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Pattern and wave number selection in magnetic fluids
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The formation of patterns of peaks on the free surface of a magnetic fluid subject to a magnetic field normal
to the undisturbed interface is investigated theoretically. The relative stability of ridge, square, and hexagon
planforms is studied using a perturbative energy minimization procedure. Extending previous studies the finite
depth of the fluid layer is taken into account. Moreover, adding the wave number modulusk to the set of
variational parameters also the wave number selection problem is addressed. The results are compared with
previous investigations and recent experimental findings.
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I. INTRODUCTION

When a magnetic fluid layer is subjected to a vertica
oriented and uniform magnetic field, above a critical value
the field strength a hexagonal pattern of peaks appears o
surface of the liquid. This Rosensweig or normal field ins
bility was first observed by Cowley and Rosensweig in 19
@1,2#. Further increase of the magnetic field up to a seco
threshold gives rise to a transition from the hexagonal t
square planform@3,4#.

The arrangement of peaks resulting from the Rosensw
instability into patterns of different geometry is just one p
ticular example from an impressive variety of pattern form
tion in physical systems@5#. It is well known that although
the instability threshold itself can be obtained from a line
ized version of the underlying equations, the pattern se
tion problem requires the inclusion of nonlinear terms.
standard procedure to probe the nonlinear regime pertu
tively is by means of amplitude equations@6,5#.

However, unlike many other examples of pattern formi
physical systems discussed in the literature, the surface
file of a magnetic fluid in a static magnetic field is an eq
librium structure. Accordingly, the relative stability of plan
forms and possible transitions between different patterns
be investigated theoretically by studying the appropri
thermodynamical potential. Still the problem is a comp
cated nonlinear task since the local magnetic field determ
ing the surface profile in turn depends on the surface defl
tion via boundary conditions. As a consequence
variational minimization of the thermodynamic potential
the surface profile cannot be accomplished exactly and
has to resort to approximate procedures applicable in
experimentally relevant situation of slightly overcritic
magnetic fields.

In classical investigations along these lines Gailitis@7#
and Kuznetsov and Spektor@8# analyzed the stability of the
different patterns of the Rosensweig instability by means
an energy minimization principle. These as well as rela
investigations using methods of functional analysis@9,10# or
a generalized Swift-Hohenberg equation@11,12# were con-
fined to fluid layers of infinite depth.

On the other hand, experimental investigations are usu
done with rather thin fluid layers and the effects of fin
thickness on thelinear regime have been studied recently
1063-651X/2001/64~2!/021406~10!/$20.00 64 0214
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great detail. For example, the dispersion relation of surf
waves on a magnetic fluid layer of arbitrary thickness w
determined in Ref.@13# and the influence of viscosity on th
linear dynamics was elucidated in Ref.@14#. Taking advan-
tage of the dependence of the threshold of instability and
wavelength of the most unstable mode on the thickness
the fluid layer in a clever way, it is, e.g., possible to meas
both the normal and the anomalous dispersion branch of
face waves on magnetic fluids@15#.

In the present paper we complement these investigat
by a thorough study of the weakly nonlinear regime of t
Rosensweig instability slightly above the critical magne
field for a magnetic fluid of arbitrary depth. Taking the lim
of infinite layer thickness we also critically discuss the cla
sical findings obtained in Refs.@7# and@8#. Moreover, we are
able to quantify the restriction to sufficiently small suscep
bilities x of the fluids which was always used in previou
studies.

Our method of investigation is a generalization of t
variational minimization of an energy functional alread
used in Refs.@7# and@8#. Near the instability this functiona
may be written as a power series in the amplitude of
surface deflection and the minimization can be perform
explicitly. Moreover, our approach allows the theoretical
vestigation of the wave number selection problem addres
also in recent experiments@4#. Including the wave numberk
into the set of variational parameters we determine the
pendence of the wave number of the patterns on the m
netic field and investigate the influence of a varying wa
number on the stability of hexagons and squares. There
by a slight extension of our method we are able to stu
questions which are not easily accessible to other nonlin
methods, as, e.g., amplitude equations.

The paper is organized as follows. In Sec. II the ba
equations are collected and transformed into a form suita
for the calculation of the energy. In Sec. III a perturbati
ansatz for the surface deflection is put forward and the
portant issue of its consistency and region of validity is d
cussed. Section IV is devoted to the comparison of our fi
ings with the classical results of pattern selection in a fl
with infinite depth. Subsequently in Sec. V we conside
magnetic fluid layer with arbitrary thickness and analyze
effects of the finite depth on the stability of the patterns.
Sec. VI we address the wave number selection problem.
©2001 The American Physical Society06-1
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nally Sec. VII contains a summary and compares our fi
ings with recent experimental results.

