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Nonlocal diffuse interface theory of thin films and the moving contact line
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A nonlocal diffuse interface model is explored using the “lubrication approximation” applicable to thin
films. We show the inconsistency of the expansion leading to a nonlinear diffusion model, and solve an
untruncated integro-differential mean field equation to compute the equilibrium density profile across the
fluid-vapor interface. The disjoining potential and effect of interfacial curvature are computed using approxi-
mations compatible with the lubrication approximation. We explore the thick film asymptotics, and find it
coinciding with the sharp interface limit. These results are further used for computation of the static contact
angle and derivation of an evolution equation for flowing films of dynamic menisci in the lubrication approxi-
mation. The structure of the evolution equation is identical to that of the sharp interface theory, but it is free
from troublesome divergences near the three-phase contact line.
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[. INTRODUCTION A rational formulation of the sharp interface model with
intermolecular interactions is possible in the lubrication ap-

Any interphase boundary is essentially mesoscopic proximation[4], where the action of intermolecular forces is
structure. While the material properties vary smoothly atreduced to a simple expression for disjoining pressure be-
macroscopic distancesong the interface, the gradients in tween parallel vapor-liquid and liquid-solid interphase
the normal direction are steep, approaching a molecularboundarieg8]. This, however, does not eliminate the stress
scale. This brings about a contradiction between the need faingularity, except in the case of complete wetting when a
a macroscopic description and the necessity to take into corsharp contact line is replaced by a gradual transition from a
sideration microscopic factors that come to influence the moprecursor film to a liquid film of macroscopic thickndsy.
tion on incommensurately larger scales. The next step toward bridging the gap between macro-

This contradiction is felt very strongly in the problem of scopic and microscopic theories is the diffuse interface
the moving three-phase contact line. It is well knofin2] model, where the densitfor other order parameters al-
that the classical hydrodynamic description of the movinglowed to change continuously in a region interpolating be-
contact line leads to a nonintegrable stress singularity. Nutween the two phases. The origin of this approach goes back
merous ways of resolving this nonphysical divergence havéo Rayleigh[10] and van der Waalgl1]. These ideas were
been probed during the last two decades. The approach prasrther developed in phase field mod§l®], used mostly in
vailing in fluid-mechanical computations was to introducethe phenomenological theory of solidification where a ficti-
phenomenological corrections, such as effective slip at th&ous phase field, rather than density, serves as a continuous
solid surface in the vicinity of the three-phase boundary, spevariable changing across the interphase boundary.
cial rheological properties of the liquid-vapor interface in  The theory of van der Waals has been widely used for
this region, or an empirical velocity dependence of the condescription of equilibrium fluid properties, including surface
tact angle(for a review, see Ref$3,4]). tension and line tension in three-phase fluid syst¢i#.

The other extreme is a radical departure from the conApplications of this theory to dynamical processes in fluids
tinuum approach, replacing it by direct molecular dynamicsare based on coupling the intermolecular interactions to hy-
simulations in the immediate vicinity of the contact line. drodynamics through introduction of the capillary tensor into
Computations based on this method have confirmed ththe Stokes equatiofil4,15. Numerical computations based
physical importance of the effects of a diffuse boundary andn this model have been carried dd6,17, although they
effective slip at molecular distancgs,6]. Such simulations, involved very small volumes when measured on a macro-
however, cannot involve macroscopic volumes, and no wayscopic scale. Here again, a rational analysis matching pro-
to incorporate them in a macroscopic description are knowngesses at widely separated scales has been made possible by
although some hybrid computations have been attempted resing the lubrication approximatidi8]. The asymptotics of
cently [7]. the disjoining pressure in the thick film limit turned out,

A middle ground is taken by continuum theories introduc-however, to be different from the respective sharp interface
ing intermolecular forces into the hydrodynamic equations ofasymptotics, even though both models included physically
motion. This leads, strictly speaking, to very difficult identical intermolecular interactions.
integro-differential equations even in the sharp interface This prompted us to reexamine the basic assumptions of
limit. A computation of the shape of static menisci based orthe diffuse interface model. As explained in more detail in
this method has been reporti], but solution of the formi-  Sec. Il, the cause of discrepancy lies in divergences appear-
dable problem involving simultaneous computation of bothing in the commonly used expansion of the interaction term
the shape of the free interface and the flow field dependenh the expression for free energy, which leads from the origi-
on intermolecular interactions has never been attempted. nal integro-differential equation to the nonlinear diffusion
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equation of van der Waal4.1]. We see no way to eliminate whered is the nominal hard-core molecular diameter. When

