PHYSICAL REVIEW E, VOLUME 64, 021406
Pattern and wave number selection in magnetic fluids

ReneFriedrichs and Andreas Engel
FNW/ITP, Otto-von-Guericke-UniversttaPostfach 4120, D-39016 Magdeburg, Germany
(Received 1 February 2001; published 20 July 2001

The formation of patterns of peaks on the free surface of a magnetic fluid subject to a magnetic field normal
to the undisturbed interface is investigated theoretically. The relative stability of ridge, square, and hexagon
planforms is studied using a perturbative energy minimization procedure. Extending previous studies the finite
depth of the fluid layer is taken into account. Moreover, adding the wave number mddtduthe set of
variational parameters also the wave number selection problem is addressed. The results are compared with
previous investigations and recent experimental findings.
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I. INTRODUCTION great detail. For example, the dispersion relation of surface
waves on a magnetic fluid layer of arbitrary thickness was
When a magnetic fluid layer is subjected to a verticallydetermined in Ref[13] and the influence of viscosity on the
oriented and uniform magnetic field, above a critical value oflinear dynamics was elucidated in R¢t4]. Taking advan-
the field strength a hexagonal pattern of peaks appears on thege of the dependence of the threshold of instability and the
surface of the liquid. This Rosensweig or normal field insta-wavelength of the most unstable mode on the thickness of
bility was first observed by Cowley and Rosensweig in 1967the fluid layer in a clever way, it is, e.g., possible to measure
[1,2]. Further increase of the magnetic field up to a secondboth the normal and the anomalous dispersion branch of sur-
threshold gives rise to a transition from the hexagonal to dace waves on magnetic fluidi&5].
square planforni3,4]. In the present paper we complement these investigations
The arrangement of peaks resulting from the Rosensweigy a thorough study of the weakly nonlinear regime of the
instability into patterns of different geometry is just one par-Rosensweig instability slightly above the critical magnetic
ticular example from an impressive variety of pattern forma-field for a magnetic fluid of arbitrary depth. Taking the limit
tion in physical system§5]. It is well known that although of infinite layer thickness we also critically discuss the clas-
the instability threshold itself can be obtained from a linear-sical findings obtained in Refk7] and[8]. Moreover, we are
ized version of the underlying equations, the pattern selecable to quantify the restriction to sufficiently small suscepti-
tion problem requires the inclusion of nonlinear terms. Abilities y of the fluids which was always used in previous
standard procedure to probe the nonlinear regime perturbatudies.
tively is by means of amplitude equatiof5]. Our method of investigation is a generalization of the
However, unlike many other examples of pattern formingvariational minimization of an energy functional already
physical systems discussed in the literature, the surface pratsed in Refs[7] and[8]. Near the instability this functional
file of a magnetic fluid in a static magnetic field is an equi-may be written as a power series in the amplitude of the
librium structure. Accordingly, the relative stability of plan- surface deflection and the minimization can be performed
forms and possible transitions between different patterns caexplicitly. Moreover, our approach allows the theoretical in-
be investigated theoretically by studying the appropriatevestigation of the wave number selection problem addressed
thermodynamical potential. Still the problem is a compli- also in recent experimenfd]. Including the wave numbeég
cated nonlinear task since the local magnetic field determininto the set of variational parameters we determine the de-
ing the surface profile in turn depends on the surface deflegendence of the wave number of the patterns on the mag-
tion via boundary conditions. As a consequence thenetic field and investigate the influence of a varying wave
variational minimization of the thermodynamic potential in number on the stability of hexagons and squares. Therefore
the surface profile cannot be accomplished exactly and onley a slight extension of our method we are able to study
has to resort to approximate procedures applicable in thgquestions which are not easily accessible to other nonlinear
experimentally relevant situation of slightly overcritical methods, as, e.g., amplitude equations.
magnetic fields. The paper is organized as follows. In Sec. Il the basic
In classical investigations along these lines Gaili’§  equations are collected and transformed into a form suitable
and Kuznetsov and Spektf8] analyzed the stability of the for the calculation of the energy. In Sec. Il a perturbation
different patterns of the Rosensweig instability by means ofinsatz for the surface deflection is put forward and the im-
an energy minimization principle. These as well as relategortant issue of its consistency and region of validity is dis-
investigations using methods of functional analy8id0] or  cussed. Section IV is devoted to the comparison of our find-
a generalized Swift-Hohenberg equatifdil,12 were con- ings with the classical results of pattern selection in a fluid
fined to fluid layers of infinite depth. with infinite depth. Subsequently in Sec. V we consider a
On the other hand, experimental investigations are usuallynagnetic fluid layer with arbitrary thickness and analyze the
done with rather thin fluid layers and the effects of finite effects of the finite depth on the stability of the patterns. In
thickness on théinear regime have been studied recently in Sec. VI we address the wave number selection problem. Fi-
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together with the boundary conditions,

lim H(x,y,z)=—Hoge,, (4)

