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We simulate the dynamics of phase assembly in binary immiscible fluids and ternary microemulsions using
a three-dimensional hydrodynamic lattice-gas approach. For critical spinodal decomposition we perform the
scaling analysis in reduced variables introduced by &tiigl. [Phys. Rev. 59, R2535(1999] and by Bladon
et al. [Phys. Rev. Lett83, 579 (1999]. We find a late-stage scaling exponent consistent withRhe?3
inertial regime. However, as observed with the previous lattice-gas model of Agipait[J. Stat. Phys81,
181(1995] our data do not fall in the same range of reduced length and time as those ef alrgnd Bladon
et al. For off-critical binary spinodal decomposition we observe a reduction of the effective exponent with
decreasing volume fraction of the minority phase. Howevernthé Lifshitz-Slyzov-Wagner droplet coales-
cence exponent is not observed. Adding a sufficient number of surfactant particles to a critical quench of binary
immiscible fluids produces a ternary bicontinuous microemulsion. We observe a change in scaling behavior
from algebraic to logarithmic growth for amphiphilic fluids in which the domain growth is not arrested. For
formation of a microemulsion where the domain growth is halted we find that a stretched exponential growth
law provides the best fit to the data.
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[. INTRODUCTION fundamental and industrial importance. For example, the me-
chanical properties of alloys depend on the dynamics of the
The study of phase ordering kinetics has become a testbgrthase separation process. Despite extensive theoretical
for complex fluid simulation methods: Despite intensive[7-9], numerical[10-17,1—8 and experimental investiga-
analysis by many methods, it remains a field in which nu-tion [18,19 some doubt remains about the true asymptotic
merous interesting and fundamental questions go unarate-time growth behavior of these systems.
swered. Constructing a model that correctly includes hydro- The dynamics of phase segregation in binary immiscible
dynamics but is computationally simple enough to reach latéluids are also dependent on the composition of the mixture.
times is a major theoretical challenge. Mesoscale modelMixtures that do not have a 1:1 ratio of the sped&scalled
such as lattice-gadl,2], lattice-Boltzmanr3,4], dissipative  off-critical quenchepare much less studied than their critical
particle dynamics(DPD) [5], and Boltzmann-Viaso{6] counterparts. As the quantity of the minority phase de-
treatments have been crucial in increasing our understandingeases, the domain structure ceases to be bicontinuous, so
of these systems over the past decade. Such methods requihat nucleation and coalescence of droplets dominate the
significantly smaller computational resources than earliecoarsening mechanism.
molecular dynamics and Cahn-Hilliard approaches, and can The addition of surfactant to a system of binary immis-
therefore access more easily the late-time regime in whiclkible fluids radically alters the equilibrium properties and
hydrodynamics plays an important role. growth dynamics of such mixturd0]. In particular, the
A much studied system that exhibits hydrodynamic influ-adsorption of surfactaritamphiphilig molecules at oil-water
ences on phase segregation is a 1:1 mixture of immiscibleterfaces leads to a dramatic reduction in the interfacial ten-
fluids quenched into the two-phase region of its phase diasion. This property is the origin of much industrial interest in
gram (a so-called critical quenghSuch a system undergoes surfactant systems. Only recently have computational tech-
spinodal decomposition, where the initially bicontinuous do-niques and sufficiently powerful parallel platforms become
main structure coarsens by surface tension driven flowsavailable that permit numerical simulation of the hydrody-
Spinodal decomposition elicits much interest because of itsamic behavior of amphiphilic fluids in three dimensions.
Our hydrodynamic lattice-gas model has recently been
implemented in three dimensions, and its ability to reproduce

*Electronic address: love@thphys.ox.ac.uk many important phenomenological features of amphiphilic
TElectronic address: p.v.coveney@gmw.ac.uk systems confirmef21]. In the present paper we demonstrate
*Electronic address: bruce.boghosian@tufts.edu this model’s ability to capture quantitative features of the
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dynamics of binary immiscible and ternary amphiphilic flu- This equation is coupled to the Navier-Stokes equations

ids. through a forcing term proportional to the gradient of the
Continuum approaches regard spinodal decomposition ashemical potential,

a solution of the equations of motion for two-phase flow.

These are given by the Navier-Stokes equation within each 4% w2 e

phase, and by boundary conditions at the interfaces. The in- Pl TV VY| =nVV=Vp—yVutAv, ©)
compressible Navier-Stokes equations are, for each fluid

phase, where A¢ and Av are Gaussian noise fields satisfying an

appropriate fluctuation-dissipation theor&hd].

ov ) Equationg5)—(9) define a model for immiscible fluid dy-
pl oy TV Vv =7Vv=Vp, (1) namics commonly referred to as model H. This model en-
ables one to obtain the scaling regimes for critical spinodal
V.v=0, ) decomposition by dimensional analysis. TWiscousregime

is obtained when one may neglect the inertial terms on the
left hand side of Eq(9); then, balancing the forcing terms by

wherev is the fluid velocity,7 is the shear viscosity, arlis . .
gwe viscous terms, one obtains

the scalar pressure. The first boundary condition is that th
velocity of the two phases must match that of the interface, o
R(t)~ —t. (10)

