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Adsorption of Lennard-Jones fluid mixture in a planar slit:
A perturbative density functional approach
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A simple perturbative density functional approach is employed to investigate the adsorption behavior of a
model Lennard-Jones fluid confined in a slitlike pore. Adsorption of one-component fluid as well as two-
component fluid mixtures in varying pore sizes has been investigated. The results on the density profiles and
the excess adsorption obtained from this theory are found to be in overall good agreement with the available
computer simulation results. The results are also compared with the same from some recent weighted density
based calculations.
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I. INTRODUCTION

During the last two decades, the study of the structure
fluids and their mixtures in confined geometries@1–4# has
been an interesting area of research in liquid state phy
because of its relevance to various interesting phenomen@3#
such as adsorption, wetting, surface driven phase transiti
separation of fluid components from their mixtures etc. A
result, there has been an upsurge of interest in the fiel
theoretical as well as computer simulation studies of fluids
pores, slits, and other restricted geometries@1#. Fluids con-
fined in a particular geometry become inhomogeneous w
respect to the density distribution because of the wall-fl
interaction and also the excluded volume effect. Althou
integral equation theory@5# for a homogeneous fluid ha
been extended and applied to various problems of inho
geneous fluids, in recent times it is the density functio
theory ~DFT! @6,7# that has occupied the center stage in
field of inhomogeneous fluids. DFT has become an
mensely popular and powerful tool for handling a man
particle system because of its inherent conceptual and c
putational simplicity and also wide applicability to a larg
class of problems in the classical@6–8# as well as the quan
tum domain@9,10#.

In DFT, the single particle densityr(r ) is used as the
basic variable@9#. The grand potential of an inhomogeneo
many-particle system is written as a functional ofr(r ) @7#,
which on minimization leads to an Euler-Lagrange equat
for obtaining the true equilibrium density distribution. Th
exact functional form of part of this energy functional
however not known in general for an inhomogeneous den
distribution and hence the crux of the problem lies in findi
a suitable approximation@2# for this functional. For selected
systems with homogeneous density, however, this functio
is often known within the framework of some approxima
theories and very often this has formed the basis of arriv
at approximate functional forms for corresponding syste
with inhomogeneous density distributions. One of the m
widely used approximations is the weighted density appro
mation ~WDA! @2# where either the free energy or the on
particle correlation function of the inhomogeneous system
mapped into that of the corresponding homogeneous sys
of a suitable effective smoothed density obtained throug
suitable averaging process. Some of the versions of WD
1063-651X/2001/64~2!/021206~10!/$20.00 64 0212
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that are extensively used in predicting the structure of
inhomogeneous fluid are due to Tarazona@11#, Curtin and
Ashcroft @12#, Rosenfeld, Kierlik and Rosinberg@13#, Den-
ton and Ashcroft~DA! @14# to name a few and they diffe
from each other in the way the effective smoothed densit
calculated and also how it is used to calculate the functio
The WDA based approaches are quite successful in pre
ing the structure of a one-component fluid near one or t
walls and some of them have been extended to binary m
tures @15–17#, electrolyte solutions@18#, colloidal disper-
sions@19,20#, studies of freezing@21,22#, crystal-melt inter-
faces@23# etc. and the results obtained from these approac
are in quite good agreement with the corresponding co
puter simulation results@15,24,25#. Most of these weighted
density based methods~except a few! that are nonperturba
tive in nature are however computationally demanding a
in general their application to complex systems is somew
restricted.

An alternative perturbative route based on a functio
Taylor expansion in density inhomogeneity around the
mogeneous density provides however the simplest appro
for approximating the free energy functional of an inhom
geneous system. Although the expansion is in principle
act, due to the lack of knowledge of the higher order cor
lation functions appearing in this expansion, one has
enforce truncation usually at the second order@26#, whereas
in WDA the effects of all the higher order correlations a
taken into account in an approximate manner. Failure of
truncated perturbative expansion in various problems is n
mally attributed to the neglect of the higher order corre
tions ~beyond second order!. In a recent interesting work
Sweatman@27# has analyzed various aspects of the trunca
density expansions in a perturbative approach.

