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Periodic surfaces of simple and complex topology: Comparison of scattering patterns
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We compute scattering patterns for six triply periodic minimal surfaces formed in oil/surfactant/water solu-
tions: Three surfaces of a simple topology, Schwarzlrﬁgm), Schwarz D—diamondF{n?m), and Schoen
G—gyroid (Ia§d), and three surfaces of a complex topology, SCNﬂﬁm), CD (P n?m), and GX6 Qa?d).

We show that in the case of the complex structures, scattering intensity is shifted towards thé& kigiesks.
This might cause their misidentification and wrong estimates about the cell size of the structure.
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[. INTRODUCTION used to monitor the structural phase transitions, see, for ex-
ample,[13,14,3,4. All these works indicate that the SAXS
The surfactant molecules are composed of a polar hydroand SANS are powerful tools that provide information on the
philic head and a hydrophobic hydrocarbon tail. This am-symmetry of the structures present in the system. Yet, the
phiphilic construction induces very complex behavior in so-x-ray diffraction data are not always conclusive: due to the
lutions with water and oil. The surfactant molecules formgenerally small number of reflections, an accurate recon-
layers that separate oil- and water-rich regions. In solutiongtryction of an electron or nucleus density map of the cubic
with comparable concentration of surfactants and water, bigg| js often impossible. Even once the space group is rigor-
continuous structures are formed. These can be either isotrgys|y established, there is still the question as to the identity
pic microemulsions in ternary systemith oil and watef o the minimal surface and thus the topology of the structure.
and sponge phases in binary systemih watep or highly — the oymose of this paper is to emphasize this problem. The
ordered cubic liquid phases of various symmetries. In bou?a{gument is backed up by scattering spectra of three pairs of
cases the surfactant layers are not planar or spherical but™ . —
form complex three-dimensional structures free of self-Cubic structures, Schwarz P and SCN1 of symmétngm,
intersections—triply periodic surface. Schwarz D-diamond and CD P@3m), and Schoen
The cubic phases in self-aggregating surfactant systems—gyroid (a3d) and GX6 (a3d), see, Fig. 1. Each pair
have been observed experimentally many times in the lasfonsists of a well-known simple-cubic structure of a simple
four decades. The first reports date back to 1@6izzati and  topology (small genus and a complex structure of a large
Spegt[1]). Since then several cubic phases with variousgenus both having the same symmetry. The genus is a mea-
symmetries and topologies have been discovered, see, fgure of the topological complexity of the surface. It is the
example,[2—7]. The latter references include experimentalnumber of its “handles”(or “holes”)—genus of a simple
scattering data proving existence of all of the simple structorus with one hole is 1, whereas of a sphere is 0. In the case
tures(Schwarz P, Schwarz D, and Schoeh ¢@ncerned in  of TPMS, which as such has an infinite number of handles,
this paper. At the same time the existance of the complexhe genus is referred to the unit cell with periodic boundary
structures(SCN1, CD, GX§ has not yet been confirmed. conditions. The simple structures Schwarz P, Schwarz D,
Still, new phases are being found and the list of the experiSchoen G have the genus of 3, 9, and 5, respectively, while
mentally identified cubic phases may be incomplete. the structures SCN1, CD, and GX6 have genera equal to 43,
The paradigm of a triply periodic surface is a triply peri- 73, and 141, respective[{].
odic minimal surfacé TPMS)—surface with zero mean cur-  The paper is organized as follows. Section Il is devoted to
vature. The first example of a TPMS free of self-intersectionshe presentation of the model of the density of the scatterers
was introduced by Schwarz in 1868]. It is now known as  and numerical methods used in the computation of the scat-
the Schwarz diamond D surface. Since then strong theoretiering intensities. Section Il includes the scattering spectra
cal arguments of symmetry such as the minimization of theor the latter structures and discussion of the results. Section
bending energy of the symmetric bilayer supported the pictv contains the summary.
ture of such surfaces as the model of the surfactant bilayers.
Theoretically the world of self-assembly is almost infinitely
rich. Many previously unknown simple and complex peri- Il. MODEL
odic structures of cubic symmetry have been found recently
in simple Landau-Ginzburg models of ternary mixtuf% The triply periodic minimal surfaces divide the volume
It is thus very interesting if they are formed in real systemsjnto two continuous and separate subvolumes. In surfactant
and how to identify them correctly. mixtures two physical realizations of a minimal surface are
The small-angle x-ray and neutron scatteri8\XS and possible. One is a direct phase in which a water film is cen-
SANS) experimentssee, for exampld,10—12) are widely tered on the surface and surfactant molecules are filling the
used to determine the symmetry and structure of selftwo subspaces. The second case is an invert phase in which
assembling systems. The scattering techniques were oftéhe surface is decorated by a bilayer of surfactant and oil,
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is bigger than 18% [9]. This gives approximately about
10000 or more of the surfactant molecules per unit cell,
which shows that triangles covering the surfaces are small
enough to obtain reliable spectra. The scatterers used in com-
puting the scattering intensities are positioned in the middle
of each triangle and given the weight equal to the surface
area of the triangle. Also each scatterer is associated with a
unit vector normal to the surface, which allows us to take
P SCN1 into account the effects of the local curvature.