the resulting discrepancy between the qualitative character dhe density is constant, the integral in Eg8) with hard-core

solutions of the “exact” and truncated equations, but to re-interaction potential gives the free energy of a homogeneous

turn to the original nonlocal formulation. van der Waals fluid. In the hard-core regiord the expo-
The aim of this communication is a rational analysis ofnnential term in Eq(2) vanishes, while at>d it is expanded

the nonlocaldiffuse interface model based on the lubricationin a Taylor series. The result is

approximation, i.e., implying wide separation between char-

acteristic scales across and along the interface. We(Sact

[I) with computation of the equilibrium density profile across

the fluid-vapor interface using an untruncated integro-

differential mean field equation. It is followed by computa- Whereb=37d* is the excluded volume and

tion of the disjoining potential{Sec. Ill) and interfacial cur-

vature correctior{Sec. Il) using approximations compatible A= —ZmeU(r)rzdrz 27A 5)

with the lubrication approximation. A remarkable advantage d 3g3

of the nonlocal theory is the possibility of computing density

profiles near the solid surface without artificially constructedThe approximate expression (i#) yields, by Eq.(1), the van

boundary conditions. We explore the thick film asymptotics,der Waals equation of stat@ ¢ ap?)(1—bp)=pT. The ap-

and find it coinciding with the sharp interface limit, as re- proximation is applicable only &ip<1, but is used in the

quired. van der Waals theory also close to the maximum density
The results of Secs. -1V are further used for computa-p,,,=b~! as an interpolation formula that yields, as re-

tion of the static contact angle in Sec. V, leading to a specifiquired, two stable states with high and low densities.

dependence on the Hamaker constant. The concluding Sec. It is reasonable to assume that density inhomogeneities

VI contains the derivation of the evolution equation for flow- are experienced only outside the hard-core radius where the

ing films or dynamic menisci in the lubrication approxima- attracting part of the interaction potential is applicable. Sepa-

tion. The evolution equation has the same structure as in theting the homogeneous part, E8) can be rewritten a1 9]

sharp interface theory, but is free of troublesome divergences

near the three-phase contact line. £(x) =f_[p(X)]+%Jr>dU(r)[p(X+r)—p(X)] dr.  (6)

f(p,T)=TInp+p(bT—a)~TlIn —ap, (4

p
1-bp

Il. EQUILIBRIUM DENSITY PROFILE . . . .
QU v S © The two terms in the above expression give, respectively, the

We consider a one-component van der Waals fluid. It iSree energy of a homogeneous state and the distortion energy
convenient to use as thermodynamic variables temperdturedue to changes of density in space. The equilibrium density
and number densitp=N/V; N is the number of particles is defined by the minimum df = [ pfdx subject to the con-
andV is the volume. Further on, we shall restrict ourselves tostraint of particle number conservation. This condition is en-
isothermal processes, while density will be allowed toforced by introducing a Lagrange multiplier — the chemical
change in space. In these variables, the Helmholtz free empotential . Thus, the integral to be minimized is
ergy is expressed &= Nf(p,T), and pressurp and chemi-

cal potentialy are defined as j_—:F_MN:f p(x)[f_(p)_M]dX+%f p(X) dxf u(r)
r>d
JF of JF d(pf)
= |—] =p2— =— =—= X +r)— dr. 7
o= ] =ty (aN>VT w o W [p0c+n) = p() ] dr U

The corresponding Euler-Lagrange equation is
Our starting point is the expression for the local Helm-
holtz free energy per moleculé p(x)] [19] g(p)_MJrJ' U(r)[p(x+1)—p(x)]dr=0, ®)
r>d

T _
flp(x)]=fo— Ef (e VI 1) p(x+r) dr. (2 whereg(p)=d[pf(p)]/dp. The first integrand in Eq(7)
should have two minima,,p, corresponding to the two
stable uniform equilibrium states of higher and lower density
(liquid and vapoy.
A flat interface separating the two phases is at equilibrium

Here U is the pair interaction potential dependent on the
distancer =|r|; we use units with the Boltzmann constant

scaled to unityfo=TInp is the reference free energy of an when both uniform equilibria are at Maxwell construction,

ideal” state with Interactions SW'tChed Oﬁ;. the factor .1.e., the minima are of equal depth. This can be achieved at a
compensates for counting twice the interacting molecules N ertain value of chemical potential= uo. Under nonequi
= 1o -

each pgur. A swtable.|r|1ter'ahctk|10ndpotentlal ||s .the. mOdIfI(Edlibrium conditions, the chemical potential serves as a bias

Lennard-Jones potential with hard-core repulsion: parameter that shifts the equilibrium in favor of the dense
_Ap© ~d (dilute) phase when it increasdédecreases The interfacial

U= i (r>d) 3) energy is contributed both by deviations from the equilib-

0 (r<d), rium density levels in the transitional region and by the dis-
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tortion energy localized there. Thus, the surface tension car
be computed, once the density distribution in the transitional ©-
layer is known.

