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Flow of a ferrofluid down a tube in an oscillating magnetic field
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The magnetoviscosity of a ferrofluid flowing down a circular tube in the presence of a magnetic field
oscillating in the direction of the axis is studied on the basis of ferrohydrodynamics, Maxwell’s equations of
magnetostatics, and a relaxation equation for the magnetization. Three different relaxation equations, proposed
in the literature, are considered. For large amplitude of the oscillating field the three equations lead to different
values of the magnetoviscosity. For large magnetic permeability the self-consistent magnetic field generated by
the magnetization has significant effect.
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I. INTRODUCTION The calculation is based on ferrohydrodynamics, Max-
well's equations of magnetostatics, and a relaxation equation
In the absence of an applied magnetic field the flow of &for the magnetization. The latter is the least established. For
ferrofluid down a circular tube shows the familiar parabolicdense ferrofluids a detailed kinetic theory allowing a micro-
Poiseuille patterrj1]. If a steady magnetic field is applied Scopic calculation of the relaxation behavior is not available,
along the tube, then for the same pressure gradient the floand one is forced to take a phenomenological point of view.
pattern remains parabolic but the flow rate is strongly reWe investigate the consequences of three different relaxation
duced. This is interpreted as an increase of viscosity, and igquations, which have been proposed in the literature,
called magnetoviscositj2—4]. Surprisingly, if the field os- namely, Shliomis’ relaxation equati¢g], the modified equa-
cillates in time then the flow rate increases provided the fretion of Martsenyuket al. [8], and the relaxation equation of
quency of oscillation is sufficiently higFs,6]. This phenom-  Felderhof and KroH{12]. The relaxation equation of Mart-
enon has been called “negative viscosity” of a ferrofluid. senyuket al. [8] was derived for a dilute ferrofluid in an
The name is not quite appropriate, since the transport coegffective field approximation for the orientational distribu-
ficient viscosity does not change noticeably. Rather, in addition function. The relaxation equation of Felderhof and Kroh
tion to the pressure gradient there is an oscillating magnetitl2] was proposed on the basis of irreversible thermodynam-
force density, with nonvanishing time average acceleratindcs. For definiteness we make the additional assumption that
the fluid. At low frequency the net magnetic force densitythe relaxation time appearing in the equation does not de-
acts against the pressure gradient and the fluid is slowegend on magnetic field or magnetization.
down. Zeuneret al. [13] measured the negative viscosity effect
The so-called negative viscosity effect was predictedor a dilute ferrofluid, and compared with the theory of Bacri
theoretically by Shliomis and Morozof5], and was first et al.[7]. For a dilute ferrofluid the magnetic field generated
demonstrated experimentally by Baetial.[7]. The original by the magnetization is much smaller than the applied field
theory [5], based on Shliomis’ relaxation equation for the and may be neglected. Zeuneral. [14,15 discussed the
magnetizatior{2], did not fit the experimental data well. A theory in some detail.
modified theory, based on a different relaxation equation
[8,9], provided qualitative agreement with the difa
The theorieg5,7] mentioned above omit the effect of the
demagnetizing field. As we shall show, the omission can be |n the approximation of fast rotational relaxation the mean
justified only if the initial susceptibility of the ferrofluid is rate of rotatione, of the suspended particles of a ferrofiuid

small. In the experiment of Baceit al.[7] the susceptibility is determined by the local fluid vorticit2= 1V X v and the
is large[10] and the demagnetizing field has a considerablegcal magnetic torque density as

effect. In the theory of Zahn and Gregtl] of flow in a

planar duct the demagnetizing effect was taken into account 1

cor_rectly bqt the authors limit themselves to a _Iinear mag- w,=Q+ —MxH, (1)
netic equation of state and neglect the generation of higher 4

harmonics. Experimentally one easily gets into the nonlinear

regime of the equation of state, and the neglect of highefyqare s js the vortex viscosityM the magnetization, and

harmonics cannot be justified theoretically. the local magnetic field. In this approximation the antisym-