Recently, attempts have been made to retain terms u
third order in the functional Taylor series expansion. Sin
the third order correlation function is unknown for most
the model systems even if the density is uniform, Rickayz
and coworkers@28,29# have approximated the three-bod
correlation function with its parameters determined by fo
ing the free energy functional of the inhomogeneous fluid
reproduce the correct bulk pressure for the uniform flu
This approach has been successfully applied to a hard sp
system@28,29# and has been extended to study various co
plex systems such as colloidal and other systems in pla
©2001 The American Physical Society06-1
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@30,31# and cylindrical@32# geometries restricted mainly t
the one-component case. Subsequently, this perturbative
proach has been extended@33,34# to the case of a binary har
sphere mixture and the results obtained for the density
files of both the components are in good agreement w
simulation as well as DA WDA approach@33#. Compared to
some WDA based approaches, computational effort ass
ated with the perturbative approach is much less and he
its application to complex systems should be easier.

The Lennard-Jones~LJ! fluid is an interesting model sys
tem to study because of the presence of the attraction ter
addition to the repulsive part in the interparticle interacti
potential. The structure of LJ fluid confined in a slit pore h
been extensively studied using DFT based approaches@35–
41# as well as through simulation@42–46#. Therefore, quite a
few results are available to compare with and thereby ve
the validity of the third order perturbative approach for t
LJ system. The main objective of the present paper is th
fore to test and assess the applicability of this perturba
approach to a more general LJ system. We have studied
the structure and adsorption behavior of a one-componen
fluid as well as a two-component LJ fluid mixture confin
in slit pores.

The remaining part of the paper is organized as follow
In Sec. II we discuss the general density functional form
ism with the perturbative approximation for a two
component LJ fluid mixture while the numerical results a
presented in Sec. III. Finally we offer a few concluding r
marks in Sec. IV.

II. DENSITY FUNCTIONAL THEORY FOR THE
INHOMOGENEOUS LJ FLUID MIXTURE

In DFT, the grand potentialV@r1 ,r2# of a two-
component fluid mixture is a unique functional of its com
ponent density distributionsr1(r ) andr2(r ) for fixed exter-
nal potentialsu1(r ) and u2(r ) corresponding to the two
components and is given by

V@r1 ,r2#5F@r1 ,r2#1(
i 51

2 E dr @ui~r !2m i #r i~r !, ~1!

where m i is the chemical potential of thei th component.
Here F@r1 ,r2#, the intrinsic Helmholtz free energy of th
system, is a universal functional of the densities for a fix
interparticle potential, consisting of a noninteracting ide
free energyF id representing the free energy of a nonintera
ing system of the same density and the excess free en
Fex arising due to interparticle interaction, i.e.,

F@r1 ,r2#5F id@r1 ,r2#1Fex@r1 ,r2#. ~2!

The functional form of the ideal part of the free energyF id is
explicitly known and for a two-component system, it is giv
by

F id@r1 ,r2#5b21(
i 51

2 E drr i~r !$ ln@r i~r !L i
3#21%, ~3!
02120
p-

o-
h

ci-
ce

in

s

y

e-
e

ere
LJ

.
l-

d
l
-
gy,

whereb@51/kBT, with kB as the Boltzmann constant# is the
inverse temperature andL i represents the thermal de-Brogl
wavelength. The grand potential functionalV@r1 ,r2# of Eq.
~1! assumes a minimum value at the true equilibrium den
ties and hence its minimization leads to the equation for
inhomogeneous density distributions given by

r i~r !5r i
0 exp$2bui~r !1ci

~1!
„r ;@r1~r !,r2~r !#…

2 c̃i
~1!~r1

0,r2
0!%, ~4!

where the chemical potential of the inhomogeneous sys
has been equated to that of the bulk phase of uniform b
densitiesr1

0 andr2
0 and2b21c̃i

(1)(r1
0,r2

0) represents the ex
cess chemical potential of the bulk phase of uniform b
densitiesr1

0 andr2
0.

This key equation of DFT, although derived for obtainin
the density distribution of an inhomogeneous fluid mixtu
is useful to obtain information about the properties of t
homogeneous fluid as well. Thus, if the external poten
ui(r ) in the above equation is replaced by the interparti
potentialf j i (r ) acting between thej th particle tagged at the
origin and thei th particle located at a pointr , one obtains
with the help of the Percus relation

r j i
f~r !5r i

0gji ~r ! ~5!

a simple method to calculate the radial distribution functi
gji (r ).

