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Weighted density functional theory of the solvophobic effect
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We are interested in the spatial density of a molecular fluid in the presence of a solute of arbitrary size and
shape. The density functional is written as the sum of aF0@r(r )# that effectively describes small deviations
around the uniform density, plus an energy density part that is responsible for formation of liquid-vapor
interface. Using the weighted density approach, we require the density functional to match with several
observed properties of the fluid such as equation of state and surface tension. We also show that weighting
functions for calculating the weighted density can be obtained from experimental data. Using these elements,
we construct a spatial density functional theory of water and apply it to obtain densities and solvation energies
of a hard-sphere solute with encouraging results.
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I. INTRODUCTION

When a hydrophobic solute is in an aqueous solution,
unfavorable interaction between solute and solvent can
to the solute adjusting its configuration to minimize its s
vent exposed area. This is frequently mentioned as the d
ing force for protein folding@1#. To quantify these notions
several simulation and theoretical studies of the hydropho
effect have appeared@2–7#. Among them, the theory of Lum
Chandler, and Weeks~LCW! on the hydrophobic effect pre
dicted interesting consequences when the solute is s
ciently large. Specifically, LCW predicted the formation of
vapor layer in the immediate vicinity of the solute. The im
plications of these results are still being debated.

The ideas of LCW and others can naturally be cast i
simple picture based on the density functional theory~DFT!
description of liquids. It is our purpose to construct a D
that unifies the theories on hydrophobicity. There is a la
body of work on DFT of liquids@8,9#, mostly for Lennard-
Jones~LJ! like fluids. The usual approach is based on t
thermodynamic perturbation theory~TPT! @10#. The interac-
tion potential,f(r ), of the LJ particles can be decompos
into a reference part plus a perturbative part

f~r !5f0~r !1fa~r !. ~1.1!

The reference system represented byf0 is usually taken to
be a hard-sphere fluid of proper size. Using thermodyna
perturbation theory, the Helmholtz free energy functional c
be written as

F@r~r !#5F0@r~r !#1
1

2E0

1

daE drE dr 8r (2)~r ,r 8;fa!

3fa~r2r 8!, ~1.2!

whereF0 is the density functional of the hard-sphere flu
defined byf0 andr (2) is the two-body correlation function
for the reference system with fixedr(r ) and external poten
tial fa ,

fa5f01afa. ~1.3!

Mean field approximation for the second part of Eq.~1.2! is
1063-651X/2001/64~2!/021512~9!/$20.00 64 0215
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often assumed; takingr (2)(r ,r 8) to be approximately
r(r )r(r 8), one then obtains

F@r~r !#5F0@r~r !#1
1

2E drE dr 8r~r !fa~r2r 8!r~r 8!.

~1.4!

F0@r(r )# is the density functional for the hard-sphere refe
ence fluid. It is still an active area of research where sop
ticated derivation of such a density functional from geom
ric arguments seems to be possible@11#. One of the more
practical minded approach on this subject is pioneered
Tarazona@12#. The idea behind this DFT is the constructio
of a weighted density functional that correctly matches w
the known functional derivatives of the free energy with r
spect to the density in the uniform limit. In particular, th
Percus-Yavick approximation@13# for c(r ) can be used to
explicitly solve for the weighting functions. This idea o
matching the density functional with knownc(r ) is also
pointed out by Curtin and Ashcroft@14#.

The use of thermodynamic perturbation theory is based
an important aspect of the LJ system. For dense and clos
uniform LJ fluid, the density is largely determined by repu
sive forces, orF0 @15#. In this limit, the attractive part of the
functional simply contributes as an energy density and d
not effect the fluid density. When the fluid becomes nonu
form, the attractive part is responsible for the formation
interfaces and surface tension. For a molecular fluid ho
ever, the situation is significantly different. The structure
dense and uniform molecular fluid is not solely determin
by the hard-core part of the potential. A well known examp
of this is liquid water where the the hydrogen bond netwo
has a strong influence on the liquid structure. Others h
used the TPT approach to incorporate orientational inform
tion in water interfaces@16#. However, these theories ar
meant for the large length scale limit and cannot descr
molecular scale density variations. Our approach in this
per does not utilize quantities from the water-water inter
tion potential. Rather, we use known thermodynamic inf
mation of water to predict spatial densities and interfac
profiles in the presence of a solute. We show that one is a
to treat the molecular liquids in a fashion very similar
simple fluids. Specifically, we show that the weighted dens
©2001 The American Physical Society12-1
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SEAN X. SUN PHYSICAL REVIEW E 64 021512
functional approach can be robustly applied using exp
mentally observed liquid structure. The density functiona
required to reproduce molecular length scale fluctuations
the large length scale limit such as interfaces, it become
van der Waals like theory and reproduces the correct sur
tension. Therefore, it is a theory forr(r ) on all length scales