_ In the following we calculate the effective viscosity 0 yetric part of the total stress tensor vanisf 16, and the
first order in the applied pressure gradient. It is assumed thaj ;g equation of motion becomes

the radius of the tube is much larger than the Stokes length
characterizing the boundary layer thickness. The Stokes

II. BASIC EQUATIONS

length is given byy n/(pw), where 5 is the shear viscosity, Dv s s
. P —V'((Thyd+ O'm), (2)
p the mass density, and the frequency. Dt
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where D/Dt=d/d+uv-V is the substantial derivative, and particlesmis the size of the magnetic moment of a particle,
o-ﬁyd is the symmetric part of the hydrodynamic stress tensorand Ty is the temperature. More generally we may use Eq.
given by (10) as an approximate equation of state with paraméibys
and xq. In our numerical work we shall assume that the
2 vortex viscosity/ is related to the relaxation ti by[2,4
Uﬁyd,aﬁ:_p‘saﬁ_"n ﬁavﬁ+ﬁﬁva—§(v~v)§a5 yg rn% y[ ]
M3
+4,(V-0)8,4, 3 §1=6—XOTB- 11
wherep is the pressurey is the shear viscosity, anf is the
volume viscosity. The symmetric part of the magnetic stres
tensor is given by4]

We use the subscript 1 to distinguish this case. For a dilute

ferrofluid the relaton is exact and becomesg;

=2nkgTo7s. More generallyrg and ¢ are independent pa-

1 1 rameters.

aﬁqzs—(BHﬂL HB) +8—H21 (4) A second relaxation equation was derived by Martsenyuk
m m et al. from Brownian motion theory in an effective field ap-

with magnetic induction proximation[8,9]. It takes the form

_ M
B=H+47M. (5) W"'V'(UM)—QXM
The magnetic inductioB and magnetic fieldH satisfy Max-
well's equations of magnetostatics 1 M 3)(0'—(§<5)HJr 1 ( 1 3L(§e))
== —[M-———H+ |1~
V.B=0, VXH=0. 6) 7B Se €e
Using these equations one can write ><3—X20M><(M>< H) |, (12)
1
S_ Z
V-on=M- (VH)+2 VX(MXH). @) where &q(t) follows from the magnetizatioM (t) by the

relationM=MgL (&,).

The first term on the right is the Kelvin force density. Note A third relaxation equation was proposed by Felderhof
that the second term can be expressed as the divergence ofamd Kroh[12] on the basis of irreversible thermodynamics.
antisymmetric tensor. The equation reads

The above equations must be supplemented with a consti-
tutive equation for the magnetization. We shall study the
consequences of three different relaxation equations, which 7+V-(vM)—Q><M
have been proposed in the literature. The first equation is due
to Shliomis[2]. When extended to the case of a compressible
fluid it reads 4¢
where the local equilibrium fieldH, is determined by the
magnetization according to the equilibrium equation of state

:@(H_He)—iMx(MxH), (13
7B

IM
— 4+ V.- (oM)— QXM
at

~1 1

(M_ Me) 4{
with the function C(M) satisfying the identity C(M)
whererg is the Brownian relaxation time, and the local equi- = 1/A(MC(M)). We note that withB,=H+47M and B
librium magnetizationM, is determined by the local mag- =H-+47M one can write alternativeld —H.=B—B,. We

netic fieldH according to the equilibrium equation of state have chosen the relaxation time in E4.3) such that the
equation reduces to Shliomis’ relaxation equation g for

_ He=MC(M), (14)

MX (MXH), (8)

B

Mc=HA(H). 9 small deviations from equilibrium at zero field. We shall
o . show that the three relaxation equations E&, (12), and
Shliomis used the expression (13) lead to drastically different predictions for the depen-
dence of the magnetoviscosity on amplitude and frequency
ACH) = MWSL( 3K(A0H) (10  Of the applied oscillating magnetic field.
S

. . . . I1l. FLOW IN OSCILLATING MAGNETIC FIELD
with the Langevin functior. (&) = cothé—¢& ! and with satu-

ration magnetizatiorM g and initial susceptibilityy,. He We consider a ferrofluid in a circular tube of radias
considered a dilute ferrofluid for whicMgs=nm and xq perturbed by an oscillating magnetic field directed along the
=nm?/(3kgT,), wheren is the number density of Brownian axis of the tube. We take tteaxis along the axis of the tube.
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The uniform applied magnetic filed is tinuous across the tube boundary. Maxwell's equations Eq.
(6) are clearly satisfied everywhere. The fi¢ld is the de-
Ho(t) =Ho.e, coswt. (19  magnetizing field.

