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Flow of a ferrofluid down a tube in an oscillating magnetic field

B. U. Felderhof
Institut für Theoretische Physik A, RWTH Aachen Templergraben 55, 52056 Aachen, Germany

~Received 22 January 2001; published 19 July 2001!

The magnetoviscosity of a ferrofluid flowing down a circular tube in the presence of a magnetic field
oscillating in the direction of the axis is studied on the basis of ferrohydrodynamics, Maxwell’s equations of
magnetostatics, and a relaxation equation for the magnetization. Three different relaxation equations, proposed
in the literature, are considered. For large amplitude of the oscillating field the three equations lead to different
values of the magnetoviscosity. For large magnetic permeability the self-consistent magnetic field generated by
the magnetization has significant effect.
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I. INTRODUCTION

In the absence of an applied magnetic field the flow o
ferrofluid down a circular tube shows the familiar parabo
Poiseuille pattern@1#. If a steady magnetic field is applie
along the tube, then for the same pressure gradient the
pattern remains parabolic but the flow rate is strongly
duced. This is interpreted as an increase of viscosity, an
called magnetoviscosity@2–4#. Surprisingly, if the field os-
cillates in time then the flow rate increases provided the
quency of oscillation is sufficiently high@5,6#. This phenom-
enon has been called ‘‘negative viscosity’’ of a ferroflui
The name is not quite appropriate, since the transport c
ficient viscosity does not change noticeably. Rather, in ad
tion to the pressure gradient there is an oscillating magn
force density, with nonvanishing time average accelera
the fluid. At low frequency the net magnetic force dens
acts against the pressure gradient and the fluid is slo
down.

The so-called negative viscosity effect was predic
theoretically by Shliomis and Morozov@5#, and was first
demonstrated experimentally by Bacriet al. @7#. The original
theory @5#, based on Shliomis’ relaxation equation for th
magnetization@2#, did not fit the experimental data well. A
modified theory, based on a different relaxation equat
@8,9#, provided qualitative agreement with the data@7#.

The theories@5,7# mentioned above omit the effect of th
demagnetizing field. As we shall show, the omission can
justified only if the initial susceptibility of the ferrofluid is
small. In the experiment of Bacriet al. @7# the susceptibility
is large@10# and the demagnetizing field has a considera
effect. In the theory of Zahn and Greer@11# of flow in a
planar duct the demagnetizing effect was taken into acco
correctly but the authors limit themselves to a linear m
netic equation of state and neglect the generation of hig
harmonics. Experimentally one easily gets into the nonlin
regime of the equation of state, and the neglect of hig
harmonics cannot be justified theoretically.

In the following we calculate the effective viscosity
first order in the applied pressure gradient. It is assumed
the radius of the tube is much larger than the Stokes len
characterizing the boundary layer thickness. The Sto
length is given byAh/(rv), whereh is the shear viscosity
r the mass density, andv the frequency.
1063-651X/2001/64~2!/021508~7!/$20.00 64 0215
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The calculation is based on ferrohydrodynamics, Ma
well’s equations of magnetostatics, and a relaxation equa
for the magnetization. The latter is the least established.
dense ferrofluids a detailed kinetic theory allowing a mic
scopic calculation of the relaxation behavior is not availab
and one is forced to take a phenomenological point of vie
We investigate the consequences of three different relaxa
equations, which have been proposed in the literatu
namely, Shliomis’ relaxation equation@2#, the modified equa-
tion of Martsenyuket al. @8#, and the relaxation equation o
Felderhof and Kroh@12#. The relaxation equation of Mart
senyuket al. @8# was derived for a dilute ferrofluid in an
effective field approximation for the orientational distrib
tion function. The relaxation equation of Felderhof and Kr
@12# was proposed on the basis of irreversible thermodyna
ics. For definiteness we make the additional assumption
the relaxation time appearing in the equation does not
pend on magnetic field or magnetization.

Zeuneret al. @13# measured the negative viscosity effe
for a dilute ferrofluid, and compared with the theory of Bac
et al. @7#. For a dilute ferrofluid the magnetic field generat
by the magnetization is much smaller than the applied fi
and may be neglected. Zeuneret al. @14,15# discussed the
theory in some detail.

