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Adsorption of Lennard-Jones fluid mixture in a planar slit:
A perturbative density functional approach
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A simple perturbative density functional approach is employed to investigate the adsorption behavior of a
model Lennard-Jones fluid confined in a slitlike pore. Adsorption of one-component fluid as well as two-
component fluid mixtures in varying pore sizes has been investigated. The results on the density profiles and
the excess adsorption obtained from this theory are found to be in overall good agreement with the available
computer simulation results. The results are also compared with the same from some recent weighted density
based calculations.
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[. INTRODUCTION that are extensively used in predicting the structure of an
inhomogeneous fluid are due to Tarazddd], Curtin and
During the last two decades, the study of the structure oAshcroft[12], Rosenfeld, Kierlik and Rosinbeld.3], Den-
fluids and their mixtures in confined geometrids-4] has ton and AshcroftDA) [14] to name a few and they differ
been an interesting area of research in liquid state physidsom each other in the way the effective smoothed density is
because of its relevance to various interesting phenoiigdna calculated and also how it is used to calculate the functional.
such as adsorption, wetting, surface driven phase transitionhe WDA based approaches are quite successful in predict-
separation of fluid components from their mixtures etc. As ang the structure of a one-component fluid near one or two
result, there has been an upsurge of interest in the field ofialls and some of them have been extended to binary mix-
theoretical as well as computer simulation studies of fluids irtures [15—17), electrolyte solutiond18], colloidal disper-
pores, slits, and other restricted geometfies Fluids con-  sions[19,20, studies of freezing21,22, crystal-melt inter-
fined in a particular geometry become inhomogeneous witliaces 23] etc. and the results obtained from these approaches
respect to the density distribution because of the wall-fluidare in quite good agreement with the corresponding com-
interaction and also the excluded volume effect. Althoughputer simulation resultgl5,24,25. Most of these weighted
integral equation theory5] for a homogeneous fluid has density based methodsxcept a few that are nonperturba-
been extended and applied to various problems of inhomaive in nature are however computationally demanding and
geneous fluids, in recent times it is the density functionain general their application to complex systems is somewhat
theory (DFT) [6,7] that has occupied the center stage in therestricted.
field of inhomogeneous fluids. DFT has become an im- An alternative perturbative route based on a functional
mensely popular and powerful tool for handling a many-Taylor expansion in density inhomogeneity around the ho-
particle system because of its inherent conceptual and conmogeneous density provides however the simplest approach
putational simplicity and also wide applicability to a large for approximating the free energy functional of an inhomo-
class of problems in the classidél—8] as well as the quan- geneous system. Although the expansion is in principle ex-
tum domain[9,10!. act, due to the lack of knowledge of the higher order corre-
In DFT, the single particle densitg(r) is used as the lation functions appearing in this expansion, one has to
basic variabld9]. The grand potential of an inhomogeneousenforce truncation usually at the second ord§], whereas
many-particle system is written as a functionalggf) [7],  in WDA the effects of all the higher order correlations are
which on minimization leads to an Euler-Lagrange equatiortaken into account in an approximate manner. Failure of this
for obtaining the true equilibrium density distribution. The truncated perturbative expansion in various problems is nor-
exact functional form of part of this energy functional is mally attributed to the neglect of the higher order correla-
however not known in general for an inhomogeneous densitiions (beyond second orderin a recent interesting work,
distribution and hence the crux of the problem lies in findingSweatmari27] has analyzed various aspects of the truncated
a suitable approximatiof2] for this functional. For selected density expansions in a perturbative approach.
systems with homogeneous density, however, this functional Recently, attempts have been made to retain terms upto
is often known within the framework of some approximatethird order in the functional Taylor series expansion. Since
theories and very often this has formed the basis of arrivinghe third order correlation function is unknown for most of
at approximate functional forms for corresponding systemshe model systems even if the density is uniform, Rickayzen
with inhomogeneous density distributions. One of the mostind coworkerg[28,29 have approximated the three-body
widely used approximations is the weighted density approxi<correlation function with its parameters determined by forc-
mation (WDA) [2] where either the free energy or the one-ing the free energy functional of the inhomogeneous fluid to
particle correlation function of the inhomogeneous system igseproduce the correct bulk pressure for the uniform fluid.
mapped into that of the corresponding homogeneous systeifrhis approach has been successfully applied to a hard sphere
of a suitable effective smoothed density obtained through aystem[28,29 and has been extended to study various com-
suitable averaging process. Some of the versions of WDAsplex systems such as colloidal and other systems in planar
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[30,31] and cylindrical[32] geometries restricted mainly to whereg[ =1/kgT, with kg as the Boltzmann constdris the
the one-component case. Subsequently, this perturbative ajprerse temperature and represents the thermal de-Broglie
proach has been extendgd8,34 to the case of a binary hard wavelength. The grand potential functiop, ,p,] of Eq.
sphere mixture and the results obtained for the density profl) assumes a minimum value at the true equilibrium densi-
files of both the components are in good agreement withies and hence its minimization leads to the equation for the
simulation as well as DA WDA approa¢833]. Compared to  inhomogeneous density distributions given by
some WDA based approaches, computational effort associ- 0 0
ated with the perturbative approach is much less and hence  Pi(r)=pj exp{—Bui(r)+¢;~(r;[p1(r),p2(r)])
its application to complex systems should be easier. ~(1); 0 0

