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Weak and strong dynamic scaling in a one-dimensional driven coupled-field model:
Effects of kinematic waves
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We study the coupled dynamics of the displacement fields in a one-dimensional coupled-field model for
drifting crystals, first proposed by Lahiri and Ramaswamy@Phys. Rev. Lett.79, 1150~1997!#. We present some
exact results for the steady state and the current in the lattice version of the model for a special subspace in the
parameter space, within the region where the model displays kinematic waves. We use these results to construct
the effective continuum equations corresponding to the lattice model. These equations decouple at the linear
level in terms of the eigenmodes. We examine the long-time, large-distance properties of the correlation
functions of the eigenmodes by using symmetry arguments, Monte Carlo simulations, and self-consistent
mode-coupling methods. For most parameter values, the scaling exponents of the Kardar-Parisi-Zhang equa-
tion are obtained. However, for certain symmetry-determined values of the coupling constants the two eigen-
modes, although nonlinearly coupled, are characterized by two distinct dynamic exponents. We discuss the
possible application of the dynamic renormalization group in this context.
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I. INTRODUCTION

A. Background

Spatial and temporal correlations in spatially extend
systems with a conservation law or a continuous invaria
are widely observed to satisfy a scaling or homogene
property. For instance, if the system is described by a sin
scalar field f(x,t), the correlation function C(x,t)
[^f(0,0)f(x,t)& satisfies

C~x,t !'b2xC~bx,bzt ! ~1!

under rescaling of space by a factorb. Herez is the dynamic
exponent whilex describes the spatial scaling of the fiel
Equation~1! holds in the rest frame of thef fluctuations, so
that if the system has wavelike excitations, e.g., kinem
waves@1# of moving f fluctuations, it is necessary to pe
form a Galilean shift to comove with the wave. The expon
z then describes the dissipation of the fluctuation wave, w
a fluctuation of spatial extentDx having a lifetime propor-
tional to (Dx)z.

Now consider the scaling properties of systems with s
eral coupled fields, say$fa ,a51 –N%, whose dynamical
evolution involves interfield couplings both at the linear a
nonlinear levels that result in propagating kinematic wav
At the linear level, the problem requires diagonalizing t
matrix of couplings. The eigenvectorscm involve linear
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combinations of thefa and represent modes that propaga
as independent kinematic waves. The real and imagin
parts of the eigenvaluescm encode, respectively, the spee
and dampings of the corresponding kinematic waves and
general, differ from one wave to another. By performing
Galilean shift with speedcm , one may move to the res
frame of modem; kinematic waves corresponding to oth
modes are not stationary in this frame, however, and th
moving modes also contribute to the dissipation of modem
as they are coupled nonlinearly to it. The correlation funct
Cm(x,t)[^cm(0,0)cm(x,t)& is expected to satisfy

Cm~x,t !'b2xmC~bx,bzmt !. ~2!

wherexm characterizes the spatial scaling of modem andzm
is the corresponding dynamic exponent.

A question arises: Is there a single common valuez that
characterizes the decay of all the modesm? When the answe
is yes, as in fact it generally is, we say that the system ob
strong dynamic scaling. Considerable interest is therefore a
tached to exceptions of this general rule. Accordingly, o
would like to characterize the conditions for the occurren
of weak dynamic scaling, when at least onezm is different
from the rest.A priori, there are two sets of circumstanc
when weak dynamic scaling may be expected.

~i! If the transformation fromfa to cm , which is de-
signed to decouple modes at the linear level, actually s
ceeds in decoupling them for the full nonlinear problem, th
evidently each mode evolves autonomously and indepen
zm’s may arise. In fact, a complete decoupling at the non
ear level does occur in the context of a reduced mode
magnetohydrodynamic~MHD! turbulence@2#, and may well
arise in other problems as well. In the MHD case, howeve
turns out that both modes obey evolution equations w

i-
:

©2001 The American Physical Society02-1



e
m

se

is

u
in

e
i-

ica
in
rd
e
d

ds
ng
, t
t

ad
nd
s
ric
en

c
e
a
th
e

e
i

-
o

e

n

I
i

e
ca
at
ge

si-
ical
ex-
ular,
two
we
lf-

dif-

mic
the
ow
the
m-

el

el
are

II
ion

r
ys-
in

ion,

lly
the

up

ba-
m-

DAS, BASU, BARMA, AND RAMASWAMY PHYSICAL REVIEW E 64 021402
similar ~autonomous! nonlinearites, so that a common valu
of z ensues. But this need not be the case for other proble

~ii ! Consider a situation in which the evolution of a sub
of the fields, say$ub%, does not involve the others$ua%,
while the evolution of the set$ua% does involve$ub%. In this
case,zb and za may take on distinct values. Indeed, this
borne out by numerical studies of two-field dynamics@3#,
which show that weak scaling occurs if the evolution is a
tonomuous in one of the two fields, or very nearly so,
which case strong crossover effects may be expected.

One of the principal results of this paper, which w
present below, is athird possible scenario for weak dynam
cal scaling, whereneitherfield is autonomous.

B. Results

In this paper we examine weak and strong dynam
scaling in a system with two coupled fields, which result
two coupled kinematic waves characterized by mode coo
natesc1 and c2, respectively. We work both with a lattic
model involving two sets of spins and with the correspon
ing continuum equations involving two coupled scalar fiel
The analysis of the lattice model is facilitated by showi
that along certain representative loci in parameter space
steady state has a product measure form. This allows
current to be found and a continuum expansion to be m
with coefficients that explicitly involve the parameters a
mean occupations of the lattice model. This enables u
make direct comparisons between the results of nume
simulations of the lattice model and analytical self-consist
calculations for the continuum equations.

Our most interesting result is the identification of athird
set of circumstances beyond~i! and ~ii ! mentioned in Sec.
I A, in which weak dynamic scaling results despite ea
mode being nonlinearly coupled to the other. This involv
symmetry properties of the kinematic waves: we find we
dynamic scaling if we choose model parameters so that
evolution equations are invariant under inversion of the s
ond mode coordinate (c2→2c2) but not underc1→2c1.
In that case our numerical simulations show thatz153/2,
while z252 with multiplicative logarithmic corrections. We
also study the problem within a self-consistent mod
coupling calculation, which shows that the different dynam
exponents arise in a rather interesting way: thelinearized
version of the problem hasz52 for both fields. The scatter
ing of c1 by fluctuations inc2 and vice versa gives rise t
singular corrections to the diffusivity forc1, leading toz1
53/2. The fluctuations, however, cause no singular corr
tion to the relaxation ofc2, leavingz252. For most other
parameter values, however, the evolution equations are
invariant under changing the sign of eitherc1 or c2, and we
find the more common strong dynamic scaling withz15z2
53/2.

The remainder of this paper is organized as follows.
Sec. II, we review briefly the continuum stochastic dynam
cal equations of Ref.@4#. In Sec. III we present the lattic
model and show how the condition of pairwise balance
be used to find the exact steady state if the transition r
satisfy a certain relation. In Sec. IV we characterize chan
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of the symmetry of the evolution equations as overall den
ties are varied and report the results of extensive numer
simulations, which show that the values of the dynamic
ponents depend strongly on these symmetries. In partic
we present evidence for weak dynamic scaling when the
kinematic waves have different symmetries. In Sec. V
describe analytical methods, primarily a one-loop se
consistent treatment of the continuum stochastic partial
ferential equation~PDEs!, for calculating the exponents in
the weak dynamic scaling regime. We also outline a dyna
renormalization-group procedure for this regime, discuss
difficulties that arise therein, and remind the reader h
strong dynamic scaling is restored for generic values of
parameters in the model. We close in Sec. VI with a su
mary.