Z—*+»

[(Ba=Bg)-nl|,-,=0 and [(Ha—Hg)xn]|,-,=0, (5)

[(Bz—Bp)-e]l,-—¢=0 and [(Hg—Hy) X e]|,—_4=0,

FIG. 1. Schematic plot of a magnetic fluid layer with infinite ©
horizontal extension in an external magnetic figlgiparallel to the  wheren denotes the normal vector on the surfg¢e,y) and
gravitational acceleratiog. We investigate the pattern formation on the respective subscripts indicate the fields above, in, and
the free surface={(x,y) for arbitrary depthd of the magnetic  pelow the magnetic fluid. The minimization problem for the
fluid with susceptibilityx> 0. thermodynamic potential becomes nontrivial since the mag-

) _netic field H(x,y,z) depends on the profilé(x,y) of the
nally Sec. VII contains a summary and compares our findg face.
ings with recent experimental results. Throughout the paper we will assume the linear relation

Il. BASIC EQUATIONS B=puo(1+x)H (7)

We consider the situation sketched in Fig. 1. A horizon-between the magnetic induction and the magnetic field. For
tally unbounded magnetic fluid layer is subjected to an exthe experimentally relevant magnetic fluids and fi¢ilshis
ternal magnetic field, which in the absence of any mag- approximation deviates about 5% from the exact relation be-
netic permeable material is of the fornHy(x,y,z) tweenB andH.
=—Hype,. The incompressible magnetic fluid of density It is convenient to introduce a scalar magnetic potential
surface tensionr, and susceptibilityy is bounded from be-  y(x,y,z) defined by
low at z=—d by an impermeable material and has a free
surface described ty= {(x,y) with the magnetically imper- H=-Vy, )
meable air above. The gravitational acceleratggn—ge, ) . .
acts parallel to the axis. Our aim is to determine which Which by Eq.(3) has to satisfy the Laplace equation
static profilel(x,y) develops for a magnetic field, strong Ay=0 9)
enough to destabilize the flat surfaggx,y)=0. '

Stable configurations of the magnetic fluid surface with  The two characteristic scales of the problem are the criti-
infinite horizontal extension are given by minima of the ther-¢5| \wave number at the onset of the instability,
modynamic potential per unit area in tkey plane

{xy) Ke o=\ —, 10
f[é(x,y>]=<§gz<x,y>—%f_dydzHoxH(x,y,z> “ N 1o

for a magnetic fluid with infinite deptd— - and the corre-
+cr\/l+(&Xé’(x,y))2+(&y§(x,y))2>. (1) sponding critical magnetic field,

(1+x)(2+x)2Vpgo
X2Mo

Here uq is the permeability of free spackl(x,y,z) is the He o= \/
magnetic field in the presence of the magnetic fluid, and the '
brackets denote the average over thgplane defined by

: (11)

which were first derived in Ref.1] from a linear stability
1 (L L analysis. Henceforth we therefore measure all lengths in
(F(x,y)):=lim mj de dyF(x,y). (2 units of the capillary lengtlk; 2, all wave numbers in units
Lo . of the critical wave numbek. .., the magnetic fieldH, in
units of the critical valueH, .., the scalar magnetic potential

nyrostatc nergy, the magretc cnefg, and e suface 1 WIS ofc -k, an energis per it e une o
energy, respectively. Note that both the hydrostatic and thgéaled ma r;etic otentials in the space above. in andgbelow
surface energy increase when the interface profile starts t?é 9 p P o

t

deviate from the flat reference state, whereas the magne e magnetic fluid, respectively:

The three terms on the right-hand side of E.describe the

energy decreases. For sufficiently laigg this gives rise to (2+%)
the normal field or Rosensweig instability,2]. =Y , (12
The magnetic field8 andH are determined by the static oX
Maxwell equations,
q _(A+x0+y) 3
V-B=0 and VXH=0, 3 = Hox
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(2+) 2 T L3 T
= (14) x X x X x

15 .

Each of these potentials has to fulfill the Laplace E%).

