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Diffusion of hard disks and rodlike molecules on surfaces
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We study the submonolayer diffusion of hard disks and rodlike molecules on smooth surfaces through
numerical simulations and theoretical arguments. We concentrate on the behavior of the various diffusion
coefficients as a function of the two-dimensiof@D) number density in the case where there are no explicit
surface-particle interactions. For the hard disk case, we find that while the tracer diffusion coefigipht
decreases monotonically up to the freezing transition, the collective diffusion coeffigigit) is wholly
determined by the inverse compressibility which increases rapidly on approaching freezing. We also study
memory effects associated with tracer diffusion, and present theoretical estim@g$pdffrom the mode-
mode coupling approximation. In the case of rigid rods with short-range repulsion and no orientational order-
ing, we find behavior very similar to the case of disks with the same repulsive interactionDB@gih and the
angular diffusion coefficienDg(p) decrease witlp. Also in this caseD(p) is determined by inverse com-
pressibility and increases rapidly close to freezing. This is in contrast to the case of flexible chainlike molecules
in the lattice-gas limit, wher®(p) first increases and then decreases as a function of the density due to the
interplay between compressibility and mobility.
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I. INTRODUCTION dynamics of geometrically confined colloidal systems which

The diffusion and spreading of polymers and other Iargehave been studied recenfg1-29 as an extension of the

lecul lid surf . int tina th tical classical problem of dynamics of three-dimensioKdD)
molecules on Solid surtaces 1S an Interesting theoretical probe | 445 systemg26—34. In the 2D case, the equilibrium
lem with important applications related to thin surface films.

X ) : "properties of hard and interacting disks have been studied
Ma_ny experlmental studies have been carried out on_the dléince the 1960'§35—44 and are rather well understood al-
fusive dynamics of polymers and smaller molecules in suchno,gh some open questions remain concerning, e.g., the na-
systems{1-9]. However, most theoretical investigations o yre of the freezing transition. The dynamical properties of
date mostly deal with théracej diffusion of single atoms or - 2p (colloidal) liquids have also been considered in some
moleculeg10-19, and there have been only relatively few works [39,45,30,41,46—48 but detailed studies have not
theoretical studies concerning teellectivediffusion prop-  peen carried out throughout the density range.
erties of larger molecules or polymers on surfacEs—20. In this paper we present results of numerical and analytic
In the case of a finite surface coverage or number depsity studies of diffusion in a very simple model system of 2D
difference must be made between the tracer and collectivBrownian hard spherdgliskg and rigid rodlike molecules in
diffusion coefficientsD1(p) and Dc(p), respectively, even two dimensions. We consider the case where there are no
if the only interaction is site blocking. The existing studies explicit particle-surface interactions. The present study thus
have shown that while the monotonic decayf(p) as a complements the work done previously on flexible chainlike
function of p can be qualitatively understood by blocking in molecules using the fluctuating bof¥eB) lattice model with
the case of athermal polymers, the behavior of the densitivionte Carlo dynamics, which corresponds to the lattice-gas
fluctuations and thu®(p) is nontrivial. There are strong limit with a strongly attractive surface potential that confines
entropic interactions present that influendg(p) and the the chains on the lattice sit¢$6,19. Here we focus on the
spreading dynamics of flexible chainlike molecules onbehavior of the various relevant diffusion coefficients as a
smooth surfaces in the lattice-gas lifi$6,17,19,2Q In par-  function of the number density of surface particles the
ticular, for such moleculeB (p) typically displays a maxi- submonolayer regime. For the hard disk case, we find that
mum value at some intermediate densities, such that the rels¢hile D(p) decreases monotonically up to the freezing
tive magnitude of the maximum decreases for stiffer chainstransition,D¢(p) is wholly determined by the inverse com-
or in the presence of attractive interchain interactions. Theressibility which increases rapidly on approaching freezing.
maximum is due to the competition between the compressie also study memory effects associated with tracer diffu-
ibility and mobility of the overlayer, both of which are sion, and present theoretical estimatesDaf(p) from the
strongly dependent on the density. mode-mode coupling approximation. In the case of rigid rods
A particularly interesting case occurs if the molecules onwith a short-range repulsion we find that bdii(p) and
the surface can be approximated by orientationally symmetb -(p) behave in a manner very similar to the case of indi-
ric, circular particles. Such systems are also relevant for theidual disks when there is no orientational ordering.
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II. THE MODEL
A. Hard disks