The quantityci
(1) in Eq. ~4! denotes the one-particle direc

correlation function~DCF! defined as

ci
~1!~r ;@r1 ,r2# !52b

dFex@r1 ,r2#

dr i~r !
, ~6!

andc̃(1) denotes the same in the bulk phase. It may be no
that the form of Eq.~4! is the same as the Boltzmann distr
bution for an ideal gas and all the effects of interpartic
interactions enter through the DCFci

(1)(r ;@r1 ,r2#) that
plays the role of an effective one-particle potential in DFT.
order to solve Eq.~4! for the density distribution, one need
ci

(1)(r ;@r1 ,r2#) or Fex@r1 ,r2#, the exact functional forms o
which are unfortunately not known for most inhomogeneo
systems and hence suitable approximation for either of th
two quantities is to be made.

In this work, we consider only the perturbative approa
based on a functional Taylor expansion for the evaluation
ci

(1) of the inhomogeneous system. Thus, retaining ter
upto third order in density inhomogeneityDr i(r )5@r i(r )
2r i

0#, the quantityci
(1)(r ;@r1 ,r2#) can be expressed as

ci
~1!~r1 ;@r1 ,r2# !5 c̃i

~1!~ @r1
0,r2

0# !1(
j 51

2 E dr2

3 c̃i j
~2!~r1 ,r2 ;@r1

0,r2
0# !Dr j~r2!

1
1

2 (
j 51

2

(
k51

2 E E dr2dr3

3 c̃i jk
~3!~r1 ,r2 ,r3!Dr j~r2!Drk~r3!.

~7!
6-2
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The quantitiesci j
(2) andci jk

(3) denote the second and third ord
DCF’s defined, respectively, as

ci j
~2!~r1 ,r2!52b

d2Fex@r1 ,r2#

dr i~r1!dr j~r2!
~8!

and

ci jk
~3!~r1 ,r2 ,r3!52b

d3Fex@r1 ,r2#

dr i~r1!dr j~r2!drk~r3!
. ~9!

and c̃i j
(2) and c̃i jk

(3) in Eq. ~7! refer to the same for the homo
geneous fluid mixture, a knowledge of which is essential
implementation of the present scheme for calculation of
density profiles.

The quantityc̃i j
(2) can be obtained by numerically solvin

the Ornstein-Zernike~OZ! equation for the homogeneou
fluid mixture, viz.,

hi j ~r 12!5 c̃i j
~2!~r 12!1 (

k51

2

rk
0E dr3c̃ik

~2!~r 13!hk j~r 32!

~10!

combined with the closure

hi j ~r 12!115exp@2bf i j ~r 12!1hi j ~r 12!2 c̃i j
~2!~r 12!

1Bi j ~r 12!# ~11!

involving the total correlation functionhi j (r 12)@5gi j (r 12)
21#, the interparticle potentialf i j (r 12), and the bridge
functionBi j (r 12) that provides a measure of the interpartic
correlations. For the LJ fluid mixture under consideration,
approximateBi j (r 12)5B„si j (r 12)…, which is proposed by
Duh and Henderson@47# recently and used here is given b

B~s!55
2s2

2F11S 5s111

7s19 D sG for s>0

2
1

2
s2 for s,0

, ~12!

wheres[si j (r 12) denotes

si j ~r 12!5hi j ~r 12!2 c̃i j
~2!~r 12!2u2,i j ~r 12! ~13!

and

u2,i j ~r 12!524e i j S s i j

r 12
D 6

expF21

r* S s i j

r i j
D 6r* G ~14!

with r* 5Sk51
2 rk

0skk
3 as the dimensionless bulk density p

rameter.
Although this integral equation based approach provide

route to obtainc̃i j
(2)(r ) for the homogeneous LJ fluid an

hence the contribution toci
(1)(r ) from the second order term

~which we call Scheme A! in Eq. ~7!, this is purely numeri-
cal. An alternative approach that provides analytical expr
02120
r
e

n

a

s-

sions forc̃i j
(2)(r ) of the LJ fluid is, however, possible. Sinc

the LJ pair potentialf i j (r i j ) as given by

f i j ~r !54e i j F S s i j

r i j
D 12

2S s i j

r i j
D 6G , i , j 51,2 ~15!

consists of a short ranged repulsive term and a relativ
long ranged attractive component, the excess free energyFex
for this system can also be partitioned into a short range
(FSR) and an attractive component (Fatt) viz.,

Fex@r1 ,r2#5FSR@r1 ,r2#1Fatt@r1 ,r2#, ~16!

where the latter is often estimated within the mean field
proximation as

Fatt@r1 ,r2#5(
i 51

2

(
j 51

2 E E drdr 8r i~r !r j~r 8!f i j
att~ ur 2r 8u!.

~17!