II. CONTINUUM STOCHASTIC PDEs FOR DRIFTING
CRYSTALS

We review very briefly here the construction of our mod
equations of motion; details may be found in@4,5#. The
physical system that inspired the initial work on the mod
was a lattice drifting through a dissipative medium. There
at least two examples of this:~i! steadily sedimenting colloi-
dal crystals and~ii ! a flux lattice driven by the action of the
Lorentz force of an imposed supercurrent through a type
superconductor. If inertia is ignored, the equation of mot
of the displacement fieldu(r ,t) is of the form velocity5
mobility 3 force, i.e.,

u̇5M ~“u!~D““u1F!1z, ~3!

where the mobility tensorM is allowed to depend on the
lattice distortion¹u, the tensorD represents elastic forces,F
is the driving force, andz is a suitable noise source. Ou
results are for a highly simplified model with the same ph
ics as in Eq.~3!. This model, constructed and studied
@4,5#, describes the coupled dynamics oftwo fieldsux anduz
~the displacements transverse to and along the drift direct
respectively! as a function ofonecoordinatex transverseto
the drift directionẑ. The equations of motion are

u̇x5l12]xuz1g1]xux]xuz1D1]x
2ux1 f x , ~4!

u̇z5l21]xux1g2~]xux!
21g3~]xuz!

21D2]x
2uz1 f z , ~5!

where f x and f z are zero-mean, Gaussian, spatiotempora
white noise sources. The equations are invariant under
joint operationsx→2x,ux→2ux . For l125l2150, Eqs.
~4! and~5! reduce to the Ertas¸-Kardar~EK! @3# equations for
drifting polymers with the larger symmetryx→2x ~with or
without ux→2ux). The system can distinguish between
and down: there is no invariance under inversion ofuz . The
terms in Eqs.~4! and ~5! involving first spatial derivatives
have the following interpretation: a tilt (]xuz) produces a
lateral drift ~at a rate that depends on the density pertur
tions ]xux), while the vertical speed depends both on co
2-2
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WEAK AND STRONG DYNAMIC SCALING IN A ONE- . . . PHYSICAL REVIEW E 64 021402
pressions or dilations (]xux) as well as tilts (]xuz). In this
paper we shall consider only the casel12l21.0, in which
case the dispersion relation

v56Al12l21q2 iDq2. ~6!

holds for the linearized version of Eqs.~4! and ~5! and pre-
dicts traveling waves at a small wave numberq. The cases
l12l21<0 have been discussed extensively elsewhere@5–7#.
The mode coordinates corresponding to Eq.~6! are given by

c1,2[Acux6Abuz. ~7!

As discussed in@5#, the long-time, large-length-scale b
havior of the PDEs~4! and~5! are expected to be the same
those of a particular two-species Ising-Kawasaki mode
which the jump rate of each species depends on the l
density of the other. We turn next to this discrete model a
its dynamics.

III. THE LATTICE MODEL

The lattice model is defined in terms of two sets of va
ables$s i% and $t i 21/2% that reside on two interpenetratin
sublattices with periodic boundary conditions; the former
occupies the integer sites and the latter occupies the h
integer midbond locations of a one-dimensional lattice w
L sites. Eachs i and t i 21/2 is an Ising variable taking on
values61. They represent discrete versions of the den
and tilt fields in the sedimentation problem: Ifs i is 1, there
is a particle (1) at sitei, and if s i521, there is no particle
(2). The variablet i 21/251 and21, implies two values /
and\ of the local tilt, respectively. A typical configuration o
the full system is thus1\2/2/1\2/1/1/1\2.

Both sets of variables are conserved, i.e.,(s i and(t i 21/2

and the associated densitiesr1
o5((11s i)/2L and r2

o

5((11t i 21/2)/2L are constant. We consider at-dependent
local field that guides thes current andvice versa. Thus, for
instance, the Kawasaki exchange dynamics of the adja
spinss i and s i 11 occurs at a rate that depends ont i 11/2.
The moves and the corresponding rates are depicted be

~1! 1\2→2\1r 1 ,

~2! 2\1→1\2r 2 ,

~3! 2/1→1/2r 1 ,

~4! 1/2→2/1r 2 ,

~5! /2\→\2/p2 ,

~6! \2/→/2\p1 ,

~7! \1/→/1\p2 ,

~8! /1\→\1/p1 . ~8!

The macroscopic behavior of the model is determined
the relative values of the rates; a brief review of the pha
02140
n
al
d

-

t
lf-

y

nt

w,

y
s

and their characteristics appears in@6#. There are two distinct
regimes separated by a nonequilibrium phase boundar
depicted in Fig. 1. The regimep1.p2, marked SPS in Fig. 1
was explored in detail in@5#. In this phase, the system un
dergoes spontaneous phase separation of a particularly s
sort. Along the boundaryp15p2, marked FDPO in Fig. 1,
the system undergoes fluctuation-dominated phase orde
of a delicate sort as discussed in@7#. Finally, in the phase of
the model withp1,p2, marked KW in Fig. 1, there is no
phase separation and fluctuations are transported by k
matic waves. This is the regime of interest in this paper.

A. Exact results for the steady state

The steady state can be found exactly provided thatr 1
5p2 and r 25p1 ~along the line marked pairwise balance
Fig. 1!. To this end, let us choose new symbols to denote
values of the variabless and t: use 1 if a site or bond is
occupied by a1 or /, and use 0 for2 or \. Then the moves
~1!–~8! listed above reduce to moves (a),(b),(ā),(b̄) as fol-
lows:

~1!,~5!⇒~a!:100→001p2 , ~9!

~3!,~7!⇒~b!:011→110p2 , ~10!

~2!,~6!⇒~ ā!:001→100p1 , ~11!

~4!,~8!⇒~ b̄!:110→011p1 . ~12!

The use of the new symbols 1 and 0 explicitly brings out
fact that the dynamical moves on the two sublattices
alike for the choice of these special relations between
rates. This is crucial for further analysis.

In this new representation, a configurationC is specified
by the occupations of all sites. The time evolution of t
probability P(C) of the occurrence ofC is given by the
master equation

dP~C!

dt
5(

C8
W~C8→C!P~C8!2W~C→C8!P~C!,

~13!

FIG. 1. The phase diagram of the Lahiri-Ramaswamy mod
The strongly phase separated phase~SPS! is separated from the
kinematic wave phase~KW! of interest in this paper by the thresh
old line p15p2 along which there is fluctuation-dominated pha
ordering. The steady state can be found exactly along the
p2 /p15r 1 /r 2, by using the condition of pairwise balance.
2-3
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DAS, BASU, BARMA, AND RAMASWAMY PHYSICAL REVIEW E 64 021402
where the transition ratesW(C→C8) are given byp2 andp1
for changes of configurations involving moves~a! or (b),
and (ā) or (b̄), respectively.

The dynamics preserves the sublattice densitiesr1
o and

r2
o . Within the subspace labeled by (r1

o ,r2
o), one can see tha

the system is ergodic by noting that the dynamics induce
leftward drift of a pairs 00 and 11 with ratep2, and a right-
ward drift of such pairs with ratep1. By successive applica
tion of moves~a! and ~b! in Eqs. ~9! and ~10!, and their
reverses, any configurationC in the subspace can be taken
a ‘‘standard configuration’’Co in which all 1’s and all 0’s are
clustered together. Since the lattice is periodic, the 11 and
pairs can be shifted to any other configurationC8 from Co .
Thus any configurationC can be taken to any configuratio
C8 via Co .

In steady state the right-hand side of Eq.~13! must vanish.
A sufficient condition for this is that fluxes balance in pai
i.e., for every flux out of a configurationC to a configuration
C8, there should be an incoming flux from another uniqu
determined configurationC9 into C. This is the condition of
pairwise balance@8#,

W~C9→C!P~C9!5W~C→C8!P~C!, ~14!

which is a generalization of the well-known condition
detailed balance@9#.