The equation for density distribution near a flat boundary
normal to thez axis is obtained by assumingto be constant
in each lateral plane and integrating E@) or (8) in the
lateral directions. This yields the free energy per unit area, 0.4

co

[}

oo

Y= f_ P(Z)[f_(P)_M]dZ‘F%f_ p(z)dz g.2
oo O 4
Xf_ Q(lp(z+ ) —p(2)]dd, C) -3 -2 -1 0 1 2
z
and the one-dimensionélD) Euler-Lagrange equation FIG. 1. The density profile obtained by solving E47) for 8

B =9. The Gibbs surface is taken as the origin, so that the two shaded
02—+ | QUOlp(+ - dz=0. (o) e are caual
The 1D version of the corresponding Euler-Lagrange equa-
The 1D interaction kerneQ(z) lumps intermolecular inter-  tjon has the form of a nonlinear reaction-diffusion equation:
action between layerg=const. It is computed by lateral
integration using as an integration variable the squared dis- neon _
tanceq=r?= &2+ 7%, where¢ is the radial distance in the Kp"(z)=g(p)+pn=0. (16)
lateral plane. Taking note that the lower integration limit for . o .
qis qo=22 at|z|>d, qo=d? at|z]<d, we compute This derivation, going back to van der Wagld], has a
disturbing flaw. If the expansion is continued to the next
1 . nonvanishing ordeffourth), the expression for the corre-
- - E"TAIZ at [z]>d sponding coefficient, computed analogously to Egdl), di-
Q(z)=—=A| q 3dg= verges when the common Lennard-Jones potential is used.
do _ —4 Such a divergence usually indicates a qualitative difference
—mAd at |z|<d. i P »
2 between the solutions of the “exact” and truncated equa-
(1)  tions. This, indeed, can be confirmed by considering the as-
. ) ] ) ymptotics of Eqs(10) and (16). The latter has exponential
Computations in the framework of the diffuse interface asymptotics, as the deviation from either homogeneous state
th_eory commpnly assume that deqsﬂy is Changmg _Onlydecays alz]—= as expE\|2), Where)\=\/m. On the
shghtly over distances comparable with the characteristic ingiher hand, solutions of Eq10) exhibit a much weaker
teraction length. Then one can expand power decay, since the integral term perturbing the homoge-
neous state is proportional at large distances té
An example of the density profile obtained by solving Eq.
(10) numerically with the nonlinear functiog(p) derived
om Eq. (4) is shown in Fig. 1. The dimensionless form of
g.(10 is

p(X+1)=p(X)+r-Vp(X)+3m:VVp(X)+---. (12

Using this in Eq(7) we see that the contribution of the linear
term to the nonlocal integral vanishes when the system i%
isotropic and, as a consequence, the interaction term i
spherically symmetrical, and the lowest order contribution is

due to the quadratic term: 28p(2)— | ( 1 1) peip
1-p(z) PP p(2) s
F2(X)=—%KJp(X)V2p(X) dx=%KJ [V p(x)|?dx, -
13 X f QOlp(z+0)—p(2]d¢=0. (17
where
Here the length is scaled by the nominal molecular diameter
2w (= 4o e 5 . 2mA d, the density byb~?, and the chemical potential by, the
K=-73 p u(rr dr——fo Q(z)z"dz=—57~. interaction kernel i(z)=—-z *atz>1, Q(z2)=-1 atz