For the short range repulsive part of the potential, one
introduce a reference hard sphere fluid with some suita
effective hard sphere diameter. Here, we have split the
tential according to the Barker and Henderson prescrip
@8,48# at r i j 5s i j such that the attractive part of the potent
f i j

att is represented as

f i j
att~r i j !5H f i j ~r i j !, r i j .s i j

0, r i j ,s i j
. ~18!

In analogy to the one-component case@49#, Tan, van Swol,
and Gubbins@50# have suggested an analytical express
given by

di5
a1Ti* 1a2

a3Ti* 1a4
, i 51,2 ~19!

for the calculation of the temperature-dependent effec
hard sphere diametersdi of the components of the LJ fluid
mixture, whereTi* (5kBT/e i i ) is the dimensionless tempera
ture anda i ’s are constants. Here, we employ the same
pression with the values ofa1 , a2 , a3 , and a4 chosen
@39,51# as 0.3837, 1.0320, 0.4293, and 1.0, respectively.

This splitting ofFex according to Eq.~16! corresponds to
the mean spherical approximation of the DCFc̃i j

(2) as c̃i j
(2)SR

1 c̃i j
(2)LR , with c̃i j

(2)LR52bf i j
att(r i j ) and c̃i j

(2)SR obtainable
from the c̃i j

(2) of a hard sphere fluid mixture of effective d
ametersd1 and d2 of the two components. We call thi
method of obtainingc̃i j

(2) and hence the contribution of th
second order term in Eq.~7!, Scheme B.

Although the two-particle DCFc̃i j
(2) can thus be obtained

rather accurately for the homogeneous fluid by either of
two schemes,c̃i jk

(3) is however completely unknown an
hence an approximation for this quantity is essential. Follo
ing the original work of Rickayzen and co-workers@29#, an
approximation forc̃i jk

(3) as obtained recently@33,34# can be
written as
6-3
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c̃i jk
~3!~r1 ,r2 ,r3!5E dr4Li~r4 ,r1!L j~r4 ,r2!Lk~r4 ,r3!,

i , j ,k51,2, ~20!

whereL1 andL2 are the two two-body functions for compo
nents 1 and 2, respectively, and are given by

Li~ ur2r 8u!5Biai~ ur2r 8u!, i 51,2 ~21!

consisting of a density dependent constantBi and a size-
dependent functionai(r ) satisfying the normalization
*ai(r )dr51. The modelai(r ) that has been assumed by
@33# is given by the step function form

ai~r !5
6

pdi
3 QS di

2
2r D . ~22!

The two constantsB1 and B2 can be determined from th
requirement that the density functional as used here sh
yield the correct bulk pressure in the homogeneous limit
this work, we have assumed, for simplicity, these two co
stants to be equal, i.e.,B15B2 andB1 is then obtained from
the equation

bP52bV0@r1
0,r2

0#/V5(
i 51

2

r i
02

1

2 (
i 51

2

(
j 51

2

r i
0r j

0E dr2

3 c̃i j
~2!~r1 ,r2 ;@r1

0,r2
0# !1

B1
3

6 S (
i 51

2

r i
0D 3

. ~23!

A more rigorous derivation of Eq.~23! has been given by
Sweatman@27# who has clearly delineated the role of invol
ing zero density fluid as well as the bulk fluid as the ref
ence. Alternative prescriptions forai(r ) and evaluation ofBi
have also been given by Rickayzen and co-workers@34#.

Thus, we have two schemes for the calculation of
density distribution. The final form for the density equati
in Scheme A is given by

r i~r !5r i
0 expH 2bui~r !1(

j 51

2 E dr2c̃i j
~2!~r ,r2 ;@r1

0,r2
0# !

3Dr j~r2!1
1

2
BiE dr2ai~r ,r2!S (

j 51

2

Bjdr j j ~r 2!D 2J
~24!

with the quantitydr jk(r2) defined as

dr jk~r2!5E dr3aj~r2,r3!Drk~r3! ~25!

and is to be solved after obtainingc̃i j
(2) by solving Eqs.~10!–

~14! using the bulk densitiesr1
0 and r2

0 only once in the
beginning.

The final form for the density equation in Scheme B
given by
02120
ld
n
-

-

e

r i~r !5r i
0 expH 2bui~r !1(

j 51

2 E dr2c̄i j
~2!SR~r ,r2 ;@r1

0,r2
0# !