The Lennard-Joned.J) fluid is an interesting model sys- —C (P2} )

tem to study because of the presence of the attraction term {ghere the chemical potential of the inhomogeneous system
addition to the repulsive part in the interparticle interactionpas peen equated to that of the bulk phase of uniform bulk
potential. The structure of LJ fluid confined in a slit pore hasdensitieSpfl’ andpg and_IB—lT:_(l)(p(l) pg) represents the ex-

i ,

been extensively studie_d “5"?9 DFT based approa@ﬁes cess chemical potential of the bulk phase of uniform bulk
41] as well as through simulatiJd2—-44§. Therefore, quite a densitieSpO andpo

few results are available to compare with and thereby verify This ke; equatzion of DFT, although derived for obtaining
the validity of the ﬂ."rd qrde_r perturbative approach _for thethe density distribution of an inhomogeneous fluid mixture,
LJ system. The main objective of the present paper is ther% useful to obtain information about the properties of the

fore 1o test and assess the applicability of this pertu.rbat'v?lomogeneous fluid as well. Thus, if the external potential
approach to a more general LJ system. We have studied here

the structure and adsorption behavior of a one-component L (1) i.n the above_ equation is re.placed.by the interparticle
fluid as well as a two-component LJ fluid mixture confined otential;(r) acting between thgth particle tagged at the

origin and theith particle located at a point, one obtains

in slit pores. . !
The remaining part of the paper is organized as foIIowsWIth the help of the Percus relation
In Sec. Il we discuss the general density functional formal- Pﬁ’(f)Zp?gji(r) (5)

ism with the perturbative approximation for a two-
component LJ fluid mixture while the numerical results area simple method to calculate the radial distribution function
presented in Sec. lll. Finally we offer a few concluding re-g;i(r).

marks in Sec. IV. The quantityc!”) in Eq. (4) denotes the one-particle direct
correlation function DCF) defined as
IIl. DENSITY FUNCTIONAL THEORY FOR THE SF oL p1.ps]
INHOMOGENEOUS LJ FLUID MIXTURE e (r;[p1.pal) = _ﬁa‘—(r)’ (6)
pi

In DFT, the grand potentialQ}{p;,p,] of a two-

component fluid mixture is a unique functional of its com- hat the f ¢ is th h | distri
ponent density distributiong,(r) andp,(r) for fixed exter- that the form of Eq(4) is the same as the Boltzmann distri-

nal potentialsu;(r) and u,(r) corresponding to the two _bution for an ideal gas and all the elf)fects of interparticle
components and is given by interactions enter through the DCEf (r;[pl,,_)z]_) that
plays the role of an effective one-particle potential in DFT. In
2 order to solve Eq(4) for the density distribution, one needs
Q[pl,pz]zp[p1,p2]+z f dru(r)—uilpi(r), (1 Ci(l)(l’;[pl,pz]) or Fgol p1,p2], the exact functional forms of
i=1 which are unfortunately not known for most inhomogeneous
) ) ) ] systems and hence suitable approximation for either of these
where p; is the chemical potential of theth component.  two quantities is to be made.
Here F[p,p,], the intrinsic Helmholtz free energy of the  |n this work, we consider only the perturbative approach
system, is a universal functional of the densities for a fixechased on a functional Taylor expansion for the evaluation of
interparticle potential, consisting of a noninteracting |deaICi(1) of the inhomogeneous system. Thus, retaining terms
free energyF;4 representing the free energy of a nonlnteract-uptO third order in density inhomogeneityp;(r)=[ p;(r)