The theory proposed in this paper has physical id
originating from the LCW@4# treatment of hydrophobic in
teraction that followed the works of Chandler and Pr
@17,18,2,3# on the theory of hydrophobicity and of Week
et al. @5# on the concept of an unbalancing potential. The
authors examined the behavior of LJ and water in the p
ence of a hard-sphere solute. The physical picture
emerged from these investigations lead us to the recogn
that a density functional theory utilizing only spatial den
ties of molecular fluids is indeed possible. The theory p
sented here therefore combines and extends these pre
treatments on the hydrophobic effect. Since it also has g
eral application to other liquids given the proper input info
mation, we have called it a theory for the solvophobic ph
nomena.

II. QUALITATIVE BEHAVIOR OF NONUNIFORM
MOLECULAR FLUIDS

The density functional of Eq.~1.4! predicts the behavio
of LJ fluids very well over a range of densities. Howev
instead of the actual interaction potential of LJ particles,fa
should be an effective attractive potential that is in princi
temperature and density dependent@19#. Indeed, given a
proper choice offa, this DFT describes the formation o
interfacesquite well. This is because it makes a direct co
nection with the van der Waals’ theory of liquid-vapor inte
face. In the limit ofr(r ) being a smooth function ofr , i.e., it
does not change very much over a correlation length in
fluid, Eq. ~1.4! can be approximated by

F@r~r !#5E drF@r~r !#1
1

2E drE dr 8r~r !

3fa~r2r 8!r~r 8!, ~2.1!

whereF@r# is the hard-sphere equation of state. Equat
~2.1! is exactly the van der Waals’ free energy function
Therefore, Eq.~1.4! is an interpolation between the uniform
fluid and the interface limit. Within the van der Waal
theory, the exact form offa is also not crucial, rather the
energy density parametera defined as

a52
1

2E drfa~r ! ~2.2!

and the range of the attractionm defined as

m52
1

6E dr r 2fa~r ! ~2.3!

are more relevant for the surface tension. After making
gradient expansion ofr(r 8) aroundr , Eq. ~2.1! is essentially
equivalent to the functional
02151
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F@r~r !#5E drF@r~r !#2ar2~r !1
1

2
mu¹r~r !u2.

~2.4!

Here, botha andm are temperature dependent quantities.
For a molecular fluid such as water, the density field

principle is a function of space as well as orientation, i.
r(r ,V). In the case of water, for example,r labels the posi-
tion of the oxygen atom andV describes the orientation o
the molecular dipole. For such a system, there is a poten
functionV(r1 ,V1 ,r2 ,V2 , . . . ) that completely specifies th
interaction between molecules. Given this potential ene
the grand potential is defined in the usual way and a mole
lar free energy density functional exist fo
V(r1 ,V1 ,r2 ,V2 , . . . ) from standard arguments. Howeve
if we integrate overVi , a temperature dependent effectiv
potential can be obtained for the spatial degrees of freed

Veff~r1 ,r2 , . . . !

5
1

b
lnF E dV1dV2•••e2bV(r1 ,V1 ,r2 ,V2 , . . . )G .

~2.5!

For Veff , a grand potential can be defined by integrating o
the space variables and the resulting density functional
pends on the spatial densityr(r ) alone. Having integrated
out the orientational degrees of freedom, this functional c
tains less information and cannot describe any phenom
related to orientational ordering. Nevertheless, it can
made to describe the spatial densities in some detail.

