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Weighted density functional theory of the solvophobic effect
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We are interested in the spatial density of a molecular fluid in the presence of a solute of arbitrary size and
shape. The density functional is written as the sum &fjpo(r)] that effectively describes small deviations
around the uniform density, plus an energy density part that is responsible for formation of liquid-vapor
interface. Using the weighted density approach, we require the density functional to match with several
observed properties of the fluid such as equation of state and surface tension. We also show that weighting
functions for calculating the weighted density can be obtained from experimental data. Using these elements,
we construct a spatial density functional theory of water and apply it to obtain densities and solvation energies
of a hard-sphere solute with encouraging results.
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l. INTRODUCTION often assumed; takingp®(r,r’) to be approximately
p(r)p(r’), one then obtains
When a hydrophobic solute is in an aqueous solution, the
unfavorable interaction between solute and solvent can lead 1
to the solute adjusting its configuration to minimize its sol- FLp(N]=Folp(r)]+ EJ dff dr'p(r)gr—r")p(r’).
vent exposed area. This is frequently mentioned as the driv- (1.4
ing force for protein folding 1]. To quantify these notions,

several simulation and theoretical studies of the hydrophobig [ p(r)] is the density functional for the hard-sphere refer-
effect have appeard@-7]. Among them, the theory of Lum, ence fluid. It is still an active area of research where sophis-
Chandler, and Weekd.CW) on the hydrophobic effect pre- ticated derivation of such a density functional from geomet-
dicted interesting consequences when the solute is sufftic arguments seems to be possipld]. One of the more
ciently large. Specifically, LCW predicted the formation of a practical minded approach on this subject is pioneered by
vapor layer in the immediate vicinity of the solute. The im- Tarazong12]. The idea behind this DFT is the construction
plications of these results are still being debated. of a weighted density functional that correctly matches with
The ideas of LCW and others can naturally be cast in dhe known functional derivatives of the free energy with re-
simple picture based on the density functional the@¥%T)  spect to the density in the uniform limit. In particular, the
description of liquids. It is our purpose to construct a DFT percus-Yavick approximatiofil3] for c(r) can be used to
that unifies the theories on hydrophobicity. There is a largexplicitly solve for the weighting functions. This idea of

body of work on DFT of liquidg[8,9], mostly for Lennard-  matching the density functional with knowe(r) is also
Jones(LJ) like fluids. The usual approach is based on thepointed out by Curtin and Ashcroff.4].

thermodynamic perturbation theofyPT) [10]. The interac- The use of thermodynamic perturbation theory is based on
tion potential,¢(r), of the LJ particles can be decomposedan important aspect of the LJ system. For dense and close to
into a reference part plus a perturbative part uniform LJ fluid, the density is largely determined by repul-
B sive forces, oF [15]. In this limit, the attractive part of the
P(r)=bol(1)+ ¢o(1). (1.9) functional simply contributes as an energy density and does

The reference system representeddyyis usually taken to not effect the qu!d densny. When th_e fluid becomes nonuni-
be a hard-sphere fluid of proper size. Using thermodynamig)rm’ the attractive part is responsible for the formation of

perturbation theory, the Helmholtz free energy functional Car{nterfaces gnd .S“”face. tension. Fo_r a molecular fluid how-
be written as ever, the situation is significantly different. The structure of

dense and uniform molecular fluid is not solely determined
by the hard-core part of the potential. A well known example

11
Flp(r)]=Folp(r)]+ Ef daj drf dr'p@(r,r';¢,) of this is liquid water where the the hydrogen bond network
0 has a strong influence on the liquid structure. Others have
X pyr—r") (1.2) used the TPT approach to incorporate orientational informa-

al 1 .

tion in water interfaceg§16]. However, these theories are

whereFy is the density functional of the hard-sphere fluid meant for the large length scale limit and cannot describe
defined by, and p@ is the two-body correlation function Molecular scale density variations. Our approach in this pa-

for the reference system with fixedr) and external poten- Per does not utilize quantities from the water-water interac-
tial ¢ tion potential. Rather, we use known thermodynamic infor-

mation of water to predict spatial densities and interfacial
bo=hot+ ad,. (1.3 profiles in the presence of a solute. We show that one is able
to treat the molecular liquids in a fashion very similar to
Mean field approximation for the second part of Efj2) is  simple fluids. Specifically, we show that the weighted density
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functional approach can be robustly applied using experi- 1

mentally observed liquid structure. The density functional is F[P(U]ZJ drd[p(r)]—ap?(r)+ §m|VP(f)|2-

required to reproduce molecular length scale fluctuations. In 2.4

the large length scale limit such as interfaces, it becomes a

van der Waals like theory and reproduces the correct surfaggere, botha andm are temperature dependent quantities.