II. BASIC EQUATIONS

We consider the situation sketched in Fig. 1. A horizo
tally unbounded magnetic fluid layer is subjected to an
ternal magnetic fieldH0 which in the absence of any mag
netic permeable material is of the formH0(x,y,z)
52H0ez . The incompressible magnetic fluid of densityr,
surface tensions, and susceptibilityx is bounded from be-
low at z52d by an impermeable material and has a fr
surface described byz5z(x,y) with the magnetically imper-
meable air above. The gravitational accelerationg52gez
acts parallel to thez axis. Our aim is to determine whic
static profilez(x,y) develops for a magnetic fieldH0 strong
enough to destabilize the flat surfacez(x,y)50.

Stable configurations of the magnetic fluid surface w
infinite horizontal extension are given by minima of the th
modynamic potential per unit area in thex-y plane

f @z~x,y!#5K rg

2
z2~x,y!2

m0

2 E
2d

z~x,y!

dzH0xH~x,y,z!

1sA11„]xz~x,y!…21„]yz~x,y!…2L . ~1!

Here m0 is the permeability of free space,H(x,y,z) is the
magnetic field in the presence of the magnetic fluid, and
brackets denote the average over thex-y plane defined by

^F~x,y!&ª lim
L→`

1

4L2 E
2L

L

dxE
2L

L

dyF~x,y!. ~2!

The three terms on the right-hand side of Eq.~1! describe the
hydrostatic energy, the magnetic energy@16#, and the surface
energy, respectively. Note that both the hydrostatic and
surface energy increase when the interface profile start
deviate from the flat reference state, whereas the magn
energy decreases. For sufficiently largeH0 this gives rise to
the normal field or Rosensweig instability@1,2#.

The magnetic fieldsB andH are determined by the stati
Maxwell equations,

¹•B50 and ¹3H50, ~3!

FIG. 1. Schematic plot of a magnetic fluid layer with infini
horizontal extension in an external magnetic fieldH0 parallel to the
gravitational accelerationg. We investigate the pattern formation o
the free surfacez5z(x,y) for arbitrary depthd of the magnetic
fluid with susceptibilityx.0.
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lim
z→6`

H~x,y,z!52H0ez , ~4!

@~Ba2Bff !•n#uz5z50 and @~Ha2Hff !3n#uz5z50, ~5!

@~Bff2Bb!•ez#uz52d50 and @~Hff2Hb!3ez#uz52d 50,
~6!

wheren denotes the normal vector on the surfacez(x,y) and
the respective subscripts indicate the fields above, in,
below the magnetic fluid. The minimization problem for th
thermodynamic potential becomes nontrivial since the m
netic field H(x,y,z) depends on the profilez(x,y) of the
surface.

Throughout the paper we will assume the linear relatio

B5m0~11x!H ~7!

between the magnetic induction and the magnetic field.
the experimentally relevant magnetic fluids and fields@4# this
approximation deviates about 5% from the exact relation
tweenB andH.

It is convenient to introduce a scalar magnetic poten
c(x,y,z) defined by

H52¹c, ~8!

which by Eq.~3! has to satisfy the Laplace equation

Dc50. ~9!

The two characteristic scales of the problem are the c
cal wave number at the onset of the instability,

kc,`5Arg

s
, ~10!

for a magnetic fluid with infinite depthd→` and the corre-
sponding critical magnetic field,

Hc,`5A~11x!~21x!2Args

x2m0

, ~11!

which were first derived in Ref.@1# from a linear stability
analysis. Henceforth we therefore measure all lengths
units of the capillary lengthkc,`

21, all wave numbers in units
of the critical wave numberkc,` , the magnetic fieldH0 in
units of the critical valueHc,` , the scalar magnetic potentia
c in units ofHc,` /kc,` , and energies per unit area in units
s. Moreover, it is convenient to introduce the following r
scaled magnetic potentials in the space above, in, and be
the magnetic fluid, respectively:

caªc
~21x!

H0x
, ~12!

c ffªc
~11x!~21x!

H0x
, ~13!
6-2
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cbªc
~21x!

H0x
. ~14!

Each of these potentials has to fulfill the Laplace Eq.~9!.
Using the abbreviation

hª
x

21x
. ~15!

the asymptotic form of the magnetic field foruzu→` as
specified by Eq.~4! gives rise to the requirements

lim
z→1`

]zca~x,y,z!5
1

h
5 lim

z→2`

]zcb~x,y,z! ~16!

for the magnetic potentials. Moreover the boundary con
tions ~5! and ~6! for the magnetic fields translate into th
following boundary conditions for the potentials:

@]xca2]xc ff#uz5z]xz1@]yca2]yc ff#uz5z]yz

2@]zca2]zc ff#uz5z50, ~17!

