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Energy and pressure of shearing fluids at different state points

Jialin Ge, Gianluca Marcelli, B. D. Todd,* and Richard J. Sadus
Centre for Molecular Simulation and School of Information Technology, Swinburne University of Technology, PO Box 218, Haw

Victoria 3122, Australia
~Received 28 February 2001; published 19 July 2001!

Nonequilibrium molecular dynamics simulations are reported at different strain rates (ġ) and thermody-
namic state points for a shearing atomic fluid interacting via a Lennard-Jones potential. Our simulations are
performed at the Lennard-Jones triple point, a point midway between the triple point and the critical point, and
a high point closer to the critical temperature. We find that, for the mid-point and high point, the energy and
hydrostatic pressures have strain-rate dependencies ofġ2, in contrast to theġ3/2 dependencies predicted by
mode coupling theory. This analytical dependence is consistent with a Taylor series expansion of these quan-
tities as powers of the strain rate tensor. Only at the triple point does the pressure and energy display a
nonanalytical dependence onġ3/2.
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In a recent paper@1# we reported on the analytical depe
dence of the pressure and energy of shearing liquid ar
interacting via accurate two- and three-body potentials,
reviewed in detail elsewhere@2#. The pressure was convinc
ingly found to vary asġ2. Our nonequilibrium molecular
dynamics ~NEMD! simulations were performed at a sta
point of (r,T)5(1.034 g cm23,135 K), representative of th
liquid phase of argon approximately midway between
critical point and the triple point. Further NEMD simulation
on liquid xenon@3# demonstrated even more convincing
the ġ2 dependence of both the pressure and energy. Inde
dent work by Matin, Daivis, and Todd@4# suggested that the
nonanalytical variation of the energy and pressure as a fu
tion of strain rate may be a peculiarity of the triple point, a
that an analytical dependence may be observed at other
points.

NEMD simulations of atomic fluids have been ove
whelmingly performed at the triple point. This is becau
simulations performed at higher liquid densities deliver
perior statistical accuracy in all measurable quantities,
also because they have revealed interesting nonanaly
functional forms for the phenomenological constitutive re
tions, agreeing with predictions based on long-time tail th
ries @5#. Most work performed at the triple point reports
nonanalytical dependence of the energy and pressure
strain rate, in conformity with the predictions of mode co
pling theory@6#, i.e.,

E~ ġ !5E~0!1aġ3/2,
~1!

p~ ġ !5p~0!1bġ3/2.

This result is in contrast to what one might expect fro
expanding the internal energy and pressure tensor as a T
series about the thermodynamic driving force, in this c
the strain rate tensor,¹u. Hereu is the streaming velocity o
the fluid. Of course, such an expansion assumes at the o
that both the energy and pressure are analytical function
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the strain rate. If they are not, then no such expansion
possible @6,7#. For a fluid flowing in thex direction and
shearing in they direction, the strain rate tensor has only o
nonzero off-diagonal term,
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whereġ[]ux /]y.
Now consider expanding the total internal energy of t

fluid as a function of¹u, and truncating at second order:

E5E~¹u!

5E~0!1¹u:
]E

]~¹u!
U

¹u50

1
1

2
~¹u!~¹u!~• !@4#

]2E

]~¹u!]~¹u!
U

¹u50

1¯ , ~3!

Here the notation (•) @4# stands for a fourth order contractio
between the two fourth rank tensors (¹u)(¹u) and
@]2E/](¹u)](¹u)#¹u50 .

The two partial derivatives in Eq.~3!, @]E/](¹u)#¹u50
and@]2E/](¹u)](¹u)#¹u50 , are both evaluated at zero ap
plied thermodynamic force, i.e., at equilibrium. It is thu
reasonable to assume that just as an equilibrium fluid sho
be isotropic in space, so too should be the phenomenolog
coefficient tensors that are descriptive of their material pr
erties. This allows for some simplification of their form. A
the first order partial derivative is a second rank isotro
tensor, it can be conveniently expressed as

]E

]~¹u!
U

¹u50

5adab ~4!
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wherea is a constant. Thus, the second term in Eq.~3! can be
written as

E~2![¹u:
]E

]~¹u!
U

¹u50

5¹buaadab5a¹bub50. ~5!

In the above derivation and subsequent derivations, we
the Einstein notation for contraction of tensor indices.