Up-N=Uz - N=Ujy" N, 3 Y

The inertial regime is obtained by balancing the forcing

wheren is the interface normal and;, u,, andu,, are, o .
2 nt Lerms YV u by the inertial terms in Eq(1):

respectively, the velocities of phases 1 and 2 at the interfac
and the velocity of the interface itself. The second boundary o\ 113

condition requires that the stress difference at the interface is R(t)~(—) 23, (12)
balanced by the interfacial tension, P

Equating these two regimes implies that the crossover from
n, (4)  viscous to inertial scaling occurs Rt~ °/ op. However, no
three-dimensional simulation method so far developed can

) reach a sufficient range of length and time scales to observe
whereT, andT, denote the stress tensors in phases 1 and 4,4, yiscous and inertial regimes in a single simulation. The

Ra andR, are the two principal radii of the interfaces, amd \york of Jury et al. [5] and of Bladonet al. [4] overcomes
is the interfacial tension. this difficulty by introducing scaling variables, and T,

Clearly, a numerical integration scheme for the above,ich enable data from separate simulations to be combined.
equations would be of enormous computational complexity. ¢ ihe only physical effects involved in critical spinodal

In order to obtain a numerical model that captures the esseny,omposition are capillary forces, viscous dissipation, and
tial physics in a computationally tractable way, an alternativey,;iq inertia, then the parameters governing domain growth
approach is required. Remaining with a phenomenological.¢ the surface tensian fluid mass density, and viscosity
description of the fluid .system, it is convenient to define a, As emphasised by Jurgt al. [5], only one lengthL,
scalarorder parametery: = »?/po and one timeT,= 7%/ pa? can be constructed from
these parameters. Data sétsT) from any model of spinodal

11
Ra Ry

Ti-n=T, n=0c

PX)=po(X) = pu(X), (5 gecomposition can be expressed in units of reduced length
wherep,(x) andp,/(x) are the densities of oil and water at I=L/L, (12)
positionx. One may then write a Cahn-Hilliard equation for
the evolution of the order parameter, and time
d t=TIT,. 13
&—'t/’+v-v¢=xV2M+A§, (6) ’ "

If all other physics is excluded from late-stage growth, then

where the dynamical scaling hypothedi8] states that

[(t)~a+f(t), (14
m= (7 . . .
Y wherel(t) is the domain size expressed in reduced length
units anda is a nonuniversal constant that allows for a period
and of growth in which molecular diffusion leads to the forma-
tion of sharp interfaces. The functidr{t) should then ap-
_ durl 4 2 2 proach a universal form, identical for all 50:50 incompress-
F_f A X[z 4" =y o (V). ®) ible binary fluid mixtures following a deep quench.
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The model H equations have been integrated numericalljor self-assembly in critical and off-critical binary immis-
in three dimensions both with# 0 (a quench to finite tem- cible and ternary ampbhiphilic fluids, respectively. We close
perature¢ and withA=0 (a quench to zero temperatitgy a  the paper with discussion and conclusions in Sec. VII.
number of integration schemg$2,15. The free energy de-
fined in Eq.(8) is also the basis for the lattice-Boltzmann Il. THE LATTICE-GAS MODEL
method of Bladoret al.[4]. Although the lattice-Boltzmann Our lattice-gas model is based on a microscopic
medthdod h?s f.ak;)h)ésma.ll TOt'Va:!OP \é\{hltc_fg rt(_a pla]f:es t\./eloc'.?/bottom-up approach, where dipolar amphiphile particles are
and density TI€lds by single-particie distnbution functions, ;. jeq alongside the immiscible oil and water species.
is essentially equivalent to direct numerical integration OfLattice-gas particles can have velocities where &i<b
model H such as that_ performed[ih2, 19 (i.e., 't.ShOUId be andb is the number of velocities per site. We shall measure
rggarQed as a finite-difference scheme for solvmg these €AU%iscrete time in units of one lattice time step, so that a par-
}Lg)rgsalln(:tgr?fi?rzzet;?qe(;‘f S}%bigﬁxvo{gv\?;[égﬂz\}ég '2;23;6'Th eticle emerging from a collision at sitg and timet with

o ng ’ velocity ¢; will advect to sitex+c; where it may undergo the
contribution of Bladoret al.[4], in whose work both growth ext collision. We len®(x.t) < {0,1} denote the presende)
regimes were clearly seen, shows that the simple argumen?s ) LA™ '

given above are incorrect in the crossover regime, and th:%\r 3bsepcé0) 0(; allparéilcle of stpecieaj{R,B,A} [thE?’ r?.?d
the crossover in model H extends overr2a=10° in re- enoting red(oil), blue (wate, and green(amphiphilg

duced time units. It should be noted that this crossover Wa§peci.es, respectivetwith v elocity C"a’ at Iattice<s.it<ex6i%
previously believed from simple scaling arguments to occu@nd time step. The c_ollectlon of alh; (X't)_ f_or 1<i<b wil
att=1. be called thepopulation stateof the site; it is denoted by