For our problem,C9 may be constructed as follows. Le
us denote the configuration C symbolically as
1m10m21m30m41m5

•••0mk, where there is a cluster of 1’s o
sizem1, followed by a cluster of 0’s of lengthm2, and so on,
with a total of k such clusters. Consider a transition to
configurationC8[1m10m2211201m3220m41m5

•••0mk @a pair
of 11’s jump to the left, i.e., move (b)#. One can always find
a unique configuration, e.g., C9
[1m10m21m3220120m4211m5

•••0mk that gives rise toC @via
move (b)#. If the outgoing transition involves a rearrang
ment at the left edge of a cluster, the incoming transit
involves a rearrangement at the right edge of the same c
ter. Such an identification is possible also for transitions
volving moves (a), (ā), and (b̄), and ensures thatW(C9
→C)5W(C→C8). Thus Eq.~14! is satisfied provided the
steady state probabilities obey

P~C!5P~C9!5const. ~15!

This means that in steady state, every allowed configura
is equally likely. The constant appearing in Eq.~15! can be
found on using the normalization condition(P(C)51. If
N1[r1

oL and N2[r2
oL are the number of particles on th

two sublattices, the total number of configurations in sec
(r1

o ,r2
o) is N5(LCN1

)(LCN2
), where NCM is the number of

ways of choosingM out of a total ofN objects, and hence
P(C)51/N.

In the thermodynamic limitL, N1, and N2 →`, with
r1

o , r2
o held constant,P(C) approaches the product me

sure form
02140
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p~s i !p~t i 11/2!5r1
oN1~12r1

o!L2N1r2
oN2~12r2

o!L2N2.

~16!

This form of the steady state holds also for a high
dimensional generalization of the model involving rules~a!
and~b! and their reverses along the sites and bonds in thd
directions of a simple cubic lattice.

The product measure weight in the steady state imp
that correlation functions on different sites decouple. T
then allows the current ofs particles,

J15~p22p1!K ~11s i !

2

~12s i 11!

2

~12t i 1 1/2!

2 L
1~p22p1!K ~11s i 11!

2

~12s i !

2

~11t i 1 1/2!

2 L ,

~17!

to be found explicitly,

J15~p22p1!r1~12r1!~122r2!. ~18!

The first term in Eq.~17! comes from a particle hopping
between sitesi and i 11 in the absence of a particle at si
i 11/2 while the second is for hopping in the presence o
particle at the site in between. A similar expression holds
the t currentJ2,

J25~p22p1!r2~12r2!~122r1!. ~19!

The product measure form also allows us to find t
roughness exponent of an associated height model, wher
height fields associated with$s i% and $t i% are, respectively,
h1i5(k51

i (sk2^sk&) and h2i5(k51
i (tk2^tk&). Fluctua-

tions of the height field are characterized by the root-me
square height differenceG1(r )5A^(h1i 1r2h1i)

2&, with
G2(r ) defined similarly in terms of$h2i%. Using the fact that
^s0sk&5^s0&^sk& for k5” 0 and 1 fork50, we findG1(r )
5G2(r );r 1/2. Thus the roughness exponentx defined by
the growth of the root-mean-squared height fluctuations

x51/2 ~20!

for both height fields. Evidently, this value will also chara
terizes fluctuations of linear combinations of the height fie
h1 andh2, which arise when we deal with mode coordina
fields in the next section.

We close this section with numerical results for corre
tion functions away from the pairwise balance~PB! locus.
We setr 25p150, and investigate what happens if we mo
away from the PB locusr 15p2. We studied the spatial cor
relation function C(r )5^s is i 1r&2^s i&^s i 1r& by Monte
Carlo simulation and show our results for different values
r 1 and p2 in Fig. 2. As expected, for the PB caser 15p2
51 ~empty triangles in Fig. 2!, the correlation length is zero
Away from PB, withr 151/3 andp251, the three curves for
C11, C22, andC12 representing, respectively, the intrasubla
tice correlation functions for sublattices 1 and 2 and the
tersublattice correlation function all decay differently, b
2-4
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with a finite correlation length~Fig. 2!. This shows that al-
though product measure does not hold away from the p
wise balance locusr 15p2, correlations are short ranged s
that the behavior on large length and time scales is expe
to be similar to that in the pairwise balance case.

B. Continuum equations and kinematic waves

The expressions~18! and ~19! for the current help us to
construct approximate continuum equations for the evolu
of the density fluctuation fields. The starting point is the p
of continuity equations

]rm

]t
52

]

]x
Jm~r1 ,r2!, m51,2 ~21!

wherer1(x,t) andr2(x,t) are coarse-grained densities at
mesoscopic scale andJ1(x,t) and J2(x,t) are the corre-
sponding currents. Each of these currents is written as
sum of three parts,

Jm5Jm
systematic1Jm

di f f usive1hm . ~22!

The systematic contributionsJm
systematic at the mesoscopic

scale are assumed to be given by the expressions~18! and
~19! for the currents in an infinite system. The diffusive pa
Jm

di f f usive arises from local density inhomogeneities and
taken to be2Dm]rm /]x. Finally hm is a noise term added
to mimic stochasticity at the mesoscopic level; we consi
uncorrelated white noise with ^hm&50 and
^hm(x,t)hm(x8,t8)&5Gd(x2x8)d(t2t8). These continuum
equations have the same symmetries as the lattice mode
hence would be expected to exhibit the same behavior
large length and time scales.

Writing r15r1
o1 r̃1 and r25r2

o1 r̃2 ~where ro’s are

fixed average densities andr̃ ’s are fluctuations! and using
Eqs.~17!, ~19!, ~21!, and~22!, one can write down coupled
equations governing the evolution ofr̃ ’s. We write these in
terms of the height functionsh15*xr̃1(x8,t)dx8 and h2

FIG. 2. The decay of correlation functions away from the line
pairwise balance is shown forC11 ~filled circle!, C22 ~filled dia-
mond!, andC12 ~filled triangle!. When pairwise balance does hol
the correlation function vanishes~empty triangles!.
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5*xr̃2(x8,t)dx8, the continuum analogs of the discrete fun
tions h1i andh2i defined in the previous section. We find

]h1

]t
52r 8~122r1

o!~122r2
o!

]h1

]x
12r 8r1

o~12r1
o!

]h2

]x

1D1

]2h1

]x2 12r 8~122r1
o!

]h1

]x

]h2

]x
1r 8~122r2

o!

3S ]h1

]x D 2

22r 8S ]h1

]x D 2S ]h2

]x D1h1~x,t ! ~23!

and

]h2

]t
52r 8~122r1

o!~122r2
o!

]h2

]x
12r 8r2

o~12r2
o!

]h1

]x

1D2

]2h2

]x2 12r 8~122r2
o!

]h1

]x

]h2

]x
1r 8~122r1

o!

3S ]h2

]x D 2

22r 8S ]h2

]x D 2S ]h1

]x D1h2~x,t !, ~24!

wherer 85(r 12r 2).
Let us define a5r 8(122r1

o)(122r2
o), b5r 8r1

o(1
2r1

o), c5r 8r2
o(12r2

o), k15r 8(122r1
o), and k25r 8(1

22r2
o). It is apparent that by taking linear combinations o

can construct eigenmode fieldsh65Ach16Abh2, which de-
couple at the linear level. These fields describe wave
modes@1# travelling with speedsc652a62Abc. The time
evolutions of these fieldsh6 are governed by

]h1

]t
5c1

]h1

]x
1D

]2h1

]x2 1
3

2 S k2

Ac
1

k1

Ab
D S ]h1

]x D 2

1S k2

Ac
2

k1

Ab
D ]h1

]x

]h2

]x
2

1

2 S k2

Ac
1

k1

Ab
D S ]h2

]x D 2

2
1

2Abc
S ]h1

]x D F S ]h1

]x D 2

2S ]h2

]x D 2G1h1~x,t !,

]h2

]t
5c2

]h2

]x
1D

]2h2

]x2 1
3

2 S k2

Ac
2

k1

Ab
D S ]h2

]x D 2

1S k2

Ac
1

k1

Ab
D ]h1

]x

]h2

]x
2

1

2 S k2

Ac
2

k1

Ab
D S ]h1

]x D 2

2
1

2Abc
S ]h2

]x D F S ]h1

]x D 2

2S ]h2

]x D 2G1h2~x,t !.