The second order partial derivative in Eq.~3! is a fourth
rank isotropic tensor, which may be expanded as a lin
combination of the three isotropic fourth rank polar tens
@7–9#:

]2E

]~¹u!]~¹u!
U

¹u50

[Babgd

5b1dabdgd1b2dagdbd1b3daddgb .

~6!

Thus the third term in Eq.~3! can be written as

E~3![
1

2
~¹u!~¹u!~• !@4#

]2E

]~¹u!]~¹u!
U

¹u50

5
1

2
~¹dug!~¹bua!Babgd . ~7!

Substituting Eq.~6! into Eq. ~7!, one finds

E~3!5 1
2 b2ġ2. ~8!

Finally, substituting Eqs.~5! and ~8! into Eq. ~3! gives

E~ ġ !5E~0!1 1
2 b2ġ2. ~9!

In a similar manner, we may expand the pressure tenso
a function of powers of the strain rate tensor, and truncat
second order:

P5P~¹u!5P~0!1¹u:
]P

]~¹u!
U

¹u50

1
1

2
~¹u!~¹u!~• !@4#

]2P
]~¹u!]~¹u!

U
¹u50

1¯

5p011¹u:
]P

]~¹u!
U

¹u50

1
1

2
~¹u!~¹u!

3~• !@4#
]2P

]~¹u!]~¹u!
U

¹u50

1¯ , ~10!

Here the unit tensor is defined as1, and the equilibrium
hydrostatic pressure is designated asp0 . We further note that
now the second term involves a second order contractio
a second rank tensor (¹u), with a fourth rank tensor
@]P/](¹u)#¹u50 . Similarly, the third term represents fourt
order contraction of a fourth rank tensor (¹u)(¹u) with a
sixth rank tensor,@]2P/](¹u)](¹u)#¹u50 . Both contrac-
tions result in second rank tensors, as required.
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Defining the nonequilibrium part of the total pressure
P[P2p01, we have

P5¹u:
]P

]~¹u!
U

¹u50

1
1

2
~¹u!~¹u!~• !@4#

]2P
]~¹u!]~¹u!

U
¹u50

1¯

[P~1!1P~2!1¯ . ~11!

The first order partial derivative is a fourth order isotrop

FIG. 1. Reduced pressure and energy as functions of~a! ġ3/2 and
~b! ġ2 at the Lennard-Jones triple point. AAD’s are 1.55% a
0.11% for the pressure and energy, respectively for~a!, and 3.78%
and 0.30%, respectively, for~b!.
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tensor, expressible as a linear combination of the three
tropic fourth rank polar tensors as before:

]P
]~¹u!

U
¹u50

[Babgd5b1dabdgd1b2dagdbd1b3daddgb ,

~12!

Substituting Eq.~12! into Eq. ~11!, and performing the nec
-
e

rm

y
re
u
n

02120
o-essary algebra, leads to the following simplification for t
first term:

P~1!5ġS 0 b2 0

b3 0 0

0 0 0
D . ~13!

The second order partial derivative in Eq.~11! is a sixth rank
isotropic tensor, so it may be expressed as a linear comb
tion of the 15 independent isotropic sixth rank tensors:
]2P
]~¹u!]~¹u!

U
¹u50

[Eabgd«z

5e1dabdg«ddz1e2dabdgdd«z1e3dabdgzdd«1e4dagdbdd«z1e5dagdb«ddz1e6dagdbzd«d

1e7daddbgd«z1e8daddb«dgz1e9daddbzd«g1e10da«dgddbz1e11da«dbgddz1e12da«dgzdbd

1e13dazdgbd«b1e14dazdbgbd«1e15dazdg«dbd . ~14!
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Substituting Eq.~14! into Eq. ~11!, and performing some
tedious but straightforward manipulations, lead to

P~2!5
1

2
ġ2S e41e121e15 0 0

0 e41e51e6 0

0 0 e4

D . ~15!

Substituting Eqs.~13! and ~15! into Eq. ~11! gives

P5ġS 0 b2 0

b3 0 0

0 0 0
D

1
1

2
ġ2S e41e121e15 0 0

0 e41e51e6 0

0 0 e4

D . ~16!

Thus the hydrostatic pressure is simply determined as

p~ ġ ![ 1
3 Tr~P!

5p01 1
3 Tr~P!

5p01 1
6 @3e41e51e61e121e15#ġ

2. ~17!

Equations~9! and ~17! show that if the energy and pres
sure are analytical in powers of the strain rate, then th
leading terms must beġ2. While there are terms involvingġ
in the pressure tensor expansion, they are