
PHYSICAL REVIEW E, VOLUME 64, 021801
Many-body interactions and correlations in coarse-grained descriptions of polymer solutions

P. G. Bolhuis,* A. A. Louis,† and J. P. Hansen
Department of Chemistry, Lensfield Road, Cambridge CB2 1EW, United Kingdom

~Received 8 March 2001; published 23 July 2001!

We calculate the two-, three-, four-, and five-body~state-independent! effective potentials between the
centers of mass~c.m.’s! of self-avoiding walk polymers by Monte Carlo simulations. For full overlap, these
coarse-grainedn-body interactions oscillate in sign as (21)n, and decrease in absolute magnitude with in-
creasingn. We find semiquantitative agreement with a scaling theory, and use this to discuss how the coarse-
grained free energy converges when expanded to arbitrary order in the many-body potentials. We also derive
effectivedensity dependenttwo-body potentials that exactly reproduce the pair-correlations between the c.m.
of the self avoiding walk polymers. The density dependence of these pair potentials can be largely understood
from the effects of thedensity independentthree-body potential. Triplet correlations between the c.m. of the
polymers are surprisingly well, but not exactly, described by our coarse-grained effective pair potential picture.
In fact, we demonstrate that a pair potential cannot simultaneously reproduce the two- and three-body corre-
lations in a system with many-body interactions. However, the deviations that do occur in our system are very
small, and can be explained by the direct influence of three-body potentials.
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I. INTRODUCTION

An efficient statistical description of condensed mat
systems and materials almost invariably involves some
gree of coarse graining, whereby a large fraction of the ini
microscopic degrees of freedom are traced out, leavin
much reduced space of variables associated with the com
ite entities or pseudoparticles. The latter are then coupled
effective interactions that result from the partial averag
over the initial microscopic degrees of freedom. The red
tion of the initial multicomponent system to a coarse-grain
system with a substantially smaller set of composite partic
implies that the resulting effective interactions may invol
three-body and higher-order contributions, even if the or
nal multicomponent system involved only pairwise additi
forces, like Coulombic interactions. Alternatively, one m
wish to retain the simplicity of pairwise additivity of th
effective interactions, but the price to pay is that such eff
tive pair potentials are then state dependent, e.g., are f
tions of the temperature and/or density. The reason for th
that the effective interaction energy is a free energy ass
ated with the averaged-out degrees of freedom, which g
erally has an entropic component.

There are many examples of the coarse-graining pro
dure that has just been outlined. In molecular systems
forces between nuclei result from gradients of the electro
ground state energy surface, which depends parametric
on the nuclear coordinates, and adjusts adiabatically to
slow motion of the latter within the Born-Oppenheimer a
proximation. This scenario is mimicked, at least at the le
of valence electrons, inab initio molecular dynamics simu
lations pioneered by Car and Parrinello@1#. However, in situ-
ations where no strong covalent or hydrogen bonding
present, the more common route is to represent the t
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ground state electronic energy surface by a sum of one-b
two-body, and higher order terms. The one-body contribut
is the sum of the ground state energies associated with i
vidual, isolated chemical entities~atoms, ions, or molecules!.
The two-body term is made up of the sum of pair potenti
acting between molecules and higher-order terms corresp
to isolated clusters of three or more molecules. The sum
ground state energies of individual molecules does not c
tribute to the forces between them, and can hence be ign
in the description of collective equilibrium or transport pr
cesses that do not involve chemical reactions. In the simp
case of rare-gas atoms, the pairwise interactions would
clude overlap repulsion at short range and dispersion fo
at long range, while triplet interactions would includ
among others, the Axilrod-Teller triple dipole dispersion p
tential @2#, which contributes very significantly to the the
modynamic and transport properties of the heavier rare g
in their condensed states@3,4#. The effect of the higher-orde
interactions can be approximately incorporated into an eff
tive pair potential, which differs from the bare pair potenti
valid for an isolated pair of molecules, and becomes den
dependent@5,6#.

Similarly, in metals an effective interaction between io
may be determined by tracing out the conduction electro
using perturbation theory or response theory@7,8#. Treating
the ion-electron coupling to lowest order~linear response!
leads to a structure-independent volume term and to a p
wise screened effective potential between ‘‘dressed’’ ions
pseudo-atoms, which both depend on the macroscopic
duction electron density. The two-body level is generally s
ficient for alkali and other simple metals, in part because o
quantum interference effect that strongly decreases the m
nitude of the higher-order response terms@9#. For multiva-
lent and transition metals many-body effective interactio
can no longer be neglected@8#, and a fullab initio treatment
may be necessary@10#.

Coarse-graining becomes crucial in the highly asymme
systems of soft matter, involving macromolecules or coll
©2001 The American Physical Society01-1
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dal particles, as well as molecular scale entities, like solv
molecules or ions. The latter are traced out to derive effec
interactions between the electric double-layers associ
with charged surfaces~colloids, membranes, etc.! @11#. The
microscopic ions play a role similar to valence electrons
metals, but with the important difference that quantum
generacy effects are absent, and that finite temperature
tropic effects control the width of the electric double laye
with a resulting density and temperature dependence of
effective interactions between the mesoscopic colloidal p
ticles. A good example of a such a pair potential is provid
by the classic Derjaguin-Landau-Verwey-Overbeek effect
pair potential between spherical charged colloidal partic
@11#. Three-body interactions can be derived in similar fa
ion @12#. However, the averaging over the microion degre
of freedom also leads to a structure-independent, but s
dependent volume term, part of which is associated with
self-energy of individual double layers, and which is rem
niscent of the volume term in metals@13,14#; this term has a
profound effect on the phase diagram of charge-stabili
colloids @14,15#.

Another important class of effective interactions of e
tropic origin, which follow from averaging over the configu
rations of nonadsorbing polymers and small colloidal p
ticles, are the depletion forces that have received m
renewed interest in recent years@16,17#. Depletion pair po-
tentials depend strongly on the concentration of the dep
ant; recent attempts have been made to compute the th
body interactions from simulations or density function
theory @18#. Volume terms arising from the depletion pote
tial picture may have an important effect on the osmo
equation of state, but they are not expected to influence
phase behavior in these uncharged systems@16#.

