flatter, reflecting the broad flat top of the
repulsive Gaussian shaped pair potential.
A. Bond angle distribution from three-body correlations Instead of determining the distributions from explicit

simulations, we can also substitute the Kirkwood superposi-

Iculati ing the full three- lation? e
Calculating and comparing the full three-body correlation on approximatior| 26]

functions would be very cumbersome for many of the samd
reasons that it is difficult to map out the full three-body
interaction. Therefore, we resort to a reduced picture where a 93(r 12,713, 23) ~92( 12)92(r 13) 92(T 2) 13
subset of the variables are integrated [@l&,46. One popu-

lar measure of the three-body interactions is the bond anglito Eq.(12) and calculate the integral directly by using the

distribution function, defined as radial distribution functions from previous simulations. This
. approximation is also included in Figs. 6 and 7 and turns out
c c ~ :
b(ﬁyrc)ZBszzNL JO 93(r12,r13,(r§2+f§3 to be very accurate, except fér~0 and 6~ 7 (see Fig. ¥
1.5 T T T T 1.5

—2r 1,0 15¢0860)YAr2r2,sinf drdrys,
(12)

b(8)/sind

1 =- 1 \/—ﬁ“
05 mo.s b r=2.0

whereN is a dimensionless normalization constant. This in-
tegral sums over all triplets within a cutoff radiggfrom the
central particle and determines the distribution of the aigle 0 N 0 L
in these triplets. We calculated the bond angle distribution 15902 04 06 08 1.0 02 04 06 08 ¢
for both the SAW simulations and the effective pair poten-
tials for different cutoff radiir, as shown in Fig. 6. The
effective potentialsv(r;p) reproduce this measure of the
three-body correlations remarkably well. Since for an ideal
gas the bond angle distribution exactly follows a sine curve,
dividing the bond angle distribution by sthhighlights the
deviations from ideal behavior. In Fig. 7 we show the renor- % 02z 04 06 08 1°0 02 04 06 08 1
malized bond angle distribution. The differences between the 6/n o/m

curves are now clearer. The absolute deviations from the FiG. 7. The normalized bond angle distributibté,r.) plotted
sinelike behavior are largest at smalbecause the particles for several cutoff radir . for p=p*. The solid curves denote the
repel each other and triplets with smallwill be relatively  effective potential results, the dotted curves correspond to the ex-
rare. In the case of a hard sphere systems this correlatigsicit SAW simulations, and the dashed curves show Kirkwood’s
hole would be even more pronounced. It is remarkable hovguperposition approximation.

b(8)/sin

r=0.5
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0 02 04 06 0.8 1 FIG. 9. To measur&;(rq,,r13,r13), which denotes deviations
o/m from Kirkwood superposition, we fix,,, and plot theG;(r) as
FIG. 8. Comparison between bond angle distributi,r,)  functions ofr =r;3=r,3 (isoceles triangles, see Fig). Results are
for effective potentiale (r;p=0) (dotted lines andv(r;p=p*)  9iven for SAW polymerscircles, effective potentials (r;p) (solid
(solid lines, both determined from simulations at= p* . From left  lines), andv(r;p=0) potentials(dashed lines All plots are from
to right the curves correspond te=2.5 2.0, and 1.5. The differ- Simulations atp=p*. Note that the two effective potential plots
ences are so small that the lines are virtually indistinguishable o@re more or less identical within the statistical noise, while the

the scale of the graph. SAW G3*r) is slightly higher by approximately a factor
exd —w(n)].

where the simulations are prone to large statistical errors, due o o

to the vanishing volume of the available phase-space. tion. The trends are similar, but the deviation from superpo-