~25!

The new noise termsh65Ach16Abh2, are alsod corre-
lated. We have assumedD15D25D, though this may not be
preserved in the effective long wavelength equations. T
fields h1 and h2 are coupled at the nonlinear level so th
each wave influences the dissipation of fluctuations of

f

2-5
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other. We consider the dissipation properties of the wave
the next section for different sublattice filling fractionsr1

o

andr2
o of the sublattices.

IV. DISSIPATION OF THE WAVES AND DYNAMICAL
EXPONENTS

If it happens that some of the coefficients of Eq.~25!
vanish for certain choices of densitiesr1

o andr2
o , the evolu-

tion equations have special symmetries and this can h
important implications for the long-time dynamics. As di
cussed below, there are three different symmetries that a
in the coupled-field problem, each corresponding to a dif
ent set of dynamical exponents. The dynamical expone
associated with the wave modes may differ. We have con
ered three special pairs of densities (r1

o ,r2
o) corresponding to

three different symmetries.

A. Symmetries of the equations

To facilitate subsequent discussions let us first cons
the case of a single fieldh and list four different symmetries
@10# for its evolution.~a! RI symmetry, invariance under up
down reflection~R! symmetryh→2h and under inversion
~I! of spacex→2x; ~b! RĪ symmetry, invariance underh
→2h and not underx→2x; ~c! R̄I symmetry, invariance
underx→2x and not underh→2h; ~d! R̄Ī symmetry, in-
variance neither underx→2x, nor underh→2h.

Since]h/]t is an odd function ofh, an equation of motion
that contains only terms odd inh will be said to haveR
inversion symmetry, any term that is even inh will be said to
breakR symmtery. Accordingly: A term like]2h/]x2 obeys
RI symmetry. Terms like]h/]x and (]h/]x)3 obey RĪsym-
metry. The R̄I symmetry is respected by the term (]h/]x)2,
while a term like]h/]x added to it breaks that and gives ri
to R̄Ī symmetry.

To illustrate the occurrence of different types of symm
tries in our coupled-field problem, we consider three spe
pairs of densities (r1

o ,r2
o).

~i! For r1
o5r2

o51/2, Eq.~25! reduces to a pair of couple
equations with linear and first and second derivative te
and cubic gradient nonlinearities,

]h1

]t
52Abc

]h1

]x
1n

]2h1

]x2 2
1

2Abc
S ]h1

]x D F S ]h1

]x D 2

2S ]h2

]x D 2G1h1~x,t !,

]h2

]t
522Abc

]h2

]x
1n

]2h2

]x2 2
1

2Abc
S ]h2

]x D F S ]h1

]x D 2

2S ]h2

]x D 2G1h2~x,t !. ~26!

These equations describe two kinematic waves moving w
speedc15r 8/2 and c252r 8/2. The nonlinear couplings
02140
in
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imply that each wave influences the evolution of the other
order to study the dissipation of say the1 mode, it is essen-
tial to move to the frame that comoves with it. This is a
complished by a Galilean shiftx→x1c1t and t→t. In this
frame, the evolution equations become

]h1

]t
5n

]2h1

]x2 2
1

2Abc
S ]h1

]x D F S ]h1

]x D 2

2S ]h2

]x D 2G
1h1~x,t !,

]h2

]t
524Abc

]h2

]x
1n

]2h2

]x2 2
1

2Abc
S ]h2

]x D F S ]h1

]x D 2

2S ]h2

]x D 2G1h2~x,t !. ~27!

Evidently, in this frame, the2 mode has a speedc22c1

524Abc. The pair of Eqs.~27! are invariant underh1→
2h1 , h2→2h2 but not x→2x, because of the linea
]h2 /]x and cubic nonlinear terms. The RI¯symmetry holds
in the rest frame ofh1 mode.

Similarly the dissipation of the2 mode can be studied b
going to a frame that comoves with the2 mode. It is easily
seen that RĪsymmetry holds in this frame as well.

Let us recall what happens when RI¯symmetry holds in
the case of a single fieldh. In the Edwards-Wilkinson~EW!
equation@11#, the presence of an additional cubic term lik
(]h/]x)3 reduces the RI symmetry to RI¯symmetry. About
the linear fixed point~with x51/2), the cubic term has the
same naive scaling dimension as (]2h/]x2)—both scale as
b23/2 whenx→bx andh→bxh. Such a marginal cubic term
is known@12–15# to introduce logarithmic factors in the be
havior of the height-height correlation functions. Usin
mode-coupling@12# and dynamical renormalization-grou
@13# calculations, it was found that the correlation functio
F(t)5A^@h(x,t)2h(x,0)#2& grows ast1/4@ ln(t)#1/8 and this
was checked by Monte Carlo simulation. Recalling th
F(t);tb with b5x/z, we see that despite the lack ofI sym-
metry, the critical exponentsb and z do not change from
their EW values 1/4 and 2, respectively.

In our case with two coupled fields, the cubic gradie
terms again have the same naive scaling dimension as
linear second order term, but they are more complicated t
just (]h/]x)3. We might guess nevertheless due to the sy
metry that each of the1 and2 modes havez52. We will
present numerical evidence in Sec. V B, which confirms t
and shows that there are similar multiplicative logarithm
factors.

~ii ! For r1
o51/2 andr2

o5” 1/2, the equations for the mod
fields reduce to

]h1

]t
52Abc

]h1

]x
1n

]2h1

]x2 1
3

2

k2

Ac
S ]h1

]x D 2

1
k2

Ac

]h1

]x

]h2

]x

2
1

2

k2

Ac
S ]h2

]x D 2

2
1

2Abc
S ]h1

]x D F S ]h1

]x D 2

2S ]h2

]x D 2G
1h1~x,t !,
2-6
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]h2

]t
522Abc

]h2

]x
1n

]2h2

]x2 1
3

2

k2

Ac
S ]h2

]x D 2

1
k2

Ac

]h1

]x

]h2

]x
2

1

2

k2

Ac
S ]h1

]x D 2

2
1

2Abc
S ]h2

]x D
3F S ]h1

]x D 2

2S ]h2

]x D 2G1h2~x,t !. ~28!

Going to either of the frames in which the1 mode or the
2 mode are at rest, we see that with the cubic nonlinearit
the R̄Ī symmetry applies for each of the fields;R symmetry
is broken by by quadratic nonlinear terms andI is broken
because of linear first order and cubic terms. The most
evant terms at the linear fixed point are the quadratic non
ear terms. Thus we would expect that these terms wo
govern the dissipation and give rise to the Kardar-Par
Zhang~KPZ! valuez53/2 @16# for both the modes.

~iii ! For r1
o5r2

o5” 1/2, we havek15k2 andc5b, and the
following pair of equations hold:

]h1

]t
5c1

]h1

]x
1D

]2h1

]x2 13
k2

Ac
S ]h1

]x D 2

2
k2

Ac
S ]h2

]x D 2

2
1

2Abc
S ]h1

]x D F S ]h1

]x D 2

2S ]h2

]x D 2G1h1~x,t !,

]h2

]t
5c2

]h2

]x
1D

]2h2

]x2 12
k2

Ac

]h1

]x

]h2

]x
2

1

2Abc
S ]h2

]x D
3F S ]h1

]x D 2

2S ]h2

]x D 2G1h2~x,t !. ~29!

Here, an interesting situation arises. In the comoving fra
of the 2 mode, the pair of equations are invariant und
h2→2h2 andh1→h1 but not underx→2x. Thus theh2

field has RĪsymmetry, while the movingh1 field has R̄Ī
symmetry. The equations are invariant underh2→2h2 in
any frame. The invariance underx→2x is broken~a! by the
linear]h6 /]x and~b! by the trilinear terms. The effect of~a!
can be shifted away by comoving; the~b! terms are expected
02140
s,

l-
-

ld
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r

to provide logarithmic multiplicative corrections. The sam
symmetries hold in the rest frame of the1 wave. Based on
these observations, we expectz52 for the2 mode~perhaps
with multiplicative logarithmic corrections! and z53/2 for
the 1 mode. This is precisely the weak dynamical scali
discussed in the Introduction.