The form of this simplified spatial density functiona
might be quite generic for all molecular fluids. For unifor
densities, there is a functional that describes liquid struct
just asF0 approximately describes the uniform LJ fluid. An
in order to describe the formation of interfaces, one must
an energy density term as it is done in Eq.~1.4!. Therefore,
we write the functional as

F@r~r !#5F0@r~r !#1
1

2E drE dr 8r~r !fm~r2r 8!r~r 8!.

~2.6!

Here,fm should not be regarded as an actual attractive
tential of the molecular fluid, rather it is a quantity that c
be adjusted to match the observed thermodynamics pro
ties. In fact, the energy density part should be regarded
equivalent to2ar2(r )1 1

2 mu¹r(r )u2 in Eq. ~2.4!. Equation
~2.6! is again an interpolation from the uniform limit to th
interface limit.F0 must be consistent with the observedc(r )
in the uniform limit. This can be accomplished using t
weighted density functional procedure explained in the n
section. As it is with the LJ fluid, the exact form offm
should be unimportant and thea andm values offm must be
consistent with the interface and observed surface tensio

In order to see that Eq.~2.6! has a physical basis, we dra
upon some recent observations of nonuniform fluids. Sev
groups have examined the behavior of water@4,2,6# and LJ
@5,7# fluids in the presence of a hard-sphere solute. This s
2-2
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WEIGHTED DENSITY FUNCTIONAL THEORY OF THE . . . PHYSICAL REVIEW E 64 021512
ation is also equivalent to the formation of a cavity of sizeR
in the liquid. The findings are schematically summarized
Fig. 1 where the behavior of the excess chemical potentia
solvation is plotted vs the cavity size. Also shown are rep
sentative spatial density profiles of the liquid for various ca
ity sizes. Figure 1 shows that water is indeed very simila
the LJ fluids in several respects. For small cavity sizes,
local structure of the liquid is not disturbed very much a
liquid simply rearranges around the cavity. The excess
energy and the spatial density can be determined by a
dratic expansion of the free energy around the uniform d
sity @18,2#. More precisely, for small cavities in water, th
free energy functional is approximately

F@r~r !#'
1

2bE drE dr 8@r~r !2r l #xW
21~r2r 8!@r~r 8!2r l #

'F0@r~r !#, ~2.7!

where xW
215dbF/dr(r )dr(r 8) at r l for water @20#. For

larger cavities however, the fluid will deviate from th
Gaussian behavior implied by Eq.~2.7! @7#. A liquid mol-
ecule near the large void will experience a net attraction
the bulk or net repulsion away from the cavity. Density

FIG. 1. A schematic depiction of the excess chemical poten
~solvation energy! of a hard-sphere solute of radiusR in a liquid. s
is the effective length scale.~For water, s can be taken to be
2.9 Å.! For small solute sizes~indicated by the bracket!, the excess
chemical potential is roughly a linear function of the volume of t
solute. A typical solute-solventg(r ) is shown in the left insert. One
sees that the solvent simply packs around the solute in a ma
consistent withx21 of the uniform liquid. For larger solute sizes
the excess chemical potential is a function of the solute sur
area. From theg(r ) profile in the right insert, one sees that a vap
liquid interface like density profile is formed at the edge of t
solute. In theR→` limit, Dm/4pR2 is essentially the surface ten
sion of the vapor-liquid interface of the solvent.
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depleted from the edge of the cavity and drying occu
Weekset al. @5# and Lum et al. @4# describe this with an
unbalancing force. Eventually a liquid-vapor interface
formed. In this limit, LCW showed that a van der Waals lik
free energy functional describes the smooth density profi
of water quite well:

F@r~r !#5E drW@r~r !#1
1

2E drE dr 8r~r !

3fm~r2r 8!r~r 8!, ~2.8!

whereW@r# is a simple equation of state for a finite size
ideal gas. This is the analog of Eq.~2.1! for the Lennard-
Jones case.~For fm, LCW did not take an explicit func-
tional form, rather they used experimentally determineda
andm values from the surface tension.!

The results of these investigations indicate that the
neric functional form of Eq.~2.6! should be adequate for th
aqueous solvent. Equation~2.6! might even be correct for
other molecular fluids where the solvent molecules
‘‘small’’ and do not exhibit strong spatial orientational e
fects. The detail inputs that make it quantitative is explain
in the next section.