The bond-angle distribution is not very sensitive to differ- sition of the SAW polymers3**/(r), is consistently larger

ences in the full three-body correlatiofsee, e.g., Ref46]),  than the same quantity generated by the effective potentials
partially because it is an integrated quantity. An example oﬁgﬁ(r), especially ifr <Rg.
this is given in Fig. 8, where the bond angle distributions of For systems with an explicit three-body interaction the
the effective potentials(r;p=0) andv(r;p=p*) are com-  Kirkwood superposition approximation is sometimes written
pared for the same densip=p*. Clearly, there is hardly as
any difference between the distributions.
03(r12,r13,123)~92(r12)92(r 13)92(r 23)
B. Deviations from Kirkwood sgperposﬂmn for three-body XEXF[—W(g)(I'lz,Tls,rza)]- (15)
correlations

A more sensitive measure of triplet correlations is theThis is exact in thep—0 limit, as can be seen from
deviation from the Kirkwood superposition approximation, Eq. (6). Note that in the same limit the three-body correla-

Eq. (13), which we define as: tions induced by theuv(r;p) reduce to the simpler
Kirkwood superposition approximationgs(ris,riz,r 3

Ga(T12,T13,F29) = 93(r'12,713,"23) _ (14) ~0,(r1202(r13)g9-(r,3), demonstrating explicitly that in

Y 92(r12)92(r 13)92(" 23) contrast to the two-body correlations(r;p) cannot exactly

reproduce the three-body correlations if there is a three-body
Since ourv(r;p) exactly reproduces thg,(r), this expres- interaction present. In fact, we have shown explicitly that
sion should highlight any differences between the tg4e  two systems with identical pair correlations, namely, our ef-
and thegs arising from our effective potential picture. To fective potential system and the original SAW system, can
simplify, we limit ourselves for a giveny, to triplet configu-  have differing triplet correlations.
rations for whichr =r,;=r45 (i.e., isoceles triangles These arguments also suggest that a simple approxima-
First, we compare in Fig 9 th€,(r) atp=p* generated tion, namelyG3*"{(r)~GS"(r)exd —w(r)], can shed some
by v(r;p=0) and byv(r;p=p*). Just as we found for the light on the differences observed in Fig. 9. Sine€)(r) is
bond angle distributions, th&;(r) are very similar even negative for equilateral triangle configurations, as illustrated
though the potentials are different. We already showed thah Fig 2, it is perhaps not surprising that roughly speaking
the g,(r) are not very different eithefsee Fig. 4, so that  G3*™r)>GS (r) for the isoceles triangle configurations
the same now holds for the fuljz(r12,r23,r13). plotted in Figs 9, at least in the region wheré®)(r) is
Next, we turn to a comparison between the t&&"(r)  nonzero. Unfortunately the statistical errors in this region are
derived from explicit simulations of our SAW polymer sys- very large, making a quantitative comparison difficult, but
tem and th&;iﬁ(r) of the effective potentials gt=p* . As  the deviation is certainly of the same order as would be ex-
can be seen in Fig. 9, our effective pair-potenti@l; p) does pected from an extra factor expw®(r)] (compare with
not exactly reproduce the SAW three-body correlation func+ig. 2).
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Our very simple approximation illustrates how deviationsmarily from the direct effect of the three-body potential
from Kirkwood superposition originate from two effects: ~ w®)(r), and illustrate a more general point, namely, that an
(1) Deviations induced by correlations generated by theeffective two-body interaction can never simultaneously re-
pair-potentials alone. These have been studied in great detgitoduce the two and three-body correlations in a system with
for hard-sphere systems, see, e.g., Refg,48. many-body interactions exactly. Since for polymers in a
(2) Deviations induced primarily by three-body potentials. good solvent these many-body interactions are relatively
In practice, of course, these two effects are somewhatveak, a coarse-grained description based on effective pair
entwined, especially at higher densities. Nevertheless, spliinteractions works remarkably well, at least for the dilute and
ting the two effects can shed light on the origin of three-bodythe beginning of the semidilute regimi23,24]. Whether this
correlations. In particular, it suggests that while an effectivesuccess can be extended deeper into the semidilute or into
pair potentialv(r;p) that exactly reproduces thg(r) can  the melt regime, or even for polymers in poor solvents, re-
partially reproduce deviations from superposition of tybe ~ mains to be seen, and will be the subject of future investiga-
it will fail for deviations of type(2). tions.
Since the three-body and higher-order interactions be-
tween the c.m.’s of polymer solutions are not very strong, the ACKNOWLEDGMENTS
total g5(r)’'s are still remarkably well reproduced by the
u(r:p), especially when integrated quantities such as the A-A.L. acknowledges support from the Isaac Newton
bond-angle correlations are considered. However, for sysl'ust. Cambridge. P.B. acknowledges support from the
tems where three-body interactions are strong, such as liquigP?SRC under Grant No. GR/M88839. We thank Hwien
Si or liquid Ga, one cannot expect the same success frordnd C. von Ferber fqr' useful dllscussmns, and R._Flnken and
effective pair potentials. Very similar conclusions were V- Krakoviak for a critical reading of the manuscript.