Using the abbreviation < 1t _
& X X
X
= 1 05 .
T3 (15 S
\\k
the asymptotic form of the magnetic field foz| - as 0 - 0 516 X
specified by Eq(4) gives rise to the requirements k. /k
lim a,44(x,y,2)= 1: lim  d,y(X,Y,2) (16) FIG. 2. Wave vectork, to k, of the four main modes in the
7t Zra /A z e perturbation ansat®?) (arrows. k, is perpendicular td,; and the

angle betweet,; andk, or k, andk; is 71/3. The end points of the
for the magnetic potentials. Moreover the boundary condiwave vectors of the higher harmonics are represented by crosses.
tions (5) and (6) for the magnetic fields translate into the Each of these wave vectors is the sum or difference of two of the

following boundary conditions for the potentials: main wave vectors.
[Oxtha— Oxibii]l o= cIxE + [dytha— Iy il 2= 0y ¢ Generalizing the perturbation expansions used in Refs.
i 0]l ey =0 an [7], [8], [19], and[23] for the one-dimensional variant of the
z¥a Ozvfillz=¢m Rosensweig instability, we write the surface profile in the
form
1+79
1— 7 a‘z_g l//ff|Z:§_0! (18) 4 17
£(x,y)=2, Aqcodky-1)+ 2 Brcogk, 1), (22
[azwﬁ_gz‘/’b]|z=fdzov (19 n=1 n=>s

1+7p

wherer=(x,y) and k=(k,,k,) are two-dimensional vec-
Wil = —a— 1y U

=0. (200 tors. The terms witm=1, . . . ,4 constitute the main modes.
Their corresponding wave vectdks to k, have all the same
Using Eqgs.(8) and(13) and exploiting the fact thdi is modulusk whereas their mutual orientation is chosen such

parallel to thez axis, we finally get the energyas functional ~ that the Ansatzallows the description of ridge¢e.g., Ay

z=—d

of the surface deflectioi={(x,y) in the form =A, A;=A3=A,=0), squarese.g,, A;=As=A, Ay=Ag
=0), and hexagon&.g.,A;=A,=Az=A, A,=0) (see Fig.
2 2).
f[§]=<§—H3(¢/ﬁ|zg— Pitl = —a) The terms withn=5, . ..,17 arehigher harmonics with

wave vectorsks to kq; being linear combinations of two
wave vectors of the main modes and amplituBgof order
+ \/1+(5x§)2+(5y§)2>- (21)  O(A?). These terms are needed to satisfy the minimum con-
ditions for the energy functional to the required order
As stated above, the main problem, rendering a straightforO(A%). The intuitive meaning of this fact is that reliable
ward minimization off in ¢(x,y) impossible, is the rather results on the relative stability of different planforms requires
|mp||c|t dependence of the potenti&]ﬁ(x'y,z) on the sur- some information on the deviation of the nonlinear surface
face deflection/(x,y) specified by the boundary conditions Profile from the simple cosine shape describing the linear
(17) and (19). instability. On the other hand, there is no need to include
even higher harmonics in the ansd22) since the corre-
IIl. THE PERTURBATION ANSATZ sponding contributions would average to zero in Xhgin-
tegrations in the definitioi21) of the energy functional. In
The variational problem for the energy functional posedconclusion the chosefinsatzs the only consistent perturba-
in the last paragraph can in general not be solved exactly. Ition ansatz for the energy which includes terms up to fourth
order to make analytic progress, we restrict ourselves to therder in the amplitude of the surface deflection. The values
vicinity of the critical magnetic field and assume that theof the amplitudesA,,...,A, and Bs,...,B;7 as well as the
amplitude of the surface deflection is still small. It is thenwave vector modulu& of the main modes are the free pa-
possible to expand the energy in this amplitude and to retairameters which may be used to minimize the energy. In par-
only the first terms. In this paper we will consider an expan-ticular the possible minimization ik is a special advantage
sion of the energy up to fourth order in the amplitude. Theof our approach since it allows an analysis of the nonlinear
applicability of this approach will be critically discussed be- wave vector selection problem not easily accessible to other
low. approaches.
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Because of the boundary conditions at the surface of the 1 5 1-e 2kdy ,
fluid the magnetic potentiagy must have a similar depen- l(ek)=—5+(1+ G)Hc,dm k= 5Kk2. (27)

dence orx andy as{(X,y). The Ansdze

. It fixes the critical wave numbek; 4 for the onset of the

z k2 instability and the corresponding critical magnetic field4
‘/’a:77+n§=:o une " cogky-r), for a magnetic fluid witHfinite depthd via the conditions
, . I(E:0)|k=kc,d:0 (288)
¢ﬁ=7—7+nzl [velknlZ+y e lnlZ]cogk, 1), and
dl(e=0)
z 2d I ——— ek =0. (28b)
W=t ot S, weekcogky ), (29 ok