III. CONSTRUCTING A DENSITY FUNCTIONAL THEORY

The spatial density functional of the fluid therefore mu
match with three observed water properties. The trivial lim
is the homogeneous limit where the free energy is given
the equation of state,

F@r#5E dr$W@r#2ar2%, ~3.1!

whereW@r# is the equation of state without the energy de
sity contribution. Thus, in the uniform limitF0 in Eq. ~2.6!
should reduce to *drW(r) and 1

2 *drdr 8r(r )fm(r
2r 8)r(r 8) should reduces to2*drar2. W@r# must natu-
rally correspond to the observed equation of state for
fluid, although the detailed functional form is quite arbitra
The other two limits are the interface limit where the fr
energy is given by Eq.~2.8! and the small deviation limit
where the free energy is quadratic. To interpolate betw
Eqs.~2.7! and~2.8!, we use a weighted density functional o
the form,

F0@r~r !#5F id@r~r !#1E drr~r !C@r̄~r !#, ~3.2!

whereF id is the free energy density of an ideal gas

F id@r~r !#5E drr~r !kBT@ ln r~r !21#, ~3.3!

and r̄ is the weighted density determined by the self cons
tent equation

r̄~r !5E dr 8r~r 8!w@r2r 8; r̄~r !#, ~3.4!

l

er

e

2-3



s
A
te
f
d

e

-
i-

n

er

e
s

q.
q.

o-

SEAN X. SUN PHYSICAL REVIEW E 64 021512
wherew@r2r 8; r̄(r )# is the weighting function.C@r# in this
case must satisfy

W@r#5rkB T~ ln r21!1rC@r#. ~3.5!

For water, we have takenW@r# to be

W@r#5rkBT logF br

12brG , ~3.6!

wherea5229 kJ cm3/mol, b514.99 cm3/mol at 298 K
@4#. This parametrization is based on a fit to water compre
ibility and the density difference between liquid and gas.
best it is a very crude approximation to the actual wa
properties. Other forms ofW@r# that can give a better fit o
water phase boundary and equation of state will undoubte
yield better results.

With the proper choice of the weighting function, one se
that if r(r ) is a smooth function of space, thenr̄(r )'r(r ),
we obtain the van der Waals limit of Eq.~2.8!. Now we
determine the weighting function using Eq.~2.7!.

A. The weighting functions

The strategy we employ for determiningF0 and the
weighting functions is to match knownc(r )’s with the sec-
ond derivatives of the free energy in Eq.~3.2!. Since

c~ ur2r 8u!5
db~F02F id!

dr~r !dr~r 8!
U

r l

, ~3.7!

@here, we have made the definition thatc(r ) contains no
attractive interaction# taking the second derivative with re
spect tor(r ) of Eq. ~3.2! and setting the density to the un
form density gives the following expression forc(r ):

c~ ur2r 8u!52
2C8~r l !

kBT
w~ ur2r 8u;r l !

2
r lC9~r l !

kBT E dr 9w~ ur 92r u;r l !w~ ur 92r 8u;r l !

2
r lC8~r l !

kBT E dr 9@w8~ ur 92r u;r l !

3w~ ur 92r 8u;r l !1w8~ ur 92r 8u;r l !

3w~ ur 92r u;r l !# . ~3.8!

Written in k space, this equation reads as

c~k!52
2C8~r l !

kBT
w~k,r l !2

r l

kBT

]

]r l
@C8~r l !w

2~k,r l !#.

~3.9!

Clearly, because the weighting function depends onr l , one
in principle must know the full dependence ofc(k) on r l to
solve this equation. Usually, this dependence is not know
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In order to make progress, we follow Tarazona’s furth
approximation on the weighting function and expressw(r ;r)
as

w~r ,r!5w0~r !1w1~r !r1w2~r !r2, ~3.10!

where wi(r ) are independentof r and temperature. The
weighting function must be normalized, i.e.,

E drw~r !51. ~3.11!