Consider first the case of zero applied pressure gradien 'iI;she floww, is incompressibley -v,=0, and the vortic-
Then the fluid remains at rest, and the magnetization oscil-
lates according to 1 of

Q=—=-—€ (23
Mo()=MgF ()€, (16 2or

with a periodic functionF(t) that averages to zero over the With azimuthal unit vectoe, . By substitution into Eqsi8),
period T=27/w. The pressure will oscillate in time, but is (12), and(13) we find that to first order the radial magneti-

spatially uniform. The functiorF (t) depends on amplitude Z&tion componenM (r,t) satisfies the equation
Ho, and frequencyw. Its behavior for each of the three re-

laxation equations is different. For Shliomis’ relaxation equa- M, E ﬁ 02=— iV(t)Mr (24)
tion Eq. (8) the functionF(t) satisfies ot 20r 8
with different damping factol(t) for each of the three re-
Te gy~ TL(£coswt), (17 laxation equations. The three damping factors will be speci-
fied later. It suffices to note here that each of the factors is
if the equation of state Eq10) is used, with spatially uniform and periodic in time with periog.
The z component of the equation of motion E@) be-
3xo0 comes with the ansatz E(R2) to first order ink
&= M_HOz- (18
S
of [ 10f 1 oM, 1
For the relaxation equation E(L2) of Martsenyuket al.[8] P =7 PJF Y oor k= EBOZ or + FMF :
the functionF(t) satisfies (25)
dF F ; i "
TBEZ_F_}' g—gcosm, (19) We_ must satisfy the stick boundary condition at the tube
£ radius
with & defined byF=L(&g). For the relaxation equation f(a,t)=0. (26)
Eq. (13) the functionF(t) satisfies It is instructive to consider first the solution of Edg4),
F 1 (25, and (26) for the static casew=0. Then Mg,
T8 gp = — XoF C(IM&F|) +§§COSwt. (20) =Hg,A(Hg,) is the equilibrium magnetizatioM in field

Ho, and the damping factor is a constafny,. The equations

) ) are solved by
For small ¢ the functionF(t) remains small and the three

equations Egs(17), (19), and (20) become identical, since 1

é~3F andC(0)= x, . For larger values of the solutions f(r)= 177A (a®-r?),

of the three equations can differ significantly. 7EEm >
An applied pressure gradient perturbs the situation de- K Meq @7

scribed above. We shall calculate the resulting flow to first M,=
order in the applied pressure gradient, and indicate the cor-
responding additional fields,;, M,, H;. The pressure is

1
— T r
477+A7]|| Bvst

with viscosity change
p=po—kz, (21 M

A= DedBea (29
where po may be time dependent, but does not depend on kKl 4V, B
spatial coordinates. We solve the basic equations to first or-
der in the pressure gradiektby making the ansatz At frequencyw # 0 the functionsf(r,t) andM(r,t) will be
periodic in time. In the following we assume that the tube
v.(r,t)="f(r,t)e,, r=yx+y? radius is sufficiently large that boundary layer effects can be
neglected. We restrict attention to the corresponding bulk
M(r,t)=M,(r,t)e, (22 solution.
Hi(rt)=—47M(r,t)e, IV. CALCULATION OF MAGNETOVISCOSITY