Recently there has been further theoretical work by Grant nx.t) e N, (15)
and Elder: Those authors suggé¢&®] that growth in the ' '

inertial regime implies a Reynolds number that increasegyhere we have introduced the notatidffor the (finite) set
without limit. This would eventually lead to turbulent remix- of all distinct population states. The amphiphile particles also
ing of the fluids; the requirement that the Reynolds numbehave an orientation denoted by(x,t). This orientation vec-
be self-limiting(i.e., that the critical Reynolds number is not tor, which has fixed magnitude, specifies the orientation of
reached and therefore that turbulent remixing does not dccuthe amphiphile particle at siteand time step with velocity

in the asymptotic regime implies a growth exponentof. ¢, . The collection of theb vectorse(x,t) at a given sitex

There is at present no numerical evidence fiof3, and  and time stei is called theorientation stateWe also intro-
recent theoretical challenges to this idea have been madgyce thecolor chargeassociated with a given site,

Novik and Coveney point out irf23] that the relative

strength of the interfacécharacterized by the Weber num- ai(x,t)=nf(x,t) —nB(xt), (16)
ben must also be taken into account. A small Weber number

could delay the onset of turbulent remixing indefinitely. ~ as well as the total color charge at a site,

The hydrodynamic lattice gas used in the present paper
does not rest on the macroscopic free energy functional pro-
posed in Eq(8). The model, which is particulate in nature, is
described in detail below, and has a theoretical justification
from a “bottom up” perspective. In a bottom-up view the The state of the model at site and timet is completely
lattice-gas technique may be regarded as a simplification afpecified by the population states and orientation states of all
the molecular dynamics of a binary fluid, abstracting the keythe sites. The time evolution of the system is an alternation
microscopic properties in a fictitious microworld. Recentbetween an advection gropagationstep and acollision
work has derived a microscopic basis for the Rothmanstep. In the first of these, the particles move in the direction
Keller model of binary immiscible fluidgl,24]. However, no  of their velocity vectors to new lattice sites. This is described
systematic method exists for coarse-graining a real moleculanathematically by the replacements
dynamics description of a system to the lattice-gas model

b
q(x,t>zi§1 qi(x,1). (17)

used heréalthough such a systematic method does now exist N (x+¢,t+1)«nf(x,t), (18
for the DPD algorithn{ 25]).
In our model equation€l)—(4) are emergent macroscopic oi(X+ ¢ ,t+1)«—ai(x1), (19

properties. The single-phase FHP lattice gas is known to sat- ) o .

isfy Eq. (1), and far from interfaces this behavior is repro- 10 all xe £, 1<i<b, and «e{R,B,A}. This is, particles

duced in our modd26,27. In Sec. Il B we demonstrate that With velocity ¢; simply move from point to pointx+¢; in

our model has realistic surface tension behavior at interface§"€ time step. In the collision step, the newly arrived par-
The purpose of the present paper is to investigate the d);lcles. interact, resylgng in new m_omenta and surfac_tant ori-

namics of domain growth of both binary immiscible and ter- €ntations. The collisional change in the state at a latticexsite

nary amphiphilic phases in our model. Section Il contains dS réquired to conserve the mass of each species present,

brief description of our model, while Sec. Ill contains a de- b

scription of the quantitative measurements of surface tension pY(x t)EE ne(x,t) (20)

and viscosity. In Secs. 1V, V, and VI we present our results ’ T
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as well as thed-dimensional momentum vector b
Ex)=2 GE(X+g 1),
i=1

. (29
P =2 2 anf(xt) (21) _ |
a and thedipolar field gradienttensor
(where we have assumed for simplicity that the particles all b
carry unit masp Thus, the selV of population states at each P(x,t)= —2 GG S(X+¢,t), (30)
site is partitioned intoequivalence classesf population =1
states having the same values of these conserved quantities. ) ) i
We assume that the characteristic time for collisional andi€fined in terms of the scalar director field
orientational relaxation is sufficiently fast in comparison to b
that of propagation that we can model this probability den- _ o
sity as the Gibbsian equilibrium corresponding to a local, S(X’t)—i; G- oi(x.1) (31)
sitewise Hamiltonian function; that is,
and the kinetic energy of the particles at a site
1
P(s") = Zexd —BH(s")], (22) 5
2
5 VD2, (32

where B is an inverse temperaturel(s’) is the energy as-
sociated with collision outcom& , and Z is the equivalence-

wherev, is the average velocity of all particles at a site, the

class partition function. The sitewise Hamiltonian function mass of the particles is taken as unity, andu, €, ¢, andé
for our model has been previously derived and described iare coupling constants. To maintain consistency with previ-

detail for the two-dimensional version of the mo{i28], and
we use the same one here. It is

H(s')=J-(aE+ uP)+ o’ - (eE+{P)+ J:(eE+(P)
4 2
+ Ev(x,t) ) (23

where we have introduced tle®lor flux vector of an outgo-
ing state

b
J(x,t>zi§1 cal (x,1),

(24)
the total director of a site
b
a(x,H)=2, oi(xt), (25)
i=1
the dipolar flux tensor of an outgoing state
b
J(X,t)Eizl Gl (x1), (26)
the color field vector
b
E(x,t)E;l Ca(x+c,t), (27
the dipolar field vector
b
P(x,t)=— >, GS(X+6,1), (29)