Determining the minima of with respect to the ampli-
fulfill the Laplace Eq.(9) and the asymptotic boundary con- tudesA,, one finds that—0 with A,—0 as expected: the
ditions (16). Omitting the modék,:=(0,0) in the potentialj external field will be near to its critical value if theguilib-
fixes the free constant of the potential Plugging Eq.(23)  rium values of the amplitudeA,, are small. For ridges and
into the four remaining boundary conditions E¢s7)—(20) ~ squares the explicit scaling &-A? for A—0, in the case of
we can determine the parameters, v, , v, , andw, as hexagons one finds~—A for smallA. This in turn implies
functions of the surface deflection amplitudes by expandinghat to the desired ordeéd(A*) of the expansion of in the
the equations up to third order in ti#e,. The resulting ex- amplitudesA, only the e dependence of and y has to be
pressions specify the dependence of the magnetic field on tHetained. The exact form of these dependencieb(ésk)
surface profile which is then used to calculate the enérgy =!(0Kk)+ edl(e,k)/de and y(e,k)=(1+e€)y(k). In this
using Eq.(21) up to fourth order in the amplitudes,. The ~ way we arrive at our main result for the enerfgy{A,} k) of
resulting dependence 6fn the higher order amplitudds;, the surface deflection which describes the equilibrium con-
is simple and the minimization in thB, can be performed figurations consistently up to fourth order in the amplitudes
explicitly. Subtracting from the resulting expression the ref-An:
erence value of the energy for a flat interface we finally
arrive at _ E 2. A2 A2 27
fa({An} k)= > I(e,K)[AT+AZ+AZ+AL]— (1+€) y(k)
fa({An}K):=f({As}. k) = ({=0) (24) 1

X[AAAS]+ 7 9(K[AT+ A+ AG+A]]
=- %|(e,k)[A§+A§+A§+A§] 1 1
+ 5 On(KI[ATAS + AZAS+ AZAT]+ 5 gi(K)
1
~NeK[AAA]+ 7 9(e K[ATHA; 1
X[ASAT+AZALl+ 5 gn(KI[ATAT]+O(A®).

1
AT ATTF 5 On(e K [ATA+AZAS 29
5.0 1 5 o 2o The explicit expressions for the various coefficients in Eq.
+AZALIT 5 9 € KAAL+AZAL] (29) are rather long. We therefore display their form here
only for the comparatively simple situation of a fluid of in-

1 52 5 finite depth,d— o°:
+ 5 On(€K[ATAL]+O(A%). (25

3
. . . ya(K)= 3 7K, (309
This expression gives the energy of a magnetic fluid layer of

depthd with surface profile/(x,y) as specified by Eq22)

at arbitrary strength of the external field, up to fourth (k)= i K3(8— 3K) — k*7? (30b)
order in the deflection amplitudes,. The dependence on 9- 16 1—4k+4k*’
Hy is expressed via the supercriticality parameter
1 3
2 ghyx(k)=zk3 117;2—7772\/§+3f3—zk—3
€= H2° ~1. (26)
cd 3 k*7?(19-8v3) (308
[R— —’ C
The functionl (¢,k) is given by 8 1—2v3k+3k?
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€
Ag(e)= \/—gn,x o (32)

and
N‘T
© 1 y.(1+ &)+ \Y2(1+ €)2+ 4e(20n . + 0.
5 AH(€)_§ 2ghyw+gm I}

e=

(33

respectively. Together with also y is always positivé.
Hence only up hexagons with a peak instead of a dip in the
center are stable.

Our results for the hexagons differ slightly from the clas-
sical ones reported in R€fZ] in which the dependence of the

FIG. 3. Lines separating regions in thee plane in which the  Ccubic term in Eq.(29) on e is missing. In Refs[7] and[8]
amplitudes of ridgesAg, squaresAs, and hexagonsA,, are this dependence was omitted because the discussion was re-
smaller than 0.2%full lines) or smaller than Xdashed lines The  stricted to fluids withy<1 so that the approximate scaling
thin dotted line represents the results given in REf. For suscep- e~A? is very similar to the true one~ — yA+ O(A?) and
tibilities larger than the critical valuegg, xs, and yy the ampli-  the hysteresis effect of the first-order transitja,18 small.
tudes diverge in the considered approximati28). Otherwise our results coincide with those of Galilitis, in par-
ticular usingk=k;..=1 in Eq. (30) the respective expres-
sions found in Ref{7] are reproduced. The investigations of

Eing=0.25)

R , 7, 5 Kuznetzov and SpektdB] were restricted to first order ip
Gr(K) =k Z\/§V2—1+4 a7 V3va- Ek and are contained in both our results and those of Gailitis.
Before addressing the relative stability of the different
1 7?k*(18+V3—4v2—4V3V2) planforms introduced above it is important to characterize

the domain of validity of our central expressi@0) for the

5 o _ -
2-kv3v2+k*+kv2—v3 energy. Being a perturbative result the corresponding ampli-