We have chosenw0(r ) to be a step function of the form

w0~r !5
3

4ps3 Q~s2r !, ~3.12!

where s5b1/352.89 Å is the length scale given by th
equation of state.Q is the usual step function. With thi
choice ofw0(r ), w1(r ) andw2(r ) must integrate to zero,

E drw1,2~r !50. ~3.13!

The simplification that results from the expansion of E
~3.10! is twofold. First, the self-consistent equation of E
~3.4! can now be solved analytically. The result is@12#

r̄~r !5
2r̄0~r !

12 r̄1~r !1@$12 r̄1~r !%224r̄0~r !r̄2~r !#1/2
,

~3.14!

where

r̄ i~r !5E dr 8wi~r2r 8!r~r 8!. ~3.15!

Second, the weight functionsw1 andw2 can be solved from
a given set ofc(r )’s. More precisely, using Eq.~3.9!, if one
hasc(k) at two different condition (r l and temperature!, we
can introduce coupled equations for these two conditions

c1~k!52
2C8~r1!

kBT1
w~k,r1!

2
r1

kBT1

]

]r1
@C8~r1!w2~k,r1!#,

c2~k!52
2C8~r2!

kBT2
w~k,r2!

2
r2

kBT2

]

]r2
@C8~r2!w2~k,r2!#. ~3.16!

With the two unknownsw1(k) and w2(k), two coupled
equations are in principle sufficient. If one wants to intr
duce a cubic order in the expansion in Eq.~3.10!, three
coupled equations are needed.
2-4
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WEIGHTED DENSITY FUNCTIONAL THEORY OF THE . . . PHYSICAL REVIEW E 64 021512
Thus, even though one does not have thec(k) for all
densities, using experimental~or simulation! results forc(k)
at two different conditions should allow one to search for
weighting functions. The complication is that the coupl
equations arenonlinear. Therefore, the solutions at a partic
lar k value may not be unique. For certaink’s, solutions may
not even exist. Nevertheless, we have carried out a nume
search@21# for the solutions of Eq.~3.16! using experimen-
tally measuredSOO(k) @22# values for water. The two condi
tions we have chosen are at 298 K and 373 K. The wa
densities at these temperatures are 0.997 and 0.958 g/3,
respectively@23#. The experimentally observedS(k) in prin-
ciple contains attractive interactions. We have assumed t
contributions are small. Figure 2 displays theS(k)’s and the
c(r )’s for these two conditions. The weighting functions o
tained from numerical solutions to Eq.~3.16! are displayed
in Fig. 3. Roots of the coupled equations are successf
obtained for mostk’s. Not shown are thec(r )’s calculated
from the weighting functions, they are essentially indist
guishable from those in Fig. 2.

As a test of the quality of the weighting functions, w
have used them to predict thec(k)’s for other density and
temperatures. For example, in Fig. 4, we show the exp
mentally measuredc(k)’s at 323 K and 423 K vsc(k)’s
obtained using the weighting function. For these two con
tions, the densities are 0.988 and 0.917 g/cm3, respectively.
One sees that the comparison is indeed favorable.

B. The energy density part

As we explained in Sec. II,fm(r ) must satisfy severa
constraints. First, in order to match the equation of state,
potential must satisfy

2
1

2E drfm~r !5a. ~3.17!

FIG. 2. The experimentally measured~a! SOO(k) and ~b! c(r )
for liquid water at 298 K~solid line! and 373 K~dashed line!.
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Second, the surface tensiong obtained from the DFT mus
also match with the experimental value of 0.072 J/m2.
Within the van der Waals’ theory of surface tension,g is
proportional to the square root ofm @Eq. ~2.3!#, which is
essentially a measure of the range of the attractive poten
Therefore one can simply adjust the value ofm to produce
the desiredg.

These two constraints are clearly not enough to determ
the functional form of the potential. However, the detail

FIG. 3. The weighting functions obtained from solutions of E
~3.16!. ~a! w1(r ) and ~b! w2(r ).

FIG. 4. Experimentally measuredc(k)’s ~dotted lines! compared
with those calculated~solid lines! using the weighting functions~a!
323 K and~b! 423 K.
2-5
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SEAN X. SUN PHYSICAL REVIEW E 64 021512
functional form is not crucial. One could simply take th
energy density part of the functional in Eq.~2.6! as

E dr2ar~r !21
1

2
mu¹r~r !u2. ~3.18!