tension. Therefore, it is a theory fp(r) on all length scales. For a molecular fluid such as water, the density field in
The theory proposed in this paper has physical ideagrinciple is a function of space as well as orientation, i.e.,

originating from the LCW4] treatment of hydrophobic in- ,(r Q). In the case of water, for example)abels the posi-

teraction that followed the works of Chandler and Pratttion of the oxygen atom anf describes the orientation of

[17,18,2,3 on the theory of hydrophobicity and of Weeks the molecular dipole. For such a system, there is a potential

etal. [5] on the concept of an unbalancing potential. ThesgunctionV(r,,Q,,r,,Q,, ...)that completely specifies the

authors examined the behavior of LJ and water in the presnteraction between molecules. Given this potential energy,

ence of a hard-sphere solute. The physical picture thahe grand potential is defined in the usual way and a molecu-

emerged from these investigations lead us to the recognitiogr  free energy density functional exist for

that a density functional theory utilizing only spatial densi-v(r, ©,,r,,Q,, ...) from standard arguments. However,

ties of molecular fluids is indeed pOSSible. The theory pre{f we integrate over!)i, a temperature dependent effective

sented here therefore combines and extends these previggstential can be obtained for the spatial degrees of freedom
treatments on the hydrophobic effect. Since it also has gen-

eral application to other liquids given the proper input infor- Vei(r1,r2, .. .)
mation, we have called it a theory for the solvophobic phe- 1
nomena. — Eln f dﬂldﬂz . e*BV(rl,Ql,rz,Qz, ) )

Il. QUALITATIVE BEHAVIOR OF NONUNIFORM (2.5
MOLECULAR FLUIDS
For V¢, a grand potential can be defined by integrating over

The density functional of Eq1.4) predicts the behavior the space variables and the resulting density functional de-

of LJ fluids very well over a range of densities. However, ends on the spatial densip(r) alone. Having integrated
instead of the actual interaction potential of LJ particlksg, P P ' g g

. ) ) L & - out the orientational degrees of freedom, this functional con-
should be an effective attractive potential that is in principle,_. | inf : d d ib h
temperature and density dependém®]. Indeed, given a tains less information and cannot describe any phenomena
roper choice ofe,, this DFT describés the fo,rmation of related to orientational ordering. Nevertheless, it can be
prop . ar - > ; : made to describe the spatial densities in some detail.
interfacesquite well. This is because it makes a direct con-

nection with the van der Waals’ theory of liquid-vapor inter- The form of this simplified spatial density_functional
o : y at porir might be quite generic for all molecular fluids. For uniform
face. In the limit ofp(r) being a smooth function af, i.e., it

does not chanae verv much over a correlation lenath in thgensities, there is a functional that describes liquid structure
fluid, Eq. (1.4) gan beya roximated b 9 just asF, approximately describes the uniform LJ fluid. And
» BQ- (L PP Y in order to describe the formation of interfaces, one must add

an energy density term as it is done in E#.4). Therefore,

1 ) .
F[p(r)]zf drd[p(r)]+ EJ drf dr’p(r) we write the functional as
X Pr=rp, @D Fp(r=Flp(n1+ 5[ dr [ o p(r) bt =1 o)
where ®[ p] is the hard-sphere equation of state. Equation (2.6)

(2.1) is exactly the van der Waals’ free energy functional.