=1

the color field gradienttensor

ous work we use the coupling constants as previously de-
fined in[21]. The values of these constants are

a=1.0, €=2.0, w=0.75 ¢=0..
These values were chosen in order to maximize the desired
behavior of sending surfactant to oil-water interfaces while
retaining the necessary micellar binary water-surfactant
phases. It should be noted that the inverse temperaturelike
paramete3 (whose numerical value is varied in this paper
is not related in the conventional way to the kinetic energy.
For a discussion of the introduction of this parameter into
lattice gases we refer the reader to the original work by Chen
et al.[29] and by Chan and Lianf80]. Equationg23)—(30)
were derived by assuming that there is an interaction poten-
tial between color charges, and that the surfactant particles
are like “color dipoles” in this contex{28]. The term pa-
rametrized bya models the interaction of color charges with
surrounding color charges as in the original Rothman-Keller
model [4]; that parametrized by describes the interaction
of color charges with surrounding color dipoles; that param-
etrized bye accounts for the interaction of color dipoles with
surrounding color charg@lignment of surfactant molecules
across oil-water interfacgsand finally that parametrized by
{ describes the interaction of color dipoles with surrounding
color dipoles(corresponding to interfacial bending energy or
“stiffness”). This model has been extensively studied in two
dimensions[28,31-34, and the three-dimensional imple-
mentation employed in the present paper is described in
more detail by Boghosian, Coveney, and Lg24].

IIl. VISCOSITY AND SURFACE TENSION

In this section we present the results of simulations de-
signed to measure the values of the macroscopic physical
parameters that control domain growth in fluid systems in
our model, according to the top-down theories described in
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Sec. |. As emphasized above, these parameters are the st ' ' '
face tensiorw, the viscosityz, and the density. i
25

A. Viscosity measurements 3
. . . 2.0
We measured the viscosity by analyzing the decay ofs r
shear waves. We performed simulations to observe the deca$

of shear waves with an initial velocity profile of the form

Surface ten

X 10F
v(x,t)=vo(t)cos< ZWN—)GZ, (33 r
X
0.5}
where N, is the lattice size in the direction, vy(t) is the i
amplitude of the shear wave at tinteand e, is the unit ] O T R T
vector in thez direction. Solving the Navier-Stokes equations %' L SO oo MR oy 10000

for the time evolution oby(t) gives
FIG. 1. Surface tension as a function of inverse temperaturelike
2m\? parameterB (both in lattice units for a binary immiscible fluid.
vo(t)= UO(O)eXF{ - V( N_) t}' (34 Error bars are not shown, but are smaller than the symbols. System
X sizes are 64
whereuv(0) is the initial amplitude of the shear wave and
is the kinematic viscosity. We therefore initialize the systeminterface the pressure is locally anisotropic, as the pressure in
with a velocity profile given by Eq(33) and observe the the direction parallel to the interface is reduced by the ten-
decay of the shear wave by calculating sion on the interface itself. For a system with flat interface
perpendicular to the axis the surface tension is given by the
_2 v (XY, 2.1) (35) line integral overz of the componenPy(z) of pressure nor-
NyN, ¥z ~ 2777 mal to the interface minus the compon®{(z) tangential to
the interfacd 35]:

V,(X,t)=

whereZ., , indicates summation over all lattice sites in &

plane. This gives the meancomponent of velocity, but in- _ J'w P.(2)— P~(2)1dz 38
cludes any ner velocity the system may possess. We sub- 7 730[ N(2) = Pr(2)]dz, (38)
tract this to obtain the velocity due only to the shear wave,

where
~ 1
V(x,1)=V,— — > V,(x,1), (36)
Ny *x Pr=P,= I:)yyr (39
and calculateyo(t) as the rms value of this quantity,
ot : Y Pn=P;. (40)
vo(t)= \/(1/Nx)§ [V(x,n]2 37 We begin by showing that our model is capable of repro-

ducing physically realistic interfacial tensions in systems of

We performed simulations at five different amplitudes of ini- Pinary immiscible>fluids. We performed 12 sirgulations for
tial velocity profile and obtained the kinematic viscosity values ofp.O%B/loo, using systems of size 4The sur- .
—0.78+0.01 in lattice units. face tension was measured every time step for 1000 time

steps. The simulation witi3=0.02 was above the spinodal
point. The spinodal point itself was located by a computa-
tional steering technique, which was found to be computa-

In the present section we analyze the surface tension béionally more efficient than traditional taskfarm methods.
havior in our model for both binary immiscible and ternary The value of 3 was modified during a simulation and the
amphiphilic systems. The central feature of ternary am{hase separation behavior visualized in real time. The value
phiphilic fluids is the lowering of the interfacial tension be- of B at the spinodal point was found to be 0.628.003.
tween oil and water by the adsorption of surfactant at thelhis “compusteering” technique represents a powerful and
interface. The existence of a spinodal point in a binary im-economical simulation technique, and will be the subject of a
miscible fluid is an important feature of the fluid’s thermal future paper. Equilibration effects were found to be signifi-
behavior. At temperatures above the spinodal point the fluidant only close to the spinodal point, and equilibration times
will not demix into single-phase domains. As one increasegor 3=0.03,0.04, and 0.05 were taken as 400, 200, and 200
the temperature toward the spinodal point the surface tensidime steps, respectively. All other simulations were allowed
should be reduced to zero. to equilibrate for 50 time steps and the surface tension was

We used a direct dynamical method for calculating thethen time averaged for the remainder of the simulation. The
surface tension across a flat interface. In the vicinity of arsurface tension as a function gfis shown in Fig. 1.