11h

12h
caU

z5z

2c ffuz5z50, ~18!

@]zc ff2]zcb#uz52d50, ~19!

c ffuz52d2
11h

12h
cbU

z52d

50. ~20!

Using Eqs.~8! and~13! and exploiting the fact thatH0 is
parallel to thez axis, we finally get the energyf as functional
of the surface deflectionz5z(x,y) in the form

f @z#5 K z2

2
2H0

2~c ffuz5z2c ffuz52d!

1A11~]xz!21~]yz!2L . ~21!

As stated above, the main problem, rendering a straight
ward minimization off in z(x,y) impossible, is the rathe
implicit dependence of the potentialc ff(x,y,z) on the sur-
face deflectionz(x,y) specified by the boundary condition
~17! and ~18!.

III. THE PERTURBATION ANSATZ

The variational problem for the energy functional pos
in the last paragraph can in general not be solved exactly
order to make analytic progress, we restrict ourselves to
vicinity of the critical magnetic field and assume that t
amplitude of the surface deflection is still small. It is th
possible to expand the energy in this amplitude and to re
only the first terms. In this paper we will consider an expa
sion of the energy up to fourth order in the amplitude. T
applicability of this approach will be critically discussed b
low.
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Generalizing the perturbation expansions used in R
@7#, @8#, @19#, and@23# for the one-dimensional variant of th
Rosensweig instability, we write the surface profile in t
form

z~x,y!5 (
n51

4

An cos~kn•r !1 (
n55

17

Bn cos~kn•r !, ~22!

where r5(x,y) and k5(kx ,ky) are two-dimensional vec
tors. The terms withn51, . . . ,4constitute the main modes
Their corresponding wave vectorsk1 to k4 have all the same
modulusk whereas their mutual orientation is chosen su
that the Ansatzallows the description of ridges~e.g., A1
5A, A25A35A450!, squares~e.g., A15A45A, A25A3
50!, and hexagons~e.g.,A15A25A35A, A450! ~see Fig.
2!.

The terms withn55, . . . ,17 arehigher harmonics with
wave vectorsk5 to k17 being linear combinations of two
wave vectors of the main modes and amplitudesBn of order
O(A2). These terms are needed to satisfy the minimum c
ditions for the energy functional to the required ord
O(A3). The intuitive meaning of this fact is that reliabl
results on the relative stability of different planforms requir
some information on the deviation of the nonlinear surfa
profile from the simple cosine shape describing the lin
instability. On the other hand, there is no need to inclu
even higher harmonics in the ansatz~22! since the corre-
sponding contributions would average to zero in thex-y in-
tegrations in the definition~21! of the energy functional. In
conclusion the chosenAnsatzis the only consistent perturba
tion ansatz for the energy which includes terms up to fou
order in the amplitude of the surface deflection. The valu
of the amplitudesA1 ,...,A4 and B5 ,...,B17 as well as the
wave vector modulusk of the main modes are the free p
rameters which may be used to minimize the energy. In p
ticular the possible minimization ink is a special advantag
of our approach since it allows an analysis of the nonlin
wave vector selection problem not easily accessible to o
approaches.

FIG. 2. Wave vectorsk1 to k4 of the four main modes in the
perturbation ansatz~22! ~arrows!. k4 is perpendicular tok1 and the
angle betweenk1 andk2 or k2 andk3 is p/3. The end points of the
wave vectors of the higher harmonics are represented by cro
Each of these wave vectors is the sum or difference of two of
main wave vectors.
6-3
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Because of the boundary conditions at the surface of
fluid the magnetic potentialc must have a similar depen
dence onx andy asz(x,y). TheAnsätze

ca5
z

h
1 (

n50

17

une2uknuz cos~kn•r !,

c ff5
z

h
1 (

n51

17

@vn
1euknuz1vn

2e2uknuz#cos~kn•r !,

cb5
z

h
1

2d

11h
1 (

n50

17

wneuknuz cos~kn•r !, ~23!

fulfill the Laplace Eq.~9! and the asymptotic boundary con
ditions~16!. Omitting the modek0ª(0,0) in the potentialc ff
fixes the free constant of the potentialc. Plugging Eq.~23!
into the four remaining boundary conditions Eqs.~17!–~20!
we can determine the parametersun , vn

1 , vn
2 , and wn as

functions of the surface deflection amplitudes by expand
the equations up to third order in theAn . The resulting ex-
pressions specify the dependence of the magnetic field on
surface profile which is then used to calculate the energf
using Eq.~21! up to fourth order in the amplitudesAn . The
resulting dependence off on the higher order amplitudesBn
is simple and the minimization in theBn can be performed
explicitly. Subtracting from the resulting expression the r
erence value of the energy for a flat interface we fina
arrive at

f d~$An%,k!ª f ~$An%,k!2 f ~z50! ~24!