Therefore, Eq(1.4) is an interpolation between the uniform Here, ¢, should not be regarded as an actual attractive po-

fluid and the interface limit. Within the van der Waals' tential of the molecular fluid, rather it is a quantity that can

theory, the exact form ofp, is also not crucial, rather the be adjusted to match the observed thermodynamics proper-

energy density parametardefined as ties. In fact, the energy density part should be regarded as
equivalent to—ap?(r)+3m|Vp(r)|? in Eq. (2.4). Equation

1 (2.6) is again an interpolation from the uniform limit to the
a=- EJ dr (1) (2.2 interface limit.F, must be consistent with the observed)
in the uniform limit. This can be accomplished using the
and the range of the attraction defined as weighted density functional procedure explained in the next

section. As it is with the LJ fluid, the exact form @,
1 2 should be unimportant and tleeandm values of¢,, must be
m=- Ef drreey(r) (2.3 consistent with the interface and observed surface tension.
In order to see that E@2.6) has a physical basis, we draw
are more relevant for the surface tension. After making aipon some recent observations of nonuniform fluids. Several
gradient expansion gi(r’) aroundr, Eq.(2.1) is essentially groups have examined the behavior of wd®P,6] and LJ
equivalent to the functional [5,7] fluids in the presence of a hard-sphere solute. This situ-
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' | T T T | ' depleted from the edge of the cavity and drying occurs.

Weekset al. [5] and Lum et al. [4] describe this with an

unbalancing force. Eventually a liquid-vapor interface is
formed. In this limit, LCW showed that a van der Waals like
free energy functional describes the smooth density profiles
of water quite well:
r+R r+R 1
L Flo(r)1= [ a1+ [ ar [ arpon
X pm(r—=r")p(r’), (2.8
whereW[ p] is a simple equation of state for a finite sized
ideal gas. This is the analog of E(.1) for the Lennard-
Jones case(For ¢,,, LCW did not take an explicit func-
tional form, rather they used experimentally determirged
andm values from the surface tension.

The results of these investigations indicate that the ge-
neric functional form of Eq(2.6) should be adequate for the
agueous solvent. Equatiai2.6) might even be correct for
other molecular fluids where the solvent molecules are

Ric “small” and do not exhibit strong spatial orientational ef-

. o ) _ fects. The detall inputs that make it quantitative is explained
FIG. 1. A schematic depiction of the excess chemical potentla‘n the next section.

(solvation energyof a hard-sphere solute of radiisin a liquid. o
is the effective length scalgFor water,o can be taken to be
2.9 A) For small solute size@ndicated by the brackgtthe excess

chemical potential is roughly a linear function of the volume of the  The spatial density functional of the fluid therefore must
solute. Atypical solute-solvery(r) is shown in the left insert. One a0k with three observed water properties. The trivial limit

sees that the solvent simply packs around the solute in a manner 4o homogeneous limit where the free energy is given by
consistent withy ~ of the uniform liquid. For larger solute sizes, the equation of state
e )

the excess chemical potential is a function of the solute surfac
area. From theg(r) profile in the right insert, one sees that a vapor-
liquid interface like density profile is formed at the edge of the F[p]:f dr{W[p]—ap?, (3.0
solute. In theR— oo limit, A u/47R? is essentially the surface ten-

sion of the vapor-liquid interface of the solvent.

g(r+R)
g(r+R)

Au/(4rR’)

IIl. CONSTRUCTING A DENSITY FUNCTIONAL THEORY

whereW[ p] is the equation of state without the energy den-

ation is also equivalent to the formation of a cavity of de sity contribution. Thus, in the uniform lim#, in Eq. (2.6

1 ’
in the liquid. The findings are schematically summarized inshould - reduce to fdrW(p) and 5Jdrdr’p(r)dm(r

et ’ 2 -
Fig. 1 where the behavior of the excess chemical potential of " )p(r’) should reduces te-fdrap®. W[p] must natu

solvation is plotted vs the cavity size. Also shown are repre-;lal.lé' C(?trr:espﬂrlﬂ t% tthefl c:jbfservte?d eﬂfa"of‘ of _.:,tatebf:)r the
sentative spatial density profiles of the liquid for various cav-_l_l}f1I ' ih Olf[g I'e 'te al ethunctlorfla o[m 'Its q#' € atrh ! r]:alry.
ity sizes. Figure 1 shows that water is indeed very similar to € other two limits are the Intertace fimit where the iree