B. Surface tension analysis
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3of : ' IV. CRITICAL SPINODAL DECOMPOSITION

,sb A. Defining the characteristic size

0 1 To analyze the domain growth quantitatively in the fol-

lowing simulations we obtain the first zero crossing of the
coordinate-space pair correlation function. This defines the
characteristic domain siZ&(t). The pair correlation function

2.0

| IR

Surface tension

i is defined by
C A ]
'I.O_— 7]
. ] f q(x,t)g(x+r,t)dx3
o5l . C(r,t)= , (42
L A ] f dX3
ool . . . L N . . L . 1
o] 5 10 15 i . . .
Surfactant Parlicles per unit area at interface whereq(x,t) is the color charge at site and the integral is

FIG. 2. Surface tensioflattice unitg as a function of surfactant taken_ over _the whole system. We compGig ,t) for each of
4 simulations, and perform an average over an ensemble of

concentration in a ternary system. Squares are values calculated:,. | diti Taki h herical
after equilibration, triangles are calculated as a function of instan!Nitial conditions. Taking the spherical average ofr, 1)

taneous surfactant density. All simulations ha®e 1.0 and were  Yi€lds C(r,t), the first zero of which gives the characteristic
run on 64< 32X 32 lattices. domain size. We obtain the first zero by performing a linear

interpolation between the last point greater than zero and the

] i first point less than zero.
We next analyze the behavior of the surface tension as a

function of surfactant concentration adsorbed onto an oil-
water interface. We use two types of system, both initialized

with a flat oil-water interface perpendicular to thdirection. ~ The first test of scaling is applied to the correlation func-
The first system is initialized with a fixed amount of surfac- tions of Sec. IV A. If the domain structures are self-similar at

tant at the interface. The second is initialized with the surdifferent times during the coarsening, the scaling function
X) defined as

factant dispersed throughout the system. We compute thil
surface tension as above from E§8). r

The equilibrium state for such a system in our model is C(r,t)=f(m
quite complex. The simplistic macroscopic picture of inter-

faces in ternary systems is fairly static, with a monolayer ofshoy|d be independent ofAlternatively the scaling criteria

surfactant coating the interface and lowering the surface tenyay e applied to the Fourier transform®fr,t), the struc-
sion. However, in reality as well as in our model the surfac-yre factor

tant may also exist in bulk solution far from the interface, as

B. Scaling analysis

=f(x) (42

2

either monomers or micelles or both. Equilibration of the . 3

system is achieved when the rates for adsorption and desorp- 1 f g(x.yexp(—ik-xjdx

tion of monomers and micelles are equal. These times are Stk =5 : (43)
typically long, varying from 10 000 to 20 000 time steps in f dx3

our model.

For th.e firsy type of system we sjmulate, where all SurfaCSpherically averaging this quantity yiel&k,t), which has
tant particles initially reside at the interface, the surface tenz similar scaling form:

sion prior to equilibration calculated by E@38) is an in-
creasing function of time. The surfactant density at the S(k,t)=L3g(kL)=L"3g(q), (44)
interface decreases with time as monomers and micelles de-
sorb into the bulk. For the second type of system, where alWwhereg(q) is the Fourier transform of(x). The functions
surfactant particles reside in the bulk, the surfactant density(x) and g(x) for simulations with3>0.07 are plotted as
at the interface increases as the surfactant adsorbs to tfignctions ofx and g, respectively, in Figs. 3 and 4. These
interface. The surface tension calculated by E2f) is a  data sets scale quite well, whereas datasets from simulations
decreasing function of time. with 8=<0.07 do not. The specific form @f(q) has been the

We calculate the surface tension as a function of surfacsubject of much theoretical attention. The three features that
tant density in two ways. For low surfactant concentrationgeceive the most attention are the small, intermediate, and
where we can reach time scales on which the system ikrgeq regimes. We show in Fig. 4 the behavior of our model
equilibrated we use the surface tension and interfacial derin these three regimes. In the largeegion we see a clear
sity for the equilibrated system. For higher surfactant densiPorod tail withg(q)eq~*. This region ends wheq probes
ties where the equilibration times become prohibitive we plotthe scale of the interface width. Furukawa speculated that
the surface tension at timeagainst the density at tinteThe  there would be a regimg(q)=q °: we see a behavior
results are shown in Fig. 2. closer tog(q)eq~’, in agreement with Jurgt al.[5]. In the
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150 10 T T T

50

Scaling function f(x)