The quadratic nonlinear terms in Eq.~29! are exactly like
those obtained in@3,17#. Similarly the nonlinearities in Eq
~28! are of the form obtained in@18#. The crucial difference
is that we have additional linear gradient couplings, wh
bring in the possibility of observing weak dynamical scali
in our coupled-field system. We now turn to the next step
checking numerically and analytically our symmetry-bas
expectations.

B. Growth exponents from Monte Carlo simulation

For numerical simulation, we used a definition of heig
h̃i(t) that differs slightly fromhi(t) discussed so far. Instea
of defining heights as density integrated over space with
spect to a fixed site, we defineh̃1i and h̃2i as integrated
densities but with respect to the first particle, which is its
moving. Such a definition was used earlier in@19# and was
found to markedly reduce the fluctuation in the height-hei
correlation function. If the particles on a particular sublatti
are labeled 1, . . . ,NP , then the height h̃i(t)5ni(t)
2^ni(t)& whereni(t) is the tag number of the particle at si
i and the subtracted part has a linear time dependence. I
site i is empty,h̃i is determined from the tags of the close
particles on either side by a lever rule. Ifi o(t) ~whose aver-
age value5vt, with v5 particle speed! is the location of the
particle 1 one hash̃i(t)5(k5 i o(t)

i r̃k2roi o(t) using the fact

that ni(t)5(k5 i o(t)
i ( r̃k1ro). In our problem, the height-

height correlation̂ h̃iA(t)2h̃iA(0)& grows as2vAr1
ot, where

vA5(12r1
o)(122r2

o). The corresponding continuum equ

tion for h̃1(x,t) has two additional terms compared to E
~23!, i.e., a constant2vAr1

o that can be removed by an ap

propriate shift and a noise termz5vAt r̃1(x,t). The scaling
dimension ofz is lower (z→b2zz) than the noiseh1 (h1
→b2z/221/2h1) and hence is less relevant.

We are interested in knowing about the dissipation pr
erty of the6 wave modes, so we numerically compute t
height-height correlation function of the variableh̃6 in the
comoving frame of the relevant mode, i.e., by a Galile
FIG. 3. Height correlation

functions for r1
o5r2

o50.5 (RĪ
symmetry! averaged over six his-
tories.~a! In the rest frame of the
2 mode,S2

2 grows as;t1/2 im-

plying b51/4, whileŜ1
2 ;t. ~b! In

the rest frame of the1 mode,S1
2

grows as;t1/2, while Ŝ2
2 ;t.
2-7
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FIG. 4. Effect of scaling the
rest-frame height correlation func
tions of Fig. 3 by a factorR(t)
5t1/2 ~upper curves! and R(t)
5t1/2@ ln(t)#1/4 ~lower curves!.
The flattening of the latter con
firms the presence of the multipli
cative logarithms in bothS2

2 and
S1

2 .
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shift with speedc6 . The new fieldsh̃6 are the counterpart
of h6 defined earlier. We monitor the correlation function

S6
2 ~ t !5^@ h̃6~x2c6t,t !2h̃6~x,0!1J6

o t1r6
o c6t#2&

~30!

where the averagê•••& is both over space and the ensemb
of configurations in the steady state, whileJ6

o 5AcvAr1
o

6AbvBr2
o andr6

o 5Acr1
o6Abr2

o . We expectS6
2 (t) to grow

as tb with b5x/z.
We used lattice sizesL554 000, while the number of his

tory averages for each case is mentioned in the figure
tions. There are two curves in each of the Figs. 3, 5, an
below, for example, in Fig. 3~b! the lower one representsS1

2

and the upper one represents the height-height correla
function of the moving2 mode in the rest frame of the1
wave, namely, Ŝ2

2 5^@ h̃2(x2c1t,t)2h̃2(x,0)1J2
o t

1r2
o c1t#2&. Similarly Ŝ1

2 in Fig. 3~a! is defined in the res

frame of the2 mode. The correlation functionsŜ2’s increase
linearly with time as they sense the effect of a moving kin
matic wave. In a discrete lattice simulation,x in Eq. ~30! gets
replaced by discrete integersi. The kinematic wave speed
are nevertheless real fractions, so height-height correla
functions S2 and Ŝ2 have oscillations of the period 1/c6 ;
these oscillations are noticeable for lowt, but their relative
contribution dies down for largert.

~I! We first discuss the height-height correlations forr1
o

50.5 andr2
o50.5 ~Fig. 3! corresponding to RI¯symmetry.

The kinematic waves go around the whole system with
time periodto5uL/c6u. With L554 000 andc656r 8/25
61/4 we haveto5216 000 asr 851/2 in our simulations.
The curve for the mode that is moving in the rest frame
the other should dip to a minimum at timeto and that is why
02140
p-
6

on

-

n

a

f

it shows a flattening at times aroundt5to/25108 000 when
the moving wave has traveled halfway around.

Figure 3 gives strong evidence forb51/4 for both modes
in their respective rest frames whenr1

o5r2
o51/2. Thusz

5x/b is equal to 2 for both modes. More careful examin
tion of the data reveals that there are actually multiplicat
logarithmic corrections to the leading power law behavi
The data is consistent with a growthS(t);t1/4@ ln(t)#1/8, as
may arise from cubic nonlinearities as discussed above.
dence of this is seen in Figs. 4~a! and 4~b! which indicate
that the data of Figs. 3~a! and 3~b! have factors@ ln(t)#1/4

multiplying t1/2. As discussed in Sec. V A, the latter are pro
ably due to cubic nonlinearities.

~II ! For r1
o50.5 andr2

o51/3, the system has RI¯symme-
try. Figure 5 shows that bothS1

2 and S2
2 grow as ;t2/3

implying that b51/3 andz53/2. Thus the dissipations o
both the waves are KPZ-like.

~III ! Finally Fig. 6 shows the height-height correlatio
functions for r1

o51/3 andr2
o51/3 (RĪ symmetry for one

mode, R̄Ī symmetry for the other!.
We see thatS2

2 grows as;t1/2 with an indication of mul-
tiplicative logarithmic corrections, indicatingb51/4 while
S1

2 grows as;t2/3 implying b51/3. Recalling thatx51/2
for both modes, we havez52 for the 2 mode andz53/2
for the1 mode. There is a logarithmic factor@ ln(t)#1/4 mul-
tiplying t1/2 for the2 wave as is apparent from the flattenin
of the curve on dividingS2

2 by t1/2@ ln(t)#1/4 ~Fig. 7!.
It is remarkable that although the waves are coupled n

linearly to each other, two different dynamical exponen
arise in the same system, in conformity with our expectatio
on symmetry grounds. This is the first instance we know
in which such a property arises in a fully coupled system
which neither field evolves autonomously.
FIG. 5. Height correlation
functions for r1

o51/2,r2
o

51/3 (RĪ symmetry! averaged
over four histories.~a! S2

2 grows
as ;t2/3 implying b51/3, while

Ŝ1
2 ;t. ~b! S1

2 too grows as;t2/3

and Ŝ2
2 ;t.
2-8
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FIG. 6. Height correlation

function for r1
o5r2

o51/3 (RĪ

symmetry for one mode, RĪ̄ sym-
metry for the other! averaged over
12 histories. ~a! S2

2 grows as

;t1/2 andŜ1
2 ;t. ~b! S1

2 grows as

;t2/3 and Ŝ2
2 ;t.
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V. ANALYTICAL DEMONSTRATION OF WEAK DYNAMIC
SCALING