for r<a. Heree is the radial unit vector. In the vacuum At frequencyw the viscous term in Eq(25) leads to a
outside the tubeB=H,. It follows from Eg. (22) that B,  Stokes length scalg'= \n/(pw). If the frequency is suffi-
=0 everywhere, so that the normal componenBoi con-  ciently high that this length scale is much smaller than the
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radiusa of the tube, then the solution can be divided into a 1
bulk part and a boundary layer part. In the following we An(w)=5£,Gb, (36)
assumew> 7/(a%p), and concentrate on the bulk part, ne-
glecting the boundary layer. In the experiment of Batral.  \where we have used E@l1). The calculation of the time
[7] the zero field visco_sity isyg=77 cP, the radiuz_;t is 0.05  averageGb requires the solutiof (t) of Egs.(17), (19), or
cm, the mass density js~1.3 g/cnt, so that the inequality (20), the damping factol/(t) corresponding to one of the
is satisfied for frequencies27)>40 Hz. three relaxation equations, the soluttt) of Eq. (34), and
The bulk part of the flow consists of the time-averagedca|cylation of the integral in Eq33). Except in the limit of
flow v;=1(r)e, and a spatially uniform flow oscillating in weak imposed field these calculations must be performed
the z direction. For a calculation of the effective magnetovis-numerically.
cosity only the time-averaged flow and the oscillating radial At this point we give the explicit expressions for the
component of the magnetization are relevant. For the bulllamping factorV(t) corresponding to the three relaxation
solution the radial component of the magnetization behavesquations. For Shliomis’ relaxation equation E®) the
as M,(r,t)~R(t)r, with a periodic functionR,(t). The  damping factor becomes

time-averaged equation, E(5), for the bulk flow reads
L(écoswt) 4
F 1 4f V(t)=1+ 127T)(0m+2—£|:(t)b(t). (37)
7](_2+F(9_:)+k_BOZR1:O' (29)
ar Shliomis [2] assumed moreovef={;. For the relaxation
equation Eq(12) of Martsenyuket al.[8] the damping factor

The solution satisfying the boundary conditigfa)=0 has is

the Poiseuille form

- F(t) 1/ 1
f(ry=w(a?-r?). (30) V(t)=1+12mx, (

&0 2\FO &0

For the relaxation equation, EL3), of Felderhof and Kroh
[12] the damping factor is

)b(t). (38

From Eq. (29 one finds for the corresponding viscosity
change

BOle
4w

An(w)= (31) V(t)=xoC(|IMF(t)|) +4mxo+ g—ZF(t)b(t). (39

We write Ry(t)=Msw7gG(t) and find from Eq.(24) the  |n the limit of weak applied field the functioR(t) becomes
ordinary differential equation

Fu()= %5 cosa cog wt— ) (40)

G
TBH‘FV('[)G:F(U, (32
with lag anglex = arctanwg . The three relaxation equations
where we have used E(L6) and the fact that the oscillating become identical with damping factor
part of the bulk flow is spatially uniform. We need the solu-
tion of Eq.(32) which is periodic in time. This can be found Vy=1+4mx0=p, (41)

by integration fromt=—o. As a result _ . o
y ¢ where u is the magnetic permeability. From E(B3) one

1 (= _ finds correspondingly
G(t)= T—Bfo exgd X(t—t")—X(t)—Vt'/rg]F(t—t")dt’,

(33 Gu(t)= %g cosa cosB co wt—a—fB) (42

whereV is the time average of(t) andX(t) is the periodic with B=arctanfrs/w). Hence one finds the time average
solution of the equation

1 MZ_wZTZB
dx _ 1, | ,
TBEZV('{)_V' (34) wew 6§ (1+ 0?78) (u’+ w?7h) “3

The solutionX(t) is unique up to a constant, which cancels T hiS agrees with the result of Shliomis and MoroZ6yonly

in Eq. (33). The period isiT. We define the dimensionless N the limit xo=0. These authors omitted the demagnetiza-

magnetic inductionb(t) by B,(t)=(M«/3xo)b(t). With tion effect. In t'h.e gxperiment of Bacet al.[7,10] the mag-
this definition netic permeability isu=5.4, so that the frequency at which