II. BASIC EQUATIONS

In the approximation of fast rotational relaxation the me
rate of rotationvp of the suspended particles of a ferroflu
is determined by the local fluid vorticityV5 1

2“3v and the
local magnetic torque density as

vp5V1
1

4z
M3H, ~1!

wherez is the vortex viscosity,M the magnetization, andH
the local magnetic field. In this approximation the antisy
metric part of the total stress tensor vanishes@12,16#, and the
fluid equation of motion becomes

r
Dv
Dt

5“•~shyd
S 1sm

S !, ~2!
©2001 The American Physical Society08-1



d
so

es

te
o

ns
th
hi
d

ib

i-
-
e

n

le,
q.

he

lute

-

uk
-

of
s.

ate

ll

n-
ncy

the
.
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where D/Dt5]/]1v•“ is the substantial derivative, an
shyd

S is the symmetric part of the hydrodynamic stress ten
given by

shyd,ab
S 52pdab1hF]avb1]bva2

2

3
~“•v !dabG

1zv~“•v !dab , ~3!

wherep is the pressure,h is the shear viscosity, andzv is the
volume viscosity. The symmetric part of the magnetic str
tensor is given by@4#

sm
S5

1

8p
~BH1HB!1

1

8p
H21 ~4!

with magnetic induction

B5H14pM. ~5!

The magnetic inductionB and magnetic fieldH satisfy Max-
well’s equations of magnetostatics

“•B50, “3H50. ~6!

Using these equations one can write

“•sm
S5M•~“H!1

1

2
“3~M3H!. ~7!

The first term on the right is the Kelvin force density. No
that the second term can be expressed as the divergence
antisymmetric tensor.

The above equations must be supplemented with a co
tutive equation for the magnetization. We shall study
consequences of three different relaxation equations, w
have been proposed in the literature. The first equation is
to Shliomis@2#. When extended to the case of a compress
fluid it reads

]M

]t
1“•~vM!2V3M

5
21

tB
~M2Me!2

1

4z
M3~M3H!, ~8!

wheretB is the Brownian relaxation time, and the local equ
librium magnetizationMe is determined by the local mag
netic fieldH according to the equilibrium equation of stat

Me5HA~H !. ~9!

Shliomis used the expression

A~H !5
MS

H
LS 3x0H

MS
D ~10!

with the Langevin functionL(j)5cothj2j21 and with satu-
ration magnetizationMS and initial susceptibilityx0. He
considered a dilute ferrofluid for whichMS5nm and x0
5nm2/(3kBT0), wheren is the number density of Brownia
02150
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particles,m is the size of the magnetic moment of a partic
and T0 is the temperature. More generally we may use E
~10! as an approximate equation of state with parametersMS
and x0. In our numerical work we shall assume that t
vortex viscosityz is related to the relaxation timetB by @2,4#

z15
MS

2

6x0
tB . ~11!

We use the subscript 1 to distinguish this case. For a di
ferrofluid the relation is exact and becomesz1
5 1

2 nkBT0tB . More generallytB andz are independent pa
rameters.

A second relaxation equation was derived by Martseny
et al. from Brownian motion theory in an effective field ap
proximation@8,9#. It takes the form

]M

]t
1“•~vM!2V3M

52
1

tB
FM2

3x0L~je!

je
H1

1

2 S 12
3L~je!

je
D

3
3x0

M2
M3~M3H!G , ~12!

where je(t) follows from the magnetizationM (t) by the
relationM5MSL(je).

A third relaxation equation was proposed by Felderh
and Kroh@12# on the basis of irreversible thermodynamic
The equation reads

]M

]t
1“•~vM!2V3M

5
x0

tB
~H2He!2

1

4z
M3~M3H!, ~13!

where the local equilibrium fieldHe is determined by the
magnetization according to the equilibrium equation of st

He5MC~M !, ~14!

with the function C(M ) satisfying the identity C(M )
51/A(MC(M )). We note that withBe5He14pM and B
5H14pM one can write alternativelyH2He5B2Be . We
have chosen the relaxation time in Eq.~13! such that the
equation reduces to Shliomis’ relaxation equation Eq.~8! for
small deviations from equilibrium at zero field. We sha
show that the three relaxation equations Eqs.~8!, ~12!, and
~13! lead to drastically different predictions for the depe
dence of the magnetoviscosity on amplitude and freque
of the applied oscillating magnetic field.

