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We study the coupled dynamics of the displacement fields in a one-dimensional coupled-field model for
drifting crystals, first proposed by Lahiri and RamaswdiRltys. Rev. Lett79, 1150(1997)]. We present some
exact results for the steady state and the current in the lattice version of the model for a special subspace in the
parameter space, within the region where the model displays kinematic waves. We use these results to construct
the effective continuum equations corresponding to the lattice model. These equations decouple at the linear
level in terms of the eigenmodes. We examine the long-time, large-distance properties of the correlation
functions of the eigenmodes by using symmetry arguments, Monte Carlo simulations, and self-consistent
mode-coupling methods. For most parameter values, the scaling exponents of the Kardar-Parisi-Zhang equa-
tion are obtained. However, for certain symmetry-determined values of the coupling constants the two eigen-
modes, although nonlinearly coupled, are characterized by two distinct dynamic exponents. We discuss the
possible application of the dynamic renormalization group in this context.
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[. INTRODUCTION combinations of thep, and represent modes that propagate
as independent kinematic waves. The real and imaginary
parts of the eigenvalues, encode, respectively, the speeds
Spatial and temporal correlations in spatially extendecand dampings of the corresponding kinematic waves and, in
systems with a conservation law or a continuous invariancgeneral, differ from one wave to another. By performing a
are widely observed to satisfy a scaling or homogeneityGalilean shift with speect,, one may move to the rest
property. For instance, if the system is described by a singleame of modeu; kinematic waves corresponding to other
scalar field ¢(x,t), the correlation function C(x,t)  modes are not stationary in this frame, however, and these
=(¢(0,0)¢(xt)) satisfies moving modes also contribute to the dissipation of made
as they are coupled nonlinearly to it. The correlation function
COx)=b™C(bx,b’t) @) C,.(x,1)=(4,(0,0),(x,1)) is expected to satisfy

A. Background

under rescaling of space by a factorHerez is the dynamic
exponent whiley describes the spatial scaling of the field.
Equation(1) holds in the rest frame of thé fluctuations, so
that if the system has wavelike excitations, e.g., kinematiherey,, characterizes the spatial scaling of modendz,
waves[1] of moving ¢ fluctuations, it is necessary to per- is the corresponding dynamic exponent.
form a Galilean shift to comove with the wave. The exponent A question arises: Is there a single common valhat
zthen describes the dissipation of the fluctuation wave, witttharacterizes the decay of all the mogesWhen the answer
a fluctuation of spatial exterix having a lifetime propor- is yes, as in fact it generally is, we say that the system obeys
tional to (Ax)% strong dynamic scalingConsiderable interest is therefore at-
Now consider the scaling properties of systems with seviached to exceptions of this general rule. Accordingly, one
eral coupled fields, say¢,,«=1-N}, whose dynamical would like to characterize the conditions for the occurrence
evolution involves interfield couplings both at the linear andof weak dynamic scalingvhen at least one,, is different
nonlinear levels that result in propagating kinematic wavesfrom the rest.A priori, there are two sets of circumstances
At the linear level, the problem requires diagonalizing thewhen weak dynamic scaling may be expected.
matrix of couplings. The eigenvectorg, involve linear (i) If the transformation frome¢, to ¢, , which is de-
signed to decouple modes at the linear level, actually suc-
ceeds in decoupling them for the full nonlinear problem, then
*Present address: Martin Fisher School of Physics, Brandeis Unievidently each mode evolves autonomously and independent
versity, Mailstop 057, Waltham, MA 02454-9110. Email address:z,,’'s may arise. In fact, a complete decoupling at the nonlin-

C.(x,H)~b?X«C(bx,b?t). )

dibyendu@octane.cc.brandeis.edu ear level does occur in the context of a reduced model of
TEmail address: abhik@physics.iisc.ernet.in magnetohydrodynami@MHD) turbulencd 2], and may well
*Email address: barma@theory.tifr.res.in arise in other problems as well. In the MHD case, however, it
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similar (autonomougsnonlinearites, so that a common value of the symmetry of the evolution equations as overall densi-
of zensues. But this need not be the case for other problemsies are varied and report the results of extensive numerical

(ii) Consider a situation in which the evolution of a subsetsimulations, which show that the values of the dynamic ex-
of the fields, say{us}, does not involve the otherau,}, ponents depend strongly on these symmetries. In particular,
while the evolution of the sdu,} does involve{u,}. Inthis  we present evidence for weak dynamic scaling when the two
case,zg andz, may take on distinct values. Indeed, this is kinematic waves have different symmetries. In Sec. V we
borne out by numerical studies of two-field dynamj&], describe analytical methods, primarily a one-loop self-
which show that weak scaling occurs if the evolution is au-consistent treatment of the continuum stochastic partial dif-
tonomuous in one of the two fields, or very nearly so, inferential equationPDES, for calculating the exponents in
which case strong crossover effects may be expected. the weak dynamic scaling regime. We also outline a dynamic

One of the principal results of this paper, which we renormalization-group procedure for this regime, discuss the
present below, is ¢hird possible scenario for weak dynami- difficulties that arise therein, and remind the reader how
cal scaling, whereeitherfield is autonomous. strong dynamic scaling is restored for generic values of the

parameters in the model. We close in Sec. VI with a sum-
mary.
B. Results

In this paper we examine weak and strong dynamical Il. CONTINUUM STOCHASTIC PDEs FOR DRIFTING
scaling in a system with two coupled fields, which result in CRYSTALS
two coupled kinematic waves characterized by mode coordi-
natesy, and ¢, respectively. We work both with a lattice
model involving two sets of spins and with the correspond
ing continuum equations involving two coupled scalar fields.
The analysis of the lattice model is facilitated by showing
that along certain representative loci in parameter space, t)’%
steady state has a product measure form. This allows th a
current to be found and a continuum expansion to be mad
with coefficients that explicitly involve the parameters and
mean occupations of the lattice model. This enables us t8
make direct comparisons between the results of numericdl
simulations of the lattice model and analytical self-consistent .
calculations for the continuum equations. u=M(Vu)(DVVu+F)+¢, 3

Our most interesting result is the identification ofhérd

set of circumstances beyor{d) and (i) mentioned in Sec. \yhere the mobility tensoM is allowed to depend on the

IA, in which weak dynamic scaling results despite eachjpgice distortionVu, the tensoD represents elastic forces,
mode being nonlinearly coupled to the other. This involvesg iy driving force, and is a suitable noise source. Our

symmetry properties of the kinematic waves: we find weak.eqits are for a highly simplified model with the same phys-
dynamic scaling if we choose model parameters so that theq a5 in Eq.(3). This model, constructed and studied in
evolution equations are invariant under inversion of the sec[4 5], describes the coupled dynamicstab fieldsu, andu

. ] ] X z
ond mode coordinate/— — ) but not underju——i1.  (1he displacements transverse to and along the drift direction,

In that case our numerical simulations show thgt3/2,  regpectively as a function obne coordinatex transverseo
while z,=2 with multiplicative logarithmic corrections. We e o . .
the drift directionz. The equations of motion are

also study the problem within a self-consistent mode-
coupling calculation, which shows that the different dynamic _
exponents arise in a rather interesting way: linearized Uy = N 1205 U,+ y19yUydyU,+ Dlaf(uerfx, (4
version of the problem has=2 for both fields. The scatter-
ing of ¢, by fluctuations ing, and vice versa gives rise to
singular corrections to the diffusivity fog,, leading toz;
=3/2. The fluctuations, however, cause no singular correc-
tion to the relaxation ofy,, leavingz,=2. For most other wheref, andf, are zero-mean, Gaussian, spatiotemporally
parameter values, however, the evolution equations are nathite noise sources. The equations are invariant under the
invariant under changing the sign of eithgy or ,, and we  joint operationsx— —X,U,— —Uy. For N;;=X\,;=0, Egs.
find the more common strong dynamic scaling with=z,  (4) and(5) reduce to the ErtakKardar(EK) [3] equations for
=3/2. drifting polymers with the larger symmetsy— —x (with or