A n,,(w) vanishes is shifted to a significantly higher value.

b(t)= & coswt+12mxoF(t) (35) It is of interest to consider the zero frequency limitg
<1 for arbitrary values of the applied field. It follows from
and Eq.(31) becomes Egs. (17) and (19) that in this limit F(t)=L(¢ coswt)
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for both relaxation equations. The same expression follows 0.9

from Eq. (20) if Eq. (10) is used. From Eq(32) we find in
the limit o 73— 0 the relationG(t) =F(t)/V(t). The damp-
ing factorV(t) follows from Eqs.(37), (38), or (39) with the
substitutionF (t) =L (& coswt). The zero fequency limit of
A n(w) then follows from the time averagéb according to

Eq. (36). The productGb must be averaged over the period.

We cannot take the limitv—0O for each factor separately.
This would yield the steady state valdes given by Eq.
(28), which differs from the zero frequency limit @f 7(w).

For the steady state valig;, we find for Shliomis’ relax-
ation equation

e

Vam| £+ 54L(0

[§+12mxoL(£)]. (44)
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FIG. 1. Plot of the raticA »(0)/A 7, i.e., the ratio of the zero-
frequency limit of the magnetoviscosity to its steady-state value, as
a function of¢, the dimensionless applied magnetic field, for Shlio-

The second factor is related to the equilibrium magnetic inmis’ relaxation equation E¢@8) (long dashes for the relaxation

duction byBeq=(Mg/3x0)beq With
beq=§+127TXOL(§)a (45)

so that this factor cancels in EG28). For the relaxation
equation of Martsenyukt al. we find the steady state value

_(1 w
=208 ~ 2¢)Peo

For the relaxation equation of Felderhof and Kroh we find

v =<L+QL(§)>b (47
SUBL(E)  2¢ e

Y (46)

In the remainder of this section we assume the equdlity
={,. Substituting Eqs(44), (46), and(47) into Eq. (28) we

equation Eq.12) of Martsenyuket al. (solid curve, and for the
relaxation equation Eq13) of Felderhof and KroHlshort dashes

Note that the above expressions are independent of the initial
susceptibilityx,. In Fig. 1 we compare the ratid7(0)/A »

as a function of¢ for the three relaxation equations. In the
weak field limit the ratio equal$ in all three cases. In Fig. 2
we plot the ratioA »(0)/{, as a function of¢ for the three
relaxation equations.

As indicated below Eq(36), for strong imposed oscillat-
ing field the calculation of the frequency-dependent viscosity
A n(w) requires numerical integration. For frequencies dif-
ferent from zero the viscosity depends on the initial suscep-
tibility xo. We consider in particular the limit of small and
the valuey,=0.35 corresponding to the experiment of Bacri
et al.[7,10]. In the limit of smally, the self-consistent mag-
netic field generated by the induced magnetization is much

find for the steady state magnetoviscosity expressions of thenaller than the applied field. Fog,=0.35 the self-

form consistent field cannot be neglected. In Fig. 3 we show a
_ contour plot of A p(w)/{; in the w¢ plane as calculated in
Am=E6R(E), 49 ihe limit of small o for the relaxation equation of Mart-
with for Shliomis’ relaxation equation, EG8) senyuket al. In Fig. 4 we show the analogous plot fag
=0.35. In Fig. 5 we compare the ratidn(w)/{; for xq
EL(E) —0 andy,=0.35 as a function o for the particular value
R(§)= 24 EL(D)’ (49 ¢=10, again for the relaxation equation of Martsenytlal.
[8].
for the relaxation equation, E¢12), of Martsenyuket al.
§L2( 5) 0.8
RO= 77" (50)
f_l—(f) An(0)/¢ 0.6
and for the relaxation equation E{L3) of Felderhof and
Kroh 0.4
3L?
= —(f) (51) 0.2
2+3L2%(¢)
0
The corresponding equations for the zero frequency limit 6 2z 4 6 8 10 12 14
read ¢
¢ o FIG. 2. Plot of the ratioA (0)/{, as a function of¢ for the
A7n(0)= _1f R(& cosx)dx. (52)  three relaxation equations. Equati¢8) (long dasheg Eq. (12)
27 Jo (solid curve, Eq. (13) (short dashes
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12 14

FIG. 3. Contour plot ofA 7(w)/{; in the wé plane as calculated
from the relaxation equation of Martsenyek al. in the limit of
small susceptibilityx,. We plot the contours for values, succes-
sively from left to right, 0.3, Obold, —0.1, —0.2, —0.3,
-0.4, -0.5.