Reduced length

-50L . v 0 I I R S R R

[=]
N
w

0 1 10 100
Reduced time

FIG. 3. The scaling functiori(x) as defined in Eq(42) from
the pair correlation function in critical binary phase separation for
0.08< =100 (lattice unitg. Data are taken from all simulations in FIG. 5. Scaling plot in reduced variablég) for critical binary
this range of inverse temperaturelike paramg@eBystem sizes are immiscible fluid phase separation. Data are from simulations with
64° and 128; data are taken between 100 and 2300 time steps. =0.03,0.04,0.06,0.08rom left to righ. System sizes are 84

small g limit we seeg(q)eq~? with 2<6<4. In[36] the  ing this constraint span a range ok3<152 and Kl
constraintd<4 was derived for a Cahn-Hilliard theory with- <10. A study using the DPD algorithm reached a range of
out hydrodynamics. However, this derivation assumed a dyi <1<10® and 1<t<5x 10% and a lattice-Boltzmann algo-
namical scaling exponent df and did not include fluctua- rithm has been used to reach a range efl £2x 10° and
tions. Furukawa speculated that fluctuations would cause the<t<5x 10’ [5,4]. The analysis method used to plot the
9(q)*9*—g(a)=q” crossover at smatj. data displayed in Figs. 5 and 6 from simulations with differ-
The above analysis of the correlation functions and strucent values ofL, and T, is identical to that of Bladort al.
ture factors is independent of the form B{t). We now [4].
introduce the reduced length and time variallemdt as We find that data with 0.8 <100 show growth with
defined in Eqs(12) and (13). To exclude finite size effects an inertial (=t¥3) exponent, andr(t) collapses well onto a
we use data for which the characteristic domain size is lesgingle scaling function. Simulations wifh=0.03 show slow
than; of the system size. Data from our simulations satisfy-growth wherd «t¥3. Visualization of the order parameter for
these data shows that sharp interfaces do not form during the

2 ' simulation, and so data for these low values of surface ten-
N sion do not satisfy the criteria for the postulated universal
' P \\ ] scaling regime. This is confirmed by our scaling analysis of
Nnk;,.ﬂ*“ ' the correlation functions above, where data for @3
Py
0 v »‘W/" ] 100.0F T T T
= ”mm “E
3 il F
5 T i
- , 1 -
=3 ‘ L
ke]
100 .
-2 r 1 £ E
&
‘I‘O:— E
-4 L I E
1 10 N
kL r
FIG. 4. The scaling functiog(x) as defined in Eq(44) from 0.1 R N N
the structure factor in critical binary phase separation for €,68 ! 0 reduced time° 1000
<100 (lattice unit3. Data are taken from all simulations in this
range of inverse temperaturelike paramgdeBystem sizes are 84 FIG. 6. Scaling plot in reduced variablég) for critical binary

and 128; data are taken between 100 and 2300 time steps. Thenmiscible fluid phase separation. Data are from all simulations
dotted line is kL?), the long dashed line ik(*), the short dashed with 0.10<8=<100. System sizes are 64nd 128; data are taken
line is (kL™7), and the solid line isKL™%). They are included as between 100 and 2300 time steps. The solid line has graéliamj
guides to the eye. is included as a guide to the eye only.
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=0.07 did not collapse onto the same curve shown in Fig. 3. 100 .
The time evolution of the domain size in reduced units for
0.03=B=0.08 is shown in Fig. 5.

This inertial exponent is not consistent with the previous
results of Bladonet al. and Juryet al. [4,5], although it is
similar to the results of Apperetal. [2]. In [4], the (
=ct?®) scaling of Appertet alwas ascribed to “excessive
diffusion” in the lattice-gas algorithm. The particulate noise
characteristic of the lattice gas is not present in the lattice-
Boltzmann algorithm of2], and so it is perfectly plausible
that these fluctuations continue to inhibit phase separation,
reducing the growth exponent in the viscous regime to some
effective exponent close to treusually associated with the
inertial regime. An identical effect is well known in two 1
dimensions, where models with fluctuations yield an expo-
nent of 3 in the early-time regime, and models without yield
an exponent of [37,31]. FIG. 7. Scaling in off-critical binary phase separation f@r

This issue deserves closer examination, however. If we=1 with compositiong=0.2 (lattice unit3. The solid line is a least
interpret our structure factor and correlation function data agauares fit with effective exponent 0:54.01. Error bars show one
exhibiting good scaling collapsé.e., for all times consid- standard deviation on the mean of five independent simulations.

ered the morphology is characterized by a single length. . . .
scale, then the%(q)o?i/qz—g(q)oc g crossoyer at sn?atl is 9 sition are well establishef37,41], and the existence of a

consistent with speculations by Furukawa that quctuations?Ingle underlying scaling function in three dimensions re-

would cause the? behavior. As noted above these quctua—malns an open question.
tions may act to inhibit the phase separation and give rise to
a lower effective exponent.

