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Permeability and conductivity for reconstruction models of porous media
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The purpose of this paper is to examine representative examples of realistic three-dimensional models for
porous media by comparing their geometrical and transport properties with those of the original experimental
specimen. The comparison is based on numerically exact evaluations of permeability, formation factor, poros-
ity, specific internal surface, mean curvature, Euler number, local porosity distributions, and local percolation
probabilities. The experimental specimen is a three-dimensional computer tomographic image of Fontainebleau
sandstone. The three models are examples of physical and stochastic reconstructions for which many of the
geometrical characteristics coincide with those of the experimental specimen. We find that in spite of the
similarity in the geometrical properties the permeability and formation factor can differ greatly between models
and experiment. Our results seem to indicate that the truncation of correlations is responsible for some of these
observed discrepancies. A physical reconstruction model by Bakke' eevd SPEJ2, 136 (1997)] based on
sedimentation, compaction and diagenesis of sandstones yields surprisingly accurate predictions for permeabil-
ity and conductivity. These findings imply that many of the presently used geometric descriptors of porous
media are insufficient for the prediction of transport.
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A great deal of research activity in physics has recently Direct comparisons between different reconstruction mod-
been focussed on transport in porous mddia7] because els have, to the best of our knowledge, not been carried out
the theory of porous media underlies many unsolved probin the literature. Establishing direct comparisons between
lems in the applied and engineering sciences ranging frorgifferent models is needed not only for academic research
geophysic$8] and petroleum engineerij§] to contaminant Purposes but also for applications in hydrology or petroleum
transport[9] and paper manufacturingl0]. Despite many ~€ngineering. In this paper we start the systematic comparison
years of research there is still no agreement on the basff models for the popular and well studied example of Fon-
question of which macroscopic geometrical observables bd@inebleau sandstone. 5 _
sides porosity are needed to predict macroscopic transport. GIVeN & porous sampleC R*, such as a piece of Fon-
parameters such as hydraulic permeability or electrical cont@inebleau sandstone, with pore spacand matrix spacél
ductivity of a given porous microstructufe, 11]. with JPU_M:_S and JPﬂ_M=@ we assume that the internal

Qoundanes(l.e., the difference between the closure and the
Interior) coincide, i.e.,dP=dM. Let the porous samplé
Pave the shape of a cube or rectangular parallelepiped with
sidelengthd.; (i=x,y,2), and let it be discretized into cubic

validity of a specific model for the porous microstructure and
proceed by calculating physical properties for the mode

rather than for the original microstructure itsgl2—-14,4. A voxels of side lengtta such thatl;=M.a. On the micro-

multitude of porous mec_iia models has_been proposed th%%opic(pore) scale the boundary value problem for station-
may be roughly divided into reconstruction models, that at-

_ _ : ary creeping fluid flow of an incompressible Newtonian fluid
tempt to reconstruct a realistic three-dimensional pore struc-zqs

ture[15], and nonreconstruction models, such as the classical

capillary tube mgd_e[l6] or network model§[12,1ﬂ, that 7AV(r)—Vp(r)=0, reP (1a)
postulate an artificial model geometry. In this paper our ob-
jective is to compare exact geometrical and transport prop-
erties of three realistic three-dimensional models for Fon-
tainebleau sandstone with those of an experimental
specimen. One of our motivations has been to test the reli-
ability of two so-called reconstruction models that have re- ) ] ]
cently found much attentiof.8,19. Reconstruction models Wherev(r) and p(r) denote the microscopic velocity and

are models that attempt to reconstruct the experimental pdressure fields that may be extended to albdby setting

rous microstructure usually in a statistical sense. Equally imth€m to zero onil. Recalling electrodynamics in the quasi-

portant has been our second motivation, namely, to find re§tatic approximation the equations of motion for electrical

liable correlations between the geometric characteristics of Sonduction at zero frequency become
porous microstructure and its transport properties. Most im-

V(r)=0, reP (1b)

v(r)=0, redP (10

portant for practical purposes would be the identification of j(N+o(rVU(r)=0, res (2a)
geometrical observables that allow to predict permeability
and electrical conductivity. V:()=0, reS (2b)

1063-651X/2001/642)/0213044)/$20.00 64 021304-1 ©2001 The American Physical Society



