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Permeability and conductivity for reconstruction models of porous media
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~Received 27 October 2000; published 26 July 2001!

The purpose of this paper is to examine representative examples of realistic three-dimensional models for
porous media by comparing their geometrical and transport properties with those of the original experimental
specimen. The comparison is based on numerically exact evaluations of permeability, formation factor, poros-
ity, specific internal surface, mean curvature, Euler number, local porosity distributions, and local percolation
probabilities. The experimental specimen is a three-dimensional computer tomographic image of Fontainebleau
sandstone. The three models are examples of physical and stochastic reconstructions for which many of the
geometrical characteristics coincide with those of the experimental specimen. We find that in spite of the
similarity in the geometrical properties the permeability and formation factor can differ greatly between models
and experiment. Our results seem to indicate that the truncation of correlations is responsible for some of these
observed discrepancies. A physical reconstruction model by Bakke and O” ren @SPEJ2, 136 ~1997!# based on
sedimentation, compaction and diagenesis of sandstones yields surprisingly accurate predictions for permeabil-
ity and conductivity. These findings imply that many of the presently used geometric descriptors of porous
media are insufficient for the prediction of transport.
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A great deal of research activity in physics has recen
been focussed on transport in porous media@1–7# because
the theory of porous media underlies many unsolved pr
lems in the applied and engineering sciences ranging f
geophysics@8# and petroleum engineering@6# to contaminant
transport@9# and paper manufacturing@10#. Despite many
years of research there is still no agreement on the b
question of which macroscopic geometrical observables
sides porosity are needed to predict macroscopic trans
parameters such as hydraulic permeability or electrical c
ductivity of a given porous microstructure@2,11#.

Most works on transport through porous media assert
validity of a specific model for the porous microstructure a
proceed by calculating physical properties for the mo
rather than for the original microstructure itself@12–14,6#. A
multitude of porous media models has been proposed
may be roughly divided into reconstruction models, that
tempt to reconstruct a realistic three-dimensional pore st
ture@15#, and nonreconstruction models, such as the class
capillary tube model@16# or network models@12,17#, that
postulate an artificial model geometry. In this paper our
jective is to compare exact geometrical and transport pr
erties of three realistic three-dimensional models for F
tainebleau sandstone with those of an experime
specimen. One of our motivations has been to test the
ability of two so-called reconstruction models that have
cently found much attention@18,19#. Reconstruction models
are models that attempt to reconstruct the experimental
rous microstructure usually in a statistical sense. Equally
portant has been our second motivation, namely, to find
liable correlations between the geometric characteristics
porous microstructure and its transport properties. Most
portant for practical purposes would be the identification
geometrical observables that allow to predict permeab
and electrical conductivity.
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Direct comparisons between different reconstruction m
els have, to the best of our knowledge, not been carried
in the literature. Establishing direct comparisons betwe
different models is needed not only for academic resea
purposes but also for applications in hydrology or petrole
engineering. In this paper we start the systematic compar
of models for the popular and well studied example of Fo
tainebleau sandstone.

Given a porous sampleS,R3, such as a piece of Fon
tainebleau sandstone, with pore spaceP and matrix spaceM
with PøM5S and PùM5B we assume that the interna
boundaries~i.e., the difference between the closure and
interior! coincide, i.e.,]P5]M. Let the porous sampleS
have the shape of a cube or rectangular parallelepiped
sidelengthsLi ( i 5x,y,z), and let it be discretized into cubi
voxels of side lengtha such thatLi5Mia. On the micro-
scopic~pore! scale the boundary value problem for statio
ary creeping fluid flow of an incompressible Newtonian flu
reads

hDv~r !2“p~r !50, rPP ~1a!

“"v„r )50, rPP ~1b!

v~r !50, rP]P ~1c!

where v(r ) and p(r ) denote the microscopic velocity an
pressure fields that may be extended to all ofS by setting
them to zero onM. Recalling electrodynamics in the quas
static approximation the equations of motion for electric
conduction at zero frequency become

j ~r !1s~r !“U~r !50, rPS ~2a!