The remainder of this paper is organized as follows. Inwithout u,— —u,). The system can distinguish between up
Sec. Il, we review briefly the continuum stochastic dynami-and down: there is no invariance under inversioupf The
cal equations of Refl4]. In Sec. Il we present the lattice terms in Eqgs.(4) and (5) involving first spatial derivatives
model and show how the condition of pairwise balance carhave the following interpretation: a tiltd(u,) produces a
be used to find the exact steady state if the transition ratdateral drift (at a rate that depends on the density perturba-
satisfy a certain relation. In Sec. IV we characterize changesons d,u,), while the vertical speed depends both on com-

We review very briefly here the construction of our model
equations of motion; details may be found [i4,5]. The
physical system that inspired the initial work on the model
was a lattice drifting through a dissipative medium. There are
least two examples of thi§) steadily sedimenting colloi-

| crystals andii) a flux lattice driven by the action of the
%orentz force of an imposed supercurrent through a type Il
superconductor. If inertia is ignored, the equation of motion
f the displacement fieldi(r,t) is of the form velocity=
obility X force, i.e.,

l.Jz: A o1dyUy+ 72(‘9xux)2+ 73(‘9xuz)2+ D25§Uz+ f,, (5
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pressions or dilationsd(u,) as well as tilts 6,u,). In this
paper we shall consider only the casg\,,>0, in which
case the dispersion relation

=% N\ pq—iDg?% (6)

holds for the linearized version of Eqggl) and (5) and pre-
dicts traveling waves at a small wave numlgemhe cases
120 21<0 have been discussed extensively elsewf&¢&].

The mode coordinates corresponding to E&y.are given by ~— b/p (L,1) p/p, —

\ ]

1= \/Euxi \/BUz- (7) FIG. 1. The phase diagram of the Lahiri-Ramaswamy model.
The strongly phase separated ph&S@S is separated from the
As discussed ih5], the long-time, large-length-scale be- kinematic wave phasé&KW) of interest in this paper by the thresh-
havior of the PDE%4) and(5) are expected to be the same asold line p,=p, along which there is fluctuation-dominated phase
those of a particular two-species Ising-Kawasaki model irnordering. The steady state can be found exactly along the line
which the jump rate of each species depends on the local,/p,=r,/r,, by using the condition of pairwise balance.
density of the other. We turn next to this discrete model and
its dynamics. and their characteristics appeargi. There are two distinct
regimes separated by a nonequilibrium phase boundary as
IIl. THE LATTICE MODEL depicted in Fig. 1. The regimg,>p,, marked SPS in Fig. 1
was explored in detail ifi5]. In this phase, the system un-
The lattice model is defined in terms of two sets of vari-dergoes spontaneous phase separation of a particularly strong
ables{oi} and {71} that reside on two interpenetrating sort. Along the boundarp;=p,, marked FDPO in Fig. 1,
sublattices with periodic boundary conditions; the former sethe system undergoes fluctuation-dominated phase ordering
occupies the integer sites and the latter occupies the halff 5 delicate sort as discussed[ifl. Finally, in the phase of
integer midbond locations of a one-dimensional lattice withthe model withp,;<p,, marked KW in Fig. 1, there is no
L sites. Eacho; and 7y, is an Ising variable taking on phase separation and fluctuations are transported by kine-

values*1. They represent discrete versions of the densitynatic waves. This is the regime of interest in this paper.
and tilt fields in the sedimentation problem:df is 1, there

is a particle (+) at sitei, and ifo;= — 1, there is no particle
(=). The variabler;_4,=1 and —1, implies two values / )
and\ of the local tilt, respectively. A typical configuration of ~ 1he steady state can be found exactly provided that
the full system is thusF\ —/—/+\—/+/+/+\—. =p, andr,=p, (along the line marked pairwise balance in

Both sets of variables are conserved, Sar; andS 71, Fig. 1). To this en(_j, let us choose new §ymbp|s to denotg the
and the associated densitigf=3(1+0;)/2L and p3 values of the variables- and 7: use 1 if a site or bond is
=(1+7_4,)/2L are constant. We considerradependent ©ccupied by a+ or/, and use 0 for- or\. Then the moves
local field that guides the- current andvice versaThus, for ~ (1)—(8) listed above reduce to moves)((b),(a),(b) as fol-
instance, the Kawasaki exchange dynamics of the adjacefWs:
spinso; and o, occurs at a rate that depends on q,.

A. Exact results for the steady state

The moves and the corresponding rates are depicted below, (1),(5)=(a):100-001p,, ©)
(1) +\———\+ry, (3),(7)=(b):011—110p,, (10
(2) —\F—t\—1y, (2),(6)=(a):001—100py, (11)
(3) —I+—+I-rq, (4),(8)=(b):110-011p;. (12)
(4) +/———/+r,, The use of the new symbols 1 and 0 explicitly brings out the
fact that the dynamical moves on the two sublattices are
(5) [—\—\—/p,, alike for the choice of these special relations between the
rates. This is crucial for further analysis.
(6) \—/—/—\p;, In this new representation, a configuratiGnis specified
by the occupations of all sites. The time evolution of the
(7) \+/—I+\p,, probability P(C) of the occurrence ofC is given by the
master equation
(8) /+\—\+/p;. (8) dP(C)—Z e P
The macroscopic behavior of the model is determined by at & (C'=C)P(CH) ~W(C~CTP(C),
the relative values of the rates; a brief review of the phases (13
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where the transition rate&(C—C') are given byp, andp;
for changes of configurations involving movés) or (b), H P(a)P(Tis 1) =p3 (1= p])~NipgNa(1—pd)t~Ne,
and @) or (b), respectively. (16)
The dynamics preserves the sublattice densiigsand . .
pS. Within the subspace labeled byY,p3), one can see that This form of the steady state holds also for a higher-
the system is ergodic by noting that the dynamics induces dimensional generalization of the model involving rules
leftward drift of a pairs 00 and 11 with rajs, and a right- a_nd (b_) and thelr_ reverses _along_ the sites and bonds irdthe
ward drift of such pairs with ratp,. By successive applica- directions of a simple cubic lattice. o
tion of moves(a) and (b) in Egs. (9) and (10), and their The prodgct measure we|gh_t in the _steady state |mpI|¢s
reverses, any configurati@in the subspace can be taken to that correlation functions on d_lfferent sites decouple. This
a “standard configurationC, in which all 1’'s and all 0’s are  then allows the current of particles,
clustered together. Since the lattice is periodic, the 11 and 00 (1+0) (1=, q) (1— 7 )
pairs can be shifted to any other configurat®h from C,. J1=(p,— P1)< ! 11 1+ 172 >
Thus any configuratiol© can be taken to any configuration 2 2 2
C’' viaC,. ! o )
In steady state the right-hand side of Et8) must vanish. +(pa— p1)< (1+(27'+1) d 20') 4+ 7-2,+ 1/2)> ,
A sufficient condition for this is that fluxes balance in pairs,
i.e., for every flux out of a configuratio@ to a configuration a7
C’, there should be an incoming flux from another uniquely o
determined configuratio@” into C. This is the condition of ~to be found explicitly,

pairwise balancés], J1=(P2=P1)p1(1-p1)(1-2py). (18)