R. HILFER AND C. MANWART PHYSICAL REVIEW E64 021304

lim n(r)-j(x) [ xp(X) = xu(x)]=0, redP (20 TABLE |. Geometric properties of the four porous samplgss
X1 ' the porosity,Sis the specific surfaces is the mean curvature, and
E is the Euler number, all calculated according to the methods in

lim n(r) X VUX)[ xp(X) = xu(X)]=0, redP (2d) [22]. S is the specific surface calculated from the slope of the

N correlation function.
wherej is the electrical current density is the electrical EX DM SA SK
potential, and the_ electrical conductivity(r) is position ple- P 0.1355 0.1356 0.1354 0.1355
pendent _accordlng to(_r(_r_)zau)XP(r)+a“x,\,\|(r) with _Se (mmY) 10.4 10.933 11.067 10.42
op,oy being the Con(.juc-'[IVItIeS of the pore space and mqtr|><s(mm,1) 9.99 103 11.04 1021
space, angp, xy the indicator functions of pore and matrix « (mm?) _151 _194 P _118
space [ xo(X)=1 for xeG,x(x)=0 for x¢G]. In the E (mm-9) _172 290 1153 276

special case of zero matrix conductivity,;=0, the electri-
cal problem reduces to a potential equation that resembles
the fluid flow equations. Additional no-flow boundary condi-  \we consider the above boundary value problems for four
tions are imposed on the surfacestoparallel to the main  particular porous sampldsX, DM, SA, andSK. The sample

flow direction. Most experiments measure averaged quantigy js a fully three-dimensional computer tomographic image

ties such as the macroscopic permeability, and hence Wgs 4 Fontainebleau sandstone with resoluticn7.5.m and
need to describe briefly how these are obtained from OUgjdelengthsM = 299 M, =300, andM,=300. The other

numerical solutions. o three pore spaces are models. The first mégglis a physi-
The macroscopic permeability is calculated as follows. 5| reconstruction model whel@M stands for “diagenesis

First the microscopic pressure and velocity fields are oby,qge| » The model mimicks sedimentation, compaction, and
tained by solving the boundary value problémy for a pres-  giagenesis of sand grains. It is constructed to match the po-
sure gradient applied along thedirection. Letp,, denote  rosity and grain size distribution of the Fontainebleau sand-
the inlet pressure, i.e., the pressure applied to the plane stone[18]. The second modeSA is a stochastic reconstruc-
=0, and letp,, denote the outlet pressure, i.e., the fluidtion model based on simulated annealing techniqa®$ It
pressure applied at the plaxe=L,, whereL,=M,a de- is constructed to match porosity, specific internal surface and
notes the distance between the inlet and the outlet. Then tH@o-point correlation function. The resolution of all models
first row of the permeability tensor is obtained from Darcysis a=7.5um. The size of theSA and SK model is M

law as =M,=M,=256, while that of theDM model isM,=M,
=M,=255.
by — The modelSK, presented here for the first time, combines
K= (Kx s Kyy 1K) ==——=V, (3)  features from physical and stochastic reconstruction models.
Pxo ™ PxL Its idea is to use the simulated annealing algorithm but to

update only a subset of all voxels. In the present implemen-
tation an initial configuration is constructed as follows. First
1 a close packing of hard spheres with diameters uniformly
V= _f v(r)dr, (4)  distributed in the range of 1326-18.4 is produced. The
15 Js remaining pore space between spheres is then filled ran-
domly with matrix voxels until the desired porosity of

and|S| denotes the volume of the sétThe second and third =0.1355 is obtained. The added matrix voxels in the initial
row of the permeability tensor are obtained analogoulsy bysonfiguration are declared movable, while the original matrix
applying a pressure gradient along ther z direction. Simi-  voxels in the spheres are immovable. The movable matrix
larly the macroscopic effective conductivity tensor is calcu-yoxels are updated sequentially in the same manner as in the
lated by solving the potential problei2) for an applied SA algorithm until a specified set of geometric observables
potential along thex direction. The first row of the conduc- has been matched exactly. Of course, other initial configura-

where the averaged velocity is defined as

tivity tensor is given as tions and another separation into movable and immovable
voxels are possible. In the present implementation we match