V. DISCUSSION

The calculations performed above on the effect of an os-

cillating magnetic field on the rate of flow of a ferrofluid

PHYSICAL REVIEW E 64 021508

an(0)/G Q.

=N O NN e Y

12 14
FIG. 5. Plot of the ratidA »(w)/{; as a function okw g in the

limit xo—0 (solid curve and for y,=0.35 (short dashesfor &

=10 and for the relaxation equation E§2) of Martsenyuket al.

component of the magnetization transverse to the tube. The
rate of flow can be enhanced or reduced depending on the
magnitude of these two fields and on their phase relationship.
As an example we show in Fig. 6 the dimensionless induc-
tion b(t), defined in Eq(35), the reduced transverse magne-
tizationG(t), as defined above E(32), as well as the prod-
uct G(t)b(t), for £&=10, wrg=10, xo=0.35, and the
relaxation equation of Martsenyuét al. [8]. For this choice

of parameters the time average of the prod@¢t)b(t) is
negative. Correspondingly the magnetoviscosity, given by
Eq. (36), is negative.

If the susceptibility of the ferrofluid is high, then it is
essential to calculate the magnetic field self-consistently

through a circular tube provide useful insight into the mag-from the induced magnetization. As a consequence the ge-

netoviscosity phenomenon. As evident from E9), the

ometry of the flow situation must be considered. Magneto-

rate of flow is determined by the time average of the productiscosity cannot be used as a local transport coefficient.
of the magnetic induction in the direction of the tube and theNonetheless, for a given flow situation it is a convenient

14

12

8 10 14

wTp

12

FIG. 4. Contour plot ofA 7(w)/{4 in the wé plane as calculated
from the relaxation equation of Martsenyekal. for susceptibility

quantitiy, expressing the net effect of the magnetic field on
the flow.

The calculation has been based on macroscopic equations.
For dense ferrofluids the equation describing the relaxation
of magnetization is not well established. We have used three
different relaxation equations to show the effect of each

20 s - 7N
/ \/\ —~ - // \
\
b 0 L \ d \/
g \ ! \
/ \ ; a
_ / v
600G 20 / \ / \
/ \ / \
/ \ / \
-a0f \ , :
/ \ ! \
\ /
-60; v \
/ \ / \
300Gb NS N
0 0.1 0.2 0.3 0.4 0.5 0.6

t/Te

FIG. 6. Plot of the dimensionless inductitft) (solid curve,
the reduced transverse magnetizati®ft) (multiplied by 600, long
dashey and the produdB(t)b(t) (multiplied by 300, short dashgs

xo=0.35. We plot the contours for values, successively from left tofor £=10, w7z3=10, x,=0.35, and the relaxation equation Eq.

right, 0.4,
—0.03, —0.04.

0.3, 0.2, 0.1, (@®old, -0.01, -0.02,

(12). The magnetoviscosity is given by the time average of the
productG(t)b(t) according to Eq(36).
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choice on magnetoviscosity. For a dilute ferrofluid the relax-mind that the equation may not describe the relaxation be-
ation equation of Martsenyuét al. [8] provides a good ap- havior in a dense ferrofluid correctly. A more accurate theory
proximation to the exact resylt7] for the steady state mag- of magnetoviscosity of a dense ferrofluid in an oscillating

netoviscosity. We have used this relaxation equation in thenagnetic field would require an independent study of the
numerical work for Figs. 3—6. However, it should be kept inrelaxation of magnetization.
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