The present paper is concerned with a coarse-grained
scription of dilute and semidilute solutions of polymers
good solvent. Whereas tracing out the microscopic ions
charged colloidal suspension has many analogies with
liquid metal problem, the coarse graining of neutral po
mers, achieved by integrating out the internal monome
degrees of freedom, resembles more closely the case o
fective potentials between neutral atoms and molecules,
tained by tracing out the internal electronic degrees of fr
dom. The basic idea explored here, which goes back to F
and Krigbaum@19#, is to represent a set of polymers, ea
made up ofL monomers or segments, as single particl
interacting with each other through an effective interact
between their centers of mass~c.m.’s!. The important point,
realized by Grosberget al. @20#, is that the effective pair
interaction remains finite, even for infinitely long polymer
Monte Carlo simulations@21# and renormalization group ca
culations @22# show that for two isolated nonintersectin
polymer coils, the effective potential between their c.m.’s
of order 2kBT in the scaling limit, i.e., forL going to infinity,
while the range of the interaction is of the order of the rad
of gyrationRg of the polymers. Recently we have extend
this investigation by simulating large systems of se
avoiding walk ~SAW! polymers at finite concentration
@23,24#. The resulting c.m. pair distribution functiong(r )
was then inverted to yield a concentration-dependent ef
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tive pair potentialv(r ;r), wherer is the number of polymer
coils per unit volume. Althoughv(r ;r) was not found to
change dramatically withr, the r dependence ofv is very
significant for the accurate determination of the osmo
properties of dilute and semidilute polymer solutions.

In this paper we adopt a somewhat different point of vie
by determining state-independent effective pair, triplet, q
druplet, and quintuplet interactions; these many-body in
actions are determined by successively considering clus
of 2, 3, 4, and 5 SAW polymer chains, determining the c
respondingn-body distribution functions, from which an ef
fective n-body potential is derived. Triplet interactions b
tween the cores of star polymers have recently b
determined in a similar way@25#. The next step taken in this
paper is to relate the low-density~state-independent! pair and
triplet interactions to the density-dependent effective inter
tions determined in our earlier work@23,24#. A final section
will be devoted to an analysis of three-body correlations
measured by bond-angle distributions and deviations fr
the Kirkwood superposition approximation@26#. The conver-
gence of the series ofn-body interactions is assessed on t
basis of scaling arguments in the appendixes.

II. SIMULATION MODELS AND METHODS

Many properties of polymers in a good solvent are w
described by models that ignore all microscopic details of
intermolecular interactions, except their excluded volum
For that reason polymers are often modeled as self-avoid
walks on a lattice@27–29#, a model lending itself well to
efficient computer simulations. We consider the situation
N athermal SAW chains of lengthL on a simple cubic lattice
of M sites. The bead or segment concentration is given
c5NL/M , while the polymer chain concentration is give
by r5N/M . The polymers are characterized by their rad
of gyrationRg which, for an isolated polymer, scales asRg
;Ln, wheren'0.59 is the Flory exponent@27–29#. We also

define an overlap concentrationr* 51/4
3 pRg

3 at which there
is on average one polymer per sphere of radiusRg . Solutions
with r/r* ,1 are called dilute, while solutions withr/r*
.1 andc!1 are called semidilute. When the monomer de
sity c becomes appreciable, the solution moves from the
midilute to the melt regime. In this paper we will focus o
densitiesr/r* &2, i.e., the dilute regime and the beginnin
of the semidilute regime.

When modeling the semidilute regime, it is important
take sufficiently long polymer chains. The first reason is t
for studying the semidilute regime one needs a large poly
densityr together with a low monomer densityc. We found
earlier that the monomer densityc* at the overlap concen
tration r* scales roughly like@24# c* '4L20.8 for SAW
polymers on a simple cubic lattice. Throughout this paper
use polymers of lengthL5500 for whichc'0.05 atr/r*
52, so that we are still clearly in the semidilute regime.
contrast, for L5100 the monomer density isc'0.2 at
r/r* 52, suggesting that a meaningful semidilute regim
does not exist for such short polymers.

The second reason for using long polymer chains is t
we want to study properties—particularly the effective p
1-2
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MANY-BODY INTERACTIONS AND CORRELATIONS IN . . . PHYSICAL REVIEW E64 021801
tentials between polymer chains—in the scaling regim
where all length dependence is completely captured byRg .
In a previous paper@24# we established that two properties
the effective potential relevant to thermodynamics, nam
the second-virial coefficientB2 between two polymers an
the effective pair potential between c.m.’s, multiplied by t
square of the c.m. distancer 2v(r ) are very close to the sca
ing limit for L5500 polymers, the length we will use in th
paper.

Simulations were done with the Monte Carlo pivot alg
rithm @21,30# combined with simple translational moves. F
concentrationsr.r* we also use configurational bia
Monte Carlo~MC! algorithms@31,32#. For L5500 polymers
we find that the radius of gyration of an isolated coil isRg
516.5060.03. We used a simulation box of sizeM
5(240)3, and varied the number of polymers fromN52 for
the two-body calculations toN56400, which corresponds t
r/r* 58.9.

Since we are dealing with athermal chains consisting
monomers interacting only via hard-core repulsion, we
the reciprocal temperatureb51/kBT51 throughout this pa-
per.

III. DENSITY INDEPENDENT MANY-BODY
INTERACTIONS

A. Expanding the coarse-grained free energy in a series of
many-body interactions

Following the discussion in@33#, the Helmholtz free en-
ergy F of a set ofN polymers of lengthL with their c.m.’s
distributed according to the set of coordinates$r i%, in a vol-
umeV, can be written as the following expansion:

F~N,V,$r i%!5F (0)~N,V!1 (
i 1, i 2

N

w(2)~r i 1
,r i 2

!

1 (
i 1, i 2, i 3

N

w(3)~r i 1
,r i 2

,r i 3
!

1•••w(N)~r i 1
,r i 2

, . . . r i N
!. ~1!

In the scaling limit, each term in the series is independen
L as long as then-tuple c.m. coordinates$r i 1

,r i 2
•••r i n

% are

expressed in units ofRg , the radius of gyration at zero den
sity. Note that this coarse-grained free energy includes
implicit statistical average over all the monomeric degrees
freedom for a fixed configuration$r i% of the c.m. The full
free energy of the underlying polymer system can be ca
lated as follows:

F~N,V!52 ln E ¯E dri . . . drN exp@2F~N,V,$r i%!#,

~2!

so that Eq.~1! can be viewed as an expansion of the effect
interaction between the c.m. in terms of~entropic! many-
body interactions.F (0)(N,V) is the so-called volume term
the contribution to the free energy that is independent of
configuration$r i% @14#. Here it includes the free energy of
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single isolated polymer, which is independent of the posit
of its c.m. in a homogeneous solution; translational inva
ance also implies that there is no one-body term in the
pansion. Each subsequent termw(n)(r i 1

,r i 2
, . . . ,r i n

) is de-
fined as the free energy ofn polymers with their c.m.
positions at$r i 1

,r i 2
, . . . ,r i n

% minus the contributions of al
lower-order terms. In other words, it is the contribution to t
free energy ofn polymers that is not included in the sum o
all lower-order terms. For instance, the two-body te
w(2)(r i j ) can be defined as the difference between
coarse-grained free energyF for two particles with their c.m.
distance held atr i j 5ur i2r j u, and the free energy of the sam
two polymers when they are infinitely apart. Here we use
translational and rotational invariance of a homogeneous
tem to reduce the number of degrees of freedom. Simila
the three-body term for a given triplet configuratio
$r i ,r j ,r k% can be written in terms of only three variables~see
Fig. 1! as

w(3)~r i j ,r jk ,r ki!5F~N53,V,r i j ,r jk ,r ki!2F (0)~N53,V!