3Dr j~r2!1
1

2
BiE dr2ai~r ,r2!S (

j 51

2

Bjdr j j ~r2!D 2

2b(
i 51

2 E dr2F i j
att~ ur2r2u!Dr j~r2!J . ~26!

Thus, in this scheme we essentially have a tw
component mixture of a reference hard sphere fluid with b
densitiesr1

0 andr2
0 and hard sphere diametersd1 andd2 for

the two components, respectively. The homogeneous mix
is characterized by the diameter ratioa(5d1 /d2), the con-
centrationx5r2

0/r0 with r05r1
01r2

0, and the bulk packing
fraction h defined as

h5
p

6
@r1

0d1
31r2

0d2
3#5

p

6
@x1~12x!a3#r0d2

0. ~27!

Here we follow the conventiond1,d2 and the ratioa,1.
The two-particle DCFc̃i j

(2)(SR)(r 12) for the hard sphere
mixture in bulk phase is known approximately from Lebow
itz’s solution @52# of the PY integral equation as

2cii
~2!SR~r !5ai1bir 1dr3, r ,di , i 51,2

2c12
~2!SR~r !5H ai , r<l

a11@by214ldy31dy4#/r , l<r<d12

0, r .d12,
~28!

where l5(d22d1)/2, d125(d11d2)/2 and y5r 2l. The
coefficientsai , bi , b, andd are given by simple but lengthy
expressions ofh, a, andx as have been given elsewhere@52#.
The bulk pressure for the hard sphere mixture has also b
obtained by Lebowitz@52# and is given by

bP

r0
5

~11j31j3
2!

~12j3!3 23h1xS 1

a
21D 2F S 11

1

a D
1d2j2G Y ~12j3!3 ~29!

where h15(p/6)r1
0d1

3 and jn5(p/6)S i 51
2 r i

0di
n . This ex-

pression corresponds to the compressibility pressure, w
the most widely used expression of pressure for a o
component hard sphere fluid is the Carnahan-Starling exp
sion given by

bP

r0
5

11h1h22h3

~12h!3 ~30!

in terms of the packing fractionh. These two expressions fo
the bulk pressure alongwithc̃i j

(2)(SR)(r ) given by Eq. ~28!
have been used here in Eq.~23! for the evaluation of the
constantB1 .
6-4



s
L
th
is
it

ll

ll
of
th
or

or

-
g

es
s
he
at
f
on
e

we
th
ee

e

s
on

n

al
i

t

ults
od.
ity

ess
ri-
the
on

nes

he

ys-

al to

uid
l

4
er-

own

ADSORPTION OF LENNARD-JONES FLUID MIXTURE . . . PHYSICAL REVIEW E 64 021206
The inhomogeneous fluids that we consider here con
of a one-component LJ fluid as well as a two-component
fluid mixture confined in slit pores made up of two smoo
parallel graphite walls of infinite area, separated by a d
tanceH. Due to planar geometry of the system, the dens
variation is only in thez direction perpendicular to the wa
~xy plane! and hence the evaluation ofr i(z) can be simpli-
fied by analytically carrying out the integrals over thex and
y coordinates. The external potentialui(z) in this case is the
sum of the contributions from the two walls located atz
50 andz5H respectively, i.e.,

ui~z!5fsf~z!1fsf~H2z!, ~31!

wherez is the distance of the fluid particle from the first wa
andfsf is the solid-fluid model potential, the exact form
which is discussed later. Besides the density distribution,
other important quantities of interest are the excess ads
tion per unit area, which is defined as

G i5E
0

H

@r i~z!2r i
0#dz ~32!

from which the mean pore density can be calculated as

rpi
5

G i

H
1r i

0 ~33!

for each componenti 51,2. The total excess adsorption f
the mixture is obtained as

G5G11G2 . ~34!

III. RESULTS AND DISCUSSION

Equations~24! and ~26! for the density profiles are non
linear integral equations that have been solved by usin
self-consistent iterative procedure withr i(z)5r i

0 as the ini-
tial guess. Due to planar symmetry of the problem, th
equations have been reduced to one-dimensional form
analytically integrating over the other two directions. T
remaining one-dimensional integrals have been evalu
numerically using the trapezoidal rule and by means o
simple discretization scheme with a uniform mesh. The c
vergence criterion used for the iterative procedure has b
such that the average mean square density deviation bet
successive iterations is very small. The distance from
wall and the densities of the two components have b
made dimensionless in terms ofs11 such thatz andr i can be
expressed asz* 5z/s11 and r i* 5r is11

3 , respectively, and
temperature, pressure, and chemical potential have b
measured in dimensionless forms asT* 5kBT/e11, P*
5Ps11

3 /e11, and m* 5m/e11. The other quantities such a
G i , rp , andG are also expressed in terms of the dimensi
less quantitiesG i* 5G is11

2 , G* 5S i 51
2 G i* and rpi

* 5rpi
s11

3 ,

respectively. Throughout this work we have not used a
cutoff for the attractive potential.