W(C"—C)P(C")=W(C—C')P(C), (14) The first term in Eq.(17) comes from a particle hopping

between sites andi+1 in the absence of a particle at site
o o . i +1/2 while the second is for hopping in the presence of a
which is a generalization of the well-known condition of particle at the site in between. A similar expression holds for

detailed balancg9]. the = currentJ,,
For our problemC” may be constructed as follows. Let
us denote the configurationC symbolically as Jo=(p2—P1)p2(1l—ps)(1—2p,). (19
1MQM21MsQM41Ms. . . 0™k, where there is a cluster of 1's of
sizem;, followed by a cluster of 0’s of lengttn,, and so on, The product measure form also allows us to find the

with a total of k such clusters. Consider a transition to aroughness exponent of an associated height model, where the
configurationC’=1mM0M~11201Ms~20M41™s. . .0« [a pair  height fields associated witfv;} and{7;} are, respectively,

of 11's jump to the left, i.e., moveb)]. One can always find hii=2,_;(0— (o) and hy=3,_,(7,—(7y)). Fluctua-

a unique configuration, e.g., c” tions of the height field are characterized by the root-mean-
=1™QM21Ms~20120™s~11Ms. . . 0™k that gives rise t& [via  square height differenceG,(r)=((hy;,—hy;)?), with
move ()]. If the outgoing transition involves a rearrange- G,(r) defined similarly in terms ofh,;}. Using the fact that
ment at the left edge of a cluster, the incoming transitior{oooy) =(0o){oy) for k#0 and 1 fork=0, we findG4(r)
involves a rearrangement at the right edge of the same clus=G,(r)~rY2 Thus the roughness exponeptdefined by

ter. Such an identification is possible also for transitions inthe growth of the root-mean-squared height fluctuations is

volving moves &), (a), and ), and ensures thaw/(C”

—C)=W(C—C’). Thus Eq.(14) is satisfied provided the x=112 (20
steady state probabilities obey for both height fields. Evidently, this value will also charac-
terizes fluctuations of linear combinations of the height fields
P(C)=P(C")=const. (15) h, andh,, which arise when we deal with mode coordinate

fields in the next section.
We close this section with numerical results for correla-

This means that in steady state, every allowed configuratiof,, functions away from the pairwise balant@B) locus.

is equally likely. The constant appearing in E@5) can be We setr,=p, =0, and investigate what happens if we move
found 0on using the0 normalization conditi@P(§)=1. If away from the PB locus, = p,. We studied the spatial cor-
N;=pjL and N,=p5L are the number o_f part!cles_on the rejation function C(r)=({oi01+,)—(o){oi+,) by Monte
two sublattices, the total number of configurations in sectogsao simulation and show our results for different values of
(p7.p3) is N=("Cy,)("Cy,), where"Cy is the number of | “andp, in Fig. 2. As expected, for the PB case=p,
ways of choosingVl out of a total ofN objects, and hence =1 (empty triangles in Fig. 2 the correlation length is zero.
P(C)=1IN. Away from PB, withr,=1/3 andp,=1, the three curves for

In the thermodynamic limitL, N;, and N, —, with  C,,, C,,, andC,, representing, respectively, the intrasublat-
pl, p$ held constantP(C) approaches the product mea- tice correlation functions for sublattices 1 and 2 and the in-
sure form tersublattice correlation function all decay differently, but
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0.1 - ; ; ' =[*p,(X' t)dx, the continuum analogs of the discrete func-
Y tions hy; andh,; defined in the previous section. We find

0.05 | ] ohy

h dhq dh,
L 1 (19,0 _o, 0 1 5 04 _ O\ 2
S ot r'(1=2p9)(1=2p3)—~+2r'p3(1—p?)—
) 0 ,
@] Jd hl , o C7h1 ﬂhz , o
o & +D1_ﬁx2+2r (1—2p1)w W+r (1-2p9)
| é’hl ? 2 ! ﬂhl 2 ahz + 23
XN o] 72 o) | o) Tt (23
01 L—=—— ; . .
0 2 4 6 8 10 and

dh,
FIG. 2. The decay of correlation functions away from the line of 5t
pairwise balance is shown faZ,; (filled circle), C,, (filled dia-

h, oh,
= 1" (1=2p9)(1=2p5)~+2r"p3(1=p3)— -

mond, andC;, (filled triangle. When pairwise balance does hold, 32h2 , o ohy dh, , o
the correlation function vanishéempty triangles +Ds IX2 +ari(1- ZPZ)W W'H (1-2p3)
with a finite correlation lengttiFig. 2). This shows that al- dhy\? [ ohy\?[ghy
though product measure does not hold away from the pair- Ix -2 ax | \ax +72(X0), (24
wise balance locus;=p,, correlations are short ranged so
that the behavior on large length and time scales is expectegherer’=(r,—r,).
to be similar to that in the pairwise balance case. Let us define a=r'(1—2p%)(1-2p3), b=r"p(1

| | - =p), c=r'p3(1-p3), ki=r'(1-2p9), and kp=r'(1

B. Continuum equations and kinematic waves —2p3). Itis apparent that by taking linear combinations one

The expressioné18) and (19) for the current help us to Can construct eigenmode fieltis = \/chy = \bh,, which de-
construct approximate continuum equations for the evolutiofouple at the linear level. These fields describe wavelike
of the density fluctuation fields. The starting point is the pairmodes[1] travelling with speeds . = —a=2\bc. The time

of continuity equations evolutions of these fields.. are governed by

IPpm J oh ah #hy 3k, kq|[dhy\?

—=——Ju(p1,p2), mM=172 (21 toe T pl A 2

gt axTmELne S ax PPt NN
wherepl(x_,t) and p,(x,t) are coarse-grained densities at a Ky iy \oh. dh 1k, ky)[oh_\2
mesoscopic scale and(x,t) and J,(x,t) are the corre- +|=——=|—— ==+ —=||—
sponding currents. Each of these currents is written as the \/E JB ax ax 2 \/E \/B X
sum of three parts, ) )

1 (oh,\|[dh, dh_ (o)
i iffusi - — = X
Jm:\]rsnystemang'_\]gqlffuswe_k Ton- (22) 2\/& X IX X 7+(X 1),
; ; ; systematic ;

The systematic contr|but|0r}<1m at the mesoscopic oh_ oh_ 2. 3k, ky\[oh_\2
scale are assumed to be given by the expresgib@sand ——=c_.—+D——5+ | —=-—=||—
(19) for the currents in an infinite system. The diffusive part 9t IX ax*  2\{c b\ x

Jdiffusve arises from local density inhomogeneities and is ,
taken to be— D,dpn,/dx. Finally 7, is a noise term added Y ohyoh 1lkp Ky (‘9h_+)

to mimic stochasticity at the mesoscopic level; we consider Je b/ dx ax 2\ c b\ I
uncorrelated  white  noise  with (7,)=0  and

(X, 1) p(X", 1)) =T 8(x—x") 8(t—t"). These continuum 1 [oh_\[[oh \? [oh_\?

equations have the same symmetries as the lattice model and - 2_\/b—c “ox 1\ Tax —(&—X) +7-(X1).
hence would be expected to exhibit the same behavior on

large length and time scales. (25

Writin =p%4+p, and p,=pS+p, (Where p%s are .
_ 9 P1=P1TP1 ANC P2=Po P2 ( , e The new noise termsy. =/cn,+ b7, are alsos corre-
fixed average densities angs are fluctuationsand using lated. We have assum@} =D, =D, though this may not be