(14) <1; and the only remaining dimensionless parameter is the
rescaled inverse temperatuge=a/(bT). The solution has
Thus, Eq.(7) is replaced by been obtained through iterations supplemented by some nu-
merical tricks to enhance the convergence. Although, at a
- first glance, the plot in Fig. 1 may not look very much unlike
" _ 1 2
}—_J [pt(p) = p+ 2 K[V (0| ]dx. 15 5 typical front solution of Eq(16), its relatively slow decay
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leads to a much wider effective interface thickness and t@onstanty= asps/p,—1. The perturbation, however, ceases
qualitatively different behavior at largémesoscopic dis-  to be weak when the density in the layer adjacent to the solid
tances. deviates considerably from . This means that low densities
near the solid surface are strongly discouraged thermody-
I1. DISJOINING POTENTIAL namically, and a dense “precursor” layer should form on a
o i . _solid surface in equilibrium with bulk liquid even when the
In the proximity of a solid surface, the additional term in liquid is weakly nonwetting. This layer can be maintained by

the free energy integrdl) is transport from the gas phase. Singe-p(z)x|z| 2 at z—
—o in an unbounded fluid, the thickness of the precursor
Fszj p(X) dXJ’ U(r) p(x+r)dr, (18)  layer is estimated asyo y .
s The equilibrium chemical potential is shifted from the

. , . . . Maxwell constructionu= uq in the proximity of the solid
whereUs is the attractive part of the fluid-solid interaction ¢ t2a |n the sharp interface theory, this shift, called the
potential,p is the solid density, andls means that the inte- disjoining potential[8], is defined as

gration is carried out over the volume occupied by the solid;
all other integrals here and in E¢) are now restricted to 1 oF
the volume occupied by the fluid. s
In the following, we shall consider a flat interface parallel
to the solid surface=0, and suppose that liquid-solid inter-
actions are also of the van der Waals type with a modifie
constantA;=aA,. Then the free energy per unit area is
expressed, after some rearrangements, as

= -, 22
pi—p, dh @2

dfvhereh is the distance between gas-liquid and liquid-solid

Interfaces. In the diffuse interface theohyhas to be defined

as anominalinterface position relative to the solid, which
may be identified with the location of a particular isodensity

o _ level. The most natural choice is the Gibbs equimolar sur-
F= fo p(D{f(p)+ (D) asps—3p(2)]}dz face, which satisfies the relation
o] o0 h oo
+%f p(z)f Q(z—=)lp(H)—p(2)]dL. (19 f_m(p|—p)d2= fh (p=py)dz (23
0 0

The first term contains the same local part as in B). This means that the total mass of an unbounded fluid will not
complemented by the liquid-solid interaction energy. The latchange when the actual profile is replaced by a sharp bound-
ter is computed by integrating the attracting part of the fluid-ary located az=h where the density changes abruptly from
fluid and fluid-solid interaction energies laterally as in Eqs.p to p, (see Fig. L
(9) and represents the shift of energy compared to the un- Returning to Eq(19), one can observe that only the non-
bounded fluid. The functiog/(z) is computed as autonomous Z-dependentpart of the first term is respon-
sible for the disjoining potential proper, caused by replacing
. * <o [ liquid molecules by solid in the half spage<0. The other
Y(z)=—mhA jo ngqu *dg= JO Q({=2)d¢, (20 terms express the energy of the liquid-vapor interface, which
is modified when the fluid is restricted to the half space
where the integration limit isjo=(z—¢)? at |z— ¢|>d, qq >0. The shift of the chemical potential can be computed, in

=d? at |z—¢|<d. The result is leading order, by using in Eq$19) the zero-order density
profile centered at the nominal interfage= pg(z—h).
_ 1 Ay 3 at |z>d We shall separate several constituent parts of this shift.
6" 1z The derivative of the nonautonomous term is

h(z2)= (21)

2
—wA|d3(§—z/2d at |z|<d.

A=~ [ vl s poz—lps(z-hdz (24

The second term in Eq19) expresses, as before, the distor- ) o . ) o

tion energy, now restricted to the half space0. The Euler- Before _dlfferentlatmg the remaining terms in Hqg), it is

Lagrange equation derived from E@9) is the familiar Eq. gor)venlent .to transfer thh depe.ndence. to the integration

(10) with an additionaz-dependent tery(z)[ asps— p(2)]. I|m|_ts by using a shifted integration \{anabhézz— h. The
We shall be further interested in a situation where thederivative of the local algebraic part is

perturbation due to the proximity of a solid surface is weak. _

In this case, the translational invariance of an unbounded F(P=po(—)f(po(—h)). (25

two-phase system is weakly broken, and both the shift of the

equilibrium chemical potential due to interactions with the The nonlocal term in Eq(19) is transformed after differen-

solid surface and the deviation from the zero-order densityiating with respect td1 using the symmetry of the interac-

profile computed in the preceding section are small. A nection kernelQ(z), and, after shifting the variable back, inte-

essary condition is smallness of the dimensionless Hamakgrated by parts with the help of EQO). The result is
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F<h3>:—%JO Q(2)[ po(—h)—po(z—h)]?dz