52
1

2
l ~e,k!@A1

21A2
21A3

21A4
2#

2g~e,k!@A1A2A3#1
1

4
g~e,k!@A1

41A2
4

1A3
41A4

4#1
1

2
gh~e,k!@A1

2A2
21A2

2A3
2

1A3
2A1

2#1
1

2
gt~e,k!@A2

2A4
21A3

2A4
2#

1
1

2
gn~e,k!@A1

2A4
2#1O~A5!. ~25!

This expression gives the energy of a magnetic fluid laye
depthd with surface profilez(x,y) as specified by Eq.~22!
at arbitrary strength of the external fieldH0 up to fourth
order in the deflection amplitudesAn . The dependence o
H0 is expressed via the supercriticality parameter

e5
H0

2

Hc,d
2 21. ~26!

The functionl (e,k) is given by
02140
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l ~e,k!52
1

2
1~11e!Hc,d

2 12e22kdh

12e22kdh2 k2
1

2
k2. ~27!

It fixes the critical wave numberkc,d for the onset of the
instability and the corresponding critical magnetic fieldHc,d
for a magnetic fluid withfinite depthd via the conditions

l ~e50!uk5kc,d
50 ~28a!

and

] l ~e50!

]k
uk5kc,d

50. ~28b!

Determining the minima off with respect to the ampli-
tudesAn , one finds thate→0 with An→0 as expected: the
external field will be near to its critical value if theequilib-
rium values of the amplitudesAn are small. For ridges and
squares the explicit scaling ise;A2 for A→0, in the case of
hexagons one findse;2A for small A. This in turn implies
that to the desired orderO(A4) of the expansion off in the
amplitudesAn only the e dependence ofl and g has to be
retained. The exact form of these dependencies isl (e,k)
5 l (0,k)1e] l (e,k)/]e and g(e,k)5(11e)g(k). In this
way we arrive at our main result for the energyf d($An%,k) of
the surface deflection which describes the equilibrium c
figurations consistently up to fourth order in the amplitud
An :

f d~$An%,k!52
1

2
l ~e,k!@A1

21A2
21A3

21A4
2#2~11e!g~k!

3@A1A2A3#1
1

4
g~k!@A1

41A2
41A3

41A4
4#

1
1

2
gh~k!@A1

2A2
21A2

2A3
21A3

2A1
2#1

1

2
gt~k!

3@A2
2A4

21A3
2A4

2#1
1

2
gn~k!@A1

2A4
2#1O~A5!.

~29!

The explicit expressions for the various coefficients in E
~29! are rather long. We therefore display their form he
only for the comparatively simple situation of a fluid of in
finite depth,d→`:

g`~k!5
3

4
hk2, ~30a!

g`~k!5
1

16
k3~823k!2

k4h2

124k14k2 , ~30b!

gh,`~k!5
1

4
k3S 11h227h2)13)2

3

4
k23D

2
3

8

k4h2~1928) !

122)k13k2
, ~30c!
6-4
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gt,`~k!5k3S 3

4
)&2114h22

7

4
h2)&2

5

16
kD

2
1

8

h2k4~181)24&24)& !

22k)&1k21k&2)

2
1

8

h2k4~182)14&24)& !

22k)&1k22k&1)
, ~30d!

gn,`~k!5k3S 2
1

8
k23h2&2114h21& D

2
k4h2~924& !

122k&12k2 . ~30e!

IV. FERROFLUID LAYER WITH INFINITE DEPTH

In this section we consider a magnetic fluid of infini
depthd→` and fix the wave number modulusk at its critical
valuekc,`51. This enables us to compare our findings w
the well-known results of previous theoretical investigatio

Possible surface patterns together with their amplitu
are given by stationary points of the energy functi
f `($An%,k51). We will in particular study ridges~‘‘rolls’’ !
given byA15AR with A25A35A450, squares represente
by A15A45AS with A25A350, and hexagons described b
A15A25A35AH with A450. The last planform is shown in
Fig. 1. Using Eqs.~27!, ~29!, and~30! we find for the corre-
sponding amplitudes

AR~e!5A e

g`
, ~31!