1 72K4(18—V3+4v2—4V3V3) j[udesAn.must not be too large. Figurg 3 gi\_/es a qua.ntitative
-5 > , (3000  impression of what that means by displaying lines in the
8 2-kv3v2+K—kv2+V3 — e plane corresponding to fixed values of the amplitudes of

different patterns. It is in particular important to realize that
for sufficiently large values of the susceptibilitythe fourth
order coefficients in the energy functional may change sign.
4 0 The corresponding patterns than appear through a backward
~ K'n7(9-4v2) (300 bifurcation [10]. At the same timehigher orderterms(i.e.,
1—2kv2+2K?" sixth or higher order in the amplitudés,) in the energy are
necessary to saturate the instability. The concrete valugs of
IV, FERROFLUID LAYER WITH INFINITE DEPTH for the planforms considered angz~2.54 (g.. becomes
negative, xs~0.41 (g, .+9. becomes negatiyeand xy
In this section we consider a magnetic fluid of infinite ~1.05 (29}, ..+ g.. becomes negatiyeBeyond these values
depthd— < and fix the wave number modullsat its critical ~ of y our ansat422) is unable to describe the arising pattern.
valuek, ..=1. This enables us to compare our findings withThe value ofyg was first calculated in Ref19].
the well-known results of previous theoretical investigations. Keeping this limitation of our approach in mind we have
Possible surface patterns together with their amplitudefvestigated the pattern selection problem by studying the
are given by stationary points of the energy functioncharacter of the extremum of the energy functio(28) at
f.({An},k=1). We will in particular study ridge§‘rolls” )  the ridge, square, and hexagon solutions given in B33~
given by A;=Ag with A,=A;=A,=0, squares represented (33). This is rather similar to a linear stability analysis of the
by A;=A,=Agwith A,=Az;=0, and hexagons described by fix point solutions of the corresponding amplitude equations
A1=A,=A3=Ay with A,=0. The last planform is shown in [20]. The results are as follows: Ridges are never stable,
Fig. 1. Using Egs(27), (29), and(30) we find for the corre-  since g, ..<g.. always. We have always..+ g, <0 -

1

8 k—372V2—1+479°+Vv2

On,(K)=K3| —

sponding amplitudes +0¢ . andg, ..<g... Hence(for y<yxs) squares are stable if
€
Ar(€)=\/—, 31 s . -
O This holds true also in the case of a finite layer deghth
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(Gt Onoe— Ohoe— Otoot V(Do Unoo = Ooo = Goe) 2= 4¥2 (G G o) 12
4y2(9s+On ) '

In order for hexagons to be stal®r y< yy) the following three conditions have to be fulfilled:

€>€g=

(72420 o+ G = V(Y24 201 o+ G) (20h =+ 0) [12h o+ G V(V2+ 208 o+ ) (201 o+ G:r)
VNP2 + 200 -+ 0.)(20h, -+ 0-)

(i) e>er=

Y2 (Oh+20..)
(Y24 Gho—0:) (On o — )

(ii) either e<ey= O Oh<0e;

Y2(Un et 20¢ )
(V24200 o+ U= 201 o= Gn ) (20h =+ G — 201 — U o0)

(iii) either e<en= Of 20h ot 0:<20t O o -

These results are displayed in Fig. 4. For regions in whichv. FERROFLUID LAYER WITH ARBITRARY THICKNESS
two different patterns are stable, i.e., in which different local
minima of the energy exist, we have also determined th
respective Maxwell values of at which these minima have
the same value. For= e, the energy of the hexagon pat-
tern is equal to the energy of the square pattern, dor , jicanility of our perturbation approacee the discussion
= ey it is equal to the energy of the flat surface. above.

For all susceptibilities either the relati@p, ..<g.. or the From the linear stability analysid,21] it is well known
relation 2y .+9.<20»+0n- is violated and conse- that a thin layer retards the onset of the instability and shifts
quently hexagons always become unstable for sufficientlyhe wave number of the unstable mode to larger values. The
large e. dependence of the critical magnetic fidt}, 4 and of the

Of particular importance is the line denoted by. For  corresponding critical wave numbkg 4 on the layer thick-
e> ¢, the hexagon pattern is unstable to squares which imessd can be determined from Eq&8). It is shown in Fig.
turn for y> yg are not saturated by the fourth order term in 5. If the depthd of the fluid is larger then the critical wave-
the energy. In that case within our perturbation ansatz we arength at infinite depth; ..=27/k. .., which is typically of
not able to predict which pattern will show up. Fer-yo,  the order of 10 mm, the finite thickness of the layer can be
~0.56 this transition occurs right at onset and our analysis ofgnored. Even if the layer is very thin, the parameters char-
hexagons is therefore restrictedytec 0.56. This stability cri- ~ acterizing the linear instability of the flat surface are modi-
terion for hexagons was to our knowledge not discussed ified only within a few percent for fluids with small suscep-
the literature before. It was not found by Silber and Knob-tibilities. _ , , _
loch [10], since with their approach the relative stability be- To start with the nonlinear analysis we have first to deter-

o The aim of this section is to investigate how the finite
depthd of a magnetic fluid layer affects the pattern selection.
Only magnetic fluids with relatively small susceptibilitigs

< xs Will be considered in order not to leave the region of

tween hexagons and squares could not be determined. It w44ne the dependence ahof the critical valuesyg, xs, and
also missed by Gailitis7] and by Kuznetsov and Spekid]
since they considered only the cagel.

xn beyond which higher order terms in the energy functional
are necessary. The corresponding results are shown in Fig. 6.
All values of the critical susceptibilities get eventually

I

3 —-0.001

FIG. 4. Limits of the stability regiongsolid
lines and Maxwell points(dashed linesin the
x-€ plane. The left figure refers to positive values
of ¢ the right to the subcritical regior<O0.
Squares are stable éf> e5. Hexagons are stable
if e<ey, €e<ep ande>e. The two thin dotted
lines illustrate exemplarily the corresponding
findings if the dependence of the cubic term in
Eq. (29 on € is neglected.

-0.01 F

e=(H,/Ho) -1

1w
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s kN 1 R Cta il accccoccaossesd
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1.02 1 / \ ' T E -10 T T
x=0.05 \ 1 e
-10™ 7
1.00 = 1 1 R N T I =
0.001 0.01 0.1 1 10 10 boooooooo=oo2
diAe,, " 0.001 0.01 0.1 1 10
dikg.,
FIG. 5. Critical magnetic fieldH. and corresponding critical

wave numbelk; as functions of the layer thicknessin units of

FIG. 7. Limits of the stability regionssolid lines and Maxwell
A, Whereh .. is the critical wavelength for the layer with infi-

points (dashed lingsas functions of the layer thickneskfor a
nite thickness. Both critical values are altered less than 2% for anagnetic fluid withy=0.05. Ridges are always unstable, squares

fluid with xy=0.05 (solid lineg and less than 7% for a fluid with are stable foe> €5, and hexagons are stable fgr<e<ey . In the
x=0.30(dashed lines gray region the instability results in the formation of dry spots right
at onset, so that our theory no longer applies. The lower part of the
smaller if the layer depth decreases. They do not cross eaé'ﬁure describes the subcritical region.
other such thakg is the smallest one for all values df We For very shallow layers the amplitude of the arising pat-
have included the result for ridges also although these argern may become larger than the layer depth already at onset
unstable in the setup of Fig. 1 for all and y. However, As a consequence the magnetic fluid layer disintegrates into
ridges can be stabilized by an additional magnetic field tantinconnected regions and “dry spots” occur. This topological
gential to the undisturbed surfaf22] and therefore our re- change is outside our theoretical analysis. The corresponding
sults give first informations on the behavior in this modifiedvalue of x denoted byyq is also shown in Fig. 6. As ex-
experimental setup. pected it becomes the smallest of all critigalzalues ford
—0.

In order to investigate the stability of the patterns arising
on a layer with finite thickness we can perform basically the
same analysis as in the previous section. We just have to fix
the wave numbek to its critical valuek, 4 corresponding to
the given thicknessl and to use the appropriate value for
Hc.q in the functionl(e,k=k. 4) [see Eq.(27)]. Moreover,
we have to take into account the dependence of the coeffi-
cientsy, g, gn, 0, andg, on the depttd. In this way we can
finally determine for any given deptththe stability regions
of the different patterns by means of the corresponding en-
ergy functionf({A,},k=k. 4) as given by Eq(29).

The results for the various stability boundaries and corre-
sponding Maxwell points for a fluid with susceptibility
=0.05 are shown in Fig. 7. All the critical values efat

- which transitions between different planforms arise increase

0 ac—” . . 0 in absolute value with decreasing layer thicknésSimulta-

0.001 0.01 d/?»j 1 10 neously the hysteretic behavior becomes more pronounced.
'C,o0

As in the linear analysis we find that the effects of finite

FIG. 6. The critical susceptibilitiesr, xs, and yu beyond depth can pe neglected, as long as the fluid Iaygr is thicker
which higher order terms are necessary in the energy functional it€n the critical wavelengtR, ... However, for a thin layer
order to describe the respective pattern consistently as function dP€ stability of the hexagons and squares is changed notice-
the layer thicknessl. Also included are the values for, beyond ~ @bly. For instance the value af; at which the transition
which hexagons are unstable to subcritical squares introduced #Om hexagons to squares takes place may increase by a fac-
Sec. IV andy>x4(d) for which the pattern amplitude at onset tor of 3 implying an increase of the magnetic field of about
already exceeds the layer thickness. In both cases our theoretichD%. As discussed above for very thin layers our theory is no

model ceases to be applicable. longer applicable since the dips of the hexagonal pattern at
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dirg. FIG. 9. Surface deflectio&(0, 0) at the cusps of the pattern and

emerging wave numbeésin dependence on the supercriticality pa-
FIG. 8. The same as Fig. 7 for a magnetic fluid wjitkr0.30.  rametere. For a fluid with y=0.35 squares are only stable in the
With decreasing deptti of the layer bothyg(d) andyo(d) become  regiones<e<e, . Ridges are always unstable.
smaller than the susceptibility of the fluid and higher order terms in

the energy would be needed to determine the pattern stability. our findings with recent experiments in which this condition

) is met.

onset already reach the bottom of the fluid. The correspond- e necessary calculations are similar to those reported in
ing values ofd are indicated by the shading in Fig. 7. Sec. IV with the only extension that we no longer fix the

Flgur_e 8 q|splz;ys the analogous resu!t§ as obtained for frave number modulusin advance but include it into the set
magnetic fluid .W'th the Iarge_r susceptl_b|l_|ty 9¢=0.30. of parameters with respect to which the energy is to be mini-
Whereas the situation for<<O is rather similar to the one mized.
shown in Fig. 7, the behavior for positiveis qualitatively A typical result is shown in Fig. 9 displaying the maximal
d|ffere_nt. This |s_due to the fact that althougfy(d—) surface deflectiord(0, 0) and the corresponding wave num-
> x with decreasing depttd both x5(d) and xo(d) eventu- o of the patterns. As can be seen from the figure, the
ally become smaller than 0.36f. Fig. 6. This gives rise 0 ;56 number of the patterns decreases with increasing su-

the divergencies in the energy discussed above and changgs,criticality. This is in particular pronounced for the square
the stability chart accordingly. pattern and implies that in this case the system may lower its

VI. WAVE NUMBER SELECTION ; Xs Xo

In many pattern forming systems the wavelength of the
first unstable mode is often a good estimate for the typical
length scale of the emerging pattern. If a whole band of
modes is unstable the one with maximal growth rate is likely
to dominate the arising structufg4]. On the other hand, the _ 01
developed pattern is largely determined by the nonlinearity« '
in the problem and therefore its length scale may also sub- ¥
stantially deviate from the relevant scales of the linearized f
theory. &
A particularly gratifying feature of our variational ap-
proach to pattern formation in the normal field instability in
magnetic fluids is the possibility to include the wave number
modulusk into the set of parameters varied to minimize the
energy functional. This allows us to directly determine the 0.001
dependence of the pattern periodicity on the external mag-
netic field and to investigate the influence of the variation in X

wave number on the stability of the different patterns. FIG. 10. Limits of the stability regionésolid lines and Max-

We therefore investigate in the present section the wavge|| points(dashed linesin the y-€ plane if variations of the wave
number selection problem for the Rosensweig instability. Fohumber modulusk are taken into account. Squares are stable, if
simplicity we will consider a magnetic fluid with infinite <e<e, . Hexagons are stable &< e<min(e ,&,). For large val-
depth only. As shown in the previous section this is a veryues of y the stability region for squares gets smaller due to the
good approximation as long ab>\.... We will compare  wavelength instability occurring foe> e, .

0.01
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0.5

T T T and Kuznetsov and Spekt8] to layers of finite depthd
<o,

We have found that, at least for the slightly supercritical
magnetic fields considered, the finite thickness of the mag-
netic fluid layer can be neglected as long as it remains larger
than the critical wavelength of the linear instability which in
typical experiments is about 1 cm. For thinner layers nonlin-
ear effects become increasingly important. This shows up
_ quite generally in more pronounced hysteresis effects for the
transition between different planforms. We also find smaller
values of the susceptibilities for which squares and ridges
-~ may appear through backward bifurcations and correspond-
- ingly higher order terms in the energy are necessary to satu-
- rate the instabilities. The critical values of the susceptibility
x beyond which our theory breaks down are displayed in Fig.

Kk, ' 6. Together with the findings shown in Fig. 3 they quantify
the qualitative statement<1 used in Refs[7] and[8]. An

FIG. 11. Stability band of the hexagonal pattern inkhe plane  €xtension of our analysis including higher orders similar to
for a magnetic fluid withy= 0.35. Hexagons become unstable whenwhat has been done in Rdf23] for the one-dimensional
€> e, . The marginal stability curvédashed lingis also displayed. situation seems feasible but rather tedious.

It is possible to understand the enhanced hysteretic behav-
energy very efficiently by increasing the wavelength of theior for thin layers qualitatively. A thin layer inhibits surface
pattern. deformations resulting from the Rosensweig instabilége

This effect introduces an additional threshold fointo  Fig. 5 since the magnetic field energy is suppressed due to
the stability chart shown in in Fig. 10. K>¢, we find k the finite depth of the layer. On the other hand for the devel-
—0 and the pattern disappears by increasing its wavelengtbped pattern the magnetic flux is concentrated at the peaks of
to infinity. This process is accompanied by an unboundedhe surface so that the effective layer depth becomes larger.
increase of the amplitudes, , A, which carries us outside of Correspondingly the pattern is additionally stabilized and de-
the validity of our perturbatiorAnsatz(22). The stability — cays only after a reduction of the field stronger than expected
regions of the other pattern remain qualitatively the same affom the linear theory. A similar reasoning explains why
without minimization ink as can be seen from a comparisonbackward bifurcations of ridges and squares are facilitated in
between Figs. 10 and 4. thin layers.

For supercritical magnetic fields a whole band of wave In addition to determining the stable planforms by mini-
numbers giving rise to stable patterns exists. For hexagor®izing the energy functional in the amplitudes of the differ-
this stability region is shown in Fig. 11. At fixedthe hex- ent modes present in our ansatz for the surface profile, we
agonal planform becomes unstable if the wave number i§ave also addressed the problem of wave number selection
increased sufficiently. In Ref4] such an increase of the by including the wave number moduldsinto the set of
wave number was achieved experimentally by compressingariational parameters. We found quite generally a decrease
the hexagonal pattern in a hopper. The observed transitiopf the wave number of the pattern with increasing magnetic
from a hexagonal to a square pattern with smaller wave nunfield. This is in qualitative agreement with recent experi-
ber occurs when the limit,, of the stablek band is exceeded ments by Abotet al. [4] in which the the field intensity was
and is hence in qualitative agreement with our theory. abruptly increased to overcritical values and the correspond-
ing wavelengthn = 2#/k of the resulting hexagonal pattern
was found to increase with increasing field. Likewise it was
found that the wave numbés of the hexagonal pattern is

In the present paper we have theoretically investigated thalready for slightly supercritical magnetic fields smaller then
formation of patterns on the free surface of a magnetic fluicthe critical wave numbek.. The corresponding difference
resulting from the Rosensweig instability. For a magneticAk is also found in the theory and shown in Fig. 9. Unfor-
fluid layer of arbitrary depthd in an external magnetic field tunately a quantitative comparison with the experimental re-
H, the equilibrium surface profile was determined by mini- sults is impossible since in the experiment a magnetic fluid
mizing the appropriate thermodynamic potential. We havewith a susceptibility of 1.# y,, was used. For such a sus-
assumed a linear dependence of the magnetization on tleeptibility the theoretical analysis would require higher order
magnetic field which is at most 5% off the correct values forterms in the perturbation expansion of the energy. Neverthe-
the experimentally situations with which we compare ourless we found that\k grows with increasing susceptibility
findings. The analysis is restricted to the vicinity of the criti- such that the experimentally observed value of a few percent
cal magnetic field at which the flat interface becomes unagrees well with our result fohk at smaller susceptibilities
stable since it uses a perturbation expansion for the energy<yy .
up to fourth order in the amplitude of the surface deflection. Moreover, the theoretical analysis has shown that when
Our findings generalize the classical results of Gailit$ including the wave number into the set of variational param-

04

0.1

-
-
-
-

VII. DISCUSSION
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eters the square pattern gets rather susceptible to an ucreased in a quasistatic way. This is probably due to the fact
bounded increase in the wave number. This gives rise to that the boundary conditions suppress the emergence or dis-
reduced stability domain for squares and may be related tappearance of peaks in a developed pattern. Therefore using
the fact that in the experiments using jumps in the field in-the quasistatic process a metastable pattern k\@ﬂS pro-
tensity always hexagonal arrays of peaks were folfid  duced whereas a jump in field intensity gives rise to the most

Quite generally our results verify that the resulting planformstaple pattern corresponding to a smaller wave number.
may depend on the details of the experimentally chosen way

to reach overcritical magnetic fields.

Let us finally stress that the variation of the wave number
of the patterns with the external field as found here theoreti-
cally and observed in the experiments does not invalidate our We would like to thank Beengee Abou for explaining
ansatz with a fixed wave number used before. As reported iher experimental findings to us and Adrian Lange for inter-
Ref. [4] the wave number of the arising hexagonal patternesting discussions. This work was supported byDketsche
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