“"j „r )50, rPS ~2b!
©2001 The American Physical Society04-1
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lim
x→r

n~r !"j ~x!@xP~x!2xM~x!#50, rP]P ~2c!

lim
x→r

n~r !3“U~x!@xP~x!2xM~x!#50, rP]P ~2d!

where j is the electrical current density,U is the electrical
potential, and the electrical conductivitys(r ) is position de-
pendent according tos(r )5sPxP(r )1sMxM(r ) with
sP ,sM being the conductivities of the pore space and ma
space, andxP ,xM the indicator functions of pore and matr
space @xG(x)51 for xPG,xG(x)50 for x¹G#. In the
special case of zero matrix conductivity,sM50, the electri-
cal problem reduces to a potential equation that resem
the fluid flow equations. Additional no-flow boundary cond
tions are imposed on the surfaces ofS parallel to the main
flow direction. Most experiments measure averaged qua
ties such as the macroscopic permeability, and hence
need to describe briefly how these are obtained from
numerical solutions.

The macroscopic permeability is calculated as follow
First the microscopic pressure and velocity fields are
tained by solving the boundary value problem~1! for a pres-
sure gradient applied along thex direction. Let p̄x0 denote
the inlet pressure, i.e., the pressure applied to the planx

50, and let p̄xL denote the outlet pressure, i.e., the flu
pressure applied at the planex5Lx , where Lx5Mxa de-
notes the distance between the inlet and the outlet. Then
first row of the permeability tensor is obtained from Darc
law as

kx5~kxx ,kxy ,kxz!5
hLx

p̄x02 p̄xL

v̄, ~3!

where the averaged velocity is defined as

v̄5
1

uSu ES
v~r !dr , ~4!

anduSu denotes the volume of the setS. The second and third
row of the permeability tensor are obtained analogoulsy
applying a pressure gradient along they or z direction. Simi-
larly the macroscopic effective conductivity tensor is calc
lated by solving the potential problem~2! for an applied
potential along thex direction. The first row of the conduc
tivity tensor is given as

sx5~sxx ,sxy ,sxz!5
Lx

Ūx02ŪxL

j̄ , ~5!

where

j̄ 52
1

uSu ES
“U~r !dr , ~6!

and Ūx0 and ŪxL are the potentials applied to the planex
50 andx5Lx , respectively.
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We consider the above boundary value problems for f
particular porous samplesEX, DM, SA, andSK. The sample
EX is a fully three-dimensional computer tomographic ima
of a Fontainebleau sandstone with resolutiona57.5mm and
sidelengthsMx5299, M y5300, andMz5300. The other
three pore spaces are models. The first modelSDM is a physi-
cal reconstruction model whereDM stands for ‘‘diagenesis
model.’’ The model mimicks sedimentation, compaction, a
diagenesis of sand grains. It is constructed to match the
rosity and grain size distribution of the Fontainebleau sa
stone@18#. The second modelSA is a stochastic reconstruc
tion model based on simulated annealing techniques@19#. It
is constructed to match porosity, specific internal surface
two-point correlation function. The resolution of all mode
is a57.5mm. The size of theSA and SK model is Mx
5M y5Mz5256, while that of theDM model is Mx5M y
5Mz5255.

The modelSK, presented here for the first time, combin
features from physical and stochastic reconstruction mod
Its idea is to use the simulated annealing algorithm but
update only a subset of all voxels. In the present implem
tation an initial configuration is constructed as follows. Fi
a close packing of hard spheres with diameters uniform
distributed in the range of 13.6a–18.4a is produced. The
remaining pore space between spheres is then filled
domly with matrix voxels until the desired porosity off
50.1355 is obtained. The added matrix voxels in the init
configuration are declared movable, while the original mat
voxels in the spheres are immovable. The movable ma
voxels are updated sequentially in the same manner as in
SA algorithm until a specified set of geometric observab
has been matched exactly. Of course, other initial configu
tions and another separation into movable and immova
voxels are possible. In the present implementation we ma
the two-point correlation function in 13 different direction
We choose many directions to improve the isotropy of
resulting reconstruction. Simpler implementations w
fewer directions were found to be potentially anisotrop
@20# depending on the nature of the reconstructed correla
function. For more details of the model we refer to@21#.