FIG. 3. Lines separating regions in thex-e plane in which the
amplitudes of ridgesAR , squaresAS , and hexagonsAH , are
smaller than 0.25~full lines! or smaller than 1~dashed lines!. The
thin dotted line represents the results given in Ref.@7#. For suscep-
tibilities larger than the critical valuesxR , xS , andxH the ampli-
tudes diverge in the considered approximation~22!.
02140
.
s

AS~e!5A e

gn,`1g`
, ~32!

and

AH~e!5
1

2

g`~11e!1Ag`
2 ~11e!214e~2gh,`1g`!

2gh,`1g`
,

~33!

respectively. Together withx also g is always positive.1

Hence only up hexagons with a peak instead of a dip in
center are stable.

Our results for the hexagons differ slightly from the cla
sical ones reported in Ref.@7# in which the dependence of th
cubic term in Eq.~29! on e is missing. In Refs.@7# and @8#
this dependence was omitted because the discussion wa
stricted to fluids withg!1 so that the approximate scalin
e;A2 is very similar to the true onee;2gA1O(A2) and
the hysteresis effect of the first-order transition@17,18# small.
Otherwise our results coincide with those of Gailitis, in pa
ticular usingk5kc,`51 in Eq. ~30! the respective expres
sions found in Ref.@7# are reproduced. The investigations
Kuznetzov and Spektor@8# were restricted to first order inh
and are contained in both our results and those of Gailiti

Before addressing the relative stability of the differe
planforms introduced above it is important to character
the domain of validity of our central expression~29! for the
energy. Being a perturbative result the corresponding am
tudesAn must not be too large. Figure 3 gives a quantitat
impression of what that means by displaying lines in thex
2e plane corresponding to fixed values of the amplitudes
different patterns. It is in particular important to realize th
for sufficiently large values of the susceptibilityx the fourth
order coefficients in the energy functional may change si
The corresponding patterns than appear through a backw
bifurcation @10#. At the same timehigher order terms ~i.e.,
sixth or higher order in the amplitudesAn! in the energy are
necessary to saturate the instability. The concrete valuesx
for the planforms considered arexR'2.54 ~g` becomes
negative!, xS'0.41 ~gn,`1g` becomes negative!, and xH
'1.05 ~2gh,`1g` becomes negative!. Beyond these values
of x our ansatz~22! is unable to describe the arising patter
The value ofxR was first calculated in Ref.@19#.

Keeping this limitation of our approach in mind we hav
investigated the pattern selection problem by studying
character of the extremum of the energy functional~29! at
the ridge, square, and hexagon solutions given in Eqs.~31!–
~33!. This is rather similar to a linear stability analysis of th
fix point solutions of the corresponding amplitude equatio
@20#. The results are as follows: Ridges are never sta
since gn,`,g` always. We have alwaysg`1gn,`,gh,`
1gt,` andgn,`,g` . Hence~for x,xS! squares are stable i

1This holds true also in the case of a finite layer depthd.
6-5
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e.eS5
@g`1gn,`2gh,`2gt,`1A~g`1gn,`2gh,`2gt,`!224g`

2 ~g`1gn,`!#2

4g`
2 ~g`1gn,`!

.

In order for hexagons to be stable~for x,xH! the following three conditions have to be fulfilled:

~ i! e.eF5
@g`

2 12gh,`1g`2A~g`
2 12gh,`1g`!~2gh,`1g`!#@2gh,`1g`2A~g`

2 12gh,`1g`!~2gh,`1g`!#

g`
2A~g`

2 12gh,`1g`!~2gh,`1g`!
;

~ ii ! either e,eH5
g`

2 ~gh,`12g`!

~g`
2 1gh,`2g`!~gh,`2g`!

or gh,`,g` ;

~ iii ! either e,eh5
g`

2 ~gn,`12gt,`!

~g`
2 12gh,`1g`22gt,`2gn,`!~2gh,`1g`22gt,`2gn,`!

or 2gh,`1g`,2gt,`1gn,` .
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These results are displayed in Fig. 4. For regions in wh
two different patterns are stable, i.e., in which different lo
minima of the energy exist, we have also determined
respective Maxwell values ofe at which these minima hav
the same value. Fore5eHS the energy of the hexagon pa
tern is equal to the energy of the square pattern, foe
5eHF it is equal to the energy of the flat surface.

For all susceptibilities either the relationgh,`,g` or the
relation 2gh,`1g`,2gt,`1gn,` is violated and conse
quently hexagons always become unstable for sufficie
largee.