ing system of the same density and the excess free energy, o the quantitve®(r can be expressed as
F . arising due to interparticle interaction, i.e., pil d yer (ilpa.p21) P

and€® denotes the same in the bulk phase. It may be noted

2
F[Plvpz]:Fid[PluPZ]"’Fex[Plva]- (2) Cfl)(rlx[pllpil):Efl)([pgipg])+lzl f dr2
The functional form of the ideal part of the free enefy is XTP(r1,r2:[p%.p3) Api(r2)

explicitly known and for a two-component system, it is given

1 2 2
by +§2 > ffdrzdrs

=1 k=1

XEi(jsk)(rlrr21r3)APj(r2)Apk(r3)-

2
Fulpuoal=B*3, [ diaiintp(0AF-1), @ .
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The quantities{?) andc{; denote the second and third order sions forg{?(r) of the LJ fluid is, however, possible. Since

DCF's defined, respectwely, as the LJ pair potentialp;;(r;;) as given by
*Felpy.p] i\ 2 [o)®
(2) . ex P1:P2 Tij Tij o
Cil(ri)=—Bs—F s~ 8 (N=4e || 2] -2 =12 (1
] ( 1 2) '85P|(r1)5pj(r2) ( ) (Z’)”(r) E” rij) (rij) y IyJ ’ ( 5)
and consists of a short ranged repulsive term and a relatively
5 long ranged attractive component, the excess free erergy
cB(ry,rp,ra)=—2 Fedp1.p2] _ (9) for this system can also be partitioned into a short range part
T 1T23 opi(r1) 6pj(r2) Spi(ra) (Fsp) and an attractive componerfe {) viz.,
andt(?) andt}) in Eq. (7) refer to the same for the homo- Fed p1:021=Fsd p1.p2]+ Fad p1.,p2], (16)

geneous fluid mixture, a knowledge of which is essential for
implementation of the present scheme for calculation of thavhere the latter is often estimated within the mean field ap-
density profiles. proximation as

The quantityt”’ can be obtained by numerically solving

the Ornstein- Zermke(OZ) equation for the homogeneous 2 2 )
fluid mixture, viz., Fan[pl,pz]=241 ;1 f f drdr’ pi(r)p;(r") g(|r—r']).

17

For the short range repulsive part of the potential, one can
(10)  introduce a reference hard sphere fluid with some suitable
effective hard sphere diameter. Here, we have split the po-

2
hij(rlz) ZACI(JZ)(rlZ)_FkZ]_ PEJ’ dr3AC‘i(l§)(r13)hkj(r32)

combined with the closure tential according to the Barker and Henderson prescription
[8,48] atr;; = oy; such that the attractive part of the potential
hlj(r12)+1 eXF[ B¢|](r12)+h|](r12) (r12) d)att IS represented as
+B;i(rqo)] (11
R atlcp ) — oij(rij), rij>aj 18
involving the total correlation functiorn;;(r,)[ =g;;(r12) iy (1ij) = 0, <oy’ (18)

—1], the interparticle potentiakp;;(ri;), and the bridge

function Bjj(r,») that provides a measure of the interparticle In analogy to the one-component cd4®], Tan, van Swol,
correlations. For the LJ fluid mixture under consideration, amand Gubbing/50] have suggested an analytical expression
approximateB;j; (r12) = B(s;j(r12)), which is proposed by given by

Duh and Hendersopt7] recently and used here is given by

a T +a
. di=————2, i=1.2 (19)
azT; +ay
2[1+ 5s+ 11) for s=0
S . .
B(s)= 7s+9 ) (12) for the calculation of the temperature-dependent effective
1 hard sphere diameters of the components of the LJ fluid
— Esz for s<0 mixture, whereT; (=kgT/€;;) is the dimensionless tempera-

