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Nonlocal diffuse interface theory of thin films and the moving contact line

L. M. Pismen
Department of Chemical Engineering, Technion–Israel Institute of Technology, Haifa 32000, Israel

~Received 12 February 2001; published 18 July 2001!

A nonlocal diffuse interface model is explored using the ‘‘lubrication approximation’’ applicable to thin
films. We show the inconsistency of the expansion leading to a nonlinear diffusion model, and solve an
untruncated integro-differential mean field equation to compute the equilibrium density profile across the
fluid-vapor interface. The disjoining potential and effect of interfacial curvature are computed using approxi-
mations compatible with the lubrication approximation. We explore the thick film asymptotics, and find it
coinciding with the sharp interface limit. These results are further used for computation of the static contact
angle and derivation of an evolution equation for flowing films of dynamic menisci in the lubrication approxi-
mation. The structure of the evolution equation is identical to that of the sharp interface theory, but it is free
from troublesome divergences near the three-phase contact line.
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I. INTRODUCTION

Any interphase boundary is essentially amesoscopic
structure. While the material properties vary smoothly
macroscopic distancesalong the interface, the gradients i
the normal direction are steep, approaching a molecu
scale. This brings about a contradiction between the need
a macroscopic description and the necessity to take into
sideration microscopic factors that come to influence the m
tion on incommensurately larger scales.

This contradiction is felt very strongly in the problem
the moving three-phase contact line. It is well known@1,2#
that the classical hydrodynamic description of the mov
contact line leads to a nonintegrable stress singularity.
merous ways of resolving this nonphysical divergence h
been probed during the last two decades. The approach
vailing in fluid-mechanical computations was to introdu
phenomenological corrections, such as effective slip at
solid surface in the vicinity of the three-phase boundary, s
cial rheological properties of the liquid-vapor interface
this region, or an empirical velocity dependence of the c
tact angle~for a review, see Refs.@3,4#!.

The other extreme is a radical departure from the c
tinuum approach, replacing it by direct molecular dynam
simulations in the immediate vicinity of the contact lin
Computations based on this method have confirmed
physical importance of the effects of a diffuse boundary a
effective slip at molecular distances@5,6#. Such simulations,
however, cannot involve macroscopic volumes, and no w
to incorporate them in a macroscopic description are kno
although some hybrid computations have been attempted
cently @7#.

A middle ground is taken by continuum theories introdu
ing intermolecular forces into the hydrodynamic equations
motion. This leads, strictly speaking, to very difficu
integro-differential equations even in the sharp interfa
limit. A computation of the shape of static menisci based
this method has been reported@9#, but solution of the formi-
dable problem involving simultaneous computation of bo
the shape of the free interface and the flow field depend
on intermolecular interactions has never been attempted
1063-651X/2001/64~2!/021603~9!/$20.00 64 0216
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A rational formulation of the sharp interface model wi
intermolecular interactions is possible in the lubrication a
proximation@4#, where the action of intermolecular forces
reduced to a simple expression for disjoining pressure
tween parallel vapor-liquid and liquid-solid interpha
boundaries@8#. This, however, does not eliminate the stre
singularity, except in the case of complete wetting when
sharp contact line is replaced by a gradual transition from
precursor film to a liquid film of macroscopic thickness@2#.

The next step toward bridging the gap between mac
scopic and microscopic theories is the diffuse interfa
model, where the density~or other order parameter! is al-
lowed to change continuously in a region interpolating b
tween the two phases. The origin of this approach goes b
to Rayleigh@10# and van der Waals@11#. These ideas were
further developed in phase field models@12#, used mostly in
the phenomenological theory of solidification where a fic
tious phase field, rather than density, serves as a contin
variable changing across the interphase boundary.

The theory of van der Waals has been widely used
description of equilibrium fluid properties, including surfac
tension and line tension in three-phase fluid systems@13#.
Applications of this theory to dynamical processes in flu
are based on coupling the intermolecular interactions to
drodynamics through introduction of the capillary tensor in
the Stokes equation@14,15#. Numerical computations base
on this model have been carried out@16,17#, although they
involved very small volumes when measured on a mac
scopic scale. Here again, a rational analysis matching
cesses at widely separated scales has been made possi
using the lubrication approximation@18#. The asymptotics of
the disjoining pressure in the thick film limit turned ou
however, to be different from the respective sharp interfa
asymptotics, even though both models included physic
identical intermolecular interactions.