We argued in Sec. II in the context of the model equatio
~29! and showed by using Monte Carlo simulations that th
are two different dynamical exponents 3/2 and 2, respe
tively, for the two eigenmodesh1 and h2 in the model. In
this section we use self-consistent mode-coupling
renormalization-group methods to study the large-distan
long-time properties of the correlation functions: We calc
late the roughness exponentsx1,2 and the dynamical expo
nentsz1,2 of the fieldsh1,2 . Our analytical results agre
with the previous numerical results. For appropriately cho
values for the densities of the particles in the lattice mo
@see above Eq.~29!#, the continuum equations in the cente
of-mass frame take the form

ḣ12
Bo

2
]xh11

l1

2
~]xh1!21

l2

2
~]xh2!25n1]xxh11 f 1 ,

ḣ21
Bo

2
]xh21l3~]xh1!~]xh2!5n2]xxh21 f 2 ,

~31!

where Bo/25c152c2 , l1/253k2 /Ac, l2/252k2/2,

FIG. 7. Effect of rescalingS2
2 in Fig. 6 by R(t)5t1/2 ~upper

curve! andR(t)5t1/2@ ln(t)#1/4 ~lower curve!. The flattening of the
latter confirms the presence of the logarithmic factor inS2

2 .
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l352k2 /Ac. We denote the dissipation coefficients byn1
andn2 ~we use two separate symbols in anticipation of we
dynamic scaling!. We also ignore the cubic nonlinearities fo
simplicity. The waves can be removed from either of the E
~31! separately by comoving with the left and right goin
waves through the Galilean shifts:x→x1(Bo/2)t, h1

→h1 and x→x2(Bo/2)t, h2→h2 , respectively. In the
comoving frame ofh1 , Eqs.~31! become

ḣ11
l1

2
~]xh1!21

l2

2
~]xh2!25n1]xxh11 f 1 ,

ḣ21Bo]xh21l3~]xh1!~]xh2!5n2]xxh21 f 2 ,
~32!

whereas in the frame ofh2 Eqs.~31! reduce to

ḣ12Bo]xhh1
l1

2
~]xh1!21

l2

2
~]xh2!25n1]xxh11 f 1 ,

ḣ21l3~]xh1!~]xh2!5n2]xxh21 f 2 , ~33!

The bare response functions of the two fieldsh1 andh2 are
given by

Go
1~k,v!5

1

iv1n1k2 , Go
2~k,v!5

1

iv2 iBok1n2k2

~34!

in the right moving frame and

Go
1~k,v!5

1

iv1 iBok1n1k2 , Go
2~k,v!5

1

iv1n2k2

~35!

in the left moving frame. The noise correlations in both t
frames are given by

^ f 1,2~0,0! f 1,2~x,t !&52D1,2d~x!d~ t !. ~36!
2-9
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Note that there is no frame in which the drift terms inboth
equations vanish. Noise correlations however do not cha
with change in reference frames as they ared correlated in
time.

In this section we analytically calculate the dynamic a
roughness exponentsx i , zi ,i 51,2 for the fields
hi , i 51,2, respectively, defined by ^@hi(x,t)
2hi(0,0)#2&5xx ig(xzi/t). There are two limits in which
their behavior is well understood analytically. First, in t
absenceof the kinematic wave(Bo) terms, Eqs.~31! reduce
to the Ertas¸-Kardar @3# equations. Although the complet
phase diagram of the latter is not known, they do hav
locally stable renormalization-group fixed point belonging
the universality class of the KPZ equation@16#, with x1

5x251/2 andz15z253/2. Secondly, in theabsenceof the
nonlinear terms couplingh1 and h2 , the kinematic wave
terms can be removed separately in each equation by o
site Galilean transformations, yielding scaling properties
dependent of the wave speed. In the previous section
Monte Carlo results show that even when there is a nonlin
coupling, for particular densities, there is weak dynam
scaling:z153/2, z252. Below, we offer an understand
ing of weak dynamic scaling in an analytical framework.

The possible occurence of weak dynamical scaling in
problem, makes a renormalization-group~RG! treatment dif-
ficult: one cannot rescale time in two different ways for t
two fields. We therefore adopt a self-consistent integ
equation approach for which such weak scaling present
difficulties. We then discuss how to circumvent the proble
in applying an RG treatment.
u
s
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A. Self-consistent mode coupling calculation

1. KPZ equation in a moving frame

Before embarking on a calculation for our model, it
instructive to look at the simpler case of a growing KP
surface in a moving frame. The KPZ equation will be supp
mented by a linear first order gradient term,

]h

]t
1c

]h

]x
1lS ]h

]xD 2

5n¹2h1h, ~37!

with ^h(x,t)h(0,0)&52Dd(x)d(t). We ask: Does the wave
affect the exponents? We know the roughening exponenx
51/2 for the KPZ equation in one dimension. Sincex re-
flects the static probability distribution of the heights, it
independent of reference frames. Due to the exponent id
tity x1z52 @10#, it follows that z53/2. Thus in this par-
ticular case exponents are not affected by waves. The q
tion is, can we see this in a self-consistent
renormalization-group calculation? Recall that the dynam
exponent is given by the width of the peak of the dynam
structure factor. The location of the peak, as a result of
waveinduced by our transformation to a frame moving wi
speedc, is atv5ck. The response and the correlation fun
tions in that frame are thus given byGo(k,v)51/(iv2 ick
1nk2) and Co(k,v)52D/@(v2ck)21n2k4#, respectively.
The one-loop integral that produces a singular correction tn
is
I;2E dqdV
2Dq~k2q!kq

@~V2ck!21n2q4#@ i ~v2V!2 ic~k2q!1n~k2q!2#
U

v5ck

;2E dq
2Dq~k2q!kq

nq2@nq21n~k2q!2#
, ~38!
in
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which is the same as that one obtains in a standard calc
tion for the KPZ equation in the rest frame. A similar expre
sion holds for the correction to the correlation function.
both these integrals, the wave can be shifted away trivia
Thus we obtainz53/2 andx51/2, in agreement with ou
expectations. With this background we now present the
culations for the exponents for our model. Interestingly,
will find that the effects of the waves cannot be trivial
shifted away as they could in the simple example discus
above.

B. Self-consistent calculation for the coupled model

Themode-couplingapproach to solving equations such
Eq. ~31! consists in obtaining diagrammatic perturbation e
pansions for the renormalized propagatorG and correlation
functionsC and resumming these in such a way that all
internal lines are renormalized correlation functions
propagators. This provides an exact solution for as asy
totically small wave numberq when the vertex correction
la-
-

y.

l-
e

d

-

e

p-

vanish forq→0 or due to some fundamental symmetry
the problem. In that case the problem is reduced to solv
nonlinear integral equations forG andC whose order is the
same as that of the nonlinearity in the modified Lange
equation.

In a one-loop self-consistent mode-coupling theory, o
writes down one-loop integral equations for the response
correlation functions. The basic assumption is that there
one-loop corrections that diverge in the infrared limit. In
theory where there is no vertex renormalization due to so
Ward-Takahashi identity~arising from some continuous sym
metry of the equation of motion! these equations areexact,
because any higher loop corrections can be incorpora
within one-loop dressed response or correlation functio
However, when there is no such symmetry of the system
prevent vertex renormalization, the above assertion is
true. In such a situation, one also has to write down a o
loop self-consistent equation for the vertex, which now is
be solved simultaneously with the one-loop equations
response and correlation functions. An example of this
2-10
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been worked out in@20#. Here we work with Eqs.~31!. There
are no diagramatic corrections to thel1 vertex at the one-
loop level. However, there are no such conditions onl2 and
l3. In our particular problem, however we show using ba
response and correlation functions that one-loop vertex
rections forl2 andl3 are all infrared finite. Hence we ignor
them in our calculations. In Figs. 8 and 9 we show the o
loop diagramatic corrections tol2 andl3, respectively. We
first work in the comoving frame ofh1 : In that frame
C1(k,v) has a peak atv5Bok and C2(k,v) is peaked at
v50. Let us look at one of the diagrams very carefully~first
diagram in Fig. 8!,

FIG. 8. One-loop diagrammatic corrections tol2; a line indi-
cates a response function and a line with a small filled circle re
to a correlation function.