2w(2)~r i j !2w(2)~r ik!2w(2)~r jk!. ~3!

In other words, it is that part of the effective interactio
between three polymers that cannot be described by vol
and pair interaction terms alone. In principle, this proced
may be continued until, for a system withN polymers, the
Nth term determines the total coarse-grained free energy
practice, this approach is not feasible because the numb
n-tuple coordinates increases rapidly withn, as does the
complexity of each higher-order term, so that the series
Eq. ~1! quickly becomes intractable. Instead, one hopes
show that the series converges fast enough that only a
low-order terms are needed to obtain a desired accuracy
now turn to the derivation of these density-independent
tentials for our system of SAW polymers.

B. Two-body interactions

There is a general relationship between ther→0 limit of
n-body correlation functions and then-body potential@33#.
For the two-body case this reduces to

lim
r→0

g2~r !5exp@2w(2)~r !#, ~4!

FIG. 1. The three variables$r 12,r 13,r 23% that characterize a trip-
let configuration. The angleu between the vectorsr12 and r13 is
related to the distancer 23 by r 23

2 5r 12
2 1r 13

2 22r 12r 13cosu.
1-3



s
rc

.
a

le

po
la
th

or

ce
r
f

ri
u
la
o

d,
e

tiv
ha

te

ie

.m

ak

-
dy

can
dy

r-
s
ree-
he

er-

tial

n
is
on-
of
gth

of

n-

n
n
per-
ve
for
ree
rel-
tive

the
he
tal
on
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whereg2(r ) is the pair distribution function. Although thi
definition resembles that of the potential of mean fo
~PMF!, usually defined aswPMF(r )52 ln@g2(r)# for any den-
sity, they are only equivalent in the limit of infinite dilution
Strictly speaking, the PMF is not a potential but simply
restatement of the pair correlations. Consider the simp
case, namely, a system with no higher-order (n.2) interac-
tions. If one were to use a finite density PMF as a pair
tential at that same finite density, the resulting pair corre
tions would not be those of the system used to derive
PMF. In contrast, the potential defined in Eq.~4! is the cor-
rect pair potential that would exactly reproduce the pair c
relations of the original system.

In our simulations we calculatew(2)(r ) from the loga-
rithm of the overlap probability as a function of c.m. distan
@cf. Eq. ~4!#. Although the arguments above were made fo
free energy in a continuous space, they easily carry over
the lattice model we simulate. In fact, the c.m. lives on a g
finer than the original SAW lattice polymers, so that o
results are already closer to the continuum limit. The over
probability is determined by sampling the configurations
two polymers infinitely apart with the pivot algorithm, an
after every 1000 pivot moves, searching for any monom
overlaps as a function of the c.m. distance. The effec
potential calculated in this manner has a near Gaussian s
with a value at full overlap ofw(2)(0)51.8860.01 for our
L5500 polymers, very close to the scaling limit estima
w(2)(0)51.8060.05 @24#, and a range of the order ofRg
@23,24#, as shown in Fig. 2. This picture agrees with earl
renormalization group@22# and simulation@21# studies. Note
that in the scaling limit the potentials depend only onRg , so
that the free energy cost of completely overlapping the c
of two polymers is independent of their lengthL. That this
free energy cost at complete overlap should depend we
on polymer length follows from their fractal nature@19#, but
more sophisticated scaling theory arguments@20# are needed
to prove thatw(2)(0)}L0 @23,24#.

FIG. 2. Effective potentialsw(n)(r ) for n52 ~solid line!, n53
~dashed line!, n54 ~dash-dotted line!, andn55 ~symbol with error
bar at r 50). Inset: relative potentialsDw(n)(r ) for n53 ~dashed
line!, n54 ~dash-dotted line!, andn55 ~symbol with error bar at
r 50).
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C. Three-body interactions

Just as the two-body interactions follow from the low
density limit of the pair correlations, so also the three-bo
or triplet interactions between the c.m. of three polymers
be derived by taking the low-density limit of the three-bo
distribution function

g3~r1 ,r2 ,r3!5
1

ZE •••E e2F($r i %)dr4•••drN , ~5!

whereF($r i%) is the coarse-grained free energy~1! and Z
5exp@2F# is the configurational integral for the c.m. coo
dinates defined in Eq.~2!. ~Since the effective interaction
already include an average over monomeric degrees of f
dom, this configurational integral is equivalent to that of t
full polymer system.! Taking the low-density limit for a ho-
mogeneous system gives

2w(3)~r 12,r 23,r 13!5 lim
r→0

lnF g3~r 12,r 23,r 13!

g2~r 12!g2~r 23!g2~r 13!
G .

~6!

Theg2(r ) ensure that the contributions due to the pair int
actions are subtracted from the triplet interaction@cf. Eq.
~3!#. For our homogeneous system the three-body poten
depends only on the three variables$r 12,r 23,r 13% shown in
Fig. 1. Even then, calculating the triplet interactio
w(3)(r 12,r 23,r 13) for every possible triplet arrangement
very cumbersome. We therefore confine ourselves to c
figurations that make up an equilateral triangle. Instead
three variables, the potential now depends only on the len
r of each side of the triangle, simplifying the calculation
Eq. ~6! to

w(3)~r !52 lim
r→0

@ ln g3~r !23w(2)~r !#, ~7!

where we also used Eq.~4!. We expect that forr 50, i.e.,
complete overlap, the three-body interaction will be stro
gest, while for larger the interaction should vanish.

We calculatedw(3)(r ) for threeL5500 SAW polymers
on a lattice. At this infinite dilution,g3(r ) is simply the
probability that three polymers in a configuratio
$r 12,r 23,r 31% do not overlap. In the Monte Carlo simulatio
we integrate over the monomeric degrees of freedom by
forming pivot moves. Once every 1000 MC steps we mo
the polymers into a triangular configuration and check
overlap. The results are plotted in Fig. 2. Since the total f
energy increases with the number of polymers, a more
evant measure of the three-body interactions is the rela
potential Dw(3)(r )5w(3)(r )/3w(2)(r ) that denotes the
strength of the three-body interaction relative to that of
two-body interactions. As shown in the inset of Fig. 2, t
relative contribution of the three-body potential to the to
free energy is quite small, only about 9% of the contributi
from the pair potentials.
1-4
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D. Four-body interactions

Next we turn to the four-body interactions. Again, ev
for a homogeneous phase, the total number of relevant c
dinates makes the calculation of the full interaction prohi
tively complex. To restrict the number of coordinates in o
calculations we determine the four-body potential by plac
the four polymer c.m.’s on a regular tetrahedron and de
mining the nonoverlap probability as a function of the leng
r of each side of the tetrahedron. The four-body potentia
then defined as

w(4)~r !52 lim
r→0

ln@g4~r !#24w(3)~r !26w(2)~r ! ~8!

since the tetrahedral configuration includes four equilate
triangles~three-body interactions! and six edges~two-body
interactions!. The full and relative four-body interaction
Dw(4)(r )5w(4)(r )/@4w(3)(r )16w(2)(r )#, are plotted in
Fig. 2. Note that the four-body interaction is smaller in a
solute magnitude and has the opposite sign to the three-b
interaction. The relative contribution of the four-body inte
actions to the total free energy is less than 5% of the t
potential, and also less than the relative three-body contr
tion.