This prompted us to reexamine the basic assumption
the diffuse interface model. As explained in more detail
Sec. II, the cause of discrepancy lies in divergences app
ing in the commonly used expansion of the interaction te
in the expression for free energy, which leads from the or
nal integro-differential equation to the nonlinear diffusio
©2001 The American Physical Society03-1
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L. M. PISMEN PHYSICAL REVIEW E 64 021603
equation of van der Waals@11#. We see no way to eliminate
the resulting discrepancy between the qualitative characte
solutions of the ‘‘exact’’ and truncated equations, but to
turn to the original nonlocal formulation.

The aim of this communication is a rational analysis
thenonlocaldiffuse interface model based on the lubricati
approximation, i.e., implying wide separation between ch
acteristic scales across and along the interface. We start~Sec.
II ! with computation of the equilibrium density profile acro
the fluid-vapor interface using an untruncated integ
differential mean field equation. It is followed by comput
tion of the disjoining potential~Sec. III! and interfacial cur-
vature correction~Sec. III! using approximations compatibl
with the lubrication approximation. A remarkable advanta
of the nonlocal theory is the possibility of computing dens
profiles near the solid surface without artificially construct
boundary conditions. We explore the thick film asymptoti
and find it coinciding with the sharp interface limit, as r
quired.

The results of Secs. II–IV are further used for compu
tion of the static contact angle in Sec. V, leading to a spec
dependence on the Hamaker constant. The concluding
VI contains the derivation of the evolution equation for flow
ing films or dynamic menisci in the lubrication approxim
tion. The evolution equation has the same structure as in
sharp interface theory, but is free of troublesome divergen
near the three-phase contact line.

II. EQUILIBRIUM DENSITY PROFILE

We consider a one-component van der Waals fluid. I
convenient to use as thermodynamic variables temperatuT
and number densityr5N/V; N is the number of particles
andV is the volume. Further on, we shall restrict ourselves
isothermal processes, while density will be allowed
change in space. In these variables, the Helmholtz free
ergy is expressed asF5N f(r,T), and pressurep and chemi-
cal potentialm are defined as

p52S ]F

]VD
N,T

5r2
] f

]r
, m5S ]F

]ND
V,T

5
]~r f !

]r
. ~1!

Our starting point is the expression for the local Hel
holtz free energy per moleculef @r(x)# @19#

f @r~x!#5 f 02
T

2E ~e2U(r )/T21!r~x1r! dr. ~2!

Here U is the pair interaction potential dependent on t
distancer 5uru; we use units with the Boltzmann consta
scaled to unity;f 05T ln r is the reference free energy of a
‘‘ideal’’ state with interactions switched off; the factor12
compensates for counting twice the interacting molecule
each pair. A suitable interaction potential is the modifi
Lennard-Jones potential with hard-core repulsion:

U5H 2Alr
26 ~r .d!

` ~r ,d!,
~3!
02160
of
-

f

r-

-

e

,

-
c
ec.

he
es

s

o

n-

-

in

whered is the nominal hard-core molecular diameter. Wh
the density is constant, the integral in Eq.~2! with hard-core
interaction potential gives the free energy of a homogene
van der Waals fluid. In the hard-core regionr ,d the expo-
nential term in Eq.~2! vanishes, while atr .d it is expanded
in a Taylor series. The result is

f̄ ~r,T!5T ln r1r~bT2a!'T ln
r

12br
2ar, ~4!

whereb5 2
3 pd3 is the excluded volume and

a522pE
d

`

U~r !r 2 dr5
2pAl

3d3
. ~5!

The approximate expression in~4! yields, by Eq.~1!, the van
der Waals equation of state (p1ar2)(12br)5rT. The ap-
proximation is applicable only atbr!1, but is used in the
van der Waals theory also close to the maximum den
rmax5b21 as an interpolation formula that yields, as r
quired, two stable states with high and low densities.

It is reasonable to assume that density inhomogene
are experienced only outside the hard-core radius where
attracting part of the interaction potential is applicable. Se
rating the homogeneous part, Eq.~2! can be rewritten as@19#

f ~x!5 f̄ @r~x!#1 1
2 E

r .d
U~r !@r~x1r!2r~x!# dr. ~6!

The two terms in the above expression give, respectively,
free energy of a homogeneous state and the distortion en
due to changes of density in space. The equilibrium den
is defined by the minimum ofF5*r f dx subject to the con-
straint of particle number conservation. This condition is e
forced by introducing a Lagrange multiplier — the chemic
potentialm. Thus, the integral to be minimized is

F5F2mN5E r~x!@ f̄ ~r!2m#dx1 1
2 E r~x! dxE

r .d
U~r !

3@r~x1r!2r~x!# dr. ~7!