. gnergy is given by Eq(2.8) and the small deviation limit
where the free energy is quadratic. To interpolate between
593.(2.7) and(2.8), we use a weighted density functional of

form,

local structure of the liquid is not disturbed very much and
liquid simply rearranges around the cavity. The excess fre
energy and the spatial density can be determined by a qu 1€
dratic expansion of the free energy around the uniform den-
sity [18,2]. More precisely, for small cavities in water, the Fo[p(r)]ZFid[p(r)]—i-f drp(nN¥[p(r)], (3.2
free energy functional is approximately

whereF is the free energy density of an ideal gas

1
F[n(ﬂhﬁf dffdf’[P(f)—m]X\Tvl(f—r’)[p(f')—pl]

~Fo[p(r)]. 2.7 Fid[P(r)]:f drp(r)kgT[Inp(r)—1], (3.3

where X\;ﬁ: S8BFI8p(r)dp(r') at p, for water [20]. For and;is the weighted density determined by the self consis-
larger cavities however, the fluid will deviate from the tent equation

Gaussian behavior implied by EQ.7) [7]. A liquid mol-
ecule near the large void will experience a net attraction to — . ey

the bulk or net repulsion away from the cavity. Density is p(r)—f drip(r)wlr=r";p(r)], 34
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wherew[r—r’;;(r)] is the weighting function¥[ p] in this In order.to make progress, we fo]low Tarazona’s further
case must satisfy approximation on the weighting function and expregs; p)
as
W[p]=pks T(Inp—1)+pW¥[p]. (3.5
W(r,p)=Wo(r)+Wy(r)p+wy(r)p?, (3.10

For water, we have takeW[ p] to be )
Lp] where w;(r) are independentof p and temperature. The

weighting function must be normalized, i.e.,
W[p]=pkgT log

bp

f drw(r)=1. (3.11
wherea=229 kJcni/mol, b=14.99 cni/mol at 298 K
[4]. This parametrization is based on a fit to water compresspe have chosem(r) to be a step function of the form
ibility and the density difference between liquid and gas. At
best it is a very crude approximation to the actual water 3
properties. Other forms AV p] that can give a better fit of Wo(r)= m@(a—r), (3.12
water phase boundary and equation of state will undoubtedly
yield better results. _pl3_ ; i

With the proper choice of the weighting funﬁtion, one sees\ggf;(taioon_ot; st_atzelfag i;& trl1$e tgsuzljngtg]p Sﬂcﬂlgigr;ve\?vnay t;?;

that if p(r) is a smooth function of space, thelr)~p(r),  choice ofw(r), w;(r) andw,(r) must integrate to zero,
we obtain the van der Waals limit of E¢2.8). Now we

determine the weighting function using EQ.7).
J drw, «(r)=0. (3.13
A. The weighting functions

The simplification that results from the expansion of Eq.
(3.10 is twofold. First, the self-consistent equation of Eg.
(3.4) can now be solved analytically. The resulf 2]

The strategy we employ for determining, and the
weighting functions is to match knowe(r)’s with the sec-
ond derivatives of the free energy in E&.2). Since

SB(Fo—Fia) — 2po(r)
c(|r—r’|)=0—'fj : (3.7 p(r)=—= - =0,
Sp(r)dp(r') 1=p(r)+[{1—pa(r)}—=4po(r)pa(r)]
i (3.19
[here, we have made the definition thefr) contains no  \yhere
attractive interactiohtaking the second derivative with re-
spect top(r) of Eq. (3.2 and setting the density to the uni- _
form density gives the following expression fofr): Pi(r):f dr'wi(r=r")p(r’). (3.19
2% (p)) Second, the weight functions, andw, can be solved from

o(lr=r'h=- kgT w(lr=r':p) a given set ot(r)’s. More precisely, using Eq3.9), if one

V() hasc(k) at two different condition 4, and temperatujewe
pl pl n n . n A i i iti
—f dr'w(|r"=r[;ppw([r"=r"|;p)) can introduce coupled equations for these two conditions

KeT
i Zq,,(pl)
v = T
_ P (pl)f drlr[wr(|r11_r|;p|) Cl(k) kBTl W(k!pl)
kgT
XW([r"=r"[;p)+w'([r"=r"];p) ~ P ppwkepy)]
, kgTy1 dp1 P P
xw(|r"=r[;p)]. (3.9
de : , 2V’ (p,)
Written in k space, this equation reads as Ca(k)=— Ww(k,l)z)
2% (p) poJd 2 p2 J 2
c(k)=— kaT w(k,p)— kB_Ta_m[\I, (pWA(k,pp)]. T kaT, a—pz[‘l’ (p2)w(k,p2)]. (3.1
(3.9