E. Five-body interactions

Calculating the five-body interaction is even more co
plicated than the four-body interaction, and so we o
evaluate it at full overlap—when all the c.m.’s coincide
where we expect its contribution to be largest. More gen
ally, for any nth order term the interaction at full overlap
given by

w(n)~0!52 lim
r→0

@ ln gn~0!#2 (
m52

m5n21 S n
mDw(m)~0!, ~9!

where lim
r→0

gn(0) is the normalized probability of ful

overlap of the c.m. ofn polymers. As long as the particles a
equidistant from each other, the same combinatorial exp
sion holds for finiter. For the five-body term we find tha
w(5)(0)520.460.15, while the relative contribution of th
five-body terms is given byw(5)(0)/@5w(4)(0)110w(3)(0)
110w(2)(0)#50.02660.01. Again, the relative contribution
of the five-body term to the free energy is smaller and
opposite sign to those of the four-body terms. Going beyo
the five-body interaction, even at complete overlap becom
increasingly difficult. For example, for the five-body intera
tion, of the 108 overlap checks, each attempted after 10
pivot moves, only about 30 resulted in nonoverlap. For
six-body interaction we estimate that 1011 MC overlap at-
tempts would be needed. Another problem arises from fi
monomer density. As more and more polymers overlap,
monomer density increases, so that in practice for a gi
polymer lengthL, only a finite number of multiple overlap
are possible. We found previously that the largest finite-s
corrections to the scaling limit were atr 50 for w(2)(0) @24#.
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The same probably holds for the higher-order interactio
However, ourL5500 calculations should still be very nea
the scaling limit.

IV. EFFECTIVE DENSITY-DEPENDENT PAIR
INTERACTIONS

From the previous section we see that explici
calculating the density-independent interactions
w(n)(r i 1

,r i 2
, . . . ,r i N

) becomes rapidly more complex wit
increasing ordern. Calculating all higher-order terms i
therefore impossible. In this section, we describe a way
include the average effect of all higher-order terms by
tending the relationship between the pair interactions and
pair correlations to finite densityr. This leads to adensity-
dependenteffective pair interactionv(r ;r).

A. Inverting pair correlations to derive density-dependent pair
potentials

Although for finite densities there is no known dire
functional relationship of the type of Eq.~4!, there is a theo-
rem which states that for any given pair-correlation functi
g2(r ) and densityr, there exists~up to an additive constant!
a unique pair potentialv(r ;r) that exactly reproducesg2(r )
at that density@34,35#. If the originalg2(r ) is generated by a
system with only pair interactions, thenv(r ;r)5w(2)(r ) will
be independent of density. If there are any higher-order
teractions in the original system that influence the structu
then this equivalence will only hold for lim

r→0
v(r ;r)

5w(2)(r ). At finite densitiesv(r ;r) must change since th
structure is no longer equal to the one generated byw(2)(r )
alone. Thereforev(r ;r) must be density dependent.

In fact, this is what we found in two previous pape
@23,24#, where we used the hypernetted-chain~HNC! ap-
proximation from liquid state theory@36# to extractv(r ;r)
from computer simulations of theg2(r )’s between the c.m.’s
of SAW polymers. For completeness, we show these ef
tive pair interactions in Fig. 3. As expected, there is a cl
density dependence. Without going into much detail ab
the inversion ofv(r ;r) from g2(r ), we do want to point out
that the process can be very subtle. As illustrated in Fig
the g2(r )’s generated atr5r* by v(r ;r50) and v(r ;r
5r* ) are very similar. Any technique to derivev(r ;r) from
g2(r ) must be significantly more accurate than the differen
between theg2(r )’s shown in the figure. The accuracy of th
techniques we use has been discussed in Ref.@24#, and will
be analyzed in much more detail in another publication@37#.

Any approximation that correctly reproduces the pair c
relations will also predict the correct thermodynami
through the compressibility equation@36,38#. For our
density-dependentv(r ;r) this is indeed the case, since w
found good agreement between the equation of state~EOS!
P/r generated by the effective potentials in Fig. 3 and
EOS of the underlying SAW polymer solution. In contra
thev(r ;r50) potential underestimates the EOS, and we fi
mean-field fluid behaviorP/r;r at larger instead of the
correctP/r;r1.3 scaling. So, even though ther50 poten-
tial results in pair correlationsg2(r ) that are similar to the
trueg2(r )’s, the effective thermodynamics can differ signifi
1-5
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cantly. The difference arises from the neglected many-b
interactions, as discussed in Appendix B.

B. Understanding the density dependence of the effective pair
potential

Given the success of the density-dependent pair inte
tion in describing pair correlations and thermodynamics,
next turn to the question of whether the density depende
of v(r ;r) can be directly understood from the densit
independent many-body interactions.

Within the HNC approximation, the following expressio
due to Reatto and Tau@5# and also Attard@6#

v~r 12;r!5w(2)~r 12!2rE ~exp@2w~3!~r 12,r 13,r 23!#21!

3g2~r 13;r!g2~r 23;r!dr3 , ~10!

FIG. 3. The effective polymer pair potentialsv(r ;r) derived at
different densities from an HNC inversion of the c.m. pair distrib
tion functionsg2(r ) of polymer coils depicted in the inset~from
Ref. @24#! .

FIG. 4. Comparison ofg2(r )’s generated at densityr5r* by
the low-density potentialv(r ;r50) and the correct potentia
v(r ;r5r* ). Note how small the differences are.
02180
y
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describes the density dependence of the pair potential
would reproduce the true pair-correlations induced by
two-body and three-body potentials. This is a generalizat
of earlier expressions@41,42# and neglects terms of orde
O(r2) and higher. In the literature it has mainly been appli
to the Axilrod-Teller interaction for rare-gas fluids, where
works remarkably well, see, e.g.,@43# and references therein

Figure 5 highlights the density dependence by plott
vex(r ;r)5@v(r ;r)2w(2)(r )#/r. For clarity, we have re-
placed the rather noisy data by spline fits. For densi
r/r* ,1 the curves are close to each other suggesting
the roughly linear density dependence in Eq.~10! holds true.
For larger densities into the semidilute regime,vex(r ;r) be-
comes smaller in magnitude and the density dependence
comes nonlinear. This nonlinearity is not unexpected, si
Eq. ~10! neglects higher-order terms inr, as well as the
effects of four-body and higher-order interaction terms.