Another alternative is to choose a potential that matches w
the desireda andm values. For example, we have perform
calculations below using afm of the form

fm~r !5H 2e, r ,s

eS r 2s

d2s
21D , s,r ,d

0, r .d,

~3.19!

wheree andd can be solved by knowinga andm. Calcula-
tions in next section show that taking other forms of t
potential does not make any significant difference in the fi
results.

We note that sincefm is made to matcha andm at 298 K,
it should be different for other temperatures. Therefore,
density functional cannot predict the temperature dep
dence ofg. If the temperature dependence ofm and a are
known, then one can adjustfm accordingly. This problem is
also present in the LJ functional of Eq.~1.4! where fa in
principle does not have any temperature information.

IV. TEST CALCULATIONS

A. Cavity formation in liquid water

Equations~2.6!, ~3.2!, and ~3.19! completely specify our
density functional. To test its accuracy, we have carried o
calculation for liquid water with the presence of a spheri
void. This example nicely demonstrates water density va
tions on all length scales. Our results will be compared w
some computer simulation results@2,6# below. Due to spheri-
cal symmetry,r is a function of the one dimensional variab
r. The weighted density is calculated from Eq.~3.4! and it is
zero inside the cavity. The equilibrium density is the soluti
to the equation

dF@r~r !#

dr~r !
5m, ~4.1!

where the chemical potential is

m5
dF@r~r !#

dr~r !
U

r(r )5r l

. ~4.2!

In practice, follow the direction of the functional derivativ
until it equalsm. The excess chemical potential of creating
cavity of sizeR in liquid water defined as

Dm~R!5F~R!2F~0!, ~4.3!

whereF(0) is the free energy of the uniform liquid withou
a cavity andDm(R) is also the excess chemical potential
solvating a hard sphere of radiusR in water.
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First, to show that the functional form offm is not im-
portant for the DFT, we have performed calculations
Dm(R) for two different potentials. One is in the form of Eq
~3.19! and the other is in the form of a truncated LJ potenti
These two potentials not only have exactly the samea value,
they also possess very similar values ofm. In Fig. 5,Dm(R)
and the asymptotic surface tension for these two poten
are essentially identical. The densities obtained for all cav
sizes are also indistinguishable for these potentials. Th
fore, any reasonablefm with the propera andm values are
probably adequate.

The value ofd in Eq. ~3.19! that agrees well with the
experimentally observed surface tension at 298 K isd
53.0s or 8.6 Å, giving m52.3310210 J/mol2 cm5. The
comparison ofDm(R), experimentally observed surface te
sion is shown in Fig. 6. The DFT surface tension with the
parameters is 0.070 J/m2. LCW used am value of 3.3
310210 J/mol2 cm5, giving a surface tension of abou
0.082 J/m2. The ratio of the square roots of thesem values is
in accordance with the the ratio of the surface tensions
tained, confirming that both LCW and DFT are reproduci
van der Waals’ theory at the interface limit.

Finally, the water density around a cavity size of 3
compared to a SPC water simulation is shown in Fig. 7. O
clearly sees that the packing behavior of water at the bou
ary of the cavity is roughly correct. We also show the wa
densities for larger cavity sizes in Fig. 8, demonstrating
formation of an interface at the edge of the cavity. There
simulation data available for the cavity-solventg(r ) contact
values@2,6#. The comparison is shown in Fig. 9. One se
that the DFT result is roughly in agreement with simulation

FIG. 5. The excess chemical potential of a cavity in water c
culated using density functional theory with two different attracti
potentials~shown in the insert!. These potentials have the samea
andm values and give essentially the same excess chemical po
tial. Here,R refers to the size of the cavity.
2-6
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given the crudeness of the equation of state in Eqs.~3.1! and
~3.6!.

The DFT results are in qualitative agreement with t
predictions of LCW theory. One clearly sees the formation
a liquid-vapor interfaces as the solute become large.~In the

FIG. 6. The excess chemical potential of a cavity in water
function of the cavity radiusR. d parameter in Eq.~3.19! is taken to
be 3.0s that gives the desiredm value. The arrows at 0.072 J/m2

are the liquid-vapor surface tension from experiments. The arro
0.066 J/m2 is the surface tension of SPC/E water from simulatio
@24#. R is the radius of the cavity.