The model system we consider here consists of an en-
semble of 2D hard disks which can be thought of being
confined to a smooth and structureless surface, with no ex-
plicit particle-surface interaction potential. Since for hard
disks temperature does not play any role, the only relevant
parameter is the scaled particle density=po?, wherep
=N/L? is the number density df disks in a system of linear V(I‘)
sizel, and o is the disk diameter.
In the present work for numerical studies we use a com-
bination of molecular dynamic§MD) and Monte Carlo
(MC) simulation techniques. All dynamical quantities here
have been computed with MD, while MC sampling has been
used to obtain static thermodynamic averages. With MD, it is
convenient to use a soft interaction potential between the FIG. 1. Aschematic figure of the six-particle rigid rods used in
particles rather than the infinite hard-sphere potential. Théhe S|mul_at|ons. The rods consist of 2D disks which |_nteract thro_ugh
hard-sphere results can, however, be recovered by doing aapqtentlal of the_ form of Eq(1). They are constrained to their
simple rescaling of the density if we use a soft potential of'€lative positions in each rod.

the form[41 . . .
[41] finite size effects by evaluating the results in several sub-

ao\" systems of the total system and then extrapolating to infinite
V(r)zf(—> : (1) size[40].

In 2D, it has been suggested that there is a first-order
wherer is the separation between the particles, anchfare  freezing transition from a fluid to a solid phase at a critical
chose here the value of 12. The rescaling in density requiredlensity of ps.=0.887 [40,41], however, the most recent
in order to obtain the corresponding hard sphere results gimulations suggegi4] that for the 2D hard disk case the

then freezing transition is of the Kosterlitz-Thouless-Halperin-
Nelson-Young(KTHNY') type[51]. Forn=12 in the poten-
- e \2n tial we have used in the MD simulations the freezing occurs
p= (I(B_T) Ps) 2  ata higher density gb.=0.986[41]. The exact nature of the

freezing transition for then=12 case in uncleaf4l], al-

whereT is the temperature of the soft-sphere system. Herethough simulations again suggest the KTHNY pict{4&].
we have used=4.0 andkgT=0.1402. In the simulations a However, in the present work we concentrate on diffusion

cutoff in the potential at 2& was used. within the liquid phase.
The equation of motion of each particle in the system is
given by the Langevin equatidd9]: B. Rigid rodlike molecules

d The second system we consider here is a simple model of
—p(t)=—np(t)+ F(t)+ ﬁ(t), 3 rigid, rodlike molecules in 2D. They are modeled by a chain
dt of N¢ particles in continuum which are constrained to stay in
. S fixed positions with respect to each other along a straight line
wherep(t) =mg (t) is the 2D momenEum of the particle,is (see Ipzig. 1 This cons?raint was implementegd in theg MD
the friction CO(?ffiCient,t is time, andf(t) is the tOtal inter- simulations by first Computing the forces acting on all N}/e
actiorl force with the other particles. The remaining randorrgeparate particles comprising the molecule, and then calcu-
termF (t) is the driving force for the motion of the Brownian lating from these the torque and the translational force acting
particles, and it obeys the standard fluctuation-dissipation rewith respect to the center of mass. Following this, the mol-
lation[49]. In our MD simulations the equation of motion is ecule was rotated accordingly and its position updated. The
integrated using the Velocity Verlet algorith®9]. The sys- interchain interaction was chosen to be of the form of Eq.
tem size used in most cases was 1000 with periodic (1), with the same parameters as for the single particles. This
boundary conditions. means that each particle in the chain interacts with all the
The MC simulations have been carried out in such a wayparticles in the other chains through a strongly repulsive
that a randomly chosen particle is displaced at a randomlyt/r 12 potential. This effectively prevents chain overlap with
chosen position. In this case, it is easy to carry out the simuthe parameters used here. In the MC simulations we simply
lations for hard particles by using the standard Metropolisandomly displaced and rotated each rod and used the Me-
acceptance criteriofb0] according to which a move is al- tropolis criterion to accept or reject the new configuration.
ways accepted if it does not result in an overlap between the The phase diagram of rodlike molecules is in general
particles. In our MC simulations the typical system size wasmore complicated than that of the single particles due to the
L =2400 with periodic boundary conditions. We checked for additional orientational degrees of freedom. In addition to
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TABLE |. Numerical values of the normalized tracer diffusion
coefficients for 2D hard disks from MD simulations