III. FLOW IN OSCILLATING MAGNETIC FIELD

We consider a ferrofluid in a circular tube of radiusa,
perturbed by an oscillating magnetic field directed along
axis of the tube. We take thez axis along the axis of the tube
8-2
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FLOW OF A FERROFLUID DOWN A TUBE IN AN . . . PHYSICAL REVIEW E64 021508
The uniform applied magnetic filed is

H0~ t !5H0zez cosvt. ~15!

Consider first the case of zero applied pressure grad
Then the fluid remains at rest, and the magnetization os
lates according to

M0~ t !5MSF~ t !ez ~16!

with a periodic functionF(t) that averages to zero over th
period T52p/v. The pressure will oscillate in time, but i
spatially uniform. The functionF(t) depends on amplitude
H0z and frequencyv. Its behavior for each of the three re
laxation equations is different. For Shliomis’ relaxation equ
tion Eq. ~8! the functionF(t) satisfies

tB

dF

dt
52F1L~j cosvt !, ~17!

if the equation of state Eq.~10! is used, with

j5
3x0

MS
H0z . ~18!

For the relaxation equation Eq.~12! of Martsenyuket al. @8#
the functionF(t) satisfies

tB

dF

dt
52F1

F

jF
j cosvt, ~19!

with jF defined byF5L(jF). For the relaxation equation
Eq. ~13! the functionF(t) satisfies

tB

dF

dt
52x0F C~ uMSFu!1

1

3
j cosvt. ~20!

For smallj the functionF(t) remains small and the thre
equations Eqs.~17!, ~19!, and ~20! become identical, since
jF'3F andC(0)5x0

21. For larger values ofj the solutions
of the three equations can differ significantly.

An applied pressure gradient perturbs the situation
scribed above. We shall calculate the resulting flow to fi
order in the applied pressure gradient, and indicate the
responding additional fieldsv1 , M1 , H1. The pressure is

p5p02kz, ~21!

where p0 may be time dependent, but does not depend
spatial coordinates. We solve the basic equations to first
der in the pressure gradientk by making the ansatz

v1~r,t !5 f ~r ,t !ez , r 5Ax21y2,

M1~r,t !5Mr~r ,t !er , ~22!

H1~r,t !524pMr~r ,t !er ,

for r<a. Here er is the radial unit vector. In the vacuum
outside the tubeB5H0. It follows from Eq. ~22! that B1
50 everywhere, so that the normal component ofB is con-
02150
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tinuous across the tube boundary. Maxwell’s equations
~6! are clearly satisfied everywhere. The fieldH1 is the de-
magnetizing field.

The flow v1 is incompressible,“•v150, and the vortic-
ity is

V152
1

2

] f

]r
ew ~23!

with azimuthal unit vectorew . By substitution into Eqs.~8!,
~12!, and~13! we find that to first order the radial magnet
zation componentMr(r ,t) satisfies the equation

]Mr

]t
1

1

2

] f

]r
M0z52

1

tB
V~ t !Mr ~24!

with different damping factorV(t) for each of the three re
laxation equations. The three damping factors will be spe
fied later. It suffices to note here that each of the factor
spatially uniform and periodic in time with period12 T.

The z component of the equation of motion Eq.~2! be-
comes with the ansatz Eq.~22! to first order ink

r
] f

]t
5hS ]2f

]r 2
1

1

r

] f

]r D 1k2
1

2
B0zS ]Mr

]r
1

1

r
Mr D .

~25!

We must satisfy the stick boundary condition at the tu
radius

f ~a,t !50. ~26!

It is instructive to consider first the solution of Eqs.~24!,
~25!, and ~26! for the static casev50. Then M0z
5H0zA(H0z) is the equilibrium magnetizationMeq in field
H0z and the damping factor is a constantVst . The equations
are solved by

f ~r !5
1

4

k

h1Dh i
~a22r 2!,

~27!

Mr5
1

4

k

h1Dh i
tB

Meq

Vst
r

with viscosity change

Dh i5
MeqBeq

4Vst
tB . ~28!