We collect the basic geometrical properties of the fo
samples in Table I. The first row is the porosityf, i.e., the
volume fraction of pore space. The second row gives
specific internal surface, i.e., the ratio of internal surface a
to sample volume, measured from the slope of the corr

TABLE I. Geometric properties of the four porous samples.f is
the porosity,S is the specific surface,k is the mean curvature, an
E is the Euler number, all calculated according to the methods
@22#. SG is the specific surface calculated from the slope of
correlation function.

EX DM SA SK

f 0.1355 0.1356 0.1354 0.1355
SG (mm21) 10.4 10.933 11.067 10.42
S (mm21) 9.99 10.3 11.04 10.21
k (mm22) 2151 2194 2222 2118
E (mm23) 2172 2220 1153 776
4-2
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PERMEABILITY AND CONDUCTIVITY FOR . . . PHYSICAL REVIEW E 64 021304
tion function according to the formulaSG524dS(0)/dr
whereS(r ) denotes the voxel-voxel correlation function@2#.
The third row is again an estimator for the specific inter
surface calculated not from the correlation function but fro
integral geometric formulas as described in detail in@22#.
The third row gives the integral of the mean curvaturek
calculated recursively according to Hadwigers theory@22#,
and the fourth row is the Euler or connectivity numberE
giving a measure of the number of connectedness com
nents per unit volume. A positive sign ofk indicates that the
matrix space is on average convex shaped, while a nega
number indicates concavity ofM. A positive Euler numberE
indicates that on average there are isolated componentsM
while a negative value indicates the presence of isola
pores. For a detailed description and the geometric cha
teristics of the samplesEX, DM, andSA we refer to@23#.

The porosityf and the specific surfaceS of all four
samples are identical within the statistical uncertainties.
course this follows by definition for the reconstruction mo
els, while in theDM sample it is accidentally true. We als
find that the average mean curvature is very similar in
models. We attribute the fact that it is negative to the crea
and sharp corners. A clear difference betweenEX andDM on
the one hand andSA, SK on the other appears for the Eul
number E. A more detailed geometrical analysis@24,23#
based on local porosity theory@2# reveals that the three mod
els DM, SA, and SK are more homogeneous in their ge
metrical properties than the experimental sampleEX. The
pore walls ofEX andDM are smoother than those ofSK and
SA. Furthermore we find differences in the connectiv
properties. A first indication of this fact can be seen from
value of the specific Euler numberE. A clearer view of the
phenomenon is obtained using the total fraction of perco
ing cells introduced in local porosity theory@25#. The total
fraction of percolating cells gives the fraction of cubic su
blocks of sidelengthL that are percolating in all three coo
dinate directions. A sub-block is called percolating in t

FIG. 1. Total fraction of sub-blocks of sidelengthL that are
percolating in all three coordinate directions as a function of
sub-blocks’ sidelengthL. Percolating in thex, y, or z direction
means that the sub-block contains a path inside the pore space
connects opposite faces perpendicular to thex, y, or z direction.
Each sub-block is analyzed using a Hoshen-Kopelman algorith
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x direction if it contains a path inside the pore-space conn
ing the two opposite faces of the sample that are perpend
lar to thex direction ~see Fig. 1!. In Ref. @23# it was shown
that the total fraction of percolating cells is very similar f
EX and DM. On the other hand, sampleSA was found to
have much lower connectivity~see Fig. 13 of@23#!. We have
evaluated the total fraction of percolating cells also for t
SK model and it falls roughly half way between the curv
for EX andSA. Based on the clear differences in connect
ity seen in these data it was conjectured in@23# that the
p3(L) function from local porosity theory is a geometric
indicator for permeability and conductivity.

To test the local percolation probabilities as predictors
transport@23# we have calculated the exact values of perm
ability and conductivity by solving the above boundary val
problems~1! and ~2! for all four samples. We have carrie
out the numerical calculation of the fluid permeability with
the complex pore-space geometry. This is a demanding
in terms of computation time and memory. For the abo
geometries with up to 273106 grid points such calculations
of k are possible only on parallel computers. One has
solve simultaneously the steady-state Stokes equation
the condition of incompressibility. We have used an iterat
pressure correction algorithm and an artificial compressi
ity method@26#. On the sample surface the pressure is fix
while von Neumann conditions are applied for the veloci
The iterative algorithm for the solution of Eq.~1! was termi-
nated when the condition maxrPPuDv(r )2¹p(r )u,1026 for
the dimensionless left hand side of Eq.~1a! was fulfilled for
the first time. Typically the convergence required betwe
10 000 and 50 000 iterations in the pressure correction eq
tion for samplesEX, DM, andSK. The program was run on
a CrayT3E with usually 128 processors in parallel, and
quired between 1 and 3 h run time. For sampleSA on the
other hand the number of iterations increased by rough
factor of 10. This was a consequence of the poor connec
ity of the sample.