Of particular importance is the line denoted byeh . For
e.eh the hexagon pattern is unstable to squares which
turn for x.xS are not saturated by the fourth order term
the energy. In that case within our perturbation ansatz we
not able to predict which pattern will show up. Forx.xO

'0.56 this transition occurs right at onset and our analysi
hexagons is therefore restricted tox,0.56. This stability cri-
terion for hexagons was to our knowledge not discusse
the literature before. It was not found by Silber and Kno
loch @10#, since with their approach the relative stability b
tween hexagons and squares could not be determined. It
also missed by Gailitis@7# and by Kuznetsov and Spektor@8#
since they considered only the casex!1.
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V. FERROFLUID LAYER WITH ARBITRARY THICKNESS

The aim of this section is to investigate how the fin
depthd of a magnetic fluid layer affects the pattern selectio
Only magnetic fluids with relatively small susceptibilitiesx
,xS will be considered in order not to leave the region
applicability of our perturbation approach~see the discussion
above!.

From the linear stability analysis@1,21# it is well known
that a thin layer retards the onset of the instability and sh
the wave number of the unstable mode to larger values.
dependence of the critical magnetic fieldHc,d and of the
corresponding critical wave numberkc,d on the layer thick-
nessd can be determined from Eqs.~28!. It is shown in Fig.
5. If the depthd of the fluid is larger then the critical wave
length at infinite depthlc,`52p/kc,` , which is typically of
the order of 10 mm, the finite thickness of the layer can
ignored. Even if the layer is very thin, the parameters ch
acterizing the linear instability of the flat surface are mo
fied only within a few percent for fluids with small susce
tibilities.

To start with the nonlinear analysis we have first to det
mine the dependence ond of the critical valuesxR , xS , and
xH beyond which higher order terms in the energy functio
are necessary. The corresponding results are shown in Fi
All values of the critical susceptibilities get eventual
s

g
in
FIG. 4. Limits of the stability regions~solid
lines! and Maxwell points~dashed lines! in the
x-e plane. The left figure refers to positive value
of e, the right to the subcritical regione,0.
Squares are stable ife.eS . Hexagons are stable
if e,eH , e,eh ande.eF . The two thin dotted
lines illustrate exemplarily the correspondin
findings if the dependence of the cubic term
Eq. ~29! on e is neglected.
6-6
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smaller if the layer depth decreases. They do not cross e
other such thatxS is the smallest one for all values ofd. We
have included the result for ridges also although these
unstable in the setup of Fig. 1 for alld and x. However,
ridges can be stabilized by an additional magnetic field t
gential to the undisturbed surface@22# and therefore our re
sults give first informations on the behavior in this modifi
experimental setup.

FIG. 5. Critical magnetic fieldHc and corresponding critica
wave numberkc as functions of the layer thicknessd in units of
lc,` , wherelc,` is the critical wavelength for the layer with infi
nite thickness. Both critical values are altered less than 2% fo
fluid with x50.05 ~solid lines! and less than 7% for a fluid with
x50.30 ~dashed lines!.

FIG. 6. The critical susceptibilitiesxR , xS , and xH beyond
which higher order terms are necessary in the energy function
order to describe the respective pattern consistently as functio
the layer thicknessd. Also included are the values forxO beyond
which hexagons are unstable to subcritical squares introduce
Sec. IV andx.xd(d) for which the pattern amplitude at ons
already exceeds the layer thickness. In both cases our theor
model ceases to be applicable.
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For very shallow layers the amplitude of the arising p
tern may become larger than the layer depth already at on
As a consequence the magnetic fluid layer disintegrates
unconnected regions and ‘‘dry spots’’ occur. This topologic
change is outside our theoretical analysis. The correspon
value of x denoted byxd is also shown in Fig. 6. As ex
pected it becomes the smallest of all criticalx values ford
→0.

In order to investigate the stability of the patterns arisi
on a layer with finite thickness we can perform basically t
same analysis as in the previous section. We just have to
the wave numberk to its critical valuekc,d corresponding to
the given thicknessd and to use the appropriate value f
Hc,d in the functionl (e,k5kc,d) @see Eq.~27!#. Moreover,
we have to take into account the dependence of the co
cientsg, g, gh , gt , andgn on the depthd. In this way we can
finally determine for any given depthd the stability regions
of the different patterns by means of the corresponding
ergy functionf ($An%,k5kc,d) as given by Eq.~29!.