With the two unknownsw;(k) and w,(k), two coupled
Clearly, because the weighting function dependspnone  equations are in principle sufficient. If one wants to intro-
in principle must know the full dependencea(k) onp, to  duce a cubic order in the expansion in E.10), three
solve this equation. Usually, this dependence is not known.coupled equations are needed.
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15 ——T——7—— Sr——T——T— 8 —r——r—1—
(@) ® (@)

S(k)
co(r)

22 .
ko ric 0 1 2 3 0 1 2 3
r/c rlc

FIG. 2. The experimentally measuréa) Soo(k) and (b) c(r)

for liquid water at 298 K(solid line) and 373 K(dashed ling FIG. 3. The weighting functions obtained from solutions of Eq.

(3.16. (a) wq(r) and(b) wy(r).
Thus, even though one does not have t{k) for all ) _

densities, using experiment@r simulation results forc(k) ~ Second, the surface tensignobtained from the DFT must

at two different conditions should allow one to search for the2lso match with the experimental value of 0.072 3J/m
weighting functions. The complication is that the coupledWithin the van der Waals’ theory of surface tension,is
equations areonlinear Therefore, the solutions at a particu- Proportional to the square root afi [Eq. (2.3], which is
lar k value may not be unique. For cert&is, solutions may essentially a measure of the range of the attractive potential.
not even exist. Nevertheless, we have carried out a numericainerefore one can simply adjust the valuenofo produce
search21] for the solutions of Eq(3.16) using experimen- the desiredy. _ _
tally measure®yo(k) [22] values for water. The two condi- These two constraints are clearly not enough to determine

tions we have chosen are at 298 K and 373 K. The watethe functional form of the potential. However, the detailed
densities at these temperatures are 0.997 and 0.958% g/cm
respectively{23]. The experimentally observe®{k) in prin- 5 ' l ' l ' l ' l
ciple contains attractive interactions. We have assumed thei (@) (b
contributions are small. Figure 2 displays ®)’s and the [ 1 1
c(r)’s for these two conditions. The weighting functions ob- ol
tained from numerical solutions to E(.16) are displayed
in Fig. 3. Roots of the coupled equations are successfully | {_w 1 i
obtained for mosk’s. Not shown are the(r)’s calculated
from the weighting functions, they are essentially indistin- |
guishable from those in Fig. 2.
As a test of the quality of the weighting functions, we & | 1
have used them to predict tli€k)’s for other density and °
temperatures. For example, in Fig. 4, we show the experi- -y
mentally measurea(k)'s at 323 K and 423 K vg(k)'s !
obtained using the weighting function. For these two condi-
tions, the densities are 0.988 and 0.917 d/craspectively.
One sees that the comparison is indeed favorable.

B. The energy density part

As we explained in Sec. llg,(r) must satisfy several
constraints. First, in order to match the equation of state, the
potential must satisfy

0

20

ko

40

20

ko

40

FIG. 4. Experimentally measuredk)’s (dotted line$ compared
with those calculate@solid lines using the weighting function&)

(3.1 323 K and(b) 423 K.

1
- EJ dropy(r)=a.
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functional form is not crucial. One could simply take the 100
energy density part of the functional in E®.6) as
i g
1 £ -
f dr—ap(r)®+ Elep(r)|2. (3.18 80 2 |
2 .
B (3
Another alternative is to choose a potential that matches with{s\ < - 1
the desirech andm values. For example, we have performed S 49 |- -1 — ; L ; —
calculations below using &, of the form ?S o
— €, r<o o
g 40 - B a a ﬂ
r—o =1
dn(r)= E(d—a_]')' o<r<d (3.19 = | (m]
0, r>d, 2l
wheree andd can be solved by knowing andm. Calcula- | f
tions in next section show that taking other forms of the
potential does not make any significant difference in the final 0’ L L - ! - L -
results. 5 10 15 20
We note that sinceé, is made to match andmat 298 K, R(A)

it should be different for other temperatures. Therefore, out

density functional cannot predict the temperature depen- FIG. 5. The excess chemical potential of a cavity in water cal-
dence ofy. If the temperature dependencerofanda are  culated using density functional theory with two different attractive
known, then one can adjugt,, accordingly. This problem is Potentials(shown in the insejt These potentials have the same
also present in the LJ functional of E¢L.4) where ¢, in a}ndmvalues and give ess.entially the same excess chemical poten-
principle does not have any temperature information. tial. Here,R refers to the size of the cavity.