We can go even further and directly calculate the trip
induced density-dependent termvex(r ;r) by substituting Eq
~6! into Eq. ~10! to obtain

vex~r 12,r!52E S lim
r→0

g3~r 12,r 13,r 23!

g2~r 12!g2~r 13!g2~r 23!
21D

3g2~r 13;r!g2~r 23;r!dr3 . ~11!

The g2(r ;r), in contrast to theg2(r ) in the first term in Eq.
~11!, are defined at the density of interest. Evaluating t
integral is difficult, because the term between brackets
become very small. We use a direct MC procedure, wh
two polymer coils are held with their c.m. a distancer 12
apart while we integrate over the position of the third p
ticle. In order to ensure that the integral converges it is c
cial to use theg2(r ) at r50 @i.e., those between the bracke
in Eq. ~11!#, from the simulation itself, by calculating it on
the fly. This is necessary to avoid small errors in the rad
distribution function that build up during the integration ov

-

FIG. 5. The density-dependent excess potentialsvex(r ;r) deter-
mined for several densities from the SAW simulations are deno
by the smooth spline fit curves. The open circles with error b
correspond to the evaluation of Eq.~11! at r50, the line through
them is to guide the eye.
1-6
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the volume. Theg2(r ;r) at finite density are known from
previous calculations. The resultingvex(r ;r) for r50 is
plotted in Fig. 5. The results for finite density do not diff
by very much.

In conclusion, the density dependence is mainly cau
by three-body interactions, at least in the dilute regime.
semidilute densities, higher-order many-body interactio
may come into play.

V. MANY-BODY CORRELATIONS

If g2(r ) is generated by a system with only pair pote
tials, then the exact inversion ofg2(r ) at any density will
reproduce the exact pair potential. For such a system,
inverted pair potential can be used in principle to determ
all higher-order correlation functions of the original syste
In other words, for systems with only pair interactions, t
pair-distribution functiong2(r ) contains enough information
to generate all higher-order correlation functions@44#.

If a system has three-body or higher-order interactio
then ourv(r ;r) still exactly reproduces the pair correlation
But, as we shall demonstrate in this section, it can no lon
exactly reproduce the higher-order correlations. Nevert
less, we will show that the differences are not very large
the case of SAW polymers at the densities we study.

A. Bond angle distribution from three-body correlations

Calculating and comparing the full three-body correlati
functions would be very cumbersome for many of the sa
reasons that it is difficult to map out the full three-bo
interaction. Therefore, we resort to a reduced picture whe
subset of the variables are integrated out@45,46#. One popu-
lar measure of the three-body interactions is the bond a
distribution function, defined as

b~u,r c!58p2r2NE
0

r cE
0

r c
g3„r 12,r 13,~r 12

2 1r 13
2

22r 12r 13cosu!1/2
…r 12

2 r 13
2 sinu dr12dr13,

~12!

whereN is a dimensionless normalization constant. This
tegral sums over all triplets within a cutoff radiusr c from the
central particle and determines the distribution of the angu
in these triplets. We calculated the bond angle distribut
for both the SAW simulations and the effective pair pote
tials for different cutoff radiir c as shown in Fig. 6. The
effective potentialsv(r ;r) reproduce this measure of th
three-body correlations remarkably well. Since for an id
gas the bond angle distribution exactly follows a sine cur
dividing the bond angle distribution by sinu highlights the
deviations from ideal behavior. In Fig. 7 we show the ren
malized bond angle distribution. The differences between
curves are now clearer. The absolute deviations from
sinelike behavior are largest at smallu because the particle
repel each other and triplets with smallu will be relatively
rare. In the case of a hard sphere systems this correla
hole would be even more pronounced. It is remarkable h
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well the bond order distribution follows the ideal sine cur
for the larger angles. At a cutoff radius ofr c50.5 the distri-
bution becomes flatter, reflecting the broad flat top of
repulsive Gaussian shaped pair potential.

Instead of determining the distributions from explic
simulations, we can also substitute the Kirkwood superpo
tion approximation@26#

g3~r 12,r 13,r 23!'g2~r 12!g2~r 13!g2~r 23! ~13!

into Eq. ~12! and calculate the integral directly by using th
radial distribution functions from previous simulations. Th
approximation is also included in Figs. 6 and 7 and turns
to be very accurate, except foru'0 andu'p ~see Fig. 7!

FIG. 6. The bond angle distributionb(u,r c) plotted for several
cutoff radii r c for r5r* . The solid curves denote the effectiv
potential results, the dotted curves correspond to the explicit S
simulations and the dashed curves show Kirkwood’s superpos
approximation.

FIG. 7. The normalized bond angle distributionb(u,r c) plotted
for several cutoff radiir c for r5r* . The solid curves denote th
effective potential results, the dotted curves correspond to the
plicit SAW simulations, and the dashed curves show Kirkwoo
superposition approximation.
1-7
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where the simulations are prone to large statistical errors,
to the vanishing volume of the available phase-space.

The bond-angle distribution is not very sensitive to diffe
ences in the full three-body correlations~see, e.g., Ref.@46#!,
partially because it is an integrated quantity. An example
this is given in Fig. 8, where the bond angle distributions
the effective potentialsv(r ;r50) andv(r ;r5r* ) are com-
pared for the same densityr5r* . Clearly, there is hardly
any difference between the distributions.

B. Deviations from Kirkwood superposition for three-body
correlations

A more sensitive measure of triplet correlations is t
deviation from the Kirkwood superposition approximatio
Eq. ~13!, which we define as:

G3~r 12,r 13,r 23!5
g3~r 12,r 13,r 23!

g2~r 12!g2~r 13!g2~r 23!
. ~14!

Since ourv(r ;r) exactly reproduces theg2(r ), this expres-
sion should highlight any differences between the trueg3
and theg3 arising from our effective potential picture. T
simplify, we limit ourselves for a givenr 12 to triplet configu-
rations for whichr 5r 235r 13 ~i.e., isoceles triangles!.

First, we compare in Fig 9 theG3(r ) at r5r* generated
by v(r ;r50) and byv(r ;r5r* ). Just as we found for the
bond angle distributions, theG3(r ) are very similar even
though the potentials are different. We already showed
the g2(r ) are not very different either~see Fig. 4! , so that
the same now holds for the fullg3(r 12,r 23,r 13).