ture ande;’s are constants. Here, we employ the same ex-
pression with the values of;, a,, a3, and @, chosen
[39,51] as 0.3837, 1.0320, 0.4293, and 1.0, respectively.
,, —h. _=(2) .. This splitting of F, according to Eq(16) corresponds to
i (112 =i (F22) =7 (M) = Uiy (122 3 the mean spherical approximation of the DEP ast(?)%"
and +TARwith TPR=—Bei(r;;) and TPSF obtainable
from the T? of a hard sphere fluid mixture of effective di-
ai\® =15 ametersd; and d, of the two components. We call this
Ugjj(rig=—4€;| —| € T (14 method of obtalnlng:(f) and hence the contribution of the
second order term in Eq7), Scheme B.
with p* =32_, pposy as the dimensionless bulk density pa- ~ Although the two-particle DCE{’ can thus be obtained
rameter. rather accurately for the homogeneous fluid by either of the
Although this integral equation based approach provides avo schemes; c(3) is however completely unknown and
route to obtalnc(z)(r) for the homogeneous LJ fluid and hence an apprOX|mation for this quantity is essential. Follow-
hence the contrlbutlon to{*)(r) from the second order term ing the original work of Rickayzen and co-workdi29], an
(which we call Scheme Ain Eq. (7), this is purely numeri- approximation forc,‘lk as obtained recentl}33,34] can be
cal. An alternative approach that provides analytical expreswritten as

wheres=s;;(r,,) denotes
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a%nwbm=fduwumm4umauupm, (m,%a% Bmm+2.fm_®ﬂmui£m%

ij,k=1,2, (20) 1 A
XAPj(r2)+§BiJ drzai(r’rZ)(le Bj5pjj(r2)>

whereL; andL, are the two two-body functions for compo-

nents 1 and 2, respectively, and are given by
. _,82 fdl’ ofa t(l’ ro)Api(r )] (26)
Li([r=r"D=Bia([r—r']), =12 (21) 2®ir =12 Api(r2
consisting of a density dependent const8atand a size- Thus, in this scheme we essentially have a two-

dependent functiona;(r) satisfying the normalization component mixture of a reference hard sphere fluid with bulk
fa;(r)dr=1. The modely;(r) that has been assumed by us densitiesp? andp3 and hard sphere diametets andd, for

[33] is given by the step function form the two components, respectively. The homogeneous mixture
is characterized by the diameter ratig=d,/d,), the con-
6 [d centrationx= pa/po With po=pd+ p9, and the bulk packing
ai(r)= 7T_di3® E_r> : (22 fraction » defined as

The two constant®,; and B, can be determined from the _m 34 9d371= —[x+(1—x)a®1p.d® 2
requirement that the density functional as used here should [padi+p3d3]= [ (1=X)a%lpod. (27)
yield the correct bulk pressure in the homogeneous limit. In

this work, we have assumed, for simplicity, these two con-Here we follow the conventiod, <d, and the ratioa<1.

stants to be equal, i.eB; =B, andB; is then obtained from The two-particle DCFE{?®(r,,) for the hard sphere
the equation mixture in bulk phase is known approximately from Lebow-
itz's solution[52] of the PY integral equation as
2 2 2
1
BP= _,BQO[PE:Pg]/V:-S‘l = §2 21 PiOPJQJ' dra iP5 =a;+bir+drd, r<d;, =12
= =<
B3 2 s a, r<\
~(2) 1,0 0 -1 0
XTij (rrailpnpe) + 5 izlpi) (23 —c@SRr)=1 a;+[by?+4ndy3+dy*]/r, A<r=dp,
01 r>d12’

A more rigorous derivation of Eq23) has been given by (28

Sweatmari27] who has clearly delineated the role of involv-

ing zero density fluid as well as the bulk fluid as the refer-where A =(d,—d;)/2, dj,=(d;+d,)/2 andy=r—X\. The

ence. Alternative prescriptions faf(r) and evaluation oB; coefficientsa; , b;, b, andd are given by simple but lengthy

have also been given by Rickayzen and co-worka#. expressions ofj, a, andx as have been given elsewh¢bs2)].
Thus, we have two schemes for the calculation of theThe bulk pressure for the hard sphere mixture has also been

density distribution. The final form for the density equation obtained by LebowitZ52] and is given by

in Scheme A is given by
) BP _(1+&+£) n%l qz
o 1A-&° e
pi(r)=p?exp[—ﬁui(r)+j21fdrzti(f>(r,r2;[pg,pg]) o (174