IV. TEST CALCULATIONS First, to show that the functional form af,, is not im-

portant for the DFT, we have performed calculations of

A n(R) for two different potentials. One is in the form of Eq.
Equations(2.6), (3.2), and(3.19 completely specify our (3.19 and the other is in the form of a truncated LJ potential.

density functional. To test its accuracy, we have carried out Fhese two potentials not only have exactly the samalue,

calculation for liquid water with the presence of a sphericalthey also possess very similar valueswfin Fig. 5,A u(R)

void. This example nicely demonstrates water density variaand the asymptotic surface tension for these two potentials

tions on all length scales. Our results will be compared withare essentially identical. The densities obtained for all cavity

some computer simulation resul 6] below. Due to spheri-  sizes are also indistinguishable for these potentials. There-

cal symmetryp is a function of the one dimensional variable fore, any reasonab|¢m with the propera andm values are

r. The weighted density is calculated from E8.4) and itis  probably adequate.

zero inside the cavity. The equilibrium density is the solution  The value ofd in Eq. (3.19 that agrees well with the

A. Cavity formation in liquid water

to the equation experimentally observed surface tension at 298 Kdis
=3.00 or 8.6 A, givingm=2.3x10" J/mof cn?. The
M —u (4.1) comparison ofA u(R), experimentally observed surface ten-
op(r) ’ sion is shown in Fig. 6. The DFT surface tension with these
) o parameters is 0.070 JmLCW used am value of 3.3
where the chemical potential is x1071° J/mof cmP, giving a surface tension of about
SF[p(1)] _0.082 JIM. The r_atio of the square roots of therse/alugs is
u= ortpti] _ (4.2  in accordance with the the ratio of the surface tensions ob-
op(r) tained, confirming that both LCW and DFT are reproducing

p(r)=p
' van der Waals’ theory at the interface limit.

In practice, follow the direction of the functional derivative ~ Finally, the water density around a cavity size of 3 A
until it equalsu. The excess chemical potential of creating acompared to a SPC water simulation is shown in Fig. 7. One

cavity of sizeR in liquid water defined as clearly sees that the packing behavior of water at the bound-
ary of the cavity is roughly correct. We also show the water
Au(R)=F(R)—F(0), 4.3 densities for larger cavity sizes in Fig. 8, demonstrating the

formation of an interface at the edge of the cavity. There is
whereF(0) is the free energy of the uniform liquid without simulation data available for the cavity-solveg(tr) contact
a cavity andA u(R) is also the excess chemical potential of values[2,6]. The comparison is shown in Fig. 9. One sees
solvating a hard sphere of radigsin water. that the DFT result is roughly in agreement with simulations,
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FIG. 6. The excess chemical potential of a cavity in water as  FIG. 8. The cavity-solveng(r) obtained from the density func-
function of the cavity radiuR. d parameter in Eq3.19 is taken to  tjonal calculations. The cavity sizes range from 4 to 20 A.
be 3.0 that gives the desireth value. The arrows at 0.072 Fm

are the liquid-vapor surface tension from experiments. The arrow at ) . . Lo
0.066 J/nf is the surface tension of SPC/E water from simulations"€Xt Section, we show a density profile near an infinite planar
[24]. Ris the radius of the cavity. solute) The advantages of DFT are that the densities and free

energies are all obtained from the same functional. The cal-
given the crudeness of the equation of state in E8j)d) and  culations are generally much simpler than what are required
(3.6). for LCW.
The DFT results are in qualitative agreement with the
predictions of LCW theory. One clearly sees the formation of
a liquid-vapor interfaces as the solute become lafiyethe