At frequencyvÞ0 the functionsf (r ,t) andMr(r ,t) will be
periodic in time. In the following we assume that the tu
radius is sufficiently large that boundary layer effects can
neglected. We restrict attention to the corresponding b
solution.

IV. CALCULATION OF MAGNETOVISCOSITY

At frequencyv the viscous term in Eq.~25! leads to a
Stokes length scalel 5Ah/(rv). If the frequency is suffi-
ciently high that this length scale is much smaller than
8-3
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B. U. FELDERHOF PHYSICAL REVIEW E 64 021508
radiusa of the tube, then the solution can be divided into
bulk part and a boundary layer part. In the following w
assumev@h/(a2r), and concentrate on the bulk part, n
glecting the boundary layer. In the experiment of Bacriet al.
@7# the zero field viscosity ish577 cP, the radiusa is 0.05
cm, the mass density isr'1.3 g/cm3, so that the inequality
is satisfied for frequencies (v/2p)@40 Hz.

The bulk part of the flow consists of the time-averag
flow v15 f̄ (r )ez and a spatially uniform flow oscillating in
thez direction. For a calculation of the effective magnetov
cosity only the time-averaged flow and the oscillating rad
component of the magnetization are relevant. For the b
solution the radial component of the magnetization beha
as Mr(r ,t)'R1(t)r , with a periodic functionR1(t). The
time-averaged equation, Eq.~25!, for the bulk flow reads

hS ]2 f̄

]r 2
1

1

r

] f̄

]r D 1k2B0zR150. ~29!

The solution satisfying the boundary conditionf̄ (a)50 has
the Poiseuille form

f̄ ~r !5w~a22r 2!. ~30!

From Eq. ~29! one finds for the corresponding viscosi
change

Dh~v!5
B0zR1

4w
. ~31!

We write R1(t)5MSwtBG(t) and find from Eq.~24! the
ordinary differential equation

tB

dG

dt
1V~ t !G5F~ t !, ~32!

where we have used Eq.~16! and the fact that the oscillatin
part of the bulk flow is spatially uniform. We need the sol
tion of Eq.~32! which is periodic in time. This can be foun
by integration fromt52`. As a result

G~ t !5
1

tB
E

0

`

exp@X~ t2t8!2X~ t !2V̄t8/tB#F~ t2t8!dt8,

~33!

whereV̄ is the time average ofV(t) andX(t) is the periodic
solution of the equation

tB

dX

dt
5V~ t !2V̄. ~34!

The solutionX(t) is unique up to a constant, which cance
in Eq. ~33!. The period is1

2 T. We define the dimensionles
magnetic inductionb(t) by B0z(t)5(MS/3x0)b(t). With
this definition

b~ t !5j cosvt112px0F~ t ! ~35!

and Eq.~31! becomes
02150
-
l
lk
s

Dh~v!5
1

2
z1Gb, ~36!

where we have used Eq.~11!. The calculation of the time
averageGb requires the solutionF(t) of Eqs.~17!, ~19!, or
~20!, the damping factorV(t) corresponding to one of the
three relaxation equations, the solutionX(t) of Eq. ~34!, and
calculation of the integral in Eq.~33!. Except in the limit of
weak imposed field these calculations must be perform
numerically.

At this point we give the explicit expressions for th
damping factorV(t) corresponding to the three relaxatio
equations. For Shliomis’ relaxation equation Eq.~8! the
damping factor becomes

V~ t !51112px0

L~j cosvt !

j cosvt
1

z1

2z
F~ t !b~ t !. ~37!

Shliomis @2# assumed moreoverz5z1. For the relaxation
equation Eq.~12! of Martsenyuket al. @8# the damping factor
is

V~ t !51112px0

F~ t !

jF~ t !
1

1

2 S 1

F~ t !
2

3

jF~ t ! Db~ t !. ~38!

For the relaxation equation, Eq.~13!, of Felderhof and Kroh
@12# the damping factor is

V~ t !5x0C~ uMSF~ t !u!14px01
z1

2z
F~ t !b~ t !. ~39!