= f: P(2)[po(—h) = po(z=h)]pg(z—h) dz. (26)

The latter expression partly cancels with E84) when all
contributions toug are summed up. It is further convenient

to separate the term proportional to the dimensionless Ha

maker constany = asps/p;— 1. The resulting expression for
the disjoining potential is

Ms= rpo(—h)f_(po(—h))—xmf:df(Z)pé(Z—h)dZ

pi—p

v

—f:t/f(Z)[m—po(—h)]pé(Z— h)dZ}. (27

In the limit h>d, whenpg(z—h) can be replaced by the
delta function—(p, — p,) 8(z—h), the second term yields the
standard disjoining potential of a liquid layer with sharp in-
terface and uniform density, :

H
67h%p,

s TXPIA
Ms= 6h3 -

, (28)

where H=72p A (asps—p;) is the Hamaker constant de-
fined in the standard way.

PHYSICAL REVIEW B4 021603
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FIG. 2. The dependence of the disjoining potenjialon the
nominal layer thicknes$ defined by Eq.(27) for =9 and y
=0.1 and 0.05as indicated on the respective curves

larger than the critical thickneds,, the density profiles are
nonmonotonic. Such a solution describes a liquid layer sand-
wiched between the vapor and the solid, with a weakly de-
pleted density near the solid surface. Nonmonotonic density
profiles are unstable with respect to perturbations with a suf-
ficiently long wavelength. This instability is inherent to any
nonwetting liquid, but the dynamics is essentially frozen
whenever the layer has a macroscopic thickness.

At smaller values oh, the maximum disappears, and the
solution can be interpreted as a pure vapor phase thickening
near the solid wall. The value=hg such thatug(hy)=0
corresponds to the nominal interface position on the “dry”

The remaining terms vanish in the sharp interface limitgyrface in equilibrium with the bulk liquid. Clearly, the sur-

when po(—h)=p,. An estimate valid ah>1 can be ob-
tained using the asymptotics pf(z) at z— —oo, which is
obtained from Eq(10) by replacing the algebraic term there
by [po(2) —p119’ (p;) and the integral term by its sharp in-
terface limit (o,—p,) ¥(2)=:7A|z| 3(p,—p,). The result
is

TA| 1~ Py . (29)
6h°g’(p))

The first term in Eq.(27), proportional to[p,—pg
(—h)]?, decays asymptotically as . The same asymptot-
ics is obtained for the last term in EQ7) when the integral

pi—po(—h)=

is computed in the sharp interface limit. Moreover, the two

terms differ by a factog only in this approximation. When
|x|<1, all terms in Eq(27) are of the same order of mag-
nitude x> whenh=0(| x|*"®). Neglecting the vapor density,
we compute in the limih>1

’7TA| 2

_mAXp A
6hs

6h3

P
29'(p1)
The dependencgg(h) defined by this asymptotic formula is

nonmonotonic at y<0, passing a maximum ath,
=[7A/6x|g’(p)]1*® and crossing zero ah,=2""%h,,.

Ms= (30

face is not literally dry, as even on the nominally “dry”
patches the density must be close to bulk liquid density un-
der the specified conditions. At still smaller values lof
(which may also be negatiyeu(h) sharply decreases to
large negative values, and the above approximation is no
longer valid. This means that low densities near the solid
surface are strongly discouraged thermodynamically, and a
dense “precursor” layer with the nominal thickness,
should form on a solid surface in equilibrium with bulk lig-
uid; this layer can be maintained by transport from the gas
phase. The dependence lof, and hy on the dimensionless
Hamaker constant is shown in Fig. 3.

IV. CURVED INTERFACE

Suppose now that the interface is weakly curved, so that
isodensity levels no longer coincide with planes const.
The nominal location of a curved diffuse interfa@eg., the
Gibbs equimolar surfagecan be used to describe it in the
language of differential geometry commonly applied to sharp
interfaces. Its spatial position can be defined in a most gen-
eral way as a vector functio(§) of surface coordinateé.