2 )2} +d2§2}/ (1-&)° (29

1
XApj(ra)+ zBiferai(r'rZ)(z B;dpi(r2)

1
143

a

where 7,=(7/6)p3d} and &,=(7/6)2% ;p d!. This ex-
(29 pression Corresponds to the compressibility pressure, while
the most widely used expression of pressure for a one-
with the quantitydp;.(r,) defined as component hard sphere fluid is the Carnahan-Starling expres-
sion given by

Opj(ra)= | drzaj(ra,rz)Apy(rs) (25 BP 1+ 9+ 7p*—7°

. L _ P (1-79)°
and is to be solved after obtainif§’ by solving Eqs(10)—
(14) using the bulk densitiep? and p9 only once in the in terms of the packing fraction. These two expressions for

(30

beginning. the bulk pressure alongwiti”’*™(r) given by Eq.(28)
The final form for the density equation in Scheme B ishave been used here in E@3) for the evaluation of the
given by constantB; .
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The inhomogeneous fluids that we consider here consist 25
of a one-component LJ fluid as well as a two-component LJ
fluid mixture confined in slit pores made up of two smooth

parallel graphite walls of infinite area, separated by a dis- 201
tanceH. Due to planar geometry of the system, the density

variation is only in thez direction perpendicular to the wall —

(xy plane and hence the evaluation pf(z) can be simpli- > 1.51

fied by analytically carrying out the integrals over thand
y coordinates. The external potentig(z) in this case is the

sum of the contributions from the two walls located zat 1.0F
=0 andz=H respectively, i.e.,
Ui(2)= ¢s(2) + o H—2), (31) 035 10 15 20 25

de

wherezis the distance of the fluid particle from the first wall r

and ¢ is the solid-fluid model potential, the exact form of  FIG. 1. Plot of radial distribution functiog(r) vs r*(=r/o)
which is discussed later. Besides the density distribution, théor a pure Lennard-Jones fluid of bulk densipy=0.7 at T*
other important quantities of interest are the excess adsorp=1.50. The results from Scheme B of the present theory are shown

tion per unit area, which is defined as by solid lines and simulation resul@om Ref.[53]) are shown as
circles.
H 0
Ti= fo [pi(2)=pildz (32) a slit pore, we have first calculategr) of a one-component

LJ fluid at T*=1.5 and p5=0.7. The results from the
from which the mean pore density can be calculated as  present approach are shown alongwith the simulation results
[53] in Fig. 1 and the agreement is found to be quite good.
This establishes the predictability of the method for density
distribution around a test particle.

_ I 0
ppi_ﬁ+pi (33

for eaph componer_1t=1,2. The total excess adsorption for A. Adsorption of pure LJ fluid
the mixture is obtained as
We present here results on the density profile and excess

'=r,+r,. (34  adsorption as obtained from this perturbative theory for vari-
ous one-component inhomogeneous LJ fluids, for which the
interaction potential between a fluid particle and the carbon
atom on the graphite wall is modeled by the Lennard-Jones
Equations(24) and (26) for the density profiles are non- 10-4-3 potentia[54] given by

linear integral equations that have been solved by using a 10 . 4
self-consistent iterative procedure WM‘(Z)ZpiO as the ini- 2)=2 2 E Osf\ ™ [ Osf| Ost

tial guess. Due to planar symmetry of the problem, these¢5f( TEsPsTSA 5\ z z 3A(0.61A+2)°
equations have been reduced to one-dimensional forms by (35)
analytically integrating over the other two directions. The

remaining one-dimensional integrals have been E‘V<’:l|Uiﬂ.t(-:«ﬂhereps and A characterize the solid wall surface ang
numerically using the trapezoidal rule and by means of and e, are the parameters for the wall-fluid potential. The

simple discretization scheme with a uniform mesh. The conwall-fluid parametersrg and e are obtained through the

vergence criterion used for the iterative procedure has beerorentz-Berthelot mixing rules, using the valuesmf,, e
such that the average mean square density deviation betwegst the solid andr , e for the fluid, viz.,eq= (es€4) 2 and