The results for the various stability boundaries and cor
sponding Maxwell points for a fluid with susceptibilityx
50.05 are shown in Fig. 7. All the critical values ofe at
which transitions between different planforms arise incre
in absolute value with decreasing layer thicknessd. Simulta-
neously the hysteretic behavior becomes more pronoun
As in the linear analysis we find that the effects of fin
depth can be neglected, as long as the fluid layer is thic
then the critical wavelengthlc,` . However, for a thin layer
the stability of the hexagons and squares is changed no
ably. For instance the value ofeH at which the transition
from hexagons to squares takes place may increase by a
tor of 3 implying an increase of the magnetic field of abo
10%. As discussed above for very thin layers our theory is
longer applicable since the dips of the hexagonal patter

a

in
of

in

cal

FIG. 7. Limits of the stability regions~solid lines! and Maxwell
points ~dashed lines! as functions of the layer thicknessd for a
magnetic fluid withx50.05. Ridges are always unstable, squa
are stable fore.eS , and hexagons are stable foreF,e,eH . In the
gray region the instability results in the formation of dry spots rig
at onset, so that our theory no longer applies. The lower part of
figure describes the subcritical region.
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onset already reach the bottom of the fluid. The correspo
ing values ofd are indicated by the shading in Fig. 7.

Figure 8 displays the analogous results as obtained f
magnetic fluid with the larger susceptibility ofx50.30.
Whereas the situation fore,0 is rather similar to the one
shown in Fig. 7, the behavior for positivee is qualitatively
different. This is due to the fact that althoughxS(d→`)
.x with decreasing depthd both xS(d) andxO(d) eventu-
ally become smaller than 0.30~cf. Fig. 6!. This gives rise to
the divergencies in the energy discussed above and cha
the stability chart accordingly.

VI. WAVE NUMBER SELECTION

In many pattern forming systems the wavelength of
first unstable mode is often a good estimate for the typ
length scale of the emerging pattern. If a whole band
modes is unstable the one with maximal growth rate is lik
to dominate the arising structure@14#. On the other hand, the
developed pattern is largely determined by the nonlinea
in the problem and therefore its length scale may also s
stantially deviate from the relevant scales of the lineariz
theory.

A particularly gratifying feature of our variational ap
proach to pattern formation in the normal field instability
magnetic fluids is the possibility to include the wave numb
modulusk into the set of parameters varied to minimize t
energy functional. This allows us to directly determine t
dependence of the pattern periodicity on the external m
netic field and to investigate the influence of the variation
wave number on the stability of the different patterns.

We therefore investigate in the present section the w
number selection problem for the Rosensweig instability.
simplicity we will consider a magnetic fluid with infinite
depth only. As shown in the previous section this is a v
good approximation as long asd.lc,` . We will compare

FIG. 8. The same as Fig. 7 for a magnetic fluid withx50.30.
With decreasing depthd of the layer bothxS(d) andxO(d) become
smaller than the susceptibility of the fluid and higher order term
the energy would be needed to determine the pattern stability.
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our findings with recent experiments in which this conditi
is met.

The necessary calculations are similar to those reporte
Sec. IV with the only extension that we no longer fix th
wave number modulusk in advance but include it into the se
of parameters with respect to which the energy is to be m
mized.

A typical result is shown in Fig. 9 displaying the maxim
surface deflectionz~0, 0! and the corresponding wave num
ber k of the patterns. As can be seen from the figure,
wave number of the patterns decreases with increasing
percriticality. This is in particular pronounced for the squa
pattern and implies that in this case the system may lowe

n

FIG. 9. Surface deflectionz~0, 0! at the cusps of the pattern an
emerging wave numberk in dependence on the supercriticality p
rametere. For a fluid withx50.35 squares are only stable in th
regioneS,e,el . Ridges are always unstable.

FIG. 10. Limits of the stability regions~solid lines! and Max-
well points~dashed lines! in thex-e plane if variations of the wave
number modulusk are taken into account. Squares are stable ifeS

,e,el . Hexagons are stable ifeF,e,min(eH ,eh). For large val-
ues of x the stability region for squares gets smaller due to
wavelength instability occurring fore.el .
6-8
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energy very efficiently by increasing the wavelength of t
pattern.

This effect introduces an additional threshold fore into
the stability chart shown in in Fig. 10. Ife.el we find k
→0 and the pattern disappears by increasing its wavele
to infinity. This process is accompanied by an unbound
increase of the amplitudesA1 , A4 which carries us outside o
the validity of our perturbationAnsatz ~22!. The stability
regions of the other pattern remain qualitatively the same
without minimization ink as can be seen from a comparis
between Figs. 10 and 4.

For supercritical magnetic fields a whole band of wa
numbers giving rise to stable patterns exists. For hexag
this stability region is shown in Fig. 11. At fixede the hex-
agonal planform becomes unstable if the wave numbe
increased sufficiently. In Ref.@4# such an increase of th
wave number was achieved experimentally by compres
the hexagonal pattern in a hopper. The observed trans
from a hexagonal to a square pattern with smaller wave n
ber occurs when the limiteh of the stablek band is exceeded
and is hence in qualitative agreement with our theory.