FIG. 9. One-loop diagrammatic corrections tol3; a line indi-
cates a response function and a line with a small filled circle re
to a correlation function.
02140
e
r-

-

I 5 ikl2l3
2/2E dVdqD1q2q2

@~V2Boq!21n2
2 q4#@V21n1q4#

5
2ikl2l3

2

Bo
2 S 1

n1
1

1

n2
D E dqD1 . ~39!

This has no infrared divergence. Similarly, all other diagra
in Figs. 8 and 9 are also finite in the infrared limit. We igno
all these finite corrections forl2 and l3, i.e., we ignore
vertex corrections in our self-consistent analysis. We ag
justify this a posteriori by showing that the vertex correc
tions remain finite in the self-consistent theory.

The time-displaced correlation functions of the fieldsh1

andh2 are

C1~r ,t ![^h1~0,0!h1~r ,t !&,

C2~r ,t ![^h2~0,0!h2~r ,t !&. ~40!

The scaling forms for the correlation and response functi
as a function of wave numberk and frequencyv are

C1~k,v!5k2122x12z1 f 1~kz1/v!,

C2~k,v!5k2122x22z2 f 2~kz2/v!, ~41!

and

G1~k,v!5k2z1g1~kz1/v!,

G2~k,v!5k2z2g2~kz2/v!. ~42!

Here,z1 arez2 are the dynamic exponents andx1 andx2

are the roughness exponents of the fieldsh1 andh2 . Notice
that we have allowed the existence of twodifferentdynamic
exponents. Since the fields are decoupled in the linear
theory, there is no cross propagator. The following one-lo
diagrams contribute to the respective self-energiesS1(k,v)
andS2(k,v) ~defined byGi

215Gi0
212S i , whereGi0 is the

bare propagator forhi , i 51,2) of the fieldsh1 andh2 .
Notice thatG10

21(k,v50)5 iBok1n1k2, G20
215n2k2.

A self-consistent calculation is required if one encount
infrared divergences in the bare perturbation theory. The
lowing one-loop diagrams in Figs. 10 and 11 contribute
S2(k,v) and C2(k,v), respectively. It is easy to see th
none of these diagrams diverge in a bare perturbation the
The first diagram in Fig. 10 has the form

rs

rs

FIG. 10. One-loop diagrams contributing toS2(k,v). A line
refers to a response function and a line with a small filled cir
refers to a correlation function.
2-11
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S2~k,v!;l2l3kE dq
D2q2~k2q!

n1q2@n1q21n2~k2q!22 iBo~k2q!#

;l2l3kE dq
D2q2~k2q!@n1q21n2~k2q!2#

n2q2@$n1q21n2~k2q!2%21B0
2~k2q!2#

;l2l3kE dq
D2~k2q!

n2B0
2~k2q!2 ;finite, ~43!
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since in the long wavelength limitB0
2(k2q)2 dominates over

$n1q21n2(k2q)2%2. We have considered only the real pa
of S2(k) ~only this part will renormalizen2). However this
does not produce any infrared singular correction ton2 and
hence we ignore it. Note that it is the presence of the ki
matic waves that makes this diagrammatic contribution
frared finite and thus ignorable. The second diagram in F
10 also has a similar finite form and is ignored again. In F
11 the diagram has the form

C2~k,v!

;
1

k4E dqq2~k2q!2

q2~k2q!2@n2q21n1~k2q!22 iBo~k2q!#
.

~44!

It is easy to see that this is not infrared divergent. So
ignore all corrections toC2(k,v). We immediately obtain
z252, x251/2. Note that the presence of the wave te
B0k in the inverse propagator was again crucial to this ana
sis. We see from the foregoing analysis that

G2
21~k,v!; iv1k2, C2~k,v50!;

1

v21k4 . ~45!

We now calculate the exponents ofh1 . As stated earlier
we ignore corrections tol2 and l3 as they are all finite.
There are however, diverging one-loop corrections to b
C1 andS1 that are shown in Figs. 12 and 13. Figures 12~a!
and 13~a! come from the KPZ nonlinearity. If these were th
only diagrams, one would have obtained KPZ expone
z153/2, x151/2. We notice, however, that Figs. 12~b!
and 13~b! are as strongly infrared~IR! divergent as Figs.
12~a! and 13~a!. Let us examine Fig. 12~b! in detail. The
integral is given by~using the fact thatx251/2, z252)

FIG. 11. One-loop contribution toC2(k,v). A line refers to a
response function and a line with a small filled circle refers to
correlation function.
02140
-
-
.
.

e

-

h

s:

I;kE dVdq
q2~k2q!

~V21n2
2 q4!@2 iV1 iBok1n2~k2q!2#

;kE dq
~k2q!@n2q21n2~k2q!2#

n2@Bo
2k21$n2q21n2~k2q!2%2#

;kE dq
~k/22q!n2q2

n2@Bo
2k214n2

2 q4#
;

k2

n2
E

Ak

dq

q2

3@11O~k2/q4!1•••#;k3/2. ~46!

Note that the presence of the kinematic wave was cru
again in this evaluation: The integral in Eq.~46! diverges as
*dq/q2 if the external wave numberk is set to zero. At
nonzerok, the integral is controlled by the presence of t
wave termB0

2k2 in the denominator, and scales ask21/2, not
ask21 as might have naively been expected. Thusz153/2 is
unaltered by the second diagram. Similarly we consider F
13~b! ~usingz153/2),

I;
1

k3E dVdq
q4

~V21n2
2 q4!@~V2Bok!21n2

2 q4#

;
1

in2k3BokE dqq2F 1

Bok2 in2q2 2
1

Bok2 in2q2G;k27/2,

~47!

which is as divergent Fig. 13~a!. Thusx151/2 also remains
unaltered. It is easy to see that with these self-consis
response and correlation functions, one-loop correction
l2 ,l3 do not diverge. Hence ignoringl2 ,l3 in our self-
consistent calculation is justified.

So far we have worked in the comoving frame ofh2 , i.e,
with Eqs.~33!. Let us now go to the comoving frame ofh1 :
We work with Eqs.~32!. The relevant diagrams are same
given in Figs. 12 and 13. It is easy to carry out a se
consistent analysis again on Eqs.~32!. The only difference is
that nowC1(k,v) is peaked atv50 whereasC2(k,v) is
peaked atv52Bok. Here again there is no singular corre
tion to the reponse and the correlation functions of the fi
h2 . Thusz252 andx251/2. There are however divergin
corrections ton1 and D1, which are identical to those ob

a
FIG. 12. One-loop contribution toC1(k,v). A line refers to a

response function and a line with a small filled circle refers to
correlation function.
2-12
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tained in our calculations in the comoving frame ofh2 .
Reassuringly, we find thesameexponents again, i.e.,z1

53/2, x151/2, as we should. Thus the effective equatio
in the left and right going frames are

]h1~k!

]t
1 iBokh15n1k3/2h1~k,t !1•••,

]h2~k!

]t
5n2k2h2~k,t !1••• ~48!

and

]h1~k!

]t
5n1k3/2h1~k,t !1•••,

]h2~k!

]t
2 iBokh25n2k2h2~k,t !1••• . ~49!

The renormalized equations~48! and~49! are thus connected
by a Galilean transformation like the bare equations~33! and
~32!, and the exponents are frame independent.

C. Renormalization-group analysis

In Sec. V B we have shown how a self-consistent mo
coupling treatment of our model for certain parameter val
leads to weak dynamical scaling, i.e.,distinct dynamical ex-
ponents for the two fields. In this section we recast th
results within a perturbative dynamical renormalizatio
group ~DRG! framework, and show how the difficultie
posed for the DRG by weak dynamical scaling can be ov
come.