Egs.(17), (19), (21), and(22), one can write down coupled ) oqerved in the effective long wavelength equations. The

equations governing the evolution 515 We write these in  fields h, andh_ are coupled at the nonlinear level so that
terms of the height function®&;=[*p,(x’,t)dx’ and h,  each wave influences the dissipation of fluctuations of the
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other. We consider the dissipation properties of the waves iimply that each wave influences the evolution of the other. In

the next section for different sublattice filling fractiop§ order to study the dissipation of say themode, it is essen-

and p$ of the sublattices. tial to move to the frame that comoves with it. This is ac-
complished by a Galilean shit—x+c,t andt—t. In this

frame, the evolution equations become
IV. DISSIPATION OF THE WAVES AND DYNAMICAL

EXPONENTS ohy  *h. 1 ah+) dh,\? (ah_>2
If it happens that some of the coefficients of Hg5) ot 2\bc! X X 28
vanish for certain choices of densitig$ andp3, the evolu-
tion equations have special symmetries and this can have 7. (),
important implications for the long-time dynamics. As dis- oh 7h 1 (oh Jho\2
cussed below, there are three different symmetries that arise —— — _4\/& —ty——— _<_‘) (_+)
in the coupled-field problem, each corresponding to a differ- It Ix X~ 2\bc\ X 2
ent set of dynamical exponents. The dynamical exponents 2
associated with the wave modes may differ. We have consid- — (i + 7 (X1). (27)
ered three special pairs of densitigs (p3) corresponding to X ’

three different symmetries. Evidently, in this frame, the- mode has a speecl —c.

_ _ =—4\/bc. The pair of Eqs(27) are invariant undeh, —
A. Symmetries of the equations —h,, h_——h_ but notx— —x, because of the linear

To facilitate subsequent discussions let us first conside¢h-/dx and cubic nonlinear terms. The Rymmetry holds
the case of a single field and list four different symmetries in the rest frame oh, mode.
[10] for its evolution.(a) RI symmetry, invariance under up-  Similarly the dissipation of the- mode can be studied by
down reflection(R) symmetryh— —h and under inversion 90ing to a frame that comoves with the mode. It is easily

— —h and not underx— —x; (c) Rl symmetry, invariance Let us recall' what'happens when_Rymm.et'ry holds in
d - dnot underh— —h: (d) Rl v i the case of a single field. In the Edwards-WilkinsofiEW)
underx— —x andnot underh— —h; (d) Rl symmetry, in- o0 ation[11], the presence of an additional cubic term like
variance neither undee— —x, nor underh— — h. 2 red o T e
Sincesh/at is an odd function oh, an equation of motion  (?N/@X)” reduces the RI symmetry to Rymmetry. Abou

. Lo . the linear fixed poin{with y=1/2), the cubic term has the
that contains only terms odd ih will be said to haveR 0" o0 o scaling dimension a#lf/ 9x?)—both scale as
inversion symmetry, any term that is everhimill be said to

: : b~%2 whenx—bx andh— bXh. Such a marginal cubic term
. 2 2
breakR symmtery. Accordingly: A term like"h/Jx” obeys g \nown[12-15 to introduce logarithmic factors in the be-

RI symmetry. Terms like’h/ax and (@h/dx)® obey RIsym-  havior of the height-height correlation functions. Using
metry. The R symmetry is respected by the termih{dx)2,  mode-coupling[12] and dynamical renormalization-group
while a term likegh/ 9x added to it breaks that and gives rise [13] calculations, it was found that the correlation function
to RI symmetry. F(t)=V([h(x,t) —h(x,0)]%) grows ast"[In(t)]*® and this

To illustrate the occurrence of different types of symme-Was checked by Monte Carlo simulation. Recalling that
tries in our coupled-field problem, we consider three speciaF (t) ~t* with 5= x/z, we see that despite the lack laym-
pairs of densities2,p9). metry, the critical exponentg and z do not change from

(i) For pd=p3=1/2, Eq.(25) reduces to a pair of coupled their EW values 1/4 and 2, respectively. _ _
equations with linear and first and second derivative terms N Our case with two coupled fields, the cubic gradient

and cubic gradient nonlinearities, terms again have the same naive scaling dimension as the
linear second order term, but they are more complicated than
oh, oh, o*h, 1 [oh \[{oh,\2 just (9h/9x)3. We might guess nevertheless due to the_ sym-
e =2+bc W+ e ﬁ( I ) ( g ) metry that each of the- and — modes have=2. We will
c present numerical evidence in Sec. V B, which confirms this

and shows that there are similar multiplicative logarithmic
7.1, factors.
(i) For p{=1/2 andp3+ 1/2, the equations for the mode
fields reduce to

5

%=—2ﬁ%+v(i%—i(%) (ﬁ;—;)z oh, gh,  Ph, 3 kp[(oh,\2 Ky oh, dh_
o 2:be at :Zﬁwﬂwﬁﬂa—x) N
- W) +7-(Xt). (26) _Eﬁ(ah__)z_i(&h;) ah_+2_((9h__)2
These equations describe two kinematic waves moving with 2 el o 2ybcl X x x
speedc,=r'/2 andc_=—r'/2. The nonlinear couplings +7.(X,1),

021402-6
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oh_ dh_ Ph_ 3 k,[oh_\2 to provide logarithmic multiplicative corrections. The same
- 2.\bc (9—+ V?'i‘ > —(07—> symmetries hold in the rest frame of the wave. Based on
X X Vel ox these observations, we expeet 2 for the — mode(perhaps

with multiplicative logarithmic correctionsand z=3/2 for
the + mode. This is precisely the weak dynamical scaling
discussed in the Introduction.
) 5 The quadratic nonlinear terms in E@9) are exactly like
X (§h+) _(ﬂ those obtained if13,17]. Similarly the nonlinearities in Eq.

X X (28) are of the form obtained ifil8]. The crucial difference

is that we have additional linear gradient couplings, which

Going to either of the frames in which the mode or the bring in the possibility of observing weak dynamical scaling

— mode are at rest, we see that with the cubic nonlinearitied OUr coupled-field system. We now turn to the next step of
checking numerically and analytically our symmetry-based

expectations.

Ky Ny dh_ 1K2<(3’h+)2 1 (ah)

Jo ax ox 2l x| 2Jbc\ ox
+n_(Xx,t).

(28)

the R symmetry applies for each of the field3;symmetry
is broken by by quadratic nonlinear terms and broken
because of linear first order and cubic terms. The most rel-
evant terms at the linear fixed point are the quadratic nonlin-
ear terms. Thus we would expect that these terms would

Lo . . -~ For numerical simulation, we used a definition of height
govern the dissipation and give rise to the Kardar-Parisi~ _ . .
Zhang(KPZ) valuez=3/2 [16] for both the modes. h;(t) that differs slightly fromh;(t) discussed so far. Instead

(iii) For p9= p9+ 1/2, we havec, = x, andc=h, and the of defining heights as density integrated over space with re-
following pailr ofzequati’ons hold: - ' spect to a fixed site, we defirfe,; and h,; as integrated
densities but with respect to the first particle, which is itself
moving. Such a definition was used earlier 9] and was
9h oh 5h o [ oh\2 ko loh \2 found to markedly reduce the fluctuation in the height-height
(9_: =c, (9_++ D (9_2++ 3_2( *) — —2( ) correlation function. If the particles on a particular sublattice
X X e Ve are labeled 1...Np, then the heighth (t)=n(t)
Jh\2 [on )2 —(n;(t)) wheren;(t) is the tag number of the particle at site
i _
(W) - (W

B. Growth exponents from Monte Carlo simulation

dx X
i and the subtracted part has a linear time dependence. If the
sitei is empty,h; is determined from the tags of the closest

particles on either side by a lever rule.i}{t) (whose aver-
age valuesvt, with v= particle speedis the location of the

+ 77+(th),

1 (am)
2\bc! dx

dh- . &h,+D aZh{ K ohyoh 1 (ﬂ) particle 1 one haEi(t)=2L:io(t)ﬁk—p°io(t) using the fact

at X J c 9x X 2bc! X that ni(t)=EL:io(t)(ﬁk+p°). In our problem, the height-
oh,\2 [oh_\2 height correlatiof(his(t) —hia(0)) grows as—v ApSt, where
x| Vx| |T 7-(X1) (29 va=(1-p9)(1—-2p3). The corresponding continuum equa-

tion for hy(x,t) has two additional terms compared to Eq.