We concentrate on the surface contrast. It is best realized
in neutron scattering experiments when the hydrophobic sur-
factant chains are deuterated. This procedure takes advantage
of the very large difference in scattering cross section be-
tween the normal hydrogen isotope and deuterium. This is
very useful because one can exchange hydrogen with deute-
rium without altering the structuril5].

If we takep(r) as the density of the scatterers in the unit

cell, the neutron diffraction intensity(q) is the Fourier
transform of the density-density correlation function,

4 ‘((1\

@ =(A@A* @)= [ dr [ dr(opr)
xexdiq-(r—r")]. (1)

In a unit cell the density operat@r can be written in the
following form:

G GX6

FIG. 1. The zero width mathematical surfaces in the unit cells of 5(r) = —

the Schwarz P, SCN1, Schwarz D, CD, Schoen G, and GX6 struc- p(r) f Aot r=entr))pu(é). @

tures. Better pictures of these and many other cubic structures can

be seen at http://www.ichf.edu.pl/Dep3.html. Heren(r) is a unit vector parallel to the gradient of the
field f(r) andpy(£) is the molecular density operator equal

while the two subspaces are filled with water. In our work weto
focus on the inverted phase.
The two subspaces can be modeled by a concentration PM(§)=0(|§|— E) &)
field function f(r) taking positive values in one subvolume 2)’
and negative in the other. Still the fact that the field function

takes opposite signs in the two subspaces has no experimegherelL is the width of the hydrocarbon part of the surfactant
tal significance but is only related to the mathematical projjayer. We assume that tH¢r) =0 surface is located in the

cedure. The conditiofi(r)=0 determines the mathematical mjiddle of the surfactant bilayer. Our model is schematically
surface decorated by the surfactant molecules. The conceghown in Fig. 2.

tration field for structures Schwarz P, SCN1, Schwarz D, CD, \we assume that the multiple scattering of the incident

Schoen G, and GX6 are taken from the minimization proceheam in the sample can be neglected. In general, the neutron
dure [9]. It is given on a cubic lattice inside a unit cell. mytiple scattering can be neglected because the Thompson
Typically the lattice spacing is of the order of 1/50 of the cross section for neutron-nucleus scattering is very small.

cubic lattice parametea. _ _ The scattering amplitude
Once we determine values of the fidl(f) on the lattice

inside the unit cell, we triangulate the surface on which

f(r)=0. In this way we obtain a set of typically 50000 A(q):j drexgdiq-r]p(r) (4
triangles covering the whole surface in a unit cell. In real

mixtures the surfactant molecule head covers an area of the

order of 50 &. The cubic cell parameter is of the order of can be represented by the sum over the points on the surface
a~150 A or bigger. In simple structures the surface aresand the integral along the vectors normal to the surface
per unit cell is of the order of &. In more complex ones it E}\‘zlsjfdg,
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> FIG. 3. Scattering spectrum for the Schwarz P structure. The
é thick solid line represent$ hkl peaks, while the thin line is the
convolution of thehkl peaks with the Gaussian resolution function
FIG. 2. The schematic representation of the surfactant bilayegSee text
and the model. The triangles are obtained from a triangulation of
the minimal surface. Then a rod of constant scattering density along
its length is positioned in the middle of each triangle in the direction ) L\7?2
normal to the triangles’ surface. Below the model molecular density sinj g-n; 5
of scatterers in the bilayer is shown. I(g)= P s; cogq- rj)—L
a-njs
" 2
_ . ’ — I ) L
A(Q)—z;l S]fdg eXﬂ:'q (r]+§ nj)] N sm(q.njz)
+ 21 Sj sin(q-rj)—L . (7)
J=
Xfd§5(f(rj+§'nj_§nj))PM(§), 5 a-nj5