Next, we turn to a comparison between the trueG3
SAW(r )

derived from explicit simulations of our SAW polymer sy
tem and theG3

eff(r ) of the effective potentials atr5r* . As
can be seen in Fig. 9, our effective pair-potentialv(r ;r) does
not exactly reproduce the SAW three-body correlation fu

FIG. 8. Comparison between bond angle distributionb(u,r c)
for effective potentialsv(r ;r50) ~dotted lines! and v(r ;r5r* )
~solid lines!, both determined from simulations atr5r* . From left
to right the curves correspond tor c52.5 2.0, and 1.5. The differ-
ences are so small that the lines are virtually indistinguishable
the scale of the graph.
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tion. The trends are similar, but the deviation from super
sition of the SAW polymers,G3

SAW(r ), is consistently larger
than the same quantity generated by the effective poten
G3

eff(r ), especially ifr ,Rg .
For systems with an explicit three-body interaction t

Kirkwood superposition approximation is sometimes writt
as

g3~r 12,r 13,r 23!'g2~r 12!g2~r 13!g2~r 23!

3exp@2w(3)~r 12,r 13,r 23!#. ~15!

This is exact in ther→0 limit, as can be seen from
Eq. ~6!. Note that in the same limit the three-body corre
tions induced by thev(r ;r) reduce to the simpler
Kirkwood superposition approximationg3(r 12,r 13,r 23)
'g2(r 12)g2(r 13)g2(r 23), demonstrating explicitly that in
contrast to the two-body correlations,v(r ;r) cannot exactly
reproduce the three-body correlations if there is a three-b
interaction present. In fact, we have shown explicitly th
two systems with identical pair correlations, namely, our
fective potential system and the original SAW system, c
have differing triplet correlations.

These arguments also suggest that a simple approx
tion, namelyG3

SAW(r )'G3
eff(r )exp@2w(3)(r)#, can shed some

light on the differences observed in Fig. 9. Sincew(3)(r ) is
negative for equilateral triangle configurations, as illustra
in Fig 2, it is perhaps not surprising that roughly speaki
G3

SAW(r ).G3
e f f(r ) for the isoceles triangle configuration

plotted in Figs 9, at least in the region wherew(3)(r ) is
nonzero. Unfortunately the statistical errors in this region
very large, making a quantitative comparison difficult, b
the deviation is certainly of the same order as would be
pected from an extra factor exp@2w(3)(r)# ~compare with
Fig. 2!.

n

FIG. 9. To measureG3(r 12,r 13,r 13), which denotes deviations
from Kirkwood superposition, we fixr 12, and plot theG3(r ) as
functions ofr 5r 135r 23 ~isoceles triangles, see Fig. 1!. Results are
given for SAW polymers~circles!, effective potentialsv(r ;r) ~solid
lines!, andv(r ;r50) potentials~dashed lines!. All plots are from
simulations atr5r* . Note that the two effective potential plot
are more or less identical within the statistical noise, while
SAW G3

SAW(r ) is slightly higher by approximately a facto
exp@2w(3)(r)#.
1-8
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MANY-BODY INTERACTIONS AND CORRELATIONS IN . . . PHYSICAL REVIEW E64 021801
Our very simple approximation illustrates how deviatio
from Kirkwood superposition originate from two effects:

~1! Deviations induced by correlations generated by
pair-potentials alone. These have been studied in great d
for hard-sphere systems, see, e.g., Refs.@47,48#.

~2! Deviations induced primarily by three-body potentia
In practice, of course, these two effects are somew

entwined, especially at higher densities. Nevertheless, s
ting the two effects can shed light on the origin of three-bo
correlations. In particular, it suggests that while an effect
pair potentialv(r ;r) that exactly reproduces theg2(r ) can
partially reproduce deviations from superposition of type~1!,
it will fail for deviations of type~2!.

Since the three-body and higher-order interactions
tween the c.m.’s of polymer solutions are not very strong,
total g3(r )’s are still remarkably well reproduced by th
v(r ;r), especially when integrated quantities such as
bond-angle correlations are considered. However, for s
tems where three-body interactions are strong, such as li
Si or liquid Ga, one cannot expect the same success f
effective pair potentials. Very similar conclusions we
stressed by Evans@44# in the context of reverse Monte Carl
simulations@46,49#.

VI. CONCLUSIONS

Integrating out the monomeric degrees of freedom to
tain a description based on effective potentials between p
mer c.m.’s is a useful coarse-graining technique for polym
solutions. Because simulations can be performed to high
curacy, the lessons learned here should be relevant to a m
broader range of coarse-graining schemes.

In particular, we showed that the free energy of the po
mers can be expanded in a series of state-independent m
body effective potentials. At full overlap the terms in th
series oscillate in sign as (21)n, and become smaller in
absolute magnitude for increasingn. The scaling theory de
veloped in Appendix A confirms these ideas, and can be u
to extend them to arbitrary ordern.

A parallel description of the coarse-grained polymer so
tion was developed in terms of an effective state~density!
dependent pair potentialv(r ;r), which exactly reproduces
the pair-correlations and, in an average way, includes all
higher-order terms in the many-body free energy expans
The density-dependence of this effective pair potential
be largely understood from the direct influence of t
density-independent three-body interactions.

The three-body correlations are also well described
this effective pair-potential picture. If the bond angle dist
bution is used, the differences between the full SAW polym
system and our effective pair-potential picture are almost
distinguishable. However, this is not a good ‘‘order para
eter’’ for measuring deviations in three-body distributio
functions, since there is almost no difference between res
from the full simulations and those produced with the Kir
wood superposition approximation. When we use a more
rect measure of the deviations from Kirkwood superpositi
small differences between the effective two-body and the
SAW triplet distributions can be measured. These arise
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marily from the direct effect of the three-body potenti
w(3)(r ), and illustrate a more general point, namely, that
effective two-body interaction can never simultaneously
produce the two and three-body correlations in a system w
many-body interactions exactly. Since for polymers in
good solvent these many-body interactions are relativ
weak, a coarse-grained description based on effective
interactions works remarkably well, at least for the dilute a
the beginning of the semidilute regime@23,24#. Whether this
success can be extended deeper into the semidilute or
the melt regime, or even for polymers in poor solvents,
mains to be seen, and will be the subject of future investi
tions.
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APPENDIX A: RELATIVE STRENGTH OF n BODY TERMS
FROM SCALING THEORY

In a recent paper, von Ferberet al. @25# used scaling
theory and simulations to calculate the triplet interaction
star-polymers and found an attractive interaction with a re
tive strength of about 11%, very similar to our three-bo
results. The natural choice for the position coordinate o
star polymer is not the c.m., but its midpoint@50#. However,
we will see that for estimating relative contributions, the d
ference between our c.m. representation and the midp
representation is not too important.

Here, we apply the star polymer scaling theory to estim
the relative contributions ofwn(0) to all orders inn. We
specialize to linear polymers, which can be seen as s
polymers with only two arms. We first note that the partitio
function for n polymers with their mid points constrained t
be a distancer !Rg apart scales as@25,51,52#

Zn~r !;r un, ~A1!

in the limit r /Rg→0. Hereun is the contact exponent, whic
in turn can be written as

un5nh22h2•n , ~A2!

where theh f are the scaling exponents for a star polym
with f arms. These are tabulated for two different renorm
ization group calculations in@25,53#, and can also be ap
proximated by a simpler expression

h f'0.3353f 3/2, ~A3!

which is expected to become more accurate for largerf @54#.
Comparing the different approximations gives an indicat
of the accuracy of the scaling theory results.