p D+(P)/D+(0) p D+(P)/D+(0)
0.000 1.000 0.865 0.17¢8) 1
0.110 0.8291) 0.946 0.1213)
0.220 0.690(B) 0.966 0.1012) .
0.329 0.57615) 0.986 0.07504)
0.549 0.39969) 1.006 0.043(8) .

the liquid and solid phases there is also the possibility of a
nematic phase. Recent careful simulation studies of 2D hard P
rods have shown that for aspect ratios of six or less the
_nematlc phase is r.]Ot r_ea_hz@EIZ]. Although our ”?Ode' Is not disks as obtained from MCA calculations and from the MD simu-
in the hard. potential limit, nor d(.)es the rescaling 9f E2). Jlations. The open circles have been obtained using Hjj.and the
Work’, we d'_d not observe any e\{'dence o,f,a nematic phase I[‘l‘iangles using Eq.11). The solid circles denote our simulation data
our simulations below the freezing transition. and the squares data by wen et al. [41]. The lines are spline fit
guides to the eye.

FIG. 2. The normalized tracer diffusion coefficient for 2D hard

lll. RESULTS FOR HARD DISKS

smaller than the value of 0.099.003 reported by lwen
for the 12 potential[41]. We note that from our data it
The tracer diffusion coefficient of individual particl&®;  seems thab1(p) approaches zero continuouslypat, which

A. Numerical results for tracer diffusion

is defined as would indicate a continuous freezing transition for the case
L /LM of the 1 *? potential[41]. However, we have not attempted a
T el 2N N2 systematic finite-size study in the vicinity pf to determine
Dr Zlect <N 2 7 =Fi(0)] > the nature of the freezing transition.

1 (=1 . . B. Velocity autocorrelation functions
-3 RZ 5050 at @ o
o \N=1 As can be seen from the definition Bf in Eq. (4), the

velocity autocorrelation functionp(t) is the fundamental
whered=2 is the dimension of the system afdt) is the  quantity in diffusion. The time dependenceft) has been
position vector of particle at timet, andv;(t) its velocity.  studied in dense 3D Brownian liquid§5-57. It was found
The quantity¢(t)=(v;(t)-0;(0)) is the velocity autocorre- that the deviations from exponential behavior were small, but
lation function associated with the tracer particle. In evalu-increased with increasing density and in particular near the
ating the diffusion coefficients during the simulations we em-freezing transition[55]. More recent studie$56,29 have
ploy the memory expansion meth¢83] which has been demonstrated that the temporal decays¢f) does not seem
shown to be more efficient than using the expressions aboves follow simple exponential behavior, but rather a stretched

In the case of 2D hard disks, the only relevant parametegxponential form. Recently, the temporal behaviordst)
that D+ depends on is the scaled dengity Previously, the (and its associated memory function to be defined bglow
tracer diffusion coefficient has been studied as a function ohave been studied in detail in a variety of strongly interacting
density for a few special values @f [54,41. D+(p) has 2D dissipative systen{$3,20,58,59 including a dense, vis-
been found to be a monotonically decreasing functioncous hard disk fluid46]. It has been demonstrated that in
of density from its initial Brownian value ofD1(0)  many casesg(t) displays anintermediate time power law
=kgT/my (5.14<10 2 in our unity, as could be expected decayxt~*, where the value of the effective exponertan
from simple blocking or backscattering argumefB§]. In be related to interaction and ordering effects in the system
particular, afp, Lowen has proposed a dynamical freezing[58]. In particular, if there are no ordered phases present, the
criterion which states that the ratD(p.)/D1(0) attains a value ofx is typically about or larger than two for strongly
universal value of 0.0860.01 at freezing. repulsive and less than two for attractive systems.