successive iterations is very small. The distance from they = (gt oy)/2.
wall and the densities of the two components have been e first consider the case of a LJ system for which sys-
made dimensionless in terms @f; such thaz andp; can be  tematic simulation studies have been repofteti45). In this
expressed ag* =z/co,; and p;' = pifrfl, respectively, and case, the solid atoms on the wall are chosen to be identical to
temperature, pressure, and chemical potential have beehe particle in the fluid, i.e.gs= o= 0, €= 5= €5 and
measured in dimensionless forms a5 =kgT/€11, P*  the values ofA and pso2A are taken as ¥2oy and 1.0,
=Poiy e, and u* = pule;;. The other quantities such as respectively. The other parameters characterizing the fluid
I'i, pp, andI’ are also expressed in terms of the dimension-are the reduced temperatufé =1.2 and reduced chemical
less quantitied'} =I'jof;, [*=37 '} and p§i=ppi0i1, potential u* = —2.477 that fixeg44] the bulk densityp
respectively. Throughout this work we have not used any=0.5925 and bulk pressuf@* =0.24. The density profiles
cutoff for the attractive potential. from our theory(Scheme B for H* =H/o;=3,4 and 7.5

To test the validity and applicability of the theoretical with the bulk densitypg =0.5925 are presented in Figs. 2—4
approach used here for the study of adsorption of LJ fluid iralong with the corresponding computer simulation and Kier-

IIl. RESULTS AND DISCUSSION
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4.0 3.0
3.0
E 2.0
o N
2.0 DY \
3
1.0
1.0F 3
3
0. 0 1 1 1
%.0 3.0 '%.O 2.0 4.0 6.0

r4
FIG. 2. Plot of density profilep* (z) vs z* for a pure Lennard-
Jones fluid of bulk densityg=0.5925 in a planar slit of width
H*=3 at T*=1.20. The results from Scheme B of the present
theory are shown by solid lines, results from Kierlik-Rosinberg
WDA are shown by dotted lines and simulation resftsm Ref.
[45]) are shown as circles.

FIG. 4. Plot of density profilep* (z) vs z* for a pure Lennard-
Jones fluid of bulk densitpg =0.5925 in a planar slit of of width
*=7.5 atT*=1.20. The key is the same as in Fig. 2. Simulation
results are taken from Reff44].

KR WDA [39(a)] and the simulation resul{$9,43 in this
lik and Rosinberg(KR) WDA [39(a)] results. The overall figure and it is observed that the present result is in overall
agreement between the results from our the(@@heme B, gOOd agreement although the second peak from the wall is
KR WDA and simulation is quite satisfactory. In Fig. 5, we Somewhat underpredicted by our theory. In the inset of this
have plotted the results on the density profile of ethylendigure, we have compared the density profiles obtained from
confined in a carbon slit pore of width* =5 at temperature Scheme B of the present approach with the same calculated
T*=1.35 where ethylene is modeled as LJ fluid with theby using an interparticle potential cutoff gt=2.50 and the
parameters chosen as;=0.4218 nm,e;,/kg=201.8 K and results are found not to differ significantly from each other. It
the wall-fluid parameters as og=0.3809nm ¢, May be noted that the simulation results used for comparison
=0.340nm), ZTPsfsf(Tgfﬁzlz-%Eu, and A=0.3393nm. correspond to the use of cutoff Bf =2.5. The mean pore
The bulk densityp? for this system corresponding to the density as obtained from our theory g =0.546 and the
chemical potentiale* = u/€1,= — 3 is 0.28. Grand canonical corresponding ;lmulatlon r_esult is 0.564. The resul'ts for the
Monte Carlo(GCMC) simulation on this system has been €xcess adsorptioi* as defined by Eq32) as a function of
carried out by van Megan and Sno¢k2], Walton and pg for the same system has been plotted in Fig. 6 alongwith
Quirke [43], and recently by Tan and Gubbifid5]. Calcu- the KR WDA[39(a)] and simulation results35(a), 39(a)] of
lated results from DFT based on WDA are also available

[36,39. The density profile for this system is compared with 5.0 —
4.0
4.0 53-0 4
3.0} @20
3 . 3.0 "0
p p N 085102550 40 50
p p -):Q- b z
. 20 > ! o0k
N bb be [ b
-ko- s p
. 1.0f
1.0F 3 3
0- 1 1 1 1
i { 30 10 20 80 40 50
Z*

0'% 1 1 1
.0 1.0 20 3.0 4.0
2* FIG. 5. Plot of density profilep* (z) vs z* for ethylene of bulk

densitypg =0.28 in a carbon slit of widtii* =5 atT* =1.35. The
FIG. 3. Plot of density profilep* (z) vs z* for a pure Lennard-  key is the same as in Fig. 2. Simulation results are taken from Ref.
Jones fluid of bulk densityg=0.5925 in a planar slit of width [43] (also reproduced in Ref39(a)]). In the inset results from
H*=4 atT*=1.20. The key is the same as in Fig. 2. Simulation Scheme B of the present theory with a cutaff€ 2.5¢0) shown by
results are taken from Reff45]. solid lines are compared with the same without cutoff<{=).
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1.5 5 T . . .