Ly — the two-point correlation function in 13 different directions.
Ux:(axx’oxylaxz):ml' () We choose many directions to improve the isotropy of the

resulting reconstruction. Simpler implementations with

fewer directions were found to be potentially anisotropic

[20] depending on the nature of the reconstructed correlation
o 1 function. For more details of the model we refer[&1].

j=— EJ{VU(r)dr, (6) We collect the basic geometrical properties of the four

1S samples in Table I. The first row is the porosity i.e., the

_ _ volume fraction of pore space. The second row gives the
and U,, and U, are the potentials applied to the plare specific internal surface, i.e., the ratio of internal surface area
=0 andx=L,, respectively. to sample volume, measured from the slope of the correla-

where
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TABLE II. Physical transport properties of the four porous

sampleso;; is the conductivity in the direction=x,y,z in units of
o 10 30p; k;; is the permeability in mD.
EX DM SA SK
1 k,, (mD) 692 923 35 505
kyy (mD) 911 581 22 522
] Kyx (MD) 790 623 20 497
o,, (10 %0y) 18.5 26.2 1.35 10.4
| oy (10 30yp) 21.9 17.0 0.87 10.2
R o (10 307p) 20.5 17.1 0.96 10.1
SK =
0 1 1 1 1 1 1 1 ISA e
0 10 20 30 40 50 60 70 8 9 100 x direction if it contains a path inside the pore-space connect-
La : ing the two opposite faces of the sample that are perpendicu-

FIG. 1. Total fraction of sub-blocks of sidelengththat are lar to thex dlrecthn (see Fig. 1 '!" Ref. [23.‘] It was §hpwn
that the total fraction of percolating cells is very similar for

percolating in all three coordinate directions as a function of the
sub-blocks’ sidelengthL. Percolating in thex, y, or z direction EX and DM. On the other hand, sampiA was found to

means that the sub-block contains a path inside the pore space tﬂé@ve much lower conne(_:tivit@see Fig. 1.3 0f23)). We have
connects opposite faces perpendicular to they, or z direction. evaluated the total fraction of percolating cells also for the

Each sub-block is analyzed using a Hoshen-Kopelman algorithm, SK model and it falls roughly half way between the curves
for EX andSA. Based on the clear differences in connectiv-
tion function according to the formul&gz= —4dS0)/dr ity seen in these data it was conjectured[28] that the
whereS(r) denotes the voxel-voxel correlation functif. ps(L) function from local porosity theory is a geometrical
The third row is again an estimator for the specific internalindicator for permeability and conductivity.
surface calculated not from the correlation function but from To test the local percolation probabilities as predictors for
integral geometric formulas as described in detai[22].  transportf 23] we have calculated the exact values of perme-
The third row gives the integral of the mean curvatwre ability and conductivity by solving the above boundary value
calculated recursively according to Hadwigers thef®g|,  problems(1) and (2) for all four samples. We have carried
and the fourth row is the Euler or connectivity numker out the numerical calculation of the fluid permeability within
giving a measure of the number of connectedness compdhe complex pore-space geometry. This is a demanding task
nents per unit volume. A positive sign efindicates that the in terms of computation time and memory. For the above
matrix space is on average convex shaped, while a negativgeometries with up to 2710° grid points such calculations
number indicates concavity of. A positive Euler numbeE  of k are possible only on parallel computers. One has to
indicates that on average there are isolated componeris of solve simultaneously the steady-state Stokes equation and
while a negative value indicates the presence of isolatethe condition of incompressibility. We have used an iterative
pores. For a detailed description and the geometric charagressure correction algorithm and an artificial compressibil-
teristics of the sampleBX, DM, andSA we refer to[23]. ity method[26]. On the sample surface the pressure is fixed
The porosity ¢ and the specific surfac& of all four  while von Neumann conditions are applied for the velocity.
samples are identical within the statistical uncertainties. Off he iterative algorithm for the solution of E€L) was termi-
course this follows by definition for the reconstruction mod-nated when the condition max,|Av(r)—Vp(r)| <10 ® for
els, while in theDM sample it is accidentally true. We also the dimensionless left hand side of Efja was fulfilled for
find that the average mean curvature is very similar in altthe first time. Typically the convergence required between
models. We attribute the fact that it is negative to the crease0 000 and 50 000 iterations in the pressure correction equa-
and sharp corners. A clear difference betwBénhandDM on  tion for sample€X, DM, andSK. The program was run on
the one hand an8A, SK on the other appears for the Euler a CrayT3E with usually 128 processors in parallel, and re-
number E. A more detailed geometrical analysjg4,23  quired between 1 &h3 h run time. For sampl8A on the
based on local porosity theofg] reveals that the three mod- other hand the number of iterations increased by roughly a
els DM, SA, and SK are more homogeneous in their geo- factor of 10. This was a consequence of the poor connectiv-
metrical properties than the experimental samiple The ity of the sample.
pore walls ofEX andDM are smoother than those 8K and The calculation of the effective conductivity is simpler
SA. Furthermore we find differences in the connectivity than the calculation of the fluid permeability because only a
properties. A first indication of this fact can be seen from thelLaplace equation for the electrical potential has to be solved.
value of the specific Euler numbé&: A clearer view of the On the matrix-pore interface we apply no-flow boundary
phenomenon is obtained using the total fraction of percolateonditions, i.e., the matrix phase is insulating=0. On the
ing cells introduced in local porosity theofg25]. The total sample surface the potential is fixed while we assume von
fraction of percolating cells gives the fraction of cubic sub-Neumann conditions for the electric current.
blocks of sidelength. that are percolating in all three coor-  The first three rows of Table Il give the numerical results
dinate directions. A sub-block is called percolating in thefor diagonal elementk,,,kyy k;, of the fluid permeability
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tensor. The off-diagonal elements were found to be smalllating cells as discussed above. When plotted in Fig. 13 of
Their numerical value was in all cases at least one order dRef.[23] it falls half way between the curves f&XandSA.
magnitude below the smallest diagonal element, and hencehe results indicate that the geometric quantities of local
we neglect them here. The permeabilitya¥ is found to be  porosity theory seem to correlate well with transport param-
in good agreement with the original sandst& This find-  eters.