Our MD simulation results foD+(p) are listed in Table | In the present case we have studied this issue through the
and shown in Fig. 2. We find very good agreement with thetemporal behavior ofp(t) and the corresponding memory
previous numerical results, as can be seen from Fig. 2. Thieinction M (t) defined through20]
tracer diffusion coefficienD+(p) is a decreasing function of do(t)
density within the liquid phase, and shows a more rapid de- . t
crease close to the freezing transition. We have tested Lo dt Q°¢(t)_j0M(t_s)¢(s)ds’ ®)
wen's freezing criterion atp.=0.986 and find that
D.(p)/D+(0)=0.0759-0.0004 which is in very good wherei(), is the so-called frequency variable which van-
agreement with the overall 'meen criterion, but somewhat ishes in continuum. We find that for smaller densitig$t)
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10—y where the self-energ =2 (k=0,z=0) is obtained from
S AL the equation

Foo'F
10y

ESor .‘/ ] 1 o0 N
10 F _/— 3 E(k,z)sz fo e v (q)C(|k—d|.t)Cq(q,t)dt d*q.

E « E
2: BT E ]
L ~2Bd * ool v 0 gud -
107 107 10 100 1000 (8)
! i ]
10F X 3
X’

o

E The interaction vertex is given by(q)=qg%[1—S (q)]?,
N where S(k) is the static structure factor. The Laplace trans-

10 E X 3
; x* ] forms of the self-density and collective-density correlation
107F R 3 functions are given by
I 1
t Cy(ki2)= —— )
~ 2t
FIG. 3. Behavior ofy(t) =[ ¢4(t)/$4(0)] *~1 and the cor- 1+3(k,2)

responding memory functio (t)=[M(t)/M(0)] -1 (shown

in the inset for the 2D hard disks. Three different densities are and
shown, from top to bottorip=0.986,5=0.329, andp=0.110, re- S(k)
spectively. The data have been shifted for clarity. S —
Cc(k,Z) k257 1( k) (10)
L . . Z+ ——=—
shows rather small deviations from exponential behavior in- 1+3(k,2)

dicating weak memory effects. However, at larger densitie%

there is an intermediate power law type of behavior which quatiqn (8 is a 3D .integral equation, which has to be
can be well fitted by58,59 solved in a self-consistent manner to obtaiik,z). The

integration inq space is a convolution and can be done using

Fourier transforms. Fourier transform is also employed in

b(t)= #(0) ® making the inverse Laplace transform numerically to get
1+At Cq(k,t) andC.(k,t) from Egs.(9) and (10).

We have solvedX(k,z) iteratively by first setting
2.(k,z)=0 for all k andz and inserting this into Eq$9) and
(10), and integrating Eq(8). The resulting new& (k,z) is
then fed into the correlation functions Eq9) and(10). The
iteration is continued untik (k,z) converges.

The only input into this calculation is the static structure

which leads to an algebraic deca\t) ~t™* for At*>1. In

Fig. 3 we show the normalized velocity autocorrelation func
tion as a function of time, and the inset shows the corre
sponding memory function. The topmost data set in the fig

ure has been taken at the onset of the freezing transition ?éctor S(k). For this we have used the approximate expres-

p=0.986. Fitting an effective power law teg(t) gives x . ! : o
~1.2 which is close to the values reported in the Iiterature\s(Ion by Ripoll and Tejerp61] which is based on the Percus-

[46,58. Due to the relatively short range of the effective evick equatior{62]. We have tested their approximation by

power law, it is difficult to pin down the value of accu- comparing it to a direct numerical calculation $¢k), and
rately hovx;ever find that it reproducesS(k) well except very close to the

freezing transition. Our results for the self-consistent itera-
tion of the MCA are shown in Fig. 2 with open circles. At
IV. ANALYTIC APPROXIMATIONS FOR DIFFUSION lower densities, the MCA overestimatBs but then rapidly
COEFFICIENTS seems to approach zero at ab@ut0.8. Thus, it is not in
very good quantitative agreement with; .
The original calculation of IR has been criticized by
There exists a variety of theoretical approaches in order t&uchs[31] who pointed out that Eq10) should actually be
guantitatively understand the density dependencB-pfor  replaced by
colloidal systems, with and without hydrodynamic interac-