A curved interface can be approximated locally by an ellip-
soid with the half axes equal to the principal curvature radii.
If both radii far exceed the characteristic interface thickness,

The dependence should remain qualitatively the same a&ill isodensity levels are approximated by ellipsoidal seg-

moderate values of (see Fig. 2
The maximumh=h,, corresponds to a minimal thickness
of a liquid nucleus condensing on the solid surface.hAt

ments equidistant from the interface. The density changes
along the directiorz normal to isodensity surfaces, and the
density profile along each normal is defined in the zero order
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dr2=dZ?+(g,p+ €ZK,p) E°EP+ O(€2). (35)

The free energy integrdl’) is rewritten in the aligned frame

as a 2D integral along the Gibbs surface. The free energy per
unit areay is a functional of the density profile(z), and is
computed in leading order using the standard two-phase so-
lution on the infinite linepg(z). This approximation can be
used whenever the density changes between the two extreme
valuesp, andp, within a thin layer where the aligned frame
remains well defined. The interfacial curvature induces, how-
ever, anO(e) correction to the local chemical potential, de-

noted asu(£). Thus, we write

0.02 0.04 0.06 0.08 0.1 0.12% .
FIG. 3. The dependence of the critical thicknégs and the ]::f [7[p0(z)]+6'“ f_wpo(z)dz] Vg &, (36)
thickness of the “precursor” layeh, on the dimensionless Ha-
maker constank=0.1 for 5=9. whereg is the determinant of the surface metric tensor.
The equation defining.(£) (or, after imposing the condi-
; éion = const, the equilibrium shape of the interfaée ob-
frame aligned with a weakly deformed interface. Given thet@ined by varying Eq(36) with respect to normal displace-

. . - (n) = i i
interfaceX(&), one can find unit tangent vectors along the MeNts dX"=néz reshaping the Gibbs surface. The
surface coordinates variation of the area element is expressed through the mean

Gaussian curvature:g“ﬁKaB:
SVI=3V99" 59.0p= V09" t,- Sts=—(Vgg*Pt,) 4-n 62
= —\gg*’ K ep 52. (37)

The variation of the other term in E(36) is

t,=aXIdé,, (32)
the surface metric tensor
9ap=1a1p, (32)
and the normal vector
n=3ePt,Xtg, (33 1 5Zf:p6(2)d2=ﬁ(p|—pu)- (38)

whereX is the 3D cross product ang,; is the antisymmet- ) ) ) , .
fic tensor: the Greek indices taking the valigs) are low- ~SSuming, in leading ordery=const, the first-order varia-
ered and raised with the help of the metric terggg and its 101 1S computed as

inverseg®?. The curvature tensox,; is defined through the ~

covariant derivatives of the tangent or normal vectors with (p1=py) = yr=0. (39

respect to the surface coordinates: . . .
P First-order terms are added as well when E3§) is varied

V gta= Kap, Van=Kaﬁgﬁ7t7. (34) with respect top; the corresponding Euler-Lagrange equa-
tion can be used to compute the first-order correction to the
Next, we define the coordinate axisdirected alongn  density profile, which we shall not need.
with the origin on the Gibbs surface. To fix the signs, we Equation(39) is equivalent to the Gibbs-Thomson law
assume that the dense phase prevais<. The coordinate relating the equilibrium chemical potential to the interfacial
surfacesz= const are obtained by shifting the interface alongcurvature. This relation is valid only when the surface ten-
the normal by a constant increment. It is evident that thission y is independent of curvature, but curvature-dependent
shift causes the length to increase on convex and to decreaserrections toy, stemming from corrections to the 1D inter-
on concave sections. The aligned frame is not well definedction kernel(11) due to lateral integration along curved
far from the interface due to a singularity developing on theisodensity levels, are dD(e) and do not affect Eq(39).
concave side at distance about the smallest value of the local
curvature radius, i._e., the sm_allest invers_e eigenval_ue of the V. EQUILIBRIUM CONTACT ANGLE
curvature tensor. Since the aligned frame is well defined only
sufficiently close to the interface, we have to assume that the The results of the two preceding sections can be com-
curvature is of0(€) <1 when measured on the characteristicbined to obtain the conditions of equilibrium of a thin film
scale of intermolecular interactions that defines the effectivavith a weakly nonplanar interface on a planar support. It is
interface thickness. convenient to parametrize the interface by the coordinétes
The metric tensor of the aligned coordinate system exin the supporting plane, so that the interface position is de-
tends the surface metric to the neighboring layers, so that thigned by a (2+1)-vector X={¢, h(§)}. Then the surface
infinitesimal interval is computed as metric tensor isg,s= 0,5+ € d,n- dgh, where 5,5 are the
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components of the identity matrix, and the mean Gaussian 12

curvature isk=V?2h, 0=
When the effects of disjoining pressure and interfacial

curvature are weak, they are additive; both are of the SamM& astimate valid at/y|<1 can be obtained using the

order of magnitude whery=0(1/e). Then Egs.(27) and asymptotic formula(30) and assuminh—h, at z— — .
(39) can be combined to define ti@(¢) chemical potential  Then Eq.(44) reduces to