FIG. 7. The cavity-solventg(r ) obtained from the density func
tional calculation. The cavity sizeR is 3 Å. The simulation results
~circles! are obtained using the SPC parametrization of water.
02151
f

next section, we show a density profile near an infinite pla
solute.! The advantages of DFT are that the densities and
energies are all obtained from the same functional. The
culations are generally much simpler than what are requ
for LCW.

s

at
s

FIG. 8. The cavity-solventg(r ) obtained from the density func
tional calculations. The cavity sizes range from 4 to 20 Å.

FIG. 9. The cavity-solventg(r ) contact values from the DFT
calculation~dashed line! vs simulations/fitting result of Hummeret
al. @2# and Floriset al. @6#. This graph is an analog of Fig. 2~b! in
Ref. @15#.
2-7
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B. Interfacial profiles

We have emphasized that in the large length scale lim
our DFT reduces to the van der Waals’ theory of liquids.
Fig. 10, we show an interface obtained from our DFT
fixing the density atz56` to be liquid and vapor, respec
tively. The interface width from our calculation is abo
15 Å. Compared to the simulation results of Alejandreet al.
@24# the interface is clearly too wide. This is due to th
equation of state. Unlike the hard-sphere functional wh
the Carnaham-Starling equation of state is essentially ex
our equation of state for water is very crude. A better para
etrization ofW@r# is desirable. We are not aware of a com
prehensive fit of water equation of state in the literature
detailed study is probably worthwhile. We note that previo
density functional theories of water interface@16# using a
mean field like attractive potential also overestimate the
terfacial width to some extent.

Also shown in Fig. 10 is the density profile of water at t
edge of an infinite solute, i.e., a wall. Our results show t
an interfacelike profile occurs. This is again in agreem
with the LCW theory.

FIG. 10. ~a! Density functional results of a free liquid-vapo
interface at 298 K. It is obtained by fixing the asymptotic density
liquid and vapor values.~b! The liquid densities at a hard wall are i
units ofs3. One sees that a vaporlike layer exists between the b
and the wall.
al

R
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V. DISCUSSION AND CONCLUSIONS

We have presented a theory of solvophobicity based
the weighted density functional approach. The theory
limits that agree with the quadratic free energy functional
Eq. ~2.7! as well as the van der Waals’ theory of liquid-vap
interface. The DFT can predict spacial density profiles
liquids as well as free energies of solvation. Our results
an ideal hydrophobic solute~i.e., a cavity! show that as the
solute becomes larger, a liquid-vapor interface is form
These results are in qualitative agreement with the findi
of LCW. It is also possible to compute the free energy cos
solvating cavities. Our results show that in the infinitely lar
solute limit, the free energy cost is proportional to the area
the solute. The proportionality constant is the liquid-vap
surface tension. There are also advantages of this th
compared to LCW. For example, unlike the two step proc
of LCW theory, free energies and density profiles are giv
by the same free energy expression. Many practical asp
of the calculation are simplified as a result.

For actual hydrophobic solutes such as hydrocarbons,
situation is quite different. There is still a small attractio
between the solute and solvent. In this case, the neces
modifications of our DFT consist of an extra term, i.e., o
should add to Eq.~2.6! *dru(r )r(r ), whereu(r ) is the ef-
fective potential between solute and solvent. The den
profiles could change substantially as a result. This case
be discussed in more detail elsewhere.

We have also shown how to apply the weighted dens
functional approach to fluids other than LJ. The DFT do
not have to rely on intermolecular potentials. Rather it can
based on experimental observed liquid structure and ther
dynamic observables. This gives a well defined recipe
construct the necessary weighting functions. Using Tara
na’s polynomial expansion, we solved a coupled equation
which the weight functions are solutions. The DFT is able
predict solvent densities to all length scales. Although
interfacial profiles obtained are somewhat too wide co
pared to simulations. We attributed this to the crude natur
the equation state used in the DFT. Given an equation
state that can adequately predict interfacial properties of
ter, the DFT should be much improved.
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