The corresponding Euler-Lagrange equation is

g~r!2m1E
r .d

U~r !@r~x1r!2r~x!# dr50, ~8!

where g(r)5d@r f̄ (r)#/dr. The first integrand in Eq.~7!
should have two minimar l ,rv corresponding to the two
stable uniform equilibrium states of higher and lower dens
~liquid and vapor!.

A flat interface separating the two phases is at equilibri
when both uniform equilibria are at Maxwell constructio
i.e., the minima are of equal depth. This can be achieved
certain value of chemical potentialm5m0. Under nonequi-
librium conditions, the chemical potential serves as a b
parameter that shifts the equilibrium in favor of the den
~dilute! phase when it increases~decreases!. The interfacial
energy is contributed both by deviations from the equil
rium density levels in the transitional region and by the d
3-2
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NONLOCAL DIFFUSE INTERFACE THEORY OF THIN . . . PHYSICAL REVIEW E64 021603
tortion energy localized there. Thus, the surface tension
be computed, once the density distribution in the transitio
layer is known.

The equation for density distribution near a flat bound
normal to thez axis is obtained by assumingr to be constant
in each lateral plane and integrating Eq.~7! or ~8! in the
lateral directions. This yields the free energy per unit are

g5E
2`

`

r~z!@ f̄ ~r!2m#dz1 1
2 E

2`

`

r~z! dz

3E
2`

`

Q~z!@r~z1z!2r~z!# dz, ~9!

and the one-dimensional~1D! Euler-Lagrange equation

g„r~z!…2m1E
2`

`

Q~z!@r~z1z!2r~z!# dz50. ~10!

The 1D interaction kernelQ(z) lumps intermolecular inter-
action between layersz5const. It is computed by latera
integration using as an integration variable the squared
tanceq5r 25j21z2, wherej is the radial distance in the
lateral plane. Taking note that the lower integration limit f
q is q05z2 at uzu.d, q05d2 at uzu<d, we compute

Q~z!52pAlE
q0

`

q23 dq5H 2
1

2
pAlz

24 at uzu.d

2
1

2
pAld

24 at uzu,d.

~11!

Computations in the framework of the diffuse interfa
theory commonly assume that density is changing o
slightly over distances comparable with the characteristic
teraction length. Then one can expand

r~x1r!5r~x!1r•“r~x!1 1
2 rr :““r~x!1•••. ~12!

Using this in Eq.~7! we see that the contribution of the line
term to the nonlocal integral vanishes when the system
isotropic and, as a consequence, the interaction term
spherically symmetrical, and the lowest order contribution
due to the quadratic term:

F2~x!52 1
2 KE r~x!¹2r~x! dx5 1

2 KE u“r~x!u2 dx,

~13!

where

K52
2p

3 E
d

`

U~r ! r 4 dr52E
0

`

Q~z!z2 dz5
2pAl

3d
.

~14!

Thus, Eq.~7! is replaced by

F5E @r f̄ ~r!2mr1 1
2 Ku“r~x!u2#dx. ~15!
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The 1D version of the corresponding Euler-Lagrange eq
tion has the form of a nonlinear reaction-diffusion equatio

Kr9~z!2g~r!1m50. ~16!

This derivation, going back to van der Waals@11#, has a
disturbing flaw. If the expansion is continued to the ne
nonvanishing order~fourth!, the expression for the corre
sponding coefficient, computed analogously to Eq.~14!, di-
verges when the common Lennard-Jones potential is u
Such a divergence usually indicates a qualitative differe
between the solutions of the ‘‘exact’’ and truncated equ
tions. This, indeed, can be confirmed by considering the
ymptotics of Eqs.~10! and ~16!. The latter has exponentia
asymptotics, as the deviation from either homogeneous s
decays atuzu→` as exp(2luzu), wherel5Ag8(r l ,v). On the
other hand, solutions of Eq.~10! exhibit a much weaker
power decay, since the integral term perturbing the homo
neous state is proportional at large distances toz23.

An example of the density profile obtained by solving E
~10! numerically with the nonlinear functiong(r) derived
from Eq. ~4! is shown in Fig. 1. The dimensionless form
Eq. ~10! is

1

12r~z!
22br~z!2 lnS 1

r~z!
21D1m1 3

4 b

3E
2`

`

Q̂~z!@r~z1z!2r~z!# dz50. ~17!