2p J“‘
— | u(h)dh (44)
Y Jhg

h

W= ugs—

1 A 1/2 2.7A) Y8 |56 39" 13
yVh. (40 0;&(77 ||X|) _p(2mA)MIX"T3g" (P 1T
P~ Py ho 10’y (5,y)1/2

(45)
The “standard” equilibrium contact anglé, computed

with the help of the Young-Laplace formula, while neglect- D!Jﬁ to the pr:esgnce ?jf a wet Iayr/]er (;)_n the_so:id in contali:t
ing the vapor density and presuming the solid surface ivith vapor, the dependence on the dimensionless Hamaker

; ; constanty is qualitatively different from Eq(41). The expo-
contact with vapor to be totally dry, is nent atl y| is modified due to the dependence of the thickness
of the precursor layer on the Hamaker constant.

cosO=2aps/p—1 or O~2\—x<1l. (41
VI. EVOLUTION EQUATION FOR FLOWING FILMS

This expression is, however, inapplicable to the equilibrium ] ) )
solid surface, which is covered by a dense fluid layer even The chemical potential computed above enters as a driv-
when it is weakly nonwetting. ing force in the hydrodyna_mlc equations _of t_he diffuse inter-

In the framework of the diffuse interface theory, the equi-face theory{15]. The equations in the lubrication approxima-
librium contact angle has to be defined in a nonstandard wayion are derived assuming the characteristic scale in the
It is not enough to define a nominal interface position to fix vertical” direction (normal to the solid surfageo be much
the contact angle unequivocally, since it may then pesmaller th:_;ln that in the “hor_zontal’(paralleb direction.
strongly dependent on the choice of a particular density levefVhen the interface is weakly inclined and curved, the den-
for a nominal position. In the weakly nonwetting case con-Sity is weakly dependent on the coordinatelirected along
sidered above, only density levels closegiocan intersect the solid surfacg. It is necessary for a (_:0n5|stent scaling _of
the solid surface at relevafi(e) values ofus, whereas the the hydrodynamm (_aquanons that the ratio of the characteris-
standard median level never approaches the solid surface. € Vertical and horizontal length scales or of the character-
makes no sense therefore to speak of a “true” contact angldStic vertical and horizontal velocities,u be of O(/e),
The contact angle should be defined by its asymptotic valudhile ns(h)=0(e).
observed at macroscopically large distances, i.e., in the far Equations of motion in the lubrication approximation are
field limit in terms of Eq.(7) and its offshoots. obtained following the standard procedure of multiscale ex-

This limiting value is determined by balancing the actionPansion[18]. The 2D horizontal velocity vectan is deter-
of interfacial curvature and disjoining potential in accor- mined by the horizontal component of the Stokes equation:
dance with Eq.(40). The curvature of an interfach(x)
weakly inclined and curved along theaxis and constant in —po(z—h)VW+(9u,),=0, (46)
the spanwise direction iR”(x), and the effective surface
tension is definedin the absence of soljcdby Eq. (9). Near

he soli rface, the constant density levels are distor . o . .
the solid surface, the constant density levels are distorted, bsolutlon of Eq.(46) satisfying the no-slip boundary condition

the correction is negligible when the disjoining potential is ) " P
small. Neglecting the vapor density, we write the equatiorﬁn the solid boundary and the no-stress condition at infinity
as the general form

for the nominal interface position

wherey is the dynamic viscosity and the driving potentisl
Liﬁ defined, in the absence of external forces, by(E@).. The