1.0

!

-Q/2

0.5

0. T w—
85 o1 02 03 04 % 01 02 03 04 o0s

po po*

FIG. 6. Plot of excess adsorption isotherm per unit dféavs FIG. 7. Plot of excess grand potent@F (= Q®0?/Ae) vs p}

pp of ethylene in carbon slit pore of widt* =5 atT*=1.35. The  ¢orresponding to the same system as in Fig. 6. The results from the

key is the same as in Fig. 2. Simulation results that are shown a§cheme B of the present theory are shown by solid lines and simu-
circles are taken from Reff35(a)] (also reproduced in Ref39(a)]) lation results(from Ref.[41]) are shown as solid squares.
and those shown as open squares are taken from 4&Rf.

the cross parameters calculated by using Lorentz-Berthelot

Tan and Gubbins as well as of Sweatnjad]. The excess iving ryle. Argon is taken as the smaller component de-

adsorption curve passes through a maximum that is charagz, - byi=1 whereas krypton corresponds ite 2. This

terlst|cT(r)]f the at?lsorptlon of fIbU|d at surp:ercrmcal tehmpera-S stem has been studied by Sokolowski and Fis¢B&t
tures. The overall agreement between the present theory an ing molecular dynamicéViD) simulation as well as the

simu[atiqn is. good, although _the excess adsorption at highelf)FT based approach of Meister-Kroll-Groot and later by Ki-
density is slightly underpredicted by our theory. It may beerlik and Rosinberd39] with their version of WDA[13].

noted that the excess adsorption is also related to the excesR : ; :
X . ) e solid-fluid potential parameters are the same as those
(over bulk grand potential)®* through the Gibbs adsorption used in earlieri studiesp[38 39, ie., oolo;=0.5621
1 1 . " S . 1

equation given by 0ol =0.588, eqy/ey;=9.2367, and e,/ e =12.1744.

20 Density profiles for the two components that we present here
— _( ) (36) in Fig. 8 are calculated at supercritical temperatdre
I |1 A =kgT/e;1=2 and at a total bulk densifyg =0.444, and mole

In order to obtain()®*, we have numerically integrated this 4.0
equation with respect to the chemical potenfialusing I

corresponding to Fig. 6. The calculated results are shown in

Fig. 7 alongwith the recently reportdd1] simulation data 3.0
and a reasonably good agreement is observed.

B. Adsorption of binary LJ fluid mixture 20

We also consider the implementation of our theory for the
case of a binary LJ mixture confined in a planar slit. The
external potential due to wall-fluid interaction for thth 1.0t
component in the mixtureby= ¢ is modeled by th€9, 3)

LJ potential, which also represents a graphite wall and is

given by 0_%
3\/3 Ogj 9 Og;j 3
$s(2)= e (7) —(7
FIG. 8. Plot of density profilep; (z) vs z* for an argon-krypton
. ) . . . fluid mixture confined in graphite slit pore of width* =5 atT*

where quant|_t|es with subscript si are the waII-qu!d param-_» 0. The total bulk density and mole fraction of krypton afe
eters for thei th component. There are a few simulation —g 444 andx=0.738, respectively. Dashed lines correspond to re-
studies for the structure of a LJ mixture in a slit pore. Heregyjts from Scheme A of the present approach, solid lines are from
we consider the argon-krypton mixture modeled as a LJ fluidscheme B of the present approach, dotted lines correspond to KR
mixture for which the parameters ar@;;=0.3405nm,0,,  WDA results. Simulation resultérom Ref.[38]) for krypton are
=0.3630nm, €11/kg=109.8 K, ande,,/kg=163.1K with  shown by open circles and results for argon by open triangles.