Here the length is scaled by the nominal molecular diame
d, the density byb21, and the chemical potential byT; the
interaction kernel isQ̂(z)52z24 at z.1, Q̂(z)521 at z
,1; and the only remaining dimensionless parameter is
rescaled inverse temperatureb5a/(bT). The solution has
been obtained through iterations supplemented by some
merical tricks to enhance the convergence. Although, a
first glance, the plot in Fig. 1 may not look very much unlik
a typical front solution of Eq.~16!, its relatively slow decay

FIG. 1. The density profile obtained by solving Eq.~17! for b
59. The Gibbs surface is taken as the origin, so that the two sha
areas are equal.
3-3
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L. M. PISMEN PHYSICAL REVIEW E 64 021603
leads to a much wider effective interface thickness and
qualitatively different behavior at large~mesoscopic! dis-
tances.

III. DISJOINING POTENTIAL

In the proximity of a solid surface, the additional term
the free energy integral~7! is

Fs5E r~x! dxE
s
Us~r !rs~x1r!dr, ~18!

whereUs is the attractive part of the fluid-solid interactio
potential,rs is the solid density, and*s means that the inte
gration is carried out over the volume occupied by the so
all other integrals here and in Eq.~7! are now restricted to
the volume occupied by the fluid.

In the following, we shall consider a flat interface paral
to the solid surfacez50, and suppose that liquid-solid inte
actions are also of the van der Waals type with a modifi
constantAs5asAl . Then the free energy per unit area
expressed, after some rearrangements, as

F5E
0

`

r~z!$ f̄ ~r!1c~z!@asrs2
1
2 r~z!#%dz

1 1
2 E

0

`

r~z!E
0

`

Q~z2z!@r~z!2r~z!# dz. ~19!

The first term contains the same local part as in Eq.~9!
complemented by the liquid-solid interaction energy. The
ter is computed by integrating the attracting part of the flu
fluid and fluid-solid interaction energies laterally as in Eq
~9! and represents the shift of energy compared to the
bounded fluid. The functionc(z) is computed as

c~z!52pAlE
0

`

dzE
q0

`

q23 dq5E
0

`

Q~z2z!dz, ~20!

where the integration limit isq05(z2z)2 at uz2zu.d, q0
5d2 at uz2zu<d. The result is

c~z!5H 2
1

6
pAlz

23 at uzu.d

2pAld
23S 2

3
2z/2dD at uzu,d.

~21!

The second term in Eq.~19! expresses, as before, the disto
tion energy, now restricted to the half spacez.0. The Euler-
Lagrange equation derived from Eq.~19! is the familiar Eq.
~10! with an additionalz-dependent termc(z)@asrs2r(z)#.

We shall be further interested in a situation where
perturbation due to the proximity of a solid surface is we
In this case, the translational invariance of an unboun
two-phase system is weakly broken, and both the shift of
equilibrium chemical potential due to interactions with t
solid surface and the deviation from the zero-order den
profile computed in the preceding section are small. A n
essary condition is smallness of the dimensionless Ham
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constantx5asrs /r l21. The perturbation, however, ceas
to be weak when the density in the layer adjacent to the s
deviates considerably fromr l . This means that low densitie
near the solid surface are strongly discouraged thermo
namically, and a dense ‘‘precursor’’ layer should form on
solid surface in equilibrium with bulk liquid even when th
liquid is weakly nonwetting. This layer can be maintained
transport from the gas phase. Sincer l2r(z)}uzu23 at z→
2` in an unbounded fluid, the thickness of the precur
layer is estimated ash0}x21/3.

The equilibrium chemical potential is shifted from th
Maxwell constructionm5m0 in the proximity of the solid
surface. In the sharp interface theory, this shift, called
disjoining potential@8#, is defined as

ms5
1

r l2rv

]F

]h
, ~22!

whereh is the distance between gas-liquid and liquid-so
interfaces. In the diffuse interface theory,h has to be defined
as anominal interface position relative to the solid, whic
may be identified with the location of a particular isodens
level. The most natural choice is the Gibbs equimolar s
face, which satisfies the relation

E
2`

h

~r l2r!dz5E
h

`

~r2rv!dz. ~23!

This means that the total mass of an unbounded fluid will
change when the actual profile is replaced by a sharp bou
ary located atz5h where the density changes abruptly fro
r l to rv ~see Fig. 1!.

Returning to Eq.~19!, one can observe that only the no
autonomous (z-dependent! part of the first term is respon
sible for the disjoining potential proper, caused by replac
liquid molecules by solid in the half spacez,0. The other
terms express the energy of the liquid-vapor interface, wh
is modified when the fluid is restricted to the half spacez
.0. The shift of the chemical potential can be computed
leading order, by using in Eqs.~19! the zero-order density
profile centered at the nominal interfacer5r0(z2h).