In the limit of weak applied field the functionF(t) becomes

Fw~ t !5
1

3
j cosa cos~vt2a! ~40!

with lag anglea5arctanvtB . The three relaxation equation
become identical with damping factor

Vw5114px05m, ~41!

where m is the magnetic permeability. From Eq.~33! one
finds correspondingly

Gw~ t !5
1

3m
j cosa cosb cos~vt2a2b! ~42!

with b5arctan(vtB /m). Hence one finds the time average

Gwbw5
1

6
j2

m22v2tB
2

~11v2tB
2 !~m21v2tB

2 !
. ~43!

This agrees with the result of Shliomis and Morozov@5# only
in the limit x050. These authors omitted the demagnetiz
tion effect. In the experiment of Bacriet al. @7,10# the mag-
netic permeability ism55.4, so that the frequency at whic
Dhw(v) vanishes is shifted to a significantly higher value

It is of interest to consider the zero frequency limitvtB
!1 for arbitrary values of the applied field. It follows from
Eqs. ~17! and ~19! that in this limit F(t)5L(j cosvt)
8-4
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FLOW OF A FERROFLUID DOWN A TUBE IN AN . . . PHYSICAL REVIEW E64 021508
for both relaxation equations. The same expression follo
from Eq. ~20! if Eq. ~10! is used. From Eq.~32! we find in
the limit vtB→0 the relationG(t)5F(t)/V(t). The damp-
ing factorV(t) follows from Eqs.~37!, ~38!, or ~39! with the
substitutionF(t)5L(j cosvt). The zero fequency limit of
nh(v) then follows from the time averageGb according to
Eq. ~36!. The productGb must be averaged over the perio
We cannot take the limitv→0 for each factor separately
This would yield the steady state valuenh i given by Eq.
~28!, which differs from the zero frequency limit ofnh(v).

For the steady state valueVst we find for Shliomis’ relax-
ation equation

Vst5S 1

j
1

z1

2z
L~j! D @j112px0L~j!#. ~44!

The second factor is related to the equilibrium magnetic
duction byBeq5(MS/3x0)beq with

beq5j112px0L~j!, ~45!

so that this factor cancels in Eq.~28!. For the relaxation
equation of Martsenyuket al. we find the steady state valu

Vst5S 1

2L~j!
2

1

2j Dbeq . ~46!

For the relaxation equation of Felderhof and Kroh we fin

Vst5S 1

3L~j!
1

z1

2z
L~j! Dbeq . ~47!

In the remainder of this section we assume the equalitz
5z1. Substituting Eqs.~44!, ~46!, and~47! into Eq. ~28! we
find for the steady state magnetoviscosity expressions of
form

Dh i5z1R~j!, ~48!

with for Shliomis’ relaxation equation, Eq.~8!

R~j!5
jL~j!

21jL~j!
, ~49!

for the relaxation equation, Eq.~12!, of Martsenyuket al.

R~j!5
jL2~j!

j2L~j!
, ~50!

and for the relaxation equation Eq.~13! of Felderhof and
Kroh

R~j!5
3L2~j!

213L2~j!
. ~51!

The corresponding equations for the zero frequency li
read

Dh~0!5
z1

2p E
0

2p

R~j cosx!dx. ~52!
02150
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Note that the above expressions are independent of the in
susceptibilityx0. In Fig. 1 we compare the ratioDh(0)/Dh i
as a function ofj for the three relaxation equations. In th
weak field limit the ratio equals12 in all three cases. In Fig. 2
we plot the ratioDh(0)/z1 as a function ofj for the three
relaxation equations.

As indicated below Eq.~36!, for strong imposed oscillat-
ing field the calculation of the frequency-dependent viscos
Dh(v) requires numerical integration. For frequencies d
ferent from zero the viscosity depends on the initial susc
tibility x0. We consider in particular the limit of smallx0 and
the valuex050.35 corresponding to the experiment of Bac
et al. @7,10#. In the limit of smallx0 the self-consistent mag
netic field generated by the induced magnetization is m
smaller than the applied field. Forx050.35 the self-
consistent field cannot be neglected. In Fig. 3 we show
contour plot ofDh(v)/z1 in the vj plane as calculated in
the limit of small x0 for the relaxation equation of Mart
senyuket al. In Fig. 4 we show the analogous plot forx0
50.35. In Fig. 5 we compare the ratioDh(v)/z1 for x0
→0 andx050.35 as a function ofv for the particular value
j510, again for the relaxation equation of Martsenyuket al.
@8#.