Our immiscible lattice-gas model reduces to a simulation
of a convection-diffusion equation fg¢=0.0. The diffusion In this section we analyze the dynamics of domain growth
constant in this equation is a function only of the collisionin systems where the composition is asymmetrical. In such
rules. It may be possible by a judicious choice of collisionsystems the domain structure is not bicontinuous. The minor-
rules or addition of rest particles to vary this diffusion con-ity oil (or watejy phase exists as droplets, and the domains
stant independent of surface tension to fully investigate it€oarsen by diffusion of oifor watey from the bulk onto the
effect. droplet, and by droplet coalescence. The composifidor a

If, however, we interpret the smaf| behavior as being System where oil is the minority phase is defined as
indicative of poor scaling collapse, the exponent seen may be
interpreted as a crossover between an early-time and a vis- __Po '
cous regime. This issue could be resolved only by larger and Pot Pw

longer simulations, and present hardware limitations mean . .
. . . N wherep, andp,, are the reduced densities of oil and water,
that this must remain a matter for future investigation.

. . . tively. W f imulati f [ f
There is at present considerable uncertainty about both thrgegpze (;rll\éeg 4 Tﬁ eggrs?ér?ueac:i osr:;nvL\ll:réogZ o O?TT]ZZ uﬁes@iﬁ
unlversal!ty of'the 'asymptotlc. scaling and Wh?t the m,"etems for 3000 time steps. The correlation function was aver-
asymptotic regime is. Theoretical work concerning the d's'aged over five independent simulations ## 0.2, and three

persion relation on fluid interfaces casts doubt on the Univeriqependent simulations fak=0.4. The results are shown in

sality of hydrodynamic phase separation in three dimensionﬁigs_ 7 and 8.

[38]. Recent work by Kendof89] proposes a different set of ~ “The gata in our simulations give effective exponents of
macroscopically deduced scaling laws, based on the energy543+0.01 and 0.573 0.003 for compositions 0.2 and 0.4,
balance in the system. This analysis suggests that there mayspectively. We do not observe the exponénexpected

be more than one length scale of importance in spinodafrom simple theories of droplet coalescence and nucleation.
decomposition. Another derivation of the growth laws pro-However, as Fig. 9 shows, the morphology for both these
poses than=1$ is transient and true asymptotic scaling is volume fractions is far from being a collection of isolated
n=7 [40]. However, it would be difficult to resolve such a drops. It is likely that the exponent we measure is therefore
subtle difference in exponent with any current numericalintermediate between the critical case and droplet coales-
method. In addition, the derivation p40] assumes a droplet cence and nucleation. The existence of such intermediate ex-
morphology, even in the symmetric case. No such morpholponents is well established. Previous work by Appedral.

ogy is seen in any simulation of the symmetric case of whicH2] on off-critical decomposition for¢p=0.05 also saw

we are aware. The existence of multiple length scales angrowth more rapid than the® expected for simple nucle-
breakdown of scaling in two-dimensional spinodal decompoation and coalescence. The work p42] for the two-

R(t) (lattice units)
o

100 1000 10000
Time (time steps)

V. KINETICS OF PHASE SEPARATION FOR
OFF-CRITICAL BINARY FLUIDS

(45)
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FIG. 8. Scaling in off-critical binary phase separation fér
=1, at a compositiorp= 0.4 (lattice unitg. The solid line is a least
squares fit with effective exponent 0.578.003. Error bars show
one standard deviation on the mean of three independent simula-
tions.

dimensional implementation of our model similarly saw a
continuous variation of exponent with composition, as did
[23] for equal viscosity DPD fluids.

VI. SELF-ASSEMBLY IN TERNARY AMPHIPHILIC
FLUIDS

In this section we turn to the analysis of ternary am-
phiphilic fluids. We concentrate on systems with equal
amounts of oil and water, varying the amount of surfactant
for each simulation. The presence of surfactant dramatically
alters the interfacial energetics and structure, and conse-
quently the dynamics of domain growth. Specifically, the ad-
sorption of surfactant at oil-water interfaces and its concomi-
tant IOV\'Iering'Of the _Surface tension We.aken the for(,:e,s that FIG. 9. Interface morphology at time step 500 for minority
drive binary immiscible phase sep_aratlon._l_:o_r sumc'en_ﬂyphase(oil) volume fraction 0.20[@ and 0.40(b). System size is
large surfactant concentrations the final equilibrium state is g4
bicontinuous or spongmicroemulsiorphase, where the do-
main growth is arrested at some final characteristic domaisurfactant concentrations 0.02, 0.06, and 0.08 support this
size R.. Such a system is depicted in Fig. 10. All three conclusion. In all cases the late-time behavior is consistent
components are bicontinuously connected, with the surfaowith an algebraic growth law of the forR~t%2 (see Fig.
tant particles lining the interface in a monolayer between thell). Prior to this there is an early-time regime in which the
percolating oil and water regions. growth is consistent with a diffusive algebraic exponent of

We work with 8=1.0 and use the values for the coupling 3 . Visualization of the surfactant densities during this period
coefficients in Eq.(23) as defined earlietin Sec. I). The  shows that surfactant adsorbs at the oil-water interfaces.
results that follow for the ternary emulsion system have been Once the system reaches the bicontinuous oil and water
obtained from a 6% system with periodic boundary condi- state the inertial hydrodynamic regime begins. The length of
tions in all directions, the system having been intialized fromthe diffusive period increases with increasing surfactant con-
a random quench with the particles placed randomly on theentration(50 time steps for reduced surfactant concentration
lattice. The total reduced density of the system was kepp,=0.02, 60 time steps fop;=0.04, 70 time steps fops
constant at 0.5. The characteristic domain Si@) was =0.06, and 100 time steps far,=0.08. As one increases
measured from the spherically averaged pair correlatiothe surfactant concentration the fluctuations in the domain
function as described in Sec. IV A. The growth of sponge asize at late times increase. This is consistent with the known
opposed to droplet phases in these systems means that for tthgnamical nature of the adsorption and desorption of surfac-
lowest values of the surfactant concentration the growth betant to and from interfaces in ternary systems as one ap-
havior should represent a perturbation of the criticalproaches emulsification. With a reduced surfactant density of
guenches investigated in Sec. IV. The results for reduce@.10 the time evolution of the domain size ceases to follow
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R(t) (lattice units)