We shall separate several constituent parts of this s
The derivative of the nonautonomous term is

Fh
(1)52E

0

`

c~z!@asrs2r0~z2h!#r08~z2h!dz. ~24!

Before differentiating the remaining terms in Eq.~19!, it is
convenient to transfer theh dependence to the integratio
limits by using a shifted integration variablez85z2h. The
derivative of the local algebraic part is

Fh
(2)5r0~2h! f̄ „r0~2h!…. ~25!

The nonlocal term in Eq.~19! is transformed after differen
tiating with respect toh using the symmetry of the interac
tion kernelQ(z), and, after shifting the variable back, inte
grated by parts with the help of Eq.~20!. The result is
3-4
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Fh
(3)52 1

2 E
0

`

Q~z!@r0~2h!2r0~z2h!#2 dz

5E
0

`

c~z!@r0~2h!2r0~z2h!#r08~z2h! dz. ~26!

The latter expression partly cancels with Eq.~24! when all
contributions toms are summed up. It is further convenie
to separate the term proportional to the dimensionless
maker constantx5asrs /r l21. The resulting expression fo
the disjoining potential is

ms5
1

r l2rv
H r0~2h! f̄ „r0~2h!…2xr lE

0

`

c~z!r08~z2h!dz

2E
0

`

c~z!@r l2r0~2h!#r08~z2h!dzJ . ~27!

In the limit h@d, whenr08(z2h) can be replaced by th
delta function2(r l2rv)d(z2h), the second term yields th
standard disjoining potential of a liquid layer with sharp i
terface and uniform densityr l :

ms
st52

pxr lAl

6h3
52

H

6ph3r l

, ~28!

where H5p2r lAl(asrs2r l) is the Hamaker constant de
fined in the standard way.

The remaining terms vanish in the sharp interface lim
when r0(2h)5r l . An estimate valid ath@1 can be ob-
tained using the asymptotics ofr0(z) at z→2`, which is
obtained from Eq.~10! by replacing the algebraic term the
by @r0(z)2r l #g8(r l) and the integral term by its sharp in
terface limit (r l2rv)c(z)5 1

6 pAl uzu23(r l2rv). The result
is

r l2r0~2h!5
pAl

6h3

r l2rv

g8~r l !
. ~29!

The first term in Eq. ~27!, proportional to @r l2r0
(2h)#2, decays asymptotically ash26. The same asymptot
ics is obtained for the last term in Eq.~27! when the integral
is computed in the sharp interface limit. Moreover, the t
terms differ by a factor12 only in this approximation. When
uxu!1, all terms in Eq.~27! are of the same order of mag
nitudex2 whenh5O(uxu1/3). Neglecting the vapor density
we compute in the limith@1

ms52
pAlxr l

6h3
2

r l

2g8~r l !
S pAl

6h3 D 2

. ~30!

The dependencems(h) defined by this asymptotic formula i
nonmonotonic at x,0, passing a maximum athm
5@pAl /6uxug8(r l)#1/3 and crossing zero ath05221/3hm .
The dependence should remain qualitatively the same
moderate values ofx ~see Fig. 2!.

The maximumh5hm corresponds to a minimal thicknes
of a liquid nucleus condensing on the solid surface. Ah
02160
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larger than the critical thicknesshm , the density profiles are
nonmonotonic. Such a solution describes a liquid layer sa
wiched between the vapor and the solid, with a weakly
pleted density near the solid surface. Nonmonotonic den
profiles are unstable with respect to perturbations with a s
ficiently long wavelength. This instability is inherent to an
nonwetting liquid, but the dynamics is essentially froz
whenever the layer has a macroscopic thickness.

At smaller values ofh, the maximum disappears, and th
solution can be interpreted as a pure vapor phase thicke
near the solid wall. The valueh5h0 such thatms(h0)50
corresponds to the nominal interface position on the ‘‘dr
surface in equilibrium with the bulk liquid. Clearly, the su
face is not literally dry, as even on the nominally ‘‘dry
patches the density must be close to bulk liquid density
der the specified conditions. At still smaller values ofh
~which may also be negative! ms(h) sharply decreases t
large negative values, and the above approximation is
longer valid. This means that low densities near the so
surface are strongly discouraged thermodynamically, an
dense ‘‘precursor’’ layer with the nominal thicknessh0
should form on a solid surface in equilibrium with bulk liq
uid; this layer can be maintained by transport from the g
phase. The dependence ofhm and h0 on the dimensionless
Hamaker constant is shown in Fig. 3.