FIG. 1. Plot of the ratioDh(0)/Dh i , i.e., the ratio of the zero-
frequency limit of the magnetoviscosity to its steady-state value
a function ofj, the dimensionless applied magnetic field, for Shl
mis’ relaxation equation Eq.~8! ~long dashes!, for the relaxation
equation Eq.~12! of Martsenyuket al. ~solid curve!, and for the
relaxation equation Eq.~13! of Felderhof and Kroh~short dashes!.

FIG. 2. Plot of the ratioDh(0)/z1 as a function ofj for the
three relaxation equations. Equation~8! ~long dashes!, Eq. ~12!
~solid curve!, Eq. ~13! ~short dashes!.
8-5
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V. DISCUSSION

The calculations performed above on the effect of an
cillating magnetic field on the rate of flow of a ferroflui
through a circular tube provide useful insight into the ma
netoviscosity phenomenon. As evident from Eq.~29!, the
rate of flow is determined by the time average of the prod
of the magnetic induction in the direction of the tube and

FIG. 3. Contour plot ofDh(v)/z1 in thevj plane as calculated
from the relaxation equation of Martsenyuket al. in the limit of
small susceptibilityx0. We plot the contours for values, succe
sively from left to right, 0.3, 0~bold!, 20.1, 20.2, 20.3,
20.4, 20.5.

FIG. 4. Contour plot ofDh(v)/z1 in thevj plane as calculated
from the relaxation equation of Martsenyuket al. for susceptibility
x050.35. We plot the contours for values, successively from lef
right, 0.4, 0.3, 0.2, 0.1, 0~bold!, 20.01, 20.02,
20.03, 20.04.
02150
s-
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component of the magnetization transverse to the tube.
rate of flow can be enhanced or reduced depending on
magnitude of these two fields and on their phase relations
As an example we show in Fig. 6 the dimensionless ind
tion b(t), defined in Eq.~35!, the reduced transverse magn
tizationG(t), as defined above Eq.~32!, as well as the prod-
uct G(t)b(t), for j510, vtB510, x050.35, and the
relaxation equation of Martsenyuket al. @8#. For this choice
of parameters the time average of the productG(t)b(t) is
negative. Correspondingly the magnetoviscosity, given
Eq. ~36!, is negative.

If the susceptibility of the ferrofluid is high, then it i
essential to calculate the magnetic field self-consiste
from the induced magnetization. As a consequence the
ometry of the flow situation must be considered. Magne
viscosity cannot be used as a local transport coefficie
Nonetheless, for a given flow situation it is a convenie
quantitiy, expressing the net effect of the magnetic field
the flow.

The calculation has been based on macroscopic equat
For dense ferrofluids the equation describing the relaxa
of magnetization is not well established. We have used th
different relaxation equations to show the effect of ea

o

FIG. 5. Plot of the ratioDh(v)/z1 as a function ofvtB in the
limit x0→0 ~solid curve! and for x050.35 ~short dashes! for j
510 and for the relaxation equation Eq.~12! of Martsenyuket al.

FIG. 6. Plot of the dimensionless inductionb(t) ~solid curve!,
the reduced transverse magnetizationG(t) ~multiplied by 600, long
dashes!, and the productG(t)b(t) ~multiplied by 300, short dashes!
for j510, vtB510, x050.35, and the relaxation equation E
~12!. The magnetoviscosity is given by the time average of
productG(t)b(t) according to Eq.~36!.
8-6
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FLOW OF A FERROFLUID DOWN A TUBE IN AN . . . PHYSICAL REVIEW E64 021508
choice on magnetoviscosity. For a dilute ferrofluid the rela
ation equation of Martsenyuket al. @8# provides a good ap
proximation to the exact result@17# for the steady state mag
netoviscosity. We have used this relaxation equation in
numerical work for Figs. 3–6. However, it should be kept
,

ys

.

02150
-

e

mind that the equation may not describe the relaxation
havior in a dense ferrofluid correctly. A more accurate the
of magnetoviscosity of a dense ferrofluid in an oscillati
magnetic field would require an independent study of
relaxation of magnetization.
ter.
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