The probability of findingn polymers with their mid-
points a distancer !Rg apart can be found from the partitio
functions since
1-9
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TABLE I. Comparison of scaling theory and simulations for many-body interactions between the polymer c.m. The labels a and
results that follow from two different renormalization group calculations for the exponentshn @25#, while label c comes from the simple
expansion of Eq.~A3!, and label d denotes simulation results forL5500 SAW polymer simulations.

n 2 3 4 5 6 7 8 9 10

a un /u2 1(u250.8) 2.55 4.49 6.75 9.3
b 1(u250.82) 2.65 4.80 7.41 10.43
c 1(u250.79) 2.65 4.83 7.46 10.50 13.90 17.66 21.73 26.1
d ln gn(0)/ln g2(0) 1(lng2(0)51.88) 2.7460.01 5.1360.02 7.9960.05

a ŵ(n)/ŵ(2) 1(ŵ(2)50.8) 20.45 0.29 20.19 0.11

b 1(ŵ(2)50.82) 20.35 0.22 20.15 0.085

c 1(ŵ(2)50.79) 20.35 0.22 20.17 0.14 20.12 0.11 20.10 0.094

d w(n)(0)/w(2)(0) 1(w(2)(0)51.88) 20.2660.013 0.1760.031 20.2160.08

a Dwn(0) 20.15 0.069 20.027 0.012
b 20.12 0.048 20.019 0.0083
c 20.12?? 0.049 20.023 0.014 20.0088 0.0063 20.0046 0.0036
d 20.0960.004 0.03460.007 20.02660.01
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2 lim
r→0

ln gn
mid~r !} ln@Zn~r !#;un ln~r /Rg!. ~A4!

Heregn
mid(r ) is then-body distribution function for the mid-

points of n polymers. These scaling theories can be dev
oped for polymers in the midpoint representation in part b
cause of the analogy of the overlap ofn polymers to a 2n
arm star polymer. Such an analogy is not as obvious for
c.m. representation, hampering the derivation of a c.m.-ba
scaling theory. On the other hand, MC simulations for ov
lap in the c.m. representation are much easier than for
midpoint representation because the probabilitygn(r ) is
much larger thangn

mid(r ) in the small r limit, in fact
gn

mid(0)50 while the c.m.gn(0) is finite. Gathering good
statistics for the mid-point representation is thus mu
slower than for the c.m. representation. It, neverthele
seems reasonable to expect that therelative strengths of dif-
ferent orders of the interactions in the c.m. representation
similar to those of the midpoint representation, suggest
that the relative probability of full overlap of the c.m. ofn
polymers scales as

lim
r→0

S ln gn~0!

ln gm~0! D' lim
r→0

lim
r→0

S ln gn
mid~r !

ln gm
mid~r !

D '
un

um
. ~A5!

In Table I we confirm this ansatz by comparin
ln gn(0)/lng2(0) calculated by direct simulations forn
53,4,5 withun /u2 calculated by three different versions o
the scaling theory. Clearly, all three scaling theories and
simulations agree reasonably well with each other, giving
confidence to proceed.

Armed with this approximate equivalence of thegn’s in
the two representations, we can now fruitfully compare t
strength of then-body interactionw(n)(0) for c.m. particles
to an expression derived from the scaling theory, by us
Eqs.~A2! and ~A4! to recursively rewrite Eq.~9! as
02180
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w(n)~0!}ŵ(n)5~21!n (
m52

n S n
mD ~21!m~mh22h2•m!.

~A6!

Here ŵ(n) is the coefficient of the full~divergent! midpoint-
midpoint interaction,wmid

(n) (r );ŵ(n)ln(r/Rg) in the limit r
→0. The values of these terms relative to then52 term are
compared in Table I with direct simulation results forn
53,4,5, and again good agreement is obtained. For the s
ing theory each higher-order term is opposite in sign a
smaller than the previous one. Our simulations show
same trend for the sign, but the error bars on then55 simu-
lations are still too large to ascertain that its magnitude is
than then54 term.

The strength of then-body term contribution to the free
energy relative to all lower-order terms can also be fou
from the arguments above. In this case the prefactors ca
and we find

Dw(n)~0!'Dŵ(n)5
ŵ(n)

un2ŵ(n)
. ~A7!

Once again the simulations and the scaling theory agree q
well both for the magnitude and the sign of the differe
terms.

APPENDIX B: CONVERGENCE OF THE FULL FREE
ENERGY SERIES

The good agreement found between the scaling the
and the simulations forn53,4,5 suggests that we can eval
ate trends for arbitrary ordern from the scaling theory. We
use the simple expression in Eq.~A3! that givesh f for arbi-
trary f, to simplify Eq. ~A6! to

ŵ(n)50.9484~21!nF (
m51

n S n
mD ~21!m11m3/2G . ~B1!
1-10
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MANY-BODY INTERACTIONS AND CORRELATIONS IN . . . PHYSICAL REVIEW E64 021801
The sum between brackets is positive for alln, and becomes
smaller for each subsequent term. For example, forn53 it is
0.29, while forn510 000, it is has dropped to 0.009. Th
implies that at all orders, then-body interactionw(n)(0) os-
cillates in sign as (21)n and decreases in absolute mag
tude with increasingn. The absolute magnitudes of the rel
tive contributionsDw(n)(0) decrease even faster withn.

We expect that the absolute magnitude of eachn-body
term is largest at full overlap. However, the fact that ea
higher-order term decreases in absolute magnitude, or e
that the terms oscillate in sign atr 50, does not necessaril
imply that the full free energy expansion of Eq.~1! will
converge quickly for all configurations$r i% of the c.m. For
one thing, for anN particle system, the number ofn-tuple
coordinates grows as the binomialN!/(N2n)!n!. Therefore,
even though the magnitude of then-body terms
w(n)(r i 1

,r i 2
, . . . ,r i n

) becomes smaller with increasingn, the
number of such terms at each ordern in the free energy
series Eq.~1! increases almost exponentially with increasi
n. Of course for a given configuration$r i%, not only the
magnitude, but also the range of each te
w(n)(r i 1

,r i 2
, . . . ,r i n

) is needed to decide how many, if not a
N terms, are needed to calculate the full free energy t
desired accuracy. As mentioned before, calculating the c
plete dependence ofw(n)(r i 1

,r i 2
, . . . ,r i n

) on all possible

n-tuple c.m. coordinates$r i 1
,r i 2

, . . . ,r i n
% is usually an im-

possible task for higher-ordern.
Nevertheless, some progress can be made by lookin

the special case of a set$r i% where allN c.m.’s are at the
same point. This is simply the situation studied in the pre
ous section by scaling theory, for which the free energy
given by

F~N,V,$r i%!2F (0)~N,V!52 ln gN~0!}uN . ~B2!