To test the validity and applicability of the theoretic
approach used here for the study of adsorption of LJ fluid
02120
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a slit pore, we have first calculatedg(r ) of a one-componen
LJ fluid at T* 51.5 and r0* 50.7. The results from the
present approach are shown alongwith the simulation res
@53# in Fig. 1 and the agreement is found to be quite go
This establishes the predictability of the method for dens
distribution around a test particle.

A. Adsorption of pure LJ fluid

We present here results on the density profile and exc
adsorption as obtained from this perturbative theory for va
ous one-component inhomogeneous LJ fluids, for which
interaction potential between a fluid particle and the carb
atom on the graphite wall is modeled by the Lennard-Jo
10-4-3 potential@54# given by

fsf~z!52pesfrsssf
2DF2

5 S ssf

z D 10

2S ssf

z D 4

2
ssf

4

3D~0.61D1z!3G
~35!

wherers and D characterize the solid wall surface andssf
and esf are the parameters for the wall-fluid potential. T
wall-fluid parametersssf and esf are obtained through the
Lorentz-Berthelot mixing rules, using the values ofsss, ess
for the solid ands ff , e ff for the fluid, viz.,esf5(esse ff)

1/2 and
ssf5(sss1s ff)/2.

We first consider the case of a LJ system for which s
tematic simulation studies have been reported@44,45#. In this
case, the solid atoms on the wall are chosen to be identic
the particle in the fluid, i.e.,sss5s ff5ssf , ess5e ff5esf and
the values ofD and rsssf

2D are taken as 1/&s ff and 1.0,
respectively. The other parameters characterizing the fl
are the reduced temperatureT* 51.2 and reduced chemica
potential m* 522.477 that fixes@44# the bulk densityr0*
50.5925 and bulk pressureP* 50.24. The density profiles
from our theory~Scheme B! for H* 5H/s1153,4 and 7.5
with the bulk densityr0* 50.5925 are presented in Figs. 2–
along with the corresponding computer simulation and Ki

FIG. 1. Plot of radial distribution functiong(r ) vs r * (5r /s)
for a pure Lennard-Jones fluid of bulk densityr0* 50.7 at T*
51.50. The results from Scheme B of the present theory are sh
by solid lines and simulation results~from Ref. @53#! are shown as
circles.
6-5
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lik and Rosinberg~KR! WDA @39~a!# results. The overall
agreement between the results from our theory~Scheme B!,
KR WDA and simulation is quite satisfactory. In Fig. 5, w
have plotted the results on the density profile of ethyle
confined in a carbon slit pore of widthH* 55 at temperature
T* 51.35 where ethylene is modeled as LJ fluid with t
parameters chosen ass1150.4218 nm,e11/kB5201.8 K and
the wall-fluid parameters as ssf50.3809 nm (ss

50.340 nm), 2prsesfssf
2D512.96e11, and D50.3393 nm.

The bulk densityr0* for this system corresponding to th
chemical potentialm* 5m/e11523 is 0.28. Grand canonica
Monte Carlo ~GCMC! simulation on this system has bee
carried out by van Megan and Snook@42#, Walton and
Quirke @43#, and recently by Tan and Gubbins@35#. Calcu-
lated results from DFT based on WDA are also availa
@36,39#. The density profile for this system is compared w

FIG. 2. Plot of density profilesr* (z) vs z* for a pure Lennard-
Jones fluid of bulk densityr0* 50.5925 in a planar slit of width
H* 53 at T* 51.20. The results from Scheme B of the prese
theory are shown by solid lines, results from Kierlik-Rosinbe
WDA are shown by dotted lines and simulation results~from Ref.
@45#! are shown as circles.