Here, an interesting situation arises. In the comoving framé23), i-€., & constant-v 4p that can be removed by an ap-
of the — mode, the pair of equations are invariant underpropriate shift and a noise terg= uAt";Sl(x,t). The scaling
h_——h_ andh;—h_, but not undex— —x. Thus theh_ dimension of{ is lower ((—b™?¢) than the noisep; (7,
field has RIsymmetry, while the movindn, field has R~ —b~#* *?7;) and hence is less relevant.

symmetry. The equations are invariant untier— —h_ in We are interested in knowing about the dissipation prop-
any frame. The invariance under- —x is broken(a) by the ~ erty of thex wave modes, so we numerically compute the
lineargh.. /9x and(b) by the trilinear terms. The effect ¢ height-height correlation function of the variatile in the
can be shifted away by comoving; tfi® terms are expected comoving frame of the relevant mode, i.e., by a Galilean
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FIG. 3. Height correlation
functions for p}=p9=0.5 (RI
symmetry averaged over six his-
tories.(a) In the rest frame of the
— mode,S? grows as~tY? im-
plying 8= 1/4, while&? ~t. (b) In
the rest frame of the- mode,S?
grows as~t¥2 while & ~t.
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FIG. 4. Effect of scaling the
rest-frame height correlation func-
tions of Fig. 3 by a factoR(t)
=tY2 (upper curves and R(t)
=t¥In(t)]** (lower curves.
The flattening of the latter con-
firms the presence of the multipli-
cr;ltive logarithms in botts? and
S
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.
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shift with speect. . The new fielddh. are the counterparts it shows a flattening at times aroutert,/2=108 000 when

of h.. defined earlier. We monitor the correlation functions the moving wave has traveled halfway around.
Figure 3 gives strong evidence fBr= 1/4 for both modes

in their respective rest frames wheij=p3=1/2. Thusz
=x/B is equal to 2 for both modes. More careful examina-
_ tion of the data reveals that there are actually multiplicative
where the avgrag(e_- ) is both over space aqd the ense(r)nblelogarithmic corrections to the leading power law behavior.
of confl%uratlorls in thoe steagly state, WhL;§= \/EvApl The data is consistent with a groWB(t)~t1’4[In(t)]1’8, as
* \/EU gp5 andp? = \epi= Jbp3. We expecSi(t) to grow  may arise from cubic nonlinearities as discussed above. Evi-
ast” with B=x/z. _ ~ dence of this is seen in Figs(a} and 4b) which indicate

We used lattice sizels=54 000, while the number of his- that the data of Figs.(@ and 3b) have factorg In(t)]**
tory averages for each case is mentioned in the figure capnyltiplying t*2 As discussed in Sec. V A, the latter are prob-
tions. There are two curves in each of the Figs. 3, 5, and @ply due to cubic nonlinearities.
below, for example, in Fig. ®) the Iower.one represe _(Il) For p2=0.5 andp3=1/3, the system has_Fslymme-
and the upper one represents the height-height correla‘u% Figure 5 shows that bot2 and S grow as ~t23
function of the moving— mode in the rest frame of the¢ ST a T AT

> ~ ~ o implying that 8=1/3 andz=3/2. Thus the dissipations of

wave,  namely, S=([h_(x—c.t,)=h_(x0)+IZt  poth the waves are KPZ-like.
+p°c t]?). Similarly $% in Fig. 3a) is defined in the rest (I Finally Fig. 6 shows the height-height correlation
frame of the— mode. The correlation functior&’s increase  functions for p{=1/3 andp5=1/3 (RI symmetry for one
linearly with time as they sense the effect of a moving kine-mode, 'R symmetry for the other
matic wave. In a discrete lattice simulationn Eqg. (30) gets We see thas® grows as~tY2 with an indication of mul-
replaced b%/ ?lscrete Iw;tege;rsThe k'?]emﬁt'% vyar\:e speelds_ tiplicative logarithmic corrections, indicating=1/4 while
are qevert eless rea ractlor?s, ;o eight-heig .t corre atlogz+ grows as~t2? implying 8=1/3. Recalling thaty=1/2
functions S*> and S* have oscillations of the period d/;  for both modes, we have=2 for the — mode andz=3/2
these oscillations are noticeable for lawbut their relative  for the + mode. There is a logarithmic factpin(t) 1Y mul-
contribution dies down for larger _ tiplying tY/2 for the — wave as is apparent from the flattening

(1) We first discuss the height-height correlations f§r ¢ the curve on dividings2 by t¥3 In(t)]¥* (Fig. 7).
=0.5 andp3=0.5 (Fig. 3 corresponding to Rsymmetry. It is remarkable that although the waves are coupled non-
The kinematic waves go around the whole system with dinearly to each other, two different dynamical exponents
time periodt,=|L/c.|. With L=54000 andc..==*r'/2= arise in the same system, in conformity with our expectations
+1/4 we havet,=216000 asr’'=1/2 in our simulations. on symmetry grounds. This is the first instance we know of,
The curve for the mode that is moving in the rest frame ofin which such a property arises in a fully coupled system in
the other should dip to a minimum at tinhgand that is why  which neither field evolves autonomously.

S =([he(x—c.t,t)=h.(x,0+I%t+p%c.t]?)
(30

10000 10000
wor T 1000 | ’ -
Ny e Ny e FIG. 5. Height correlation
100 £ Si 100 + 82 o 4 . o_ 0
o . e functlons_ for p1=1/2p5
10} o P 10| L e =1/3 (Rl symmetry averaged
v s * H : 2
e et 52 - e s2 over four histories(a) S- grows
o S e - v o as ~t2® implying 8=1/3, while
01 L ™ 01 L5 e &2 ~t. (b) S? too grows as~t?®
. o2
0.01 : . . 001 . . . . andS” ~t.
1 10 100 1000 10000 100000 1 10 100 1000 10000 100000

®
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10000 ; : : : 10000
1000 + o aesea] 1000 + T aead
ny " P FIG. 6. Height correlation
100 ¢ St 100 ¢ s_ e function for p9=p3=1/3 (RI
10 | P P 10 ‘ ......... symmetry for one mode, IRsym-
N g2 ] s2 metry for the otheraveraged over
Lt S5 e 12 histories. (a) S? grows as
01t s o0 b ua ~t¥2and$2 ~t. (b) S2 grows as
¢ i 2/3 &2
0.01 : : : ; 001 ; ; ; ; ~t™andS_~t.
1 10 100 1000 10000 100000 1 10 100 1000 10000 100000
(@ ° ® !
V. ANALYTICAL DEMONSTRATION OF WEAK DYNAMIC e 2K2/\/E. We denote the dissipation coefficients by
SCALING andv, (we use two separate symbols in anticipation of weak

denamic scaling We also ignore the cubic nonlinearities for
esimplicity. The waves can be removed from either of the Eqs.
(31) separately by comoving with the left and right going
waves through the Galilean shiftx—x+(B,/2)t, h,
fh+ and x—x—(By/2)t, h_—h_, respectively. In the
omoving frame oh, , Egs.(31) become