A. Tracer diffusion

tions [26—28,30,32,3} The case of a 2D Brownian liquid Culkiz)= S(k) (11
considered here has also been tackled rec¢ABy One of e kS (k)
the most commonly used approaches for calculation of trans- z+ m

port coefficients is based on the mode-mode coupling ap-

proximation(MCA) [60]. Recently, the MCA was applied to where3 .(k,z) is finite for k—0. We have tried to improve

the 3D hard Brownian sphere case by Indrani and Rathe MCA results by simply setting .(k,z) ~3(k,2). In Fig.

maswamy(IR) [30]. Here, we generalize their theory to the 2 we show results for this case, but find ti from the

2D case. Within the MCAD+ is given by MCA decays even more rapidly. We also tried some other

D approximations fol (k,z), but always found that using Eq.
DT=—O, (7) (1) did not improve the quantitative agreement with simu-

1+2, lation data over the whole range of densities. Thus, we must

021204-4



DIFFUSION OF HARD DISKS AND RODLIKE . .. PHYSICAL REVIEW E 64 021204

conclude that despite the fact that memory effects in the
present case are not very strong, the MCA does not give
quantitatively good results fdd [63].

B. Collective diffusion

In addition to tracer diffusion of single particles, an inter-
esting question concerns the behavior of collective density
fluctuations in colloidal systemi6]. The collective diffu-
sion coefficientD(p) characterizing these fluctuations can
be defined by means of the diffusion equation

ap(F,t)
at

=V -[De(p)Vp(F.t)]. (12) ' 5

Another equivalent way is through the Green-Kubo equation, F'C: #- The normalized collective diffusion coefficient for 20
r?1ard disks as a function of density. The solid line is from &g,
1 the dashed line is the virial expansion of van Rensk6&j with the
D.=éDn=¢ Iim—(|§(t)|2>, (13 first eight virial coefficients included, and the dotted line with the
tHdeNt ninth and tenth virial coefficients included is obtained using the
Padeapproximation. Crosses denote our MC simulation data.
where é=(N)/[(N?)—(N)?] is the thermodynamic factor
(proportional to the inverse of the compressibility), and  since the rods posses a rotational degree of freedom, one can
Ii(t)=EiN=1[Fi(t)—r*i(O)] is the center-of-masgc.m) dis-  also define thengular (tracer) diffusion coefficient by
placemen{10].

In the case of Brownian hard spheres, it is an exact result 1
that the c.m. mobilityD, is independent of the densify DR:Z”mT<N/_N > lem-60)?), (15

.. . . . . - ci=1
[26]. This is because the interparticle interactions preserve =
the c.m. momentum, and thud..(p)=D.n(0)=D+(0). . . o
This means that the density dependenc®gfp) is solely vyhere Gi. is the angle of rotation of r_od with respect to a
determined by the static thermodynamic facfomnd there fixed axis[66]. The memory expansion method applied to
are no memory effects iB.. The quantityé can be conve- c_alculateD.T. and.DC can Ialso be used for the angular diffu-
niently obtained from the static structure fac&(k) [10]. sion coefficient in a straightforward manner. _

The static structure factor can also be obtained from the !N Fig. 5 we show results foby in the case of rodlike
equation of state. For the present case of a 2D hard diskiolecules. For comparison we also show in the same figure
system there exists several approximate equations of state " numerical results .for the single pgmcle case. Since in the
the literature. A particularly simple analytic form for hard ¢@se of rods the scaling of the density cannot be useds the

N/N

convex particles has been derived by BouljbK] as axis here is in terms of the densipy= a?N/L? for_ther_‘lz
potential. Note that herl is still the number of disks in the
1+2p(y—1) 2p[l+p(y—1)] system and there are six disks in each rod. Remarkably
= (1—p)2 (1-p)° ; (14 enough, the results for rods and single particles are identical

within the error bars for the whole range of density up to
where the aspect ratip=7R2/A., for convex particles of ~about the single particle freezing densjty~0.55. We esti-
areaA. and perimeter ZR.. In Fig. 4 we show the results

for Dc(p) from Eq. (14) with y=1 as compared to our il oot
direct MC simulations ot. Except for densities very close to I
the freezing transition, the simple formula of E44) pre- osl & i
dicts the behavior oD ¢ very well. We have also examined a ~ |
number of viral expansions for the equation of state of 2D 9;06_ s i
hard disks, and find that the one given by van Renspfsg % 1 zs
gives the best agreement with our numerical data at the high- %04_ o . i
est densities in the vicinity of the freezing transition. ol I = 5
021 .
V. RESULTS FOR RODLIKE MOLECULES L 2 .
[ ]
0~ 01 02 03 04 05