FIG. 3. Plot of density profilesr* (z) vs z* for a pure Lennard-
Jones fluid of bulk densityr0* 50.5925 in a planar slit of width
H* 54 at T* 51.20. The key is the same as in Fig. 2. Simulati
results are taken from Ref.@45#.
02120
e

e

KR WDA @39~a!# and the simulation results@39,43# in this
figure and it is observed that the present result is in ove
good agreement although the second peak from the wa
somewhat underpredicted by our theory. In the inset of t
figure, we have compared the density profiles obtained fr
Scheme B of the present approach with the same calcul
by using an interparticle potential cutoff atr c52.5s and the
results are found not to differ significantly from each other
may be noted that the simulation results used for compar
correspond to the use of cutoff atr c* 52.5. The mean pore
density as obtained from our theory isrp* 50.546 and the
corresponding simulation result is 0.564. The results for
excess adsorptionG* as defined by Eq.~32! as a function of
r0* for the same system has been plotted in Fig. 6 alongw
the KR WDA @39~a!# and simulation results@35~a!, 39~a!# of

t

FIG. 4. Plot of density profilesr* (z) vs z* for a pure Lennard-
Jones fluid of bulk densityr0* 50.5925 in a planar slit of of width
H* 57.5 atT* 51.20. The key is the same as in Fig. 2. Simulati
results are taken from Ref.@44#.

FIG. 5. Plot of density profilesr* (z) vs z* for ethylene of bulk
densityr0* 50.28 in a carbon slit of widthH* 55 atT* 51.35. The
key is the same as in Fig. 2. Simulation results are taken from R
@43# ~also reproduced in Ref.@39~a!#!. In the inset results from
Scheme B of the present theory with a cutoff (r c52.5s) shown by
solid lines are compared with the same without cutoff (r c5`).
6-6
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Tan and Gubbins as well as of Sweatman@41#. The excess
adsorption curve passes through a maximum that is cha
teristic of the adsorption of fluid at supercritical tempe
tures. The overall agreement between the present theory
simulation is good, although the excess adsorption at hig
density is slightly underpredicted by our theory. It may
noted that the excess adsorption is also related to the ex
~over bulk! grand potentialVex through the Gibbs adsorptio
equation given by

G52S ]Vex

]m D
T,A

~36!

In order to obtainVex, we have numerically integrated th
equation with respect to the chemical potentialm using G
corresponding to Fig. 6. The calculated results are show
Fig. 7 alongwith the recently reported@41# simulation data
and a reasonably good agreement is observed.

B. Adsorption of binary LJ fluid mixture

We also consider the implementation of our theory for
case of a binary LJ mixture confined in a planar slit. T
external potential due to wall-fluid interaction for thei th
component in the mixturefsf[fsi is modeled by the~9, 3!
LJ potential, which also represents a graphite wall and
given by

fsi~z!5
3)

2
esiF S ssi

z D 9

2S ssi

z D 3G , i 51,2, ~37!

where quantities with subscript si are the wall-fluid para
eters for thei th component. There are a few simulatio
studies for the structure of a LJ mixture in a slit pore. He
we consider the argon-krypton mixture modeled as a LJ fl
mixture for which the parameters are:s1150.3405 nm,s22
50.3630 nm,e11/kB5109.8 K, ande22/kB5163.1 K with

FIG. 6. Plot of excess adsorption isotherm per unit areaG* vs
r0* of ethylene in carbon slit pore of widthH* 55 atT* 51.35. The
key is the same as in Fig. 2. Simulation results that are show
circles are taken from Ref.@35~a!# ~also reproduced in Ref.@39~a!#!
and those shown as open squares are taken from Ref.@41#.
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the cross parameters calculated by using Lorentz-Berth
mixing rule. Argon is taken as the smaller component d
noted by i 51 whereas krypton corresponds toi 52. This
system has been studied by Sokolowski and Fischer@38#
using molecular dynamics~MD! simulation as well as the
DFT based approach of Meister-Kroll-Groot and later by K
erlik and Rosinberg@39# with their version of WDA@13#.
The solid-fluid potential parameters are the same as th
used in earlier studies@38,39#, i.e., ss1 /s150.5621,
ss2 /s150.588, es1 /e1159.2367, and es2 /e11512.1744.
Density profiles for the two components that we present h
in Fig. 8 are calculated at supercritical temperatureT*
5kBT/e1152 and at a total bulk densityr0* 50.444, and mole

as

FIG. 7. Plot of excess grand potentialV* (5Vexs2/Ae) vs r0*
corresponding to the same system as in Fig. 6. The results from
Scheme B of the present theory are shown by solid lines and s
lation results~from Ref. @41#! are shown as solid squares.