. zdg (-
yh"(x)— pjus(h) =0. (42 U(2)=VWL7](—§)L po(§€—h)dé=W(Z;h) VW,

4
In the absence of other external forces, the shape of the in- @0
terface is determined by solving this equation with thewhere the functior’(z;h) depends on an assigned depen-
boundary conditionsh=h,, h’(x)=0 at x——=, h’(x)  dence of viscosityy on density.
— #=const atx—cc. As usual, Eq(42) is transformed, tak- The evolution equation di is obtained in a standard way
ing as the dependent variabj¢h) =[h’(x)]?, to using the density profilpy(z—h) and computing the inte-
gral balance across the fluid layer. In this way, we obtain the
evolution equation in the general form

yy'(X)—=2pius(h) =0, (43
h;=V-[k(h)VW] (48)
with y(hy) =0, y— #2= const atx— . The asymptotic con-
tact angle is obtained by integration: with the mobility coefficient
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3CIn— (52
he

o] h 1/3
k(h)=j0 po(z—h)W¥(z;h) dz (49 h=x ) ,

When h exceeds the thickness of the precursor filmyat

<1, the fUnCtiork(h) differs Only Sllghtly from the standard WhereC:(U 77/')’)A73/2 is a rescaled Capi”ary number and
dependence valid for incompressible Poiseuille flow in a_ 7A| x| p2lyhe=H/myh?. An indefinite constanth,

layer of thickness1 with a sharp interface: should be determined by integrating E§1) with appropri-
ph3 atg boundary cqn_dition_s &t~ —oo (or smallh). The_re is a
30 (50)  unique hgterochnlq trajectory (_)f Ed51) approaching the.
asymptoticg52). It is very sensitive to the boundary condi-
Taking into account small deviations from the zero-order solions at or smalh, as well as to any kind of molecular-scale
lution near the wall adds only higher-order corrections.  factors that may be relevant close to the contact [

The structure of Eq(48) is identical to that of standard The approach to the asymptotics is logarithmically slow, and
equations of motion of thin liquid filmp4], which are recov- therefore the value ofi, cannot be determined with a rea-
ered at largeh when the disjoining potential becomes negli- sonable precision when the shooting method is used, even
gible. At smallh, the disjoining potential is not singular. At when the integration is carried out to distances exceeling
the same time, the viscous stress singularity at the contagly many orders of magnitude, i.e., to films of macroscopic
line is relaxed as the latter’s location becomes indefinite. thickness. In realistic computations, external forces, such as

One-dimensional steady motion along tkexis can be gravity, essential at macroscopic distances and determining
described by Eq(48) rewritten in the frame moving with a  the far field asymptotics, should be taken into account before
spee_dU. The stationary equation can be integrated onceyhe asymptotic$52) is reached21]. As a result, the dynamic
yielding contact angle varies with the distance from the contact line,

and its precise definition is to a certain degree a matter of
U(h—hy) conveption. . o . .
yh"(X) = pipe(h) + k) 0. (52 While the far field asymptotics is common, in the approxi-
mation we use, to sharp and diffuse interface theories, the
It is assumed here that the liquid layer thickeng-ate, and  distinction between the two remains substantial near the con-
the sign ofU is chosen to be positive when the thick layer tact line or in the precursor region. In the sharp interface
advances; the integration constant has been introduced aheory, a nonwetting case cannot be resolved completely in
lowing for a precursor film with the thickneds, at x—  the framework of the lubrication approximation, since the
— . slope has to become large as the contact line is approached.

Equation(51) is free from singularities which are usually |n the present theory, the character of the interaction switches
caused by divergences of either viscous stress, or disjoining, effective wetting ah<h,,, and the lubrication approxi-
potential, or both, in a layer of vanishing thickness. The asmation remains valid, as long as the expression for the equi-
ymptotics atx,h—oo is the same as in the sharp interface|iprium disjoining potential derived above can be used. A
hydrodynamic theory with van der Waals ford@9], due to  more precise theory should take into account nonequilibrium
the identical asymptotics of the disjoining pressure. Thus, thgransport processes across isodensity lines, which can be
discrepancy between the asymptotics of sharp and diffusgeen as counterparts of evaporation and condensation pro-
interface theories is eliminated when the integral fOfmUlatiOfbeSSeS in the Sharp interface limit. This prob|em requires

is used. _ - ) ) special attention, and will be discussed elsewhere.
As in the sharp interface theory, a difficulty arises in de-

fining the dynamic contact angle. The asymptotics of Eq.
(51) ath—«o, unlike that of Eq.(42), does not approach any

fixed slope, and the growth of the inclination angle is never
saturated, as long as macroscopic factgravity or volume This research was supported in part by the Israel Science
constraint are not taken into account. Singg;<h"2 ath Foundation, the Fund for Encouragement of Research at the
— o0, the asymptotics is determined, in the absence of exterFechnion, and the Minerva Center for Nonlinear Physics of

nal forces, by a balance of viscous stress and surface tensi@pmplex Systems. The author is grateful to Yves Pomeau for
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