Ignoring for the moment the volume term, who’s contrib
tion is expected to be negligible@17,24#, we can ask the
question: How well is the free energy described by tak
only pair-interaction terms into account? Since there
1
2 N(N21) pair terms, the free energy with only pair term
taken into account scales asF}N(N21)w(2)(0);N2 while
o

02180
-

h
en

a
-

at

i-
s

g
e

the true free energy scales asF}uN;N3/2. Including only
the pair terms heavilyoverestimatesthe free energy, a resul
also found by von Ferberet al. @25#. In other words, if one
truncates the coarse-grained free energy series in Eq.~1! then
certain configurations$r i% will not be properly accounted for

However, if one were to use this coarse-grained free
ergy series to study a given polymer solution, then the re
tive probability for finding a configuration at complete ove
lap of the c.m. would be very small. On the other hand,
any given ordern, the probability of findingn-fold overlap
increases with increasing density, so that one would expe
need more and more terms in the coarse-grained free en
series as the density increases.

Another way to measure the effects of truncating t
coarse-grained free energy series in Eq.~1! would be to com-
pare it to the excess free energy per particle for the orig
polymer solution. This can be found by averagin
F(N,V,$r i%) over all configurations$r i% to obtain the total
free energyF(N,V), as done in Eq.~2!. Including only pair
interactions in our c.m. representation of polymer solutio
casts the problem into that of finding the free energy o
mean-field fluid@33,39,40# for which the excess free energ
per polymer scales as

Fex

N
;r, ~B3!

while the true excess free energy of a polymer solution in
semidilute regime follows from scaling theory@28#

Fex

N
;r1/(3n21)'r1.3. ~B4!

Whereas including only the pair interactions in an avera
over all configurations$r i% in the semidilute regimeunder-
estimatesthe total free energy, taking into account only pa
terms for single configuration$r i% at complete overlap of the
c.m. overestimatesthe coarse-grained free energy. This im
plies that the special configurations where the coarse-gra
free energy series in Eq.~1! breaks down do not have
strong influence on the thermodynamics.
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@22# B. Krüger, L. Scha¨fer, and A. Baumga¨rtner, J. Phys.~France!

50, 319 ~1989!.
@23# A.A. Louis, P.G. Bolhuis, J.P. Hansen, and E.J. Meijer, Ph

Rev. Lett.85, 2522~2000!.
@24# P.G. Bolhuis, A.A. Louis, E.J. Meijer, and J-P Hansen,

Chem. Phys.114, 4296~2001!.
@25# C. von Ferber, A. Jusufi, C.N. Likos, H. Lo¨wen, and M. Wat-

zlawek, Eur. Phys. J. E2, 311 ~2000!.
@26# J.G. Kirkwood, J. Chem. Phys.20, 929 ~1952!.
@27# P.J. Flory,Principles of Polymer Chemistry~Cornell Univer-

sity Press, Ithaca, NY, 1953!.
@28# P.G. de Gennes,Scaling Concepts in Polymer Physics~Cornell

University Press, Ithaca, NY, 1979!.
@29# M. Doi, Introduction to Polymer Physics~Oxford University

Press, Oxford, 1995!.
@30# N. Madras and A.D. Sokal, J. Stat. Phys.50, 109 ~1988!.
@31# D. Frenkel and B. Smit,Understanding Molecular Simulation

~Academic Press, New York, 1995!.
@32# M. Dijkstra, D. Frenkel, and J.P. Hansen, J. Chem. Phys.101,

3179 ~1994!.
@33# A.A. Louis, e-print cond-mat/010220; Philos. Trans. R. So

London, Ser.359, 939 ~2001!.
@34# R.L. Henderson, Phys. Lett.49A, 197 ~1974!; J.T. Chayes and

L. Chayes, J. Stat. Phys.36, 471 ~1984!.
@35# L. Reatto, Philos. Mag. A58, 37 ~1986!; L. Reatto, D.

Levesque, and J.J. Weis, Phys. Rev. A33, 3451~1986!.
@36# J.P. Hansen and I.R. McDonald,Theory of Simple Liquids, 2nd

ed. ~Academic Press, London, 1986!.
@37# P.G. Bolhuis and A.A. Louis~unpublished!.
@38# Note, however, that this does not include the role of poss
02180
.

.

.

e

volume terms@14# which are independent of pair correlation
Here we expect the volume term contribution to be very sm
@17#, as evidenced by the fact that our effective potentials
curately reproduce the total polymer equation of state@24#. See
also @33# and references therein. Even without volume term
obtaining the correct thermodynamics from a density dep
dent pair potential can be subtle@see, e.g., M.A. van der Hoe
and P.A. Madden, J. Chem. Phys.111, 1520~1999!#. The com-
pressibility route follows from properties of the distributio
functions and is independent of the underlying interactions,
the virial route cannot always be trusted@A.A. Louis ~to be
published!#.

@39# A.A. Louis, P. Bolhuis, and J.P. Hansen, Phys. Rev. E62, 7961
~2000!.

@40# C.N. Likos, A. Lang, M. Watzlawek, and H. Lo¨wen, Phys.
Rev. E63, 031206~2001!.

@41# J.S. Rowlinson, Mol. Phys.52, 567 ~1984!.
@42# G.S. Rushbrooke and M. Silbert, Mol. Phys.12, 505 ~1967!.
@43# J.A. Anta, E. Lomba, and M. Lombardero, Phys. Rev. E55,

2707 ~1997!.
@44# R. Evans, Mol. Simul.4, 409 ~1990!.
@45# H. Lowen and G. Kramposthuber, Europhys. Lett.23, 637

~1993!.
@46# F.L.B. da Silva, B. Svensson, T. A˚ kesson, and B. Jo¨nsson, J.

Chem. Phys.109, 2624~1998!.
@47# J.L. Barrat, J.P. Hansen, and G. Pastore, Mol. Phys.63, 747

~1988!.
@48# A. Khein and N.W. Ashcroft, Phys. Rev. E59, 1803~1999!.
@49# R.L. McGreevey and M.A. Howe, Annu. Rev. Mater. Sci.22,

217 ~1992!; L. Pusztai and G. To´th, J. Chem. Phys.94, 3042
~1991!.

@50# C.N. Likos et al., Phys. Rev. Lett.89, 4450 ~1998!; M. Wat-
zlawek, C.N. Likos, and H. Lo¨wen, ibid. 82, 5289~1999!.

@51# B. Duplantier, J. Stat. Phys.54, 581 ~1989!.
@52# C. von Ferber, Nucl. Phys. B490, 511 ~1997!.
@53# C. von Ferber and Y. Holovatch, Phys. Rev. E56, 6370~1997!.
@54# K. Ohno, Phys. Rev. A40, 1524~1989!.
1-12