As explained in Sec. Il, the second case that we have
examined is that of rigid rods consisting of six 2D disks
bound together. The definitions of the diffusion coefficients FIG. 5. The normalized tracer diffusion coefficient for six-
D+ and D¢ remain the same, with the coordinates and ve-particle rods(open circley and single 2D particles interacting with
locities now referring to the c.m. of each rod. In addition, the same 12 repulsive potentiaffilled squares
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FIG. 6. The normalized angular diffusion coefficient for six- FIG. 7. The normalized collective diffusion coefficient for hard

particle rods. six-particle rods from MC simulation@illed circles, as compared
to the theoretical estimate from E¢L4) (solid line). The crosses

mate the freezing transition of the rodlike molecules to occurst‘cl’;"’ the results of MC simulations for six-particle rods with the
at about this same density, although we did not investigate ~~ "ePulsion.
this systematically. This is also in agreement with the results
of Bates and Frenkegb2]. smooth surfacefl6,19. These studies were done using the

In Fig. 6 we show the angular diffusion coefficient for the FB |attice model combined with Monte Carlo dynamics. This
rodlike molecules with the ~*2 repulsion. As expectef52],  corresponds to the lattice-gas limit where the chains move by
we find no evidence of an orientational transition in thesing|e segment fluctuations 0n|y, and the r|g|d rod limit can-
present case aridg(p) is a smoothly decreasing function of not even be defined. The center-of-mass momentum is not
density. _ _ o ~ conserved with MC dynamics which leads to a strong density

Finally, regarding the collective diffusion of Brownian gependence of the mobility. The qualitative behavior of
rodlike molecules, the c.m. mobility is again independent OfDC(p) for smaller densities remains the same for both cases,

density. Therefore the collective diffusion coefficient is : ; ; -

. X . however, in thaD(p) grows rapidly with density. On the
solely determined by the thermodynamic factor. In Fig. 7 we . I L L
show results of MC simulations farincluding both the case other hand, at higher densities the behavior is quite different

of hard rods(filled circles and rods with a repulsive 12 from the present case due to the lattice-gas nature of the FB
potential (crosses Do(p) is again a strongly increasing model. Because of the density dependent mob|I!ty, for flex-
function of p. We can also use Eql14) to estimate the ther- ible moleculesD¢(p) shows a maximum at some intermedi-

modynamic factor for the hard rod case by neglecting théte value of the density after which it will decrease rapidly

nonconvexity of the actual moleculsee Fig. 1 This esti- toward the full coverage limit. _ _
mate is shown in Fig. 7 by a solid line. As far as a comparison with experiments is concerned, for

flexible chains confined on a metal surface the experiments
[3] have observed a strong increaseDig(p), and the ob-
VI. SUMMARY AND DISCUSSION served density profiles are in complete agreement with simu-
égtion results[19]. Regarding rigid molecules, the experi-

of the diffusion coefficients of hard disks and rodiike mol- MeNts of Mak, Koenler, and Geordé7] on the surface

ecules that diffuse on a smooth surface, with no explicidiffusion of cycloalkanes on R0O0D have demonstrated that

particle-surface interactions present. We have found that i c(p) for coverages<0.7 is an increasing function of in

both systems the collective diffusion coefficieBt-(p) is the case of cyclopentane. However, since these molecules are

completely determined by the thermodynamic factor and igather small and the surface is strongly corrugated a quanti-

an increasing function of the coverage in the liquid phasetative comparison to the smooth surface case may not be

We have also tested the accuracy of various analytical exfossible. We also note that in order to compare with the

pressions for the thermodynamic factor. The tracer diffusiorPresent study, the particles should be confined to 2D without

coefficientD+1(p) on the other hand, is a monotonically de- @n external, attractive surface potential.

creasing function of coverage and its density dependence

within the liquid phase is almost identical in both systems.

Also the behavior of the angular diffusion coefficidhg(p) ACKNOWLEDGMENTS

of the rods is similar to the tracer diffusion coefficient. The
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