VII. DISCUSSION

In the present paper we have theoretically investigated
formation of patterns on the free surface of a magnetic fl
resulting from the Rosensweig instability. For a magne
fluid layer of arbitrary depthd in an external magnetic field
H0 the equilibrium surface profile was determined by mi
mizing the appropriate thermodynamic potential. We ha
assumed a linear dependence of the magnetization on
magnetic field which is at most 5% off the correct values
the experimentally situations with which we compare o
findings. The analysis is restricted to the vicinity of the cri
cal magnetic field at which the flat interface becomes
stable since it uses a perturbation expansion for the en
up to fourth order in the amplitude of the surface deflecti
Our findings generalize the classical results of Gailitis@7#

FIG. 11. Stability band of the hexagonal pattern in thek-e plane
for a magnetic fluid withx50.35. Hexagons become unstable wh
e.eh . The marginal stability curve~dashed line! is also displayed.
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and Kuznetsov and Spektor@8# to layers of finite depthd
,`.

We have found that, at least for the slightly supercritic
magnetic fields considered, the finite thickness of the m
netic fluid layer can be neglected as long as it remains la
than the critical wavelength of the linear instability which
typical experiments is about 1 cm. For thinner layers non
ear effects become increasingly important. This shows
quite generally in more pronounced hysteresis effects for
transition between different planforms. We also find sma
values of the susceptibilities for which squares and rid
may appear through backward bifurcations and correspo
ingly higher order terms in the energy are necessary to s
rate the instabilities. The critical values of the susceptibil
x beyond which our theory breaks down are displayed in F
6. Together with the findings shown in Fig. 3 they quant
the qualitative statementx!1 used in Refs.@7# and @8#. An
extension of our analysis including higher orders similar
what has been done in Ref.@23# for the one-dimensiona
situation seems feasible but rather tedious.

It is possible to understand the enhanced hysteretic be
ior for thin layers qualitatively. A thin layer inhibits surfac
deformations resulting from the Rosensweig instability~see
Fig. 5! since the magnetic field energy is suppressed du
the finite depth of the layer. On the other hand for the dev
oped pattern the magnetic flux is concentrated at the peak
the surface so that the effective layer depth becomes la
Correspondingly the pattern is additionally stabilized and
cays only after a reduction of the field stronger than expec
from the linear theory. A similar reasoning explains wh
backward bifurcations of ridges and squares are facilitate
thin layers.

In addition to determining the stable planforms by min
mizing the energy functional in the amplitudes of the diffe
ent modes present in our ansatz for the surface profile,
have also addressed the problem of wave number selec
by including the wave number modulusk into the set of
variational parameters. We found quite generally a decre
of the wave number of the pattern with increasing magne
field. This is in qualitative agreement with recent expe
ments by Abouet al. @4# in which the the field intensity was
abruptly increased to overcritical values and the correspo
ing wavelengthl52p/k of the resulting hexagonal patter
was found to increase with increasing field. Likewise it w
found that the wave numberk of the hexagonal pattern i
already for slightly supercritical magnetic fields smaller th
the critical wave numberkc . The corresponding differenc
Dk is also found in the theory and shown in Fig. 9. Unfo
tunately a quantitative comparison with the experimental
sults is impossible since in the experiment a magnetic fl
with a susceptibility of 1.4.xH was used. For such a sus
ceptibility the theoretical analysis would require higher ord
terms in the perturbation expansion of the energy. Never
less we found thatDk grows with increasing susceptibility
such that the experimentally observed value of a few perc
agrees well with our result forDk at smaller susceptibilities
x,xH .

Moreover, the theoretical analysis has shown that wh
including the wave number into the set of variational para
6-9
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eters the square pattern gets rather susceptible to an
bounded increase in the wave number. This gives rise
reduced stability domain for squares and may be relate
the fact that in the experiments using jumps in the field
tensity always hexagonal arrays of peaks were found@4#.
Quite generally our results verify that the resulting planfo
may depend on the details of the experimentally chosen
to reach overcritical magnetic fields.

Let us finally stress that the variation of the wave num
of the patterns with the external field as found here theor
cally and observed in the experiments does not invalidate
ansatz with a fixed wave number used before. As reporte
Ref. @4# the wave number of the arising hexagonal patt
coincides withkc if the magnetic field is increased and d
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creased in a quasistatic way. This is probably due to the
that the boundary conditions suppress the emergence or
appearance of peaks in a developed pattern. Therefore u
the quasistatic process a metastable pattern withkc is pro-
duced whereas a jump in field intensity gives rise to the m
stable pattern corresponding to a smaller wave number.
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