IV. CURVED INTERFACE

Suppose now that the interface is weakly curved, so t
isodensity levels no longer coincide with planesz5const.
The nominal location of a curved diffuse interface~e.g., the
Gibbs equimolar surface! can be used to describe it in th
language of differential geometry commonly applied to sh
interfaces. Its spatial position can be defined in a most g
eral way as a vector functionX(j) of surface coordinatesj.
A curved interface can be approximated locally by an ell
soid with the half axes equal to the principal curvature ra
If both radii far exceed the characteristic interface thickne
all isodensity levels are approximated by ellipsoidal se
ments equidistant from the interface. The density chan
along the directionz normal to isodensity surfaces, and th
density profile along each normal is defined in the zero or

FIG. 2. The dependence of the disjoining potentialms on the
nominal layer thicknessh defined by Eq.~27! for b59 and x
50.1 and 0.05~as indicated on the respective curves!.
3-5
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L. M. PISMEN PHYSICAL REVIEW E 64 021603
by the functionr5r0(z) computed in Sec. II.
A more precise approach is to introduce a coordin

frame aligned with a weakly deformed interface. Given t
interfaceX(j), one can find unit tangent vectors along t
surface coordinatesja

ta5]X/]ja , ~31!

the surface metric tensor

gab5ta•tb , ~32!

and the normal vector

n5 1
2 eabta3tb , ~33!

where3 is the 3D cross product andeab is the antisymmet-
ric tensor; the Greek indices taking the values~1,2! are low-
ered and raised with the help of the metric tensorgab and its
inversegab. The curvature tensorkab is defined through the
covariant derivatives of the tangent or normal vectors w
respect to the surface coordinates:

“bta5kabn, “an5kabgbgtg. ~34!

Next, we define the coordinate axisz directed alongn
with the origin on the Gibbs surface. To fix the signs, w
assume that the dense phase prevails atz,0. The coordinate
surfacesz5const are obtained by shifting the interface alo
the normal by a constant increment. It is evident that t
shift causes the length to increase on convex and to decr
on concave sections. The aligned frame is not well defi
far from the interface due to a singularity developing on
concave side at distance about the smallest value of the
curvature radius, i.e., the smallest inverse eigenvalue of
curvature tensor. Since the aligned frame is well defined o
sufficiently close to the interface, we have to assume that
curvature is ofO(e)!1 when measured on the characteris
scale of intermolecular interactions that defines the effec
interface thickness.

The metric tensor of the aligned coordinate system
tends the surface metric to the neighboring layers, so tha
infinitesimal interval is computed as

FIG. 3. The dependence of the critical thicknesshm and the
thickness of the ‘‘precursor’’ layerh0 on the dimensionless Ha
maker constantx50.1 for b59.
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dr25dz21~gab1ezkab!jajb1O~e2!. ~35!

The free energy integral~7! is rewritten in the aligned frame
as a 2D integral along the Gibbs surface. The free energy
unit areag is a functional of the density profiler(z), and is
computed in leading order using the standard two-phase
lution on the infinite liner0(z). This approximation can be
used whenever the density changes between the two ext
valuesrv andr l within a thin layer where the aligned fram
remains well defined. The interfacial curvature induces, ho
ever, anO(e) correction to the local chemical potential, d
noted asm̃(j). Thus, we write

F5E H g@r0~z!#1em̃E
2`

`

r0~z!dzJAg d2j, ~36!

whereg is the determinant of the surface metric tensor.
The equation definingm̃(j) ~or, after imposing the condi-

tion m̃5const, the equilibrium shape of the interface! is ob-
tained by varying Eq.~36! with respect to normal displace
ments dX(n)5n dz reshaping the Gibbs surface. Th
variation of the area element is expressed through the m
Gaussian curvaturek5gabkab :

dAg5 1
2 Aggabdgab5Aggabta•dtb52~Aggabta! ,b•n dz

52Aggabkab dz. ~37!

The variation of the other term in Eq.~36! is

m̃ dzE
2`

`

r08~z!dz5m̃~r l2rv!. ~38!

Assuming, in leading order,g5const, the first-order varia
tion is computed as

~r l2rv!m̃2gk50. ~39!

First-order terms are added as well when Eq.~36! is varied
with respect tor; the corresponding Euler-Lagrange equ
tion can be used to compute the first-order correction to
density profile, which we shall not need.

Equation ~39! is equivalent to the Gibbs-Thomson la
relating the equilibrium chemical potential to the interfac
curvature. This relation is valid only when the surface te
sion g is independent of curvature, but curvature-depend
corrections tog, stemming from corrections to the 1D inte
action kernel~11! due to lateral integration along curve
isodensity levels, are ofO(e) and do not affect Eq.~39!.