FIG. 8. Plot of density profilesr i* (z) vs z* for an argon-krypton
fluid mixture confined in graphite slit pore of widthH* 55 at T*
52.0. The total bulk density and mole fraction of krypton arer0*
50.444 andx50.738, respectively. Dashed lines correspond to
sults from Scheme A of the present approach, solid lines are f
Scheme B of the present approach, dotted lines correspond to
WDA results. Simulation results~from Ref. @38#! for krypton are
shown by open circles and results for argon by open triangles.
6-7
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fraction of kryptonx50.738 for a slit widthH* 55. The
present results from both Scheme A and B are found to c
pare quite well with those obtained from the MD simulati
of Sokolowski and Fischer@38# as well as with KR WDA
@39~a!# that have also been included in this figure. Since b
the Schemes A and B lead to comparable results, it app
that, that the partitioning scheme in this case yields a D
which is similar to the numerically calculated one based
the OZ equation and hence it is easier to pursue the sim
Scheme B. It may be noted that we have plotted the res
only for half the slit. We obtain the excess adsorptions for
G1* 520.158 and for Kr,G2* 50.48 that are to be compare
with the MD simulation resultsG1* 520.14 andG2* 50.51.
In Fig. 9, we plot the calculated density profiles from bo
Scheme A and B for the same system with total bulk den
r0* 50.103 andx50.109 alongwith the corresponding com
puter simulation results@38# for comparison. Finally in Fig.
10, we present the result for the total excess adsorption
therm as defined by Eqs.~32! and ~34! as a function of the
total densityr0* at a reduced temperatureT* 51.5 and mole
fraction of kryptonx50.333 alongwith a few points from th
computer simulation result of Sokolowski and Fischer@38#.
The excess adsorption is found to pass through a maxim
at an intermediate density.

IV. CONCLUDING REMARKS

We have presented here a simple density functional inv
tigation of the adsorption behavior of a LJ fluid mixtu
within the framework of a perturbative approximation for t
free energy functional and hence the first order DCF of
binary hard sphere mixture. The predictions of the den
profiles as well as the excess adsorption from the the
presented here are almost of the same accuracy as that o
WDA that is an established weighted density function

FIG. 9. Plot of density profilesr i* (z) vs z* for an argon-krypton
fluid mixture confined in graphite slit pore of widthH* 55 at T*
52.0. The total bulk density and mole fraction of krypton arer0*
50.103 andx50.109, respectively. Dashed lines and solid lines
from the calculation using Scheme A and Scheme B of the pre
theory respectively. Simulation results~from Ref. @38#! for krypton
are shown by open circles and results for argon by open triang
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theory and bears a comparable computational effort. It is a
worthwhile to mention that in an interesting recent analys
Sweatman@27# has shown that density functionals with tru
cated density expansion are thermodynamically inconsis
as they do not satisfy the Gibbs adsorption equation. Thi
a consequence of the fact that the excess free energyFex
corresponding to Eq.~7! that employs a truncated version o
the exact functional Taylor expansion with an infinite num
ber of terms in general may depend on the bulk densityr0
around which the expansion is carried out. The full infin
series expansion although explicitly containsr0 is however
independent ofr0 since the expression is an exact on
Therefore, there must be cancellation effect of this dep
dence as higher order terms are retained. Since compa
of our results with results obtained from KR WDA~which
satisfies Gibbs adsorption equation! and from simulation
show overall good agreement, the bulk density depende
of our Fex may be negligible at least for the systems inve
tigated in the present study. This is also evident from
reasonably good agreement of the calculated results on
cess grand potential with simulation@41#. However, for sys-
tem parameters for which adsorption is high,Fex as calcu-
lated here might be bulk density dependent@27# and hence
performance of the present theory can be tested for var
other systems at different physical parameters to gain fur
insight. Recently, other versions@55,56# of perturbative DFT
based approaches have also been developed for the stu
nonuniform LJ fluids. Application of the present method
other systems with long range interaction such as the Yuk
mixture or electrolyte solution etc. will be interesting to in
vestigate and studies in these directions are in progress.
ther extension of this theory to other kind of geometries~e.g.,
cylindrical and spherical! are also in progress.
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FIG. 10. Plot of total excess adsorptionG* obtained from
Scheme B of the present theory as a function of the total b
densityr0* for the argon-krypton fluid mixture with mole fraction o
kryptonx50.333 confined in a graphite slit pore of widthH* 55 at
T* 51.5. The key is the same as in Fig. 1. Simulation results
taken from Ref.@38#.
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