We argued in Sec. Il in the context of the model equation
(29) and showed by using Monte Carlo simulations that ther
are two different dynamical exponents 3/2 and 2, respec-
tively, for the two eigenmodek, andh_ in the model. In
this section we use self-consistent mode-coupling an
renormalization-group methods to study the Iarge-distance(‘j
long-time properties of the correlation functions: We calcu-
late the roughness exponengs, and the dynamical expo-
nentsz, , of the fieldsh, _. Our analytical results agree
with the previous numerical results. For appropriately chosen
values for the densities of the particles in the lattice model
[see above E29)], the continuum equations in the center-
of-mass frame take the form

N , Ao ,
h++7(f9xh+) +?(19th) =v duhy+ .,

h_+Bydsh_+Ng(dxhs)(dsh_)=v_dh_+f_,
(32

. B Ay A whereas in the frame df_ Egs.(31) reduce to
= 2o+ S (302 2 ()= v dh T as. (31

A 2 Mo 2_
h+_Boﬁxhh+?(&xh+) +?(axh7) _V+(9xxh++f+r

. B
h_+ 7°<9Xh,+)\3(0xh+)(axh,)= v_dgph_+f_
(31) h_+\g(a5h. ) (dsh_)=v_duh_+f_, (33
where By/2=c.=—C_, \1/2=3k,/\C, No/2=—k,/2,  The bare response functions of the two fihdsandh_ are
given by
e L o (ke 1
o "")_immkf' o "")_iw—iBokJrV,kz
(34)
Nfl fA AAA.“ RCTCLiibe reeeeegivesety in the right moving frame and
m A. ...
: « * + — - - @@
e Co k)= TiB ke Skl T e
(35
1 10 100 1000 10000 100000 in the left moving frame. The noise correlations in both the
t frames are given by
FIG. 7. Effect of rescalings? in Fig. 6 by R(t)=t"? (upper
curve and R(t)=tY7In(t)]¥* (lower curvé. The flattening of the
latter confirms the presence of the logarithmic factoBin (f+ _(0,0f, _(x,t))=2D, _8(x)(t). (36
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Note that there is no frame in which the drift termshiath A. Self-consistent mode coupling calculation
equations vanish. Noise correlations however do not change

. . . 1. KPZ equation in a moving frame
with change in reference frames as they areorrelated in a g

time. Before embarking on a calculation for our model, it is

In this section we analytically calculate the dynamic andinstructive to look at the simpler case of a growing KPZ
roughness exponentsy;, z,i=+,— for the fields surfaceinamoving frame. The KPZ equation will be supple-
h;, i=+,—, respectively, defined by ([hj(x,t) mented by a linear first order gradient term,

—h;(0,0)]%)=xXig(x%/t). There are two limits in which

their behavior is well understood analytically. First, in the 5

absenceof the kinematic waveéB,) terms, Eqs(31) reduce @JFC@H\(@) — JV2ht 37)

to the ErtasKardar [3] equations. Although the complete at X IX 7

phase diagram of the latter is not known, they do have a

locally stable renormalization-group fixed point belonging to

the universality class of the KPZ equatiph6], with y. with (77(x,t) 7(0,0))=2D &(x) 8(t). We ask: Does the wave

=y_=1/2 andz,. =z_=23/2. Secondly, in thabsencefthe affect the exponents? We know the roughening expogent

nonlinear terms couplindp, andh_, the kinematic wave =1/2 for the KPZ equation in one dimension. Singere-

terms can be removed separately in each equation by oppflects the static probability distribution of the heights, it is

site Galilean transformations, yielding scaling properties inindependent of reference frames. Due to the exponent iden-

dependent of the wave speed. In the previous section odity x+z=2 [10], it follows thatz=3/2. Thus in this par-

Monte Carlo results show that even when there is a nonlinedicular case exponents are not affected by waves. The ques-

coupling, for particular densities, there is weak dynamiction is, can we see this in a self-consistent or

scaling:z,=3/2, z_=2. Below, we offer an understand- renormalization-group calculation? Recall that the dynamic

ing of weak dynamic scaling in an analytical framework. exponent is given by the width of the peak of the dynamic
The possible occurence of weak dynamical scaling in thistructure factor. The location of the peak, as a result of the

problem, makes a renormalization-groiRG) treatment dif- waveinduced by our transformation to a frame moving with

ficult: one cannot rescale time in two different ways for thespeedc, is atw=ck. The response and the correlation func-

two fields. We therefore adopt a self-consistent integraltions in that frame are thus given I6y,(k,»)=1/(iw—ick

equation approach for which such weak scaling presents ne vk?) and C,(k,w)=2D/[(w—ck)?+ v?k*], respectively.

difficulties. We then discuss how to circumvent the problemsThe one-loop integral that produces a singular correctian to

in applying an RG treatment. is

2Dq(k—q)kq
'”‘fdqd”[(9—ck>2+v2q4][i<w—n>—ic(k—q>+v(k—q>2]

(38

N‘f q 2Dq(k—q)kq
ek vq’[vq*+v(k—q)?]’

which is the same as that one obtains in a standard calculaanish forq—0 or due to some fundamental symmetry in
tion for the KPZ equation in the rest frame. A similar expres-the problem. In that case the problem is reduced to solving
sion holds for the correction to the correlation function. Innonlinear integral equations f& and C whose order is the
both these integrals, the wave can be shifted away triviallysame as that of the nonlinearity in the modified Langevin
Thus we obtairz=3/2 and xy=1/2, in agreement with our equation.
eXpe_CtationS. With this baCkgrOUnd we now preseljt the cal- In a One_loop self-consistent mode_coup"ng theory1 one
culations for the exponents for our model. Interestingly, weyyrites down one-loop integral equations for the response and
will find that the effects of the waves cannot be trivially ¢orrelation functions. The basic assumption is that there are
shifted away as they could in the simple example discussegq |oop corrections that diverge in the infrared limit. In a
above. theory where there is no vertex renormalization due to some
Ward-Takahashi identityarising from some continuous sym-
metry of the equation of motigrthese equations amxact
because any higher loop corrections can be incorporated
The mode-couplingapproach to solving equations such aswithin one-loop dressed response or correlation functions.
Eq. (31) consists in obtaining diagrammatic perturbation ex-However, when there is no such symmetry of the system to
pansions for the renormalized propaga@®iand correlation prevent vertex renormalization, the above assertion is not
functionsC and resumming these in such a way that all thetrue. In such a situation, one also has to write down a one-
internal lines are renormalized correlation functions or loop self-consistent equation for the vertex, which now is to
propagators. This provides an exact solution for as asympbe solved simultaneously with the one-loop equations for
totically small wave numbeq when the vertex corrections response and correlation functions. An example of this has

B. Self-consistent calculation for the coupled model

021402-10
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3 h_ A3 Ay h. h. A3 A3 h,

A %)
FIG. 10. One-loop diagrams contributing ®_(k,w). A line
refers to a response function and a line with a small filled circle