The calculation of the effective conductivity is simple
than the calculation of the fluid permeability because onl
Laplace equation for the electrical potential has to be solv
On the matrix-pore interface we apply no-flow bounda
conditions, i.e., the matrix phase is insulatingsM50. On the
sample surface the potential is fixed while we assume
Neumann conditions for the electric current.

The first three rows of Table II give the numerical resu
for diagonal elementskxx ,kyy ,kzz of the fluid permeability

TABLE II. Physical transport properties of the four porou
samples.s i i is the conductivity in the directioni 5x,y,z in units of
1023sP ; kii is the permeability in mD.

EX DM SA SK

kzz (mD) 692 923 35 505
kyy (mD) 911 581 22 522
kxx (mD) 790 623 20 497
szz (1023sP) 18.5 26.2 1.35 10.4
syy (1023sP) 21.9 17.0 0.87 10.2
sxx (1023sP) 20.5 17.1 0.96 10.1

e

hat

.

4-3



a
r
n

1
c

e

re
e
o
i

tiv
el
ro

ru

n
r

n
te
e
f
o

of

cal
m-

t
on-

e
n the
the
y.
se-
at
la-
ns
ex-

nd
t
in-
l
erv-

e,
nd
gs-

R. HILFER AND C. MANWART PHYSICAL REVIEW E64 021304
tensor. The off-diagonal elements were found to be sm
Their numerical value was in all cases at least one orde
magnitude below the smallest diagonal element, and he
we neglect them here. The permeability ofDM is found to be
in good agreement with the original sandstoneEX. This find-
ing agrees with the coincidence ofDM and EX in the total
fraction of percolating cells found above, and seen in Fig.
of Ref. @23#. Moreover theDM sample is clearly anisotropi
having a significantly higher permeability in thez direction
than in thex andy directions. This was also predicted by th
purely geometrical local porosity analysis in@23#. On the
other hand the permeability of the simulated annealing
constructionsSA is an order of magnitude smaller. Thus th
stochastic models fail in reconstructing the high degree
geometrical connectivity of the original sandstone, which
an indispensable precondition for high dynamical connec
ity. The truncation of correlations in the stochastic mod
destroys the connectivity that is a long range correlated p
erty. The connectivity correlation length ofSA seems to be
of the order of the system size. We thus expect that the t
cation of correlations will render theSA model nonpercolat-
ing at larger system sizes. We can, however, at present
ascertain this expectation because of limited computing
sources.

The hybrid modelSK gives results intermediate betwee
those forSA andDM. The transport parameters agree bet
than those ofSA, but there is still a significant differenc
with the results fromDM. The intermediate degree o
connnectivity is also reflected in the total fraction of perc
-

he
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lating cells as discussed above. When plotted in Fig. 13
Ref. @23# it falls half way between the curves forEXandSA.
The results indicate that the geometric quantities of lo
porosity theory seem to correlate well with transport para
eters.

In the fourth, fifth, and sixth row of Table II we presen
the numerical results for the diagonal components of the c
ductivity tensor. Again, the values forEX andDM are close
to each other. SampleDM exhibits clear anisotropy while the
results forSA are again an order of magnitude smaller. W
observe the same dependence of the computation time o
geometry as in the case of the fluid permeability. Thus
conductivity results corroborate those for the permeabilit

We conclude the discussion by summarizing two con
quences of the results found in this work. First we find th
stochastic reconstruction models for the two-point corre
tion function tend to truncate the higher order correlatio
that exist in natural pore spaces. These correlations are
pected to be crucial for the connectivity of the medium a
hence for its transport properties@2,11#. Second we note tha
the geometrical concept of local percolation probabilities
troduced in local percolation theory@25# seems to be a usefu
geometrical observable that correlates with physical obs
ables determining transport.
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