100 1000
Time (time steps)

FIG. 11. Time evolution of characteristic domain si#attice
units) for a ternary amphiphilic fluid with reduced densities of oil,
water, and surfactant 0.24, 0.24, and 0.02, respectively. The solid
line is a fit with an effective exponent of 0.59. The error bars show
one standard deviation on the mean of five independent simulations.
The system size is 64

the algebraicR~t?® growth law. We see a slower-than-
algebraic growth law, as previously observed in the two-
dimensional implementation of our model where a growth
function R(t) = (Int)? was proposed, based on a comparison
with slow growth in systems with quenched impurities
[31,43. Consequently, we look at a plot of iragainst do-
main size in order to determine whether we have logarithmi-
cally slow growth in this regime. The characteristic domain
sizesR(t) for surfactant concentrations 0.10, 0.12, 0.14, 0.16
are plotted against lnon logarithmic scales in Fig. 12. One
can clearly see a transition through a regime where logarith-
mically slow growth dominates throughout the time scale of
the simulation. Such a growth law is inconsistent with arrest

20.0 T T T
....................... Surfactant density = 0.10
_________ Surfactant density = 0.12
i Surfactant density = 0.14
.- Ve
[, Surfactant density = 0.16 Fd
Lo
10.6 e ]
R e -~
B
B ///', —_ e
= ’/ //.-/"
(3 ,“ 4 0 /'
R
S 2
DA a4
R
5.6 A .
«/( -
o7
’_/
3.0 ] ] 1
4.00 4.76 5.66 6.73 8.00

In(t)

FIG. 12. Crossover in ternary domain growth behavior to loga-
rithmically slow growth, and then to an intermediate regime. Sur-
factant concentration 0.10 shows behavior in a regime crossing over

FIG. 10. Sponge microemulsion phase at time step 850 followfrom algebraic to logarithmic growth. Surfactant concentrations

ing a random initialization(a) Water slice plane(b) Surfactant
slice plane.(c) Oil slice plane. The system size is %4Reduced

0.12 and 0.14 show convincingly logarithmic growth, while con-
centration 0.16 shows time evolution in a regime between logarith-

densities of oil, water, and surfactant in this system are 0.19, 0.19nic and stretched exponential growth. Both time and characteristic

and 0.12, respectively.

size are measured in lattice units.
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R(t) (lattice units)
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500 1000 1500 2000
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FIG. 13. Plot of characteristic domain size against tileth in FIG. 14. Plot of final characteristic domain sig (lattice unit9
lattice units for a ternary system with reduced surfactant density 5gainst the inverse of the reduced surfactant density of surfactant

0.18. The solid line is a least squares fit of a stretched exponentialllpS in the system. We have correctpg by removing the micellar
function to the data. Error bars show one standard deviation on thSnd monomeric surfactant concentrations.

mean of five independent simulations. The system sizes 64

<

and find late-time growth behavior that is consistent with an
of the domain growth at late times for reduced surfactaninertial hydrodynamic exponent. However, the position of
density below 0.16. As we increase the reduced surfactaribe late-time domain growth on a plot of reduced time vari-
density beyond 0.16 we see complete arrest of the domaifbles(l,t) is not consistent with that ¢6,4], in the same way
growth at late times. We performed a fit of a stretched expothat the results of Appeeit al. [2] showed an inertial expo-
nential function to data sets from simulations wigh nent in a crossover region of'the reduced scaling plot. In the
—0.18. This function is defined identically as [iB1]: off-critical case we find effective exponents of 0.57 and 0.54
for compositionspp=0.4 and 0.2, respectively. In the micro-
R(t)=A—B exp(— CtP) (46) emulsion case we observe a slowed algebraic growth with
' exponent3, followed by a regime in which we see evidence
These fits are shown in Fig. 13. To quantify the effect thajor Iogan_thmlcally slow growth. For concentrations of sur-
ctant high enough to completely arrest domain growth we

the surfactant has on the domain size at late times in the ; L
simulations, following Emertoret al. [31] and Gyureet al. observe good agreement with a stretched equnen'ual f!t to
: our data. Overall, all our results are fully consistent with

[43], we defineR; as the domain size at time step 850, where havior we observed previously in our two-dimensional
data that are unaffected by finite size effects are available fql?e.a or we observed previously ou 0 ensiona
attice-gas model.

all surfactant concentrations. We plt against the inverse
of the reduceq surfactant density at. the mterféitaymg syb- ACKNOWLEDGMENTS
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