e e i
.0 05 1.0

1.5 20 25

z

, =12, (37

021206-7



NIHARENDU CHOUDHURY AND SWAPAN K. GHOSH PHYSICAL REVIEW E54 021206

2.0 3.5
1.5F
N
+ 1.0
0.5}
0 b 0.0 RN
'%_0 05 1.0 15 20 25 0.00 0.05 0.10 0.15 0.20
Z* po*
FIG. 9. Plot of density profileg; (z) vs z* for an argon-krypton FIG. 10. Plot of total excess adsorptidi* obtained from

fluid mixture confined in graphite slit pore of width* =5 at T* Scheme B of the present theory as a function of the total bulk
=2.0. The total bulk density and mole fraction of krypton afe  densitypg for the argon-krypton fluid mixture with mole fraction of
=0.103 and=0.109, respectively. Dashed lines and solid lines arekryptonx=0.333 confined in a graphite slit pore of widi# =5 at
from the calculation using Scheme A and Scheme B of the presert* =1.5. The key is the same as in Fig. 1. Simulation results are
theory respectively. Simulation resulfsom Ref.[38]) for krypton ~ taken from Ref[38].

are shown by open circles and results for argon by open triangles., . .
v op gon by op g theory and bears a comparable computational effort. It is also

) o worthwhile to mention that in an interesting recent analysis,
fraction of kryptonx=0.738 for a slit widthH* =5. The  gyeatmarj27] has shown that density functionals with trun-
present results from both Scheme A and B are found to comeated density expansion are thermodynamically inconsistent
pare quite well with those obtained from the MD simulation s they do not satisfy the Gibbs adsorption equation. This is
of Sokolowski and Fische38] as well as with KR WDA 3 consequence of the fact that the excess free erfeggy
[39%(@)] that have also been included in this figure. Since bothcorresponding to E7) that employs a truncated version of
the Schemes A and B lead to comparable results, it appeatise exact functional Taylor expansion with an infinite num-
that, that the partitioning scheme in this case yields a DCHper of terms in general may depend on the bulk density
which is similar to the numerically calculated one based oraround which the expansion is carried out. The full infinite
the OZ equation and hence it is easier to pursue the simpleeries expansion although explicitly contajmgis however
Scheme B. It may be noted that we have plotted the result;idependent ofp, since the expression is an exact one.
only for half the slit. We obtain the excess adsorptions for Ar,Therefore, there must be cancellation effect of this depen-
I't =—0.158 and for KrI'5 =0.48 that are to be compared dence as higher order terms are retained. Since comparison
with the MD simulation resultd'y = —0.14 andl'; =0.51.  of our results with results obtained from KR WD@#vhich
In Fig. 9, we plot the calculated density profiles from bothsatisfies Gibbs adsorption equatioand from simulation
Scheme A and B for the same system with total bulk densityshow overall good agreement, the bulk density dependence
py =0.103 andx=0.109 alongwith the corresponding com- of our F¢, may be negligible at least for the systems inves-
puter simulation resultf38] for comparison. Finally in Fig. tigated in the present study. This is also evident from the
10, we present the result for the total excess adsorption isgeasonably good agreement of the calculated results on ex-
therm as defined by Eq¢32) and (34) as a function of the ~cess grand potential with simulati¢pA1]. However, for sys-
total densitypy at a reduced temperatufé =1.5 and mole tem parameters for which adsorption is high, as calcu-
fraction of kryptonx=0.333 alongwith a few points from the lated here might be bulk density dependf2i] and hence
computer simulation result of Sokolowski and Fiscf&8]. performance of the present theory can be tested for various

The excess adsorption is found to pass through a maximu@ther systems at different physical parameters to gain further
at an intermediate density. insight. Recently, other versiofi§5,56 of perturbative DFT

based approaches have also been developed for the study of
nonuniform LJ fluids. Application of the present method to
IV. CONCLUDING REMARKS other systems with long range interaction such as the Yukawa

We have presented here a simple density functional inved!Xture or electrolyte solution etc. will be interesting to in-
tigation of the adsorption behavior of a LJ fluid mixture vestigate and St“d'¢3 in these d|rect|qns are in progress. Fur-
within the framework of a perturbative approximation for thethe_r extension of th|s.theory to Other kind of geomet(ieg.,
free energy functional and hence the first order DCF of th&Ylindrical and sphericalare also in progress.
binary hard sphere mixture. The predictions of the density
profiles as well as the excess adsorption from the theory
presented here are almost of the same accuracy as that of KR It is pleasure to thank Dr. T. Mukherjee and Dr. J. P.
WDA that is an established weighted density functionalMittal for their kind interest and encouragement.
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