V. EQUILIBRIUM CONTACT ANGLE

The results of the two preceding sections can be co
bined to obtain the conditions of equilibrium of a thin film
with a weakly nonplanar interface on a planar support. I
convenient to parametrize the interface by the coordinatej
in the supporting plane, so that the interface position is
fined by a (211)-vector X5$j, h(j)%. Then the surface
metric tensor isgab5dab1e ]ah•]bh, wheredab are the
3-6
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components of the identity matrix, and the mean Gauss
curvature isk5¹2h.

When the effects of disjoining pressure and interfac
curvature are weak, they are additive; both are of the sa
order of magnitude whenx5O(Ae). Then Eqs.~27! and
~39! can be combined to define theO(e) chemical potential

W5ms2
1

r l2rv
g¹2h. ~40!

The ‘‘standard’’ equilibrium contact angleu, computed
with the help of the Young-Laplace formula, while neglec
ing the vapor density and presuming the solid surface
contact with vapor to be totally dry, is

cosu52asrs /r l21 or u'2A2x!1. ~41!

This expression is, however, inapplicable to the equilibri
solid surface, which is covered by a dense fluid layer e
when it is weakly nonwetting.

In the framework of the diffuse interface theory, the eq
librium contact angle has to be defined in a nonstandard w
It is not enough to define a nominal interface position to
the contact angle unequivocally, since it may then
strongly dependent on the choice of a particular density le
for a nominal position. In the weakly nonwetting case co
sidered above, only density levels close tor l can intersect
the solid surface at relevantO(e) values ofms , whereas the
standard median level never approaches the solid surfac
makes no sense therefore to speak of a ‘‘true’’ contact an
The contact angle should be defined by its asymptotic va
observed at macroscopically large distances, i.e., in the
field limit in terms of Eq.~7! and its offshoots.

This limiting value is determined by balancing the acti
of interfacial curvature and disjoining potential in acco
dance with Eq.~40!. The curvature of an interfaceh(x)
weakly inclined and curved along thex axis and constant in
the spanwise direction ish9(x), and the effective surface
tension is defined~in the absence of solid! by Eq. ~9!. Near
the solid surface, the constant density levels are distorted
the correction is negligible when the disjoining potential
small. Neglecting the vapor density, we write the equat
for the nominal interface position

gh9~x!2r lms~h!50. ~42!

In the absence of other external forces, the shape of the
terface is determined by solving this equation with t
boundary conditionsh5h0 , h8(x)50 at x→2`, h8(x)
→u5const atx→`. As usual, Eq.~42! is transformed, tak-
ing as the dependent variabley(h)5@h8(x)#2, to

gy8~x!22r lms~h!50, ~43!

with y(h0)50, y→u25const atx→`. The asymptotic con-
tact angle is obtained by integration:
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u5F2r l

g E
h0

`

ms~h!dhG1/2

. ~44!

An estimate valid atuxu!1 can be obtained using th
asymptotic formula~30! and assumingh→h0 at z→2`.
Then Eq.~44! reduces to

u5
r l

h0
S pAl uxu

10g D 1/2

5
r l~2pAl !

1/6uxu5/6@3g8~r l !#
1/3

~5g!1/2
.

~45!

Due to the presence of a wet layer on the solid in cont
with vapor, the dependence on the dimensionless Ham
constantx is qualitatively different from Eq.~41!. The expo-
nent atuxu is modified due to the dependence of the thickn
of the precursor layer on the Hamaker constant.

VI. EVOLUTION EQUATION FOR FLOWING FILMS

The chemical potential computed above enters as a d
ing force in the hydrodynamic equations of the diffuse int
face theory@15#. The equations in the lubrication approxim
tion are derived assuming the characteristic scale in
‘‘vertical’’ direction ~normal to the solid surface! to be much
smaller than that in the ‘‘horizontal’’~parallel! direction.
When the interface is weakly inclined and curved, the d
sity is weakly dependent on the coordinatex directed along
the solid surface. It is necessary for a consistent scaling
the hydrodynamic equations that the ratio of the characte
tic vertical and horizontal length scales or of the charac
istic vertical and horizontal velocitiesv,u be of O(Ae),
while ms(h)5O(e).