Ay refers to a correlation function.
A
3
) 242
dQdgD
|:ik7\2)\§/2J 2 q2 Jf . 2 3
M [(Q=Boq)*+ v J[Q°+ v, q"]
C2ikaNE1 1 ; -
“Te ZJFIJ aD, . (39

by

FIG. 8. One_|00p diagrammatic corrections XQ, a line indi- This has no infrared diVergence. Slm”arly, all other diagl’ams
cates a response function and a line with a small filled circle referén Figs. 8 and 9 are also finite in the infrared limit. We ignore
to a correlation function. all these finite corrections fok, and A3, i.e., we ignore

vertex corrections in our self-consistent analysis. We again
justify this a posteriori by showing that the vertex correc-
been worked out if20]. Here we work with Eqs(31). There  tions remain finite in the self-consistent theory.
are no diagramatic corrections to the vertex at the one- The time-displaced correlation functions of the fiehds
loop level. However, there are no such conditions\grand  andh_ are
\3. In our particular problem, however we show using bare
response and correlation fqnctlons t.hgt one-loop ve_rtex cor- C.(r,)=(h.(0,0h,(r,1),
rections for\, and\ 5 are all infrared finite. Hence we ignore
them in our calculations. In Figs. 8 and 9 we show the one-
loop diagramatic corrections to, and\ 5, respectively. We C_(r,)=(h_(0,0h_(r,1)). (40)
first work in the comoving frame oh,: In that frame
C.(k,w) has a peak ab=B,k andC_(k,w) is peaked at The scaling forms for the correlation and response functions
w=0. Let us look at one of the diagrams very carefiflist  as a function of wave numbdrand frequencyw are
diagram in Fig. 8,

C.(k,w)=k™172x+72+f  (k**/ w),

M A
A3 A3 C_(kw)=k 172X-"2-f_(k*/w), (41)
and
A3
A3
G.(k,o)=k *+g,(k*/w),
A A
G_(k,w)=k *g_(k*/w). (42
A3 A3

Here,z, arez_ are the dynamic exponents agd andy_
are the roughness exponents of the fidldsandh_ . Notice
Ay A that we have allowed the existence of tdifferentdynamic
exponents. Since the fields are decoupled in the linearized
theory, there is no cross propagator. The following one-loop
M A3 diagrams contribute to the respective self-energiegk, )
and3 _(k,w) (defined byG, *=G,,'—3,;, whereG;, is the
& bare propagator fdn;, i=+,—) of the fieldsh, andh_ .
Notice thatG  3(k,w=0)=iBk+r,k? G g=v_k>
A self-consistent calculation is required if one encounters
A 3 infrared divergences in the bare perturbation theory. The fol-
lowing one-loop diagrams in Figs. 10 and 11 contribute to
FIG. 9. One-loop diagrammatic correctionsXg; a line indi- 2 _(K,») and C_(k,w), respectively. It is easy to see that
cates a response function and a line with a small filled circle referione of these diagrams diverge in a bare perturbation theory.
to a correlation function. The first diagram in Fig. 10 has the form
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S (Kw)~Aoh de D_a’(k-q)
_(K,w 23 qV+q2[V+q2+vf(k—q)z—iBo(k—q)]
D_g*k=a)[v.q*+ v (k-)*] D (k-q)
,v)\)\kfd N)\)\de _finite. 4
) v 2ty (k- Blk—q? o) N B k—q)? inite, (43

since in the long wavelength limig3(k— q)2 dominates over q’(k—q)
{v,.q?+v_(k—Qq)?}?. We have considered only the real part 'Nkf deq(QZ+ [ —i0+iB.k+ v (k—q)7]
of 2 _(k) (only this part will renormalizer_). However this N ° -

does not produce any infrared singular correction’icand ‘ (k—q)[v_g?>+v_(k—)?]

hence we ignore it. Note that it is the presence of the kine- J q 2,2 2 212

matic waves that makes this diagrammatic contribution in- v-[Bok™+{v-q™tv (k=)
frared finite and thus ignorable. The second diagram in Fig. (ki2—q)v_q? k2 dq
10 also has a similar finite form and is ignored again. In Fig. ”kf dqg B2+ 4.20% v | ra?
11 the diagram has the form v-1B v2ql v-Jxd

x[1+0O(k2 g+ ---]1~k%2. (46)
C_(k,w) . . .
Note that the presence of the kinematic wave was crucial
1 f dqf(k—q)? again in this evaluation: The integral in E@6) diverges as
PRV > ——7 — . qu/q2 if the external wave numbek is set to zero. At
g (k=) Tv-q v (k=a)"~iBo(k—0)] nonzerok, the integral is controlled by the presence of the
(44)  wave termBZk? in the denominator, and scaleskis'? not
ask™! as might have naively been expected. Thus-3/2 is
epnaltered by the second diagram. Similarly we consider Fig.
13(b) (usingz,. =3/2),

%

It is easy to see that this is not infrared divergent. So w
ignore all corrections t&C _(k,w). We immediately obtain

z_ =2, x_=1/2. Note that the presence of the wave term 4

. ; . . . 1 q
Bk in the inverse propagator was again crucial to this analyq ~ _f dQdq
sis. We see from the foregoing analysis that k® (24129 [(Q—Bok)*+r2q"]
1 1 1
G ik w)~iwtks, C_ (K,w=0)~—5——7. (45 v k'Bok Bok—iv-q"  Bok—iv_g
w +K (47)

We now calculate the exponents fof . As stated earlier Which is as divergent Fig. 18). Thusy. =1/2 also remains
we ignore corrections ta, and A5 as they are all finite. unaltered. It is easy to see th_at with these self—coqsistent
There are however, diverging one-loop corrections to bottiesponse and correlation functions, one-loop corrections to
C, and3, that are shown in Figs. 12 and 13. Figureal2 M2,A3 do not diverge. Hence ignoringz,A5 in our self-
and 13a) come from the KPZ nonlinearity. If these were the consistent calculation is justified.
only diagrams, one would have obtained KPZ exponents: SO far we have worked in the comoving framehof, i.e,
z.=3/2, x,=1/2. We notice, however, that Figs. (b? with Egs.(33). Let us now go to the comoving frame lof :
and 13b) are as strongly infrared(IR) divergent as Figs. We work with Eqs.(32). The relevant diagrams are same as
12(a) and 13a). Let us examine Fig. 1B) in detail. The 9diven in Figs. 12 and 13. It is easy to carry out a self-

integral is given by(using the fact thay_=1/2, z_=2) consistent analysis again on E¢32). The only difference is
that nowC, (k,w) is peaked atw=0 whereasC _(k,w) is

peaked atv=— B k. Here again there is no singular correc-
tion to the reponse and the correlation functions of the field
h_. Thusz_=2 andy_=1/2. There are however diverging
corrections tov; and D,, which are identical to those ob-

h_ h_
hy A A1 b, h Ao A h,
(a) (b)
FIG. 11. One-loop contribution t€,(k,w). A line refers to a FIG. 12. One-loop contribution t€ . (k,). A line refers to a
response function and a line with a small filled circle refers to aresponse function and a line with a small filled circle refers to a
correlation function. correlation function.
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d
by A Mo, b, by 2 B, —(;}Jr =v, Z—2+g ,
@ (0)
I ) dD, g
FIG. 13. One-loop contribution t& . (k, ). A line refers to a ——=D,|z—1-2x.+ |, (50)
response function and a line with a small filled circle refers to a dl 4
correlation function.
and
tained in our calculations in the comoving frame fof . dv
Reassuringly, we find theameexponents again, i.ez, d—l_:v,[z— 2],
=3/2, x,=1/2, as we should. Thus the effective equations
in the left and right going frames are 4D
d—(ZD—[Z—l—ZX—], (51
8h+(k) . 3/2)
+iBokh,=v, k"h (k,t)+---, )
ot wherev,, v_, D,, andD_ are now functions of, and
g=D, A3/ is the dimensionless coupling constant. By us-
ah_(k) ing g=2 at the stable RG fixed poifi0], we obtain
e v_k2h_(k,t)+--- (48
dv
d—|+= v, [z—-3/2], (52a
and
T 2-2) (52)
dho(k —=v_[z-2],
;t( )=v+k3’2h+(k,t)+ . dl
©: 5 1/2-2 52
o —iBokh_=v_k?h_(k,t)+--- . (49
dD_
TZD_[Z—].—Z)(_]. (520