3-5 L} I T I T I 1
3 T I L} I L} I T | ]
i | 3k _
| ,/\\ i
/ \
2f - / \
S / ¢ o0 \
LT / . \ '
2 i i % /e \
% oL ! ¢ \ _
/ \
*
| \\
L ¢ 4
| _ N
1 » o N
15} I * N0
) S
| J ! N
i o N
!
1 ’ 2\ | L | L | L
0 m I L I L I 1 0 2 4 6 8
0 5 10 15 20
RA)

r
@ FIG. 9. The cavity-solveng(r) contact values from the DFT
FIG. 7. The cavity-solveng(r) obtained from the density func- calculation(dashed lingvs simulations/fitting result of Hummeat
tional calculation. The cavity sizR is 3 A. The simulation results al. [2] and Floriset al.[6]. This graph is an analog of Fig(t in
(circles are obtained using the SPC parametrization of water. Ref.[15].
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_ We have presented a theory of solvophobicity based on
the weighted density functional approach. The theory has
limits that agree with the quadratic free energy functional of
Eq. (2.7) as well as the van der Waals’ theory of liquid-vapor
interface. The DFT can predict spacial density profiles of
liquids as well as free energies of solvation. Our results for
an ideal hydrophobic solutgé.e., a cavity show that as the
solute becomes larger, a liquid-vapor interface is formed.
These results are in qualitative agreement with the findings
of LCW. Itis also possible to compute the free energy cost of
solvating cavities. Our results show that in the infinitely large
solute limit, the free energy cost is proportional to the area of
the solute. The proportionality constant is the liquid-vapor
surface tension. There are also advantages of this theory
compared to LCW. For example, unlike the two step process
of LCW theory, free energies and density profiles are given
by the same free energy expression. Many practical aspects
DL g of the calculation are simplified as a result.

0 15 20 For actual hydrophobic solutes such as hydrocarbons, the
z(A) situation is quite different. There is still a small attraction
between the solute and solvent. In this case, the necessary
modifications of our DFT consist of an extra term, i.e., one

0.8 |~

[

=20 -10 0
z(4)
FIG. 10. (a) Density functional results of a free liquid-vapor

interface at 298 K. It is obtained by fixing the asymptotic density to . .
liquid and vapor valuegb) The liquid densities at a hard wall are in should add to Eq(2.6) Jdru(r)p(r), whereu(r) is the ef

units of 3. One sees that a vaporlike layer exists between the bullzecn.Ve potential between solqte and solvent. The denSIt_y
and the wall. profiles could change substantially as a result. This case will

be discussed in more detail elsewhere.

We have also shown how to apply the weighted density

_ ] functional approach to fluids other than LJ. The DFT does

B. Interfacial profiles not have to rely on intermolecular potentials. Rather it can be
, . .. based on experimental observed liquid structure and thermo-

We have emphasized that in the large length scale limitgynamic observables. This gives a well defined recipe to
our DFT reduces to the van der Waals’ theory of liquids. Inconstruct the necessary weighting functions. Using Tarazo-
Fig. 10, we show an interface obtained from our DFT byna's polynomial expansion, we solved a coupled equation for
fixing the density az= * to be liquid and vapor, respec- which the weight functions are solutions. The DFT is able to
tively. The interface width from our calculation is about predict solvent densities to all length scales. Although the
15 A. Compared to the simulation results of Alejandteal.  interfacial profiles obtained are somewhat too wide com-
[24] the interface is clearly too wide. This is due to the pared to simulations. We attributed this to the crude nature of
equation of state. Unlike the hard-sphere functional wheréhe equation state used in the DFT. Given an equation of
the Carnaham-Starling equation of state is essentially exacsfate that can adequately predict interfacial properties of wa-
our equation of state for water is very crude. A better paramter, the DFT should be much improved.

etrization of W[ p] is desirable. We are not aware of a com-
prehensive fit of water equation of state in the literature. A
detailed study is probably worthwhile. We note that previous The author would like to thank Professor David Chandler
density functional theories of water interfaf®6] using a and Dr. Pieter Rein ten Wolde for many stimulating discus-
mean field like attractive potential also overestimate the insions. The computer simulation results provided by David
terfacial width to some extent. Huang and Phill Geissler are gratefully acknowledged. This
Also shown in Fig. 10 is the density profile of water at thework has been supported by the Director, Office of Energy
edge of an infinite solute, i.e., a wall. Our results show thaResearch, Office of Basic Energy Sciences, Chemical Sci-
an interfacelike profile occurs. This is again in agreementnces Division of the U.S. Department of Energy under Con-

ACKNOWLEDGMENTS

with the LCW theory. tract No. DE-FG03-87ER13793.
[1] W. Kauzmann, Adv. Protein Cheri4, 1 (1959; C. Tanford, Pratt, Proc. Natl. Acad. Sci. U.S.R3, 8951(1996.
The Hydrophobic Effect-Formation of Micelles and Biological [3] G. Hummer, S. Garde, A. E. Garc’a, M. E. Paulaitis, and L. R.
MembranegWiley-Interscience, New York, 1973 Pratt, J. Phys. Chem. B02 10469(1998; G. Hummer, S.