Equations of motion in the lubrication approximation a
obtained following the standard procedure of multiscale
pansion@18#. The 2D horizontal velocity vectoru is deter-
mined by the horizontal component of the Stokes equatio

2r0~z2h!“W1~huz!z50, ~46!

whereh is the dynamic viscosity and the driving potentialW
is defined, in the absence of external forces, by Eq.~40!. The
solution of Eq.~46! satisfying the no-slip boundary conditio
on the solid boundary and the no-stress condition at infin
has the general form

uW ~z!5“WE
0

z dz

h~z!
E

z

`

r0~j2h!dj[C~z;h!“W,

~47!

where the functionC(z;h) depends on an assigned depe
dence of viscosityh on density.

The evolution equation ofh is obtained in a standard wa
using the density profiler0(z2h) and computing the inte-
gral balance across the fluid layer. In this way, we obtain
evolution equation in the general form

ht5“•@k~h!“W# ~48!

with the mobility coefficient
3-7
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k~h!5E
0

`

r0~z2h!C~z;h! dz. ~49!

Whenh exceeds the thickness of the precursor film ax
!1, the functionk(h) differs only slightly from the standard
dependence valid for incompressible Poiseuille flow in
layer of thicknessh with a sharp interface:

k~h!5
r lh

3

3h~r l !
. ~50!

Taking into account small deviations from the zero-order
lution near the wall adds only higher-order corrections.

The structure of Eq.~48! is identical to that of standard
equations of motion of thin liquid films@4#, which are recov-
ered at largeh when the disjoining potential becomes neg
gible. At smallh, the disjoining potential is not singular. A
the same time, the viscous stress singularity at the con
line is relaxed as the latter’s location becomes indefinite

One-dimensional steady motion along thex axis can be
described by Eq.~48! rewritten in the frame moving with a
speedU. The stationary equation can be integrated on
yielding

gh-~x!2r lms8~h!1
U~h2h0!

k~h!
50. ~51!

It is assumed here that the liquid layer thickens atx→`, and
the sign ofU is chosen to be positive when the thick lay
advances; the integration constant has been introduce
lowing for a precursor film with the thicknessh0 at x→
2`.

Equation~51! is free from singularities which are usual
caused by divergences of either viscous stress, or disjoi
potential, or both, in a layer of vanishing thickness. The
ymptotics atx,h→` is the same as in the sharp interfa
hydrodynamic theory with van der Waals forces@20#, due to
the identical asymptotics of the disjoining pressure. Thus,
discrepancy between the asymptotics of sharp and dif
interface theories is eliminated when the integral formulat
is used.

As in the sharp interface theory, a difficulty arises in d
fining the dynamic contact angle. The asymptotics of E
~51! at h→`, unlike that of Eq.~42!, does not approach an
fixed slope, and the growth of the inclination angle is ne
saturated, as long as macroscopic factors~gravity or volume
constraint! are not taken into account. Sincems�h23 at h
→`, the asymptotics is determined, in the absence of ex
nal forces, by a balance of viscous stress and surface ten
@20#:
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h�xS 3C ln
h

hc
D 1/3

, ~52!

whereC5(Uh/g)A23/2 is a rescaled capillary number an
A5pAl uxur l

2/gh0
25H/pgh0

2 . An indefinite constanthc

should be determined by integrating Eq.~51! with appropri-
ate boundary conditions atx→2` ~or smallh). There is a
unique heteroclinic trajectory of Eq.~51! approaching the
asymptotics~52!. It is very sensitive to the boundary cond
tions at or smallh, as well as to any kind of molecular-sca
factors that may be relevant close to the contact line@21#.
The approach to the asymptotics is logarithmically slow, a
therefore the value ofhc cannot be determined with a rea
sonable precision when the shooting method is used, e
when the integration is carried out to distances exceedingh0

by many orders of magnitude, i.e., to films of macrosco
thickness. In realistic computations, external forces, such
gravity, essential at macroscopic distances and determi
the far field asymptotics, should be taken into account bef
the asymptotics~52! is reached@21#. As a result, the dynamic
contact angle varies with the distance from the contact li
and its precise definition is to a certain degree a matte
convention.

While the far field asymptotics is common, in the appro
mation we use, to sharp and diffuse interface theories,
distinction between the two remains substantial near the c
tact line or in the precursor region. In the sharp interfa
theory, a nonwetting case cannot be resolved completel
the framework of the lubrication approximation, since t
slope has to become large as the contact line is approac
In the present theory, the character of the interaction switc
to effective wetting ath,hm , and the lubrication approxi-
mation remains valid, as long as the expression for the e
librium disjoining potential derived above can be used.
more precise theory should take into account nonequilibri
transport processes across isodensity lines, which can
seen as counterparts of evaporation and condensation
cesses in the sharp interface limit. This problem requi
special attention, and will be discussed elsewhere.
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