stressed by Evarjg4] in the context of reverse Monte Carlo
simulations[46,49. APPENDIX A: RELATIVE STRENGTH OF n BODY TERMS

FROM SCALING THEORY

VI. CONCLUSIONS In a recent paper, von Ferbet al. [25] used scaling
theory and simulations to calculate the triplet interaction for
Integrating out the monomeric degrees of freedom to obstar-polymers and found an attractive interaction with a rela-
tain a description based on effective potentials between polytive strength of about 11%, very similar to our three-body
mer c.m.’s is a useful coarse-graining technique for polymetesults. The natural choice for the position coordinate of a
solutions. Because simulations can be performed to high aGgar polymer is not the c.m., but its midpo[i®0]. However,
curacy, the lessons learned here should be relevant to a mugfe will see that for estimating relative contributions, the dif-
broader range of coarse-graining schemes. ference between our c.m. representation and the midpoint
In particular, we showed that the free energy of the poly-representation is not too important.
mers can be expanded in a series of state-independent many-Here, we apply the star polymer scaling theory to estimate
body effective potentials. At full overlap the terms in the the relative contributions ofv"(0) to all orders inn. We
series oscillate in sign as—<1)", and become smaller in gpecialize to linear polymers, which can be seen as star-
absolute magnitude for increasing The scaling theory de- polymers with only two arms. We first note that the partition
veloped in Appendix A confirms these ideas, and can be useinction for n polymers with their mid points constrained to

to extend them to arbitrary order _ be a distance <R, apart scales &25,51,53
A parallel description of the coarse-grained polymer solu-
tion was developed in terms of an effective stédensity Zn(r)~ron, (A1)

dependent pair potential(r;p), which exactly reproduces o ) .
the pair-correlations and, in an average way, includes all thé the limitr/R;—0. Hered), is the contact exponent, which
higher-order terms in the many-body free energy expansioril turn can be written as

The density-dependence of this effective pair potential can g = _

be largely understood from the direct influence of the n=N727 920,

density-independent three-body interactions. where the; are the scaling exponents for a star polymer

_The three-body correlations are also well described by, £ arms. These are tabulated for two different renormal-
thls_ eﬁgctlve palr—pqtentlal picture. If the bond angle distri- ization group calculations ifi25,53, and can also be ap-
bution is used, the dlﬁgrencgs betwe_en the full SAW p°|ym,erproximated by a simpler expression
system and our effective pair-potential picture are almost in-
distinguishable. However, this is not a good “order param- 7;~0.33533%/2, (A3)
eter” for measuring deviations in three-body distribution
functions, since there is almost no difference between resultshich is expected to become more accurate for lafdjg4].
from the full simulations and those produced with the Kirk- Comparing the different approximations gives an indication
wood superposition approximation. When we use a more dief the accuracy of the scaling theory results.
rect measure of the deviations from Kirkwood superposition, The probability of findingn polymers with their mid-
small differences between the effective two-body and the fulpoints a distance<Ry apart can be found from the partition

SAW triplet distributions can be measured. These arise prifunctions since

(A2)
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TABLE I. Comparison of scaling theory and simulations for many-body interactions between the polymer c.m. The labels a and b denote
results that follow from two different renormalization group calculations for the expongnf&5], while label ¢ comes from the simple
expansion of Eq(A3), and label d denotes simulation results for 500 SAW polymer simulations.