[2] G. Hummer, S. Garde, A. E. Garcia, A. Pohorille, and L. R. Garde, A. E. Garc’a, and L. R. Pratt, Chem. Phg58 349

021512-8



WEIGHTED DENSITY FUNCTIONAL THEORY OF THE . ..

(2000.
[4] K. Lum, D. Chandler, and J. D. Weeks, J. Phys. Ch&68
4570(1999.
[5] J. D. Weeks, K. Katsov, and K. Vollmayr, Phys. Rev. Lé&tt,
4400(1998.
[6] F. M. Floris, M. Selmi, A. Tani, and J. Tomasi, J. Chem. Phys.
107, 6353(1997).
[7] D. M. Huang and D. Chandler, Phys. Rev6E, 1501(2000.
[8] R. Evans, inFundamentals of Inhomogeneous Flyidslited
by D. HendersoriMarcel Dekkar, New York, 1992
[9] Y. Singh, Phys. Rep207, 351 (1991).
[10] J. S. Rowlinson and B. WidonMolecular Theory of Capillar-
ity (Oxford University Press, New York, 1982
[11] Y. Rosenfeld, M. Schmidt, H. Lowen, and P. Tarazona, Phys.
Rev. E55, 4245(1997).
[12] P. Tarazona, Phys. Rev. 3, 2672(1985.
[13] J. P. Hansen and I. R. McDonal@heory of Simple Liquids
(Academic Press, London, 1986
[14] W. A. Curtin and N. W. Ashcroft, Phys. Rev. 82, 2909
(1985.

PHYSICAL REVIEW E 64 021512

[18] D. Chandler, Phys. Rev. &8, 2898(1993.
[19] S. Toxvaerd, J. Chem. Phys5, 3116(1971J.
[20] Under certain conditions, the functional of E@.7) permits

unphysical results such as negative densities. Including higher
orders expansions in the DFT is difficult and does not yield
better results. However, when applied to densities clogg to
including cases of small solutes, the Gaussian functional does
correctly predict liquid structure. Theory of Hummet al.
[2,3], though has many features similar to Eg.7), does not
have this deficiency. See M. A. Gomez, L. R. Pratt, G. Hum-
mer, and S. Garde, J. Phys. Cheb®3 3520(1999; L. R.
Pratt, G. Hummer, and S. Garde Mew Approaches to Prob-
lems in Liquid State Theoryedited by C. Caccamo, J.-P.
Hansen, and G. Ste(Kluwer, Netherlands, 1999

[21] W. H. Press, S. A. Teukolsky, W. I. Vetterling and B. P. Flan-

nery, Numerical RecipesCambridge University Press, Cam-
bridge, England, 1992The solutions to the coupled equations
are searched with the Newton-Raphson method described in
Sec. 9.6.

[15] J. D. Weeks, D. Chandler, and H. C. Anderson, J. Chem. Phyd22] A. H. Narten and H. A. Levy, J. Chem. Phyib, 2263(1971);

54, 5237(1971).

[16] B. Yang, D. E. Sullivan, B. Tjipte-Margo, and C. G. Gray, Mol.
Phys.76, 709(1992; B. Yang, D. E. Sullivan, and C. G. Gray,
J. Phys.: Condens. Mattér 4823(1994).

[17] D. Chandler and L. R. Pratt, J. Chem. Ph§§, 2925(1976);
L. R. Pratt and D. Chandleibid. 66, 147 (1977).

021512-9

The relationship betweerc(k) and S(k) is c(k)=1/p,

—1/p;S(k). See Ref[13].

[23] CRC Handbook of Chemistry and PhysiéZth ed., edited by

R. C. Weas{CRC, Boca Raton, FL, 1986

[24] J. Alejandre, D. Tildesley, and G. A. Chapela, J. Chem. Phys.

102 4574(1995.