wheres; is the surface area of thj¢h triangle anch; is a unit
vector normal to the surface at thh point. Please note that  The influence of the width of the bilayer and the fluctua-

the summation ovejrin Eq. (5) is over the surface given by tions have been shown in our previous wdtk7]. Here,
f(r)=0. This point is justified because the total number ofsjnce we do not compute the scattering patterns for any spe-
scatterers on the surfad¢r) =0 is the same as on any sur- cific surfactant molecule, the width of the hydrocarbon part
facef(r—&n)=0 for || <L/2. On a flat surface the surface of the surfactant bilayer has been estimated upon geometrical
areas;(¢) per one scattering rod is constant and equaito  considerations. We will show the scattering spectra for the
When the surface ber12ds, tsg(€) is given by the formula g ctures formed by the surfactant bilayer, which occupies
5;(€)=s;(1+2HE+KE) [16], where £ is negative if the  5a94 of the volume. This corresponds to the joined volume
displacement is towards the closest center of curvature, POS¥action of oil and surfactant equal to 0.5.

tive otherwiseH is the mean curvature, andis the Gauss-

ian curvature foré=0 at thejth point. In this way the sur-

face density of scatterers increases towards the center of
curvature and decreases otherwise, but the total number of lll. RESULTS
scatterers remains constant.
Now the amplitude can be rewritten in the following All the scattering spectra are in agreement with the space
form: group symmetry of the structures. The prohibited peaks are
five to six orders of magnitude smaller then the allowed re-
L flections. The structure factor of these surfaces makes some
N sin(q N, 5) of the allowed peaks also very weak. This is particularly
A(Q)= E sjexdiq-rj]———. (6) interesting in the case of the complex structures, where due
=1 q-n E to this phenomena the low ordekl peaks are small and the
12 intensity is shifted towards the longer scattering vectors and

biggerhkl indices.

And finally, the scattering intensity Figures 3 and 4 present the scattering spectra for two
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FIG. 4. The scattering pattern for the SCN1 struct{gee leg-

end of Fig. 3. FIG. 5. The volume fraction occupied by the bilaygg as a

function of the dimensionless width of the bilaygr The analytical
cubic structures of thém3m symmetry. The intensities of approximation is shown by the dashed lines and the numerical val-
the hkl peaks are presented as delta pedhisk solid ling. ~ Ues by open circles.
The figures include also some of th&l indices correspond-

2
ing to the underlying peaks. The length of the scattering R(q) = ex —|al (10)
vectork has been established as follows: 2w 202 |
o whereo is the experimental resolution in inverse angstroms.
q= —vVhZ+k>+12, (8)  This way, the experimental intensity can be written as fol-
a lows:
wherea is the cubic lattice parameter. In all cases we have 1 — = al?
set the volume occupied by the bilayer to 50%gE0.5). lexd( @)= - hEkl eXF{ o2 I(dni),  (12)

The volume fraction occupied by the bilayer is a function of
the dimensionless width of the bilaydr,, expressed as a Wwherel(dny) is given by Eq(7). Since the sum runs over all
fraction of the unit cell parametex An approximate formula possible permutations of thek! indices(including negative
relating these two quantities can be found 3, values the functionl,, corresponds to a powder diffraction
experiment. Yet to reconstruct the experimental intensity pro-
- file one should use a more sophisticated function than the
Pg=5*1,+ ggElg, (9)  Gaussian distribution. Secondly, the intensity is not corrected
by the Lorentz-polarization factor since its value depends on
the wavelength of the radiation and the type of the detector
wheres* is the dimensionless surface area of one unit cell olused in an experiment. Furthermore the relative intensities of
the minimal base surface ard@ is the Euler characteristic the Bragg reflections depend on the width of the bilayer and
given by the expressiog&z=2(1—g), whereg is the genus. thus on the composition of the system. Since we present the
In our work we have evaluated the width of the bilayer nu-intensities only for one value of the volume fraction occu-
merically. Figure 5 presents the volume fraction occupied bypied by the bilayer, our aim is only to show general tenden-
the bilayer given by Eq(9) (dashed ling together with the cies in the diffraction patterns of simple- and complex-cubic
numerical value(open circleg as a function of the dimen- structures. We show what kind of data is experimentally ac-
sionless width of the bilayer for three different structures. cessible and how much of the information about the structure
The bilayer composes of two parallel monolayers of sur<an be lost due to the experimental setup.
factant molecules. A typical length of a surfactant molecule, The functionl¢,,(q) for scattering patterns of Schwarz P
thus the width of the monolayer is about-1@5 A. Assum- and SCN1 structures is presented as the thin solid line. We
ing that there is also some amount of oil filling the bilayer, have set the resolution o=2x10"2 A~1. This is a rea-
we have set the bilayer width to 30 A. Then the cubic latticesonable resolution for most synchrotron neutron scattering
parameter is simplya=30 A/l,. The size of our model experiments.
Schwarz P structure cell is roughéy=130 A, and for the As we see in Fig. 3, the scattering spectrum of the
SCN1 structurea=440 A. Schwarz P structure is very simple and the peaks are posi-
To present typical scattering data that could be obtained itioned atq,=6.8x10"2 A~ q,=+2q;, and q3=3q;.
an experiment, we have convoluted #hé&kl peaks with the  Thus they can be unambiguously indexed to the simple-cubic
Gaussian resolution function, symmetry. On the other hand analysis of the scattering spec-
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FIG. 6. The scattering pattern for the Schwarz D structaee FIG. 8. The scattering pattern for the GX6 struct(see legend
legend of Fig. 3 The hkl indices should be multiplied by 2 in Fig. '3)_' gp (see leg