ing agrees with the coincidence BM and EX in the total In the fourth, fifth, and sixth row of Table Il we present
fraction of percolating cells found above, and seen in Fig. 13nhe numerical results for the diagonal components of the con-
of Ref.[23]. Moreover theDM sample is clearly anisotropic ductivity tensor. Again, the values f@X andDM are close
having a significantly higher permeability in tizedirection 4 each other. SampBM exhibits clear anisotropy while the
than in thex andy directions. This was also predicted by the rogits forSA are again an order of magnitude smaller. We
purely geometrical local porosity analysis [@3]. On the  ghserve the same dependence of the computation time on the
other hand the permeability of the simulated annealing r€geometry as in the case of the fluid permeability. Thus the

constructionsSA is an order of magnitude smaller. Thus the conqyctivity results corroborate those for the permeability.
stochastic models fail in reconstructing the high degree of \yie conclude the discussion by summarizing two conse-
geometrical connectivity of the original sandstone, which isg,ences of the results found in this work. First we find that
an indispensable precondition for high dynamical connectivsiochastic reconstruction models for the two-point correla-
ity. The truncation of correlations in the stochastic models;jon function tend to truncate the higher order correlations
destroys the connectivity that is a long range correlated proppat exist in natural pore spaces. These correlations are ex-
erty. The connectivity correlation length 6fA seems to be  pected to be crucial for the connectivity of the medium and
of t'he order of thg system size. We thus expect that the trurkence for its transport properti€®, 11]. Second we note that
cation of correlations will render th8A model nonpercolat-  he geometrical concept of local percolation probabilities in-
ing at larger system sizes. We can, however, at present n@fquced in local percolation theofg5] seems to be a useful
ascertain this expectation because of limited computing régepmetrical observable that correlates with physical observ-

sources. _ _ _ ables determining transport.
The hybrid modelSK gives results intermediate between

those forSA andDM. The transport parameters agree better We thank J. Widjajakusuma, Dr. B. Biswal, Dr. S. Bakke,
than those ofSA, but there is still a significant difference Dr. P.E. Qen, and Dr. S. Torquato for many discussions and
with the results fromDM. The intermediate degree of collaboration. We are grateful to the Deutsche Forschungs-
connnectivity is also reflected in the total fraction of perco-gemeinschatt for financial support.
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