n 2 3 4 5 6 7 8 9 10
a6,/6, 1(6,=0.8) 2.55 4.49 6.75 9.3
b 1(6,=0.82) 2.65 4.80 7.41 10.43
c 1(6,=0.79) 2.65 4.83 7.46 1050 1390 17.66 21.73  26.10
dIng,(0)/Ing,(0)  1(Ing,(0)=1.88)  2.74-0.01 5.13-0.02 7.99-0.05
awm /W@ 1(W@=0.8) —0.45 0.29 -0.19 0.11
b 1(W?9=0.82) -0.35 0.22 —-0.15 0.085
c 1(W?=0.79) -0.35 0.22 -0.17 014 -012 011 -0.10 0.094
dwM0)w0) 1w?(0)=1.88) —0.26+0.013 0.1720.031 —0.21+0.08
aAw"(0) -0.15 0.069 —-0.027 0.012
b -0.12 0.048 —0.019 0.0083
c —-0.12?? 0.049 —0.023 0.014 —0.0088 0.0063 —0.0046 0.0036
d —0.09+0.004 0.034:0.007 —0.026+0.01

—lim Ing"%(r)e IN[Z,(r)]~ 6, In(r/Rg).  (A4) ) " n

p—0 w<“>(0)ocw(“)=(—1)“m§_)2 (m>(—l)m(mnz— M2.m)-

(AB)

Hereg'%(r) is then-body distribution function for the mid-

points of n polymers. These scaling theories can be develHerew(" is the coefficient of the fulldivergen} midpoint-
oped for polymers in the midpoint representation in part be‘midpoint interaction,w(”-)d(r)~\7v(”)ln(r/Rg) in the limit r
cause of the analogy of the overlap mfpolymers to a B "1 yalyes of these terms relative to the2 term are
arm star polymer. Such an analogy is not as obvious for th% mpared in Table | with direct simulation results for
c.m. representation, hampering the derivation of a c.m.—base§3’4’5’ and again good agreement is obtained. For the scal-

scaling theory. On the other hand, MC simulations for over- . ) , N
lap in the c.m. representation are much easier than for thIng theory each higher-order term is opposite in sign and

dboint tation b th babit . Smaller than the previous one. Our simulations show the
midpoint represen ﬁ,i'(?n ecause the probabiiy(r) is same trend for the sign, but the error bars onrtkeb simu-

mn‘figh larger thang,™(r) in the smallr limit, in fact |a4ions are still too large to ascertain that its magnitude is less
dn (0)=0 while the c.m.g,(0) is finite. Gathering good ihan then=4 term.

statistics for the mid-point representation is thus much Tpe strength of the-body term contribution to the free
slower than for the c.m. representation. It, neverthelessnergy relative to all lower-order terms can also be found

seems reasonable to expect thatrttlative strengths of dif- o the arguments above. In this case the prefactors cancel
ferent orders of the interactions in the c.m. representation arg,q we find

similar to those of the midpoint representation, suggesting

that the relative probability of full overlap of the c.m. of - - W
polymers scales as AW (0)~Aw =———"". (AT)
0,—W
Ing,(0) In gnmid(r) 6, Once again the simulations and the scaling theory agree quite
lim|{ ———=|~lim lim{ ———|~—. (A5  well both for the magnitude and the sign of the different
| 0 mid 0.
p—0 NAm(0) /o .0\ Ing™r) m terms.