order to compare them witRn3m space grouf18,17.

o
o
o

SCN1 and CD structures. Still, a much more difficult case is

trum of the complex m3m structure SCN1 proves the op- Possible as illustrated by the spectrum of the GX6 structure
posite. With the established parameters, we observe th&kig. 8, where the only experimentally visible peak would
some hkl peaks merge into a smaller number of biggerbe composed of threlekl peaks of indices equal to (776),

peaks. The four most prominent experimental peaks are pd866), and (875). This peak is located atj,
sitioned atq;=2x102 A1 gq,=4.2q;, gqz=5q;, and =1x10"" A~L This one peak would not indicate any cu-

0,=60;. bic symmetry in the system at all. The characteristic length
Similar situation can be seen in tHen3m symmetry ~ corresponding to this pedk,,=2/qo=63 A is more then

group. Figures 6 and 7 show scattering spectra for th&®n times smaller then the real cubic cell parametr (
Schwarz D 6=210 A) and CD =450 A) structures, re- =710 A). The spectrum of a topologically S|mple_structure
spectively. Please note that in order to compareftkkin-  Schoen GFig. 9), of the same symmetry groupa3d) as
dices with thePn3m symmetry group, one has to multiply the GX6, can be easily indexed to the correct symmetry and

them by a factor 718,17). In the case of the CD structure does give correct estimates about the size of the unit cell
once again the resolution is too small to see distinctive peak@: 170 A). N : . .
in an experiment. Also in this case the intensity is shifted A correct determination of the cubic lattice parameter is
toward the higher ordenkl peaks. The situation here is not crucial for the identification of the topology. While the dif-

hopeless thanks to the peak (110), which, like in the SCN{€rences in surface area of the bilayer per volume between
case, is not extinct by the structure factor. This facilitateg?'eSeNted structures are not very big, the differences in sur-

. . 2
approximate extraction of the cubic cell parameters of thdace area per unit cell are large. '_I'he quansty—S/a )
whereSis the surface area in the unit cell aads the cubic
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FIG. 7. The scattering pattern for the CD struct(see legend FIG. 9. The scattering pattern for the Schoen G structsee
of Fig. 3. legend of Fig. 3.
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lattice parameter, is a good measure of the topological comished which of these structures are formed in real systems.
plexity of the system. For the Schwarz P structsfe=2.3 We have presented a simple model for obtaining theoret-
while for the SCN1 it is over three times biggsr;,=7.8. In  ical scattering spectra of TPMS. We have shown that the
the case of other symmetries, the situation is simitr; spectra of the complex structures can be ambiguous. In gen-
=3.8 and 8.1 for Schwarz D and CD, respectively, 3.1 foreral, the more topologically complex the structure is, the

Schoen G and 12.5 for GX6. smaller is the structure factor for the lowest ortiédl peaks
and the intensity is shifted towards longer scattering wave
IV. SUMMARY vectors. This, together with the limitations of the experimen-

tal techniques can make it very difficult either to unambigu-

_The list of the experimentally found cubic structures inoysly prove the existence of these structures or to exclude
oil/surfactant/water solutions is long, and progressively newhis possibility.

structures are being found. The theoretical models for these

structures are triply periodic minimal surfaces, which can be ACKNOWLEDGMENT

obtained, for example, by minimization of the Landau-
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