The figures are same as shown in Sec. V B. We work w
Eqs.~32!. As usual, the bare diagrams forn2 , D2 , l2, and
l3 do not diverge. Figure 12~a! diverges as
;@(D1l1

2)/n1
3#k2*dq/q2;@(D1l1

2)/n1
3#k2(1/k), whereas

Fig. 12~b! diverges as l2l3D2k2*(dq/ iBok12n2q2)
;l2l3D2k2(1/Ak). Thus~b! can be ignored in compariso
with ~a! in the smallk limit. Similarly, Fig. 13~b! is less
divergent than Fig. 13~a!. Thus all relevant diagrams gene
ating dominant singular corrections to the bare response
correlation functions of the fieldh1 are of KPZ type~with
identical symmetry factors!.

Starting with a cutoff wave numberL, eliminating modes
with wave numbers betweenLe2d l andL, rescaling so that
the cutoff wave number is once moreL, and passing to the
limit d l→0, we obtain the differential recursion relations

FIG. 13. One-loop contribution toS1(k,v). A line refers to a
response function and a line with a small filled circle refers to
correlation function.
02140
s

-
s

e
-

r-

h

nd

dn1

dl
5n1Fz221

g

4G ,
dD1

dl
5D1Fz2122x11

g

4G , ~50!

and

dn2

dl
5n2@z22#,

dD2

dl
5D2@z2122x2#, ~51!

wheren1 , n2 , D1 , and D2 are now functions ofl, and
g[D1l1

2/n1
3 is the dimensionless coupling constant. By u

ing g52 at the stable RG fixed point@10#, we obtain

dn1

dl
5n1@z23/2#, ~52a!

dn2

dl
5n2@z22#, ~52b!

dD1

dl
5D1@z21/222x1#, ~52c!

dD2

dl
5D2@z2122x2#. ~52d!

Now given the exponentsz,x1 ,x2 , the equations of motion
~32! are supposed to be invariant under the scale transfor
tions x→bx, t→bzt, h1→bx1h1 , h2→bx2h2 .
From Eqs.~50! we get z53/2,x151/2 whereas Eqs.~51!
give z52,x251/2. Which value ofz should we choose? Th
choice ofz53/2 keepsn1 fixed under rescaling, butn2( l )
;e2 l /2 as the RG fixed point is approached~rememberel is
like a length scale!. On the other hand if we choosez52
then n2 is fixed under rescaling butn1;el /2 as the fixed
point is approached. Moreover,z52 impliesx251/2 giving
C2(x,0);x in agreement with the previously obtained r
sults, and x151/4 suggestingC1(x,0);x1/2, which, of
course, is wrong. Similarly, the choicez53/2 gives correct
spatial dependence forC1(x,0);x, but gives an incorrect
result forC2(x,0).

To resolve this difficulty, let us first study the seeming
trivial case of two totally decoupled fields,

]f1

]t
5m1

]2f1

]x2 1h1 , ~53a!

]f2

]t
52m2

]2f2

]x4 1h2 , ~53b!

with ^h i(0,0)h j (x,t)&52g id i j d(x)d(0) for i 51,2 and no
sum on repeated indices. These are linear equations
hence exponents can be found exactly. In particular we kn

a

2-13
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DAS, BASU, BARMA, AND RAMASWAMY PHYSICAL REVIEW E 64 021402
^f1~x,t !f1~0,0!&;x f1~x2/t !, ~54a!

^f2~x,t !f1~0,0!&;x3f 2~x4/t !, ~54b!

i.e., we havex151/2, x253/2, z152, z254. There
are obviously no diagramatic corrections to any of the
rameters. Here the flow equations are

dm1

dl
5m1@z22#, ~55a!

dg1

dl
5g1@z2122x1#, ~55b!

dm2

dl
5m2@z24#, ~55c!

dg2

dl
5g2@z2122x2#. ~55d!

A choice ofz52 andx151/2 keepsm1 andg1 fixed. This
immediately tells us that the equal-time correlation funct
of the fieldf1 scales asAx2x1. The coefficientA, a function
of g1 andm1, is scale independent. However a naive use
this value ofz ~i.e., z52) leads to a wrong conclusion abo
the spatial dependence of the equal-time correlation func
of the field of f2 : z52 gives x151/2 suggesting
^f2(0,0)f2(x,0)&;x, which is wrong ~the correct depen
dence isx3, which is knownexactly!. The reason is that the
choicez52 makes the solutions of the flow equations form2
scale dependent:m2;e22l;k2. However, one can still ex
tract the correct behavior of the correlation function off2 in
the above example if one accounts for the scale depend
m2 explicitly: An explicit construction gives

^f2~k,v!f2~2k,v!&

[
D2

m2k112x1
F 1

iv1m2kz 1
1

2 iv1m2kzG , ~56!

which gives ~by using scale dependent m2)
^f1(0,0)f2(x,0)&;x3, which is the correct answer. Thi
suggests that to make sense of out the RG flow equation
presence of different dynamic scalings in a coupled syst
one has to take care of the scale dependent diffusion co
cients while calculating the spatiotemporal behavior of
correlation functions correctly. Let us review our RG resu
obtained from the flow equations~50! and ~51! in view of
our previous analysis: We choosez52, x251/2, which
givesx151/4 and makesn1;k21/2. Using this scale depen
dent coefficient we correctly obtain
er.

s.

02140
-

f
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ce

in
,

ffi-
e
s

C1~x,t !5x f2@x3/2/t#. ~57!

This suggests that an RG treatment, suitably modified, ca
applied successfully to a problem of weak dynamic scal
provided scale dependent dissipation coefficients are ta
into account while constructing the correlation functions.

D. Strong dynamical scaling

In Sec. II we have seen that for model equations~28! both
the dynamic exponents turn out to be 3/2~i.e., KPZ-like!.
This is easy to understand analytically: In this case both
equations have KPZ-like nonlinearities in addition to t
non-KPZ ones. However, it is easy to see that for both
fields, due to the presence of the waves, in any frame, n
KPZ diagrams are less singular than the corresponsing K
like diagrams. Thus the dominant singular corrections to
response and correlation functions for both the fields
KPZ-like, makingx15x251/2 andz15z253/2.

VI. SUMMARY

This paper is a study of the nature of spatiotemporal c
relations in a coupled-field driven diffusive model~the LR
model @4,5#!, in the phase in which it displays kinemat
waves. Our results include a demonstration of pairwise b
ance for certain parameter values and, hence, a proof tha
steady state has a product measure in that range of pa
eters. Most important, we have been able to show that
fields corresponding to the two eigenmodes of the lineari
version of the model were characterized by two differe
dynamic exponents, although the fields themselves are~non-
linearly! coupled. This is the first demonstration of su
weak dynamical scalingin a model with two fully coupled
fields ~as distinct from the model of@3,18,20#, where such an
effective decoupling was found only in semiautonomou
coupled systems in which one of the fields evolve indep
dently!. We have been able to show this numerically, throu
Monte Carlo simulations on a lattice model, and analytica
using self-consistent perturbative calculations as well
symmetry arguments, in the corresponding continuum s
chastic PDEs. Outisde this special subspace of param
space, the model exhibits normal, strong dynamic scal
We also discuss and largely resolve the technical difficul
in applying the dynamical renormalization group when we
dynamic scaling prevails.
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@3# D. Ertş and M. Kardar, Phys. Rev. E48, 1228~1993!.
@4# R. Lahiri and S. Ramaswamy, Phys. Rev. Lett.79, 1150

~1997!.
@5# R. Lahiri, M. Barma, and S. Ramaswamy, Phys. Rev. E61,
2-14



No

nt

nd

e

ys.

R.

ys.

WEAK AND STRONG DYNAMIC SCALING IN A ONE- . . . PHYSICAL REVIEW E 64 021402
1648 ~2000!.
@6# S. Ramaswamy, M. Barma, D. Das, and A. Basu, Report

TIFR/TH/00-58; e-print cond-mat/0103062.
@7# D. Das and M. Barma, Phys. Rev. Lett.85, 1602 ~2000!;

D. Das, S. N. Majumdar, and M. Barma, e-pri
cond-mat/0102521.
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