In Table | we confirm this ansatz by comparing APPENDIX B: CONVERGENCE OF THE FULL FREE

In g,(0)/Ing,(0) calculated by direct simulations fon ENERGY SERIES

=3,4,5 with 0,/6, calculated by three different versions of .

the scaling theory. Clearly, all three scaling theories and the 1he good agreement found between the scaling theory

simulations agree reasonably well with each other, giving u&nd the simulations fon=3,4,5 suggests that we can evalu-
confidence to proceed. ate trends for arbitrary order from the scaling theory. We

Armed with this approximate equivalence of thg's in ~ USe the simple expression in H&3) that givesy; for arbi-
the two representations, we can now fruitfully compare therary f, to simplify Eq. (A6) to
strength of then-body interactionw(™(0) for c.m. particles n
to an expression derived from the scaling theory, by using WM =0.9484 — 1) ( ”) —1)yM+1ma3R B1
Egs.(A2) and(A4) to recursively rewrite Eq(9) as -9484-1) m§=:1 m/(" D) - (B
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The sum between brackets is positive forraland becomes  the true free energy scales @« 6y~ N%2 Including only
smaller for each subsequent term. For examplenfeB itis  the pair terms heavilpverestimateshe free energy, a result
0.29, while forn=10000, it is has dropped to 0.009. This also found by von Ferbest al. [25]. In other words, if one
implies that at all orders, the-body interactionw(™(0) os-  truncates the coarse-grained free energy series iflEthen
cillates in sign as £ 1)" and decreases in absolute magni-certain configurationgr;} will not be properly accounted for.
tude with increasing. The absolute magnitudes of the rela-  However, if one were to use this coarse-grained free en-
tive contributionsAw("(0) decrease even faster with ergy series to study a given polymer solution, then the rela-
We expect that the absolute magnitude of eadhody  tive probability for finding a configuration at complete over-
term is largest at full overlap. However, the fact that eachap of the c.m. would be very small. On the other hand, for
higher-order term decreases in absolute magnitude, or evemy given ordemn, the probability of findingn-fold overlap
that the terms oscillate in sign a0, does not necessarily increases with increasing density, so that one would expect to

imply that the full free energy expansion of E@L) will need more and more terms in the coarse-grained free energy
converge quickly for all configurationg;} of the c.m. For series as the density increases.
one thing, for anN particle system, the number oftuple Another way to measure the effects of truncating the

coordinates grows as the binomil/(N—n)!n!. Therefore, coarse-grained free energy series in @gwould be to com-
even though the magnitude of the-body terms pare it to the excess free energy per particle for the original
w(”)(ril,riz, ....fi ) becomes smaller with increasimgthe  polymer solution. This can be found by averaging
number of such terms at each orderin the free energy F(N,V,{r;}) over all configurationgr;} to obtain the total
series Eq(1) increases almost exponentially with increasingfree energyF(N,V), as done in Eq(2). Including only pair

n. Of course for a given configuratiofr;}, not only the interactions in our c.m. representation of polymer solutions
magnitude, but also the range of each termcasts the problem into that of finding the free energy of a
W(n)(ril,riz, ...1i.) is needed to decide how many, if not all mean-field fluid[33,39,4Q for which the excess free energy

N terms, are needed to calculate the full free energy to &er polymer scales as
desired accuracy. As mentioned before, calculating the com-

plete dependence of"™(r; ,r; ,
n-tuple c.m. coordinate$r; .ri , ... .r; } is usually an im-
possible task for higher-order while the true excess free energy of a polymer solution in the

Nevertheless, some progress can be made by looking @kmidilute regime follows from scaling theof8]
the special case of a sét;} where allN c.m.’s are at the

. Fex
....fi ) on all possible —

NP (B3)

same point. This is simply the situation studied in the previ- Fex
ous section by scaling theory, for which the free energy is N VEr=1~p3 (B4)
given by

FINVALH—FO(N,V)=—IngN0)x 6. (B2) Whereas including only the pair interactions in an average
over all configurationgr;} in the semidilute regimender-

Ignoring for the moment the volume term, who's contribu- estimateghe total free energy, taking into account only pair
tion is expected to be negligiblgl7,24], we can ask the terms for single configuratiofr;} at complete overlap of the
guestion: How well is the free energy described by takingc.m. overestimateshe coarse-grained free energy. This im-
only pair-interaction terms into account? Since there arglies that the special configurations where the coarse-grained
IN(N—1) pair terms, the free energy with only pair terms free energy series in Ed1) breaks down do not have a
taken into account scales & N(N—1)w(?)(0)~N? while  strong influence on the thermodynamics.
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