The renormalized equatiori$8) and(49) are thus connected
by a Galilean transformation like the bare equati@® and

(32), and the exponents are frame independent. Now given the exponentsy.. .- , the equations of motion

(32) are supposed to be invariant under the scale transforma-
tions x—bx, t—b%*, h,—b¥*h,, h_—bX-h_.
C. Renormalization-group analysis From Egs.(50) we getz=23/2,y,.=1/2 whereas Eqs(51)

In Sec. VB we have shown how a self-consistent mode9Ve Z=2,x— = 1/2. Which value o should we choose? The
coupling treatment of our model for certain parameter value§h°lclg ofz=3/2 keepsw, fixed under rescaling, bU‘le(l_)
leads to weak dynamical scaling, i.distinctdynamical ex- ~€ - as the RG fixed point is approachgémembete’ is
ponents for the two fields. In this section we recast thesdke & length scale On the other hand if we choose=2
results within a perturbative dynamical renormalization-then » is fixed under rescaling but;~e'’” as the fixed
group (DRG) framework, and show how the difficulties Pointis approached. Moreover=2 impliesy_ = 1/2 giving
posed for the DRG by weak dynamical scaling can be overC-(x,0)~X in agreement with the previously obtained re-
come. sults, and y,=1/4 suggestingC. (x,0)~x2, which, of

The figures are same as shown in Sec. V B. We work witteourse, is wrong. Similarly, the choiae=3/2 gives correct
Egs.(32). As usual, the bare diagrams for , D_, \,, and  Spatial dependence fd€, (x,0)~Xx, but gives an incorrect
A3 do not diverge. Figure 18 diverges as resultforC_(x,0). _ _
~[(DA) 3K dg/g?~[ (D N2)/v3]k3(1K), whereas To resolve this difficulty, let us f|r§t study the seemingly
Fig. 12b) diverges as \,\sD_k2f(dg/iB.k+2v_qg?)  trivial case of two totally decoupled fields,
~N,n3D_k?(1/yk). Thus(b) can be ignored in comparison

2
with (2 in the smallk limit. Similarly, Fig. 13b) is less 9 Th (534
divergent than Fig. 1@). Thus all relevant diagrams gener- ot toxe Y
ating dominant singular corrections to the bare response and
correlation functions of the fielth, are of KPZ type(with ey Py
identical symmetry factoys ot Rega T2 (53b)

Starting with a cutoff wave numbey, eliminating modes
with wave numbers betweeke™ ' and A, rescaling so that with (7i(0,0)n;(x,t))=27v;6;6(x)6(0) for i=1,2 and no
the cutoff wave number is once mong and passing to the sum on repeated indices. These are linear equations and
limit 51—0, we obtain the differential recursion relations hence exponents can be found exactly. In particular we know
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(P1(X,1) (0,0 ~xFy(x?/1), (54a C.(x,t)=xf_[x¥t]. (57)

b2(X,1) $1(0,0) ~x3F,(x*1), (54b) , . o

(2 ! ) 2 This suggests that an RG treatment, suitably modified, can be
i.e., we havex,=1/2, x,=3/2, z;=2, z,=4. There applied successfully to a problem of weak dynamic scaling
are obviously no diagramatic corrections to any of the paprovided scale dependent dissipation coefficients are taken

rameters. Here the flow equations are into account while constructing the correlation functions.
dua _
ar =pa[z—-2], (553 D. Strong dynamical scaling

In Sec. Il we have seen that for model equati® both

dy; the dynamic exponents turn out to be 3iz., KPZ-like).

= rilzm1m2xl, (55D This is easy to understand analytically: In this case both the

equations have KPZ-like nonlinearities in addition to the

Mo non-KPZ ones. However, it is easy to see that for both the
W:M[Z_A']’ (550 fields, due to the presence of the waves, in any frame, non-
KPZ diagrams are less singular than the corresponsing KPZ-

dy, like diagrams. Thus the dominant singular corrections to the
ar = A7z 1-2xl. (55d  response and correlation functions for both the fields are

KPZ-like, makingy,=x_=1/2 andz, =z_=3/2.
A choice ofz=2 andy;=1/2 keepsu, and vy, fixed. This
immediately tells us that the equal-time correlation function VI. SUMMARY

of the field ¢, scales a#\x?X1. The coefficientd, a function . . .
; . . This paper is a study of the nature of spatiotemporal cor-
of y; and w4, is scale independent. However a naive use of

this value ofz (i.e., z=2) leads to a wrong conclusion about relations in a coupled-field driven diffusive modehe LR

. . ) ._model [4,5]), in the phase in which it displays kinematic
the spatial dependence of the equal-time correlation funCt'OQ/aves Our results include a demonstration of pairwise bal-
of the field of ¢,: z=2 gives y;=1/2 suggesting )

S ance for certain parameter values and, hence, a proof that the
<¢2(0’Q)¢32(X’0.)>~.X’ which is wrong (the correct depen- steady state has a product measure in that range of param-
dence isx®, which is knownexactly. The reason is that the

hoicez—2 makes th uti fthe f ; eters. Most important, we have been able to show that the
choicez=2 maxes t e_szcl) ““2”5 ofthe flow equatlonsﬁq fields corresponding to the two eigenmodes of the linearized
scale dependenjz,~e™“'~k*. However, one can still ex-

. ! . . version of the model were characterized by two different
tract the correct behavior of the correlation functionggfin d

he ab e if for th e d q %namic exponents, although the fields themselvegrame-
the a Ove exampie If one accoun_ts or_t € scale depenceng early) coupled. This is the first demonstration of such
1o explicitly: An explicit construction gives

weak dynamical scalingh a model with two fully coupled
_ fields (as distinct from the model ¢8,18,2(, where such an
{2k, 0)po( k@) effective decoupling was found only in semiautonomously
coupled systems in which one of the fields evolve indepen-
, (56) dently). We have been able to show this numerically, through
Monte Carlo simulations on a lattice model, and analytically,
which gives (by using scale dependent u,) using self-consistent perturbative calcu[ations as well as
(61(0,0)b5(x,0))~x3, which is the correct answer. This symmetry arguments, in t_he corrgspondmg continuum sto-
’ ! ' chastic PDEs. Outisde this special subspace of parameter

suggests that to make sense of out the RG flow equations Isnpace, the model exhibits normal, strong dynamic scaling.

presence of different dynamic scalings in a cogpleq systeque also discuss and largely resolve the technical difficulties
one has to take care of the scale dependent diffusion coeffi-

cients while calculating the spatiotemporal behavior of th In applying the dynamical renormalization group when weak

e ) . )
) ; . dynamic scaling prevails.
correlation functions correctly. Let us review our RG results y gp

obtained from the flow equation$0) and (51) in view of
our previous analysis: We chooge=2, y_=1/2, which
givesy. = 1/4 and makes;~k~ Y2 Using this scale depen-
dent coefficient we correctly obtain We thank Goutam Tripathy for valuable discussions.

D, 1 1
= - + —
okt iw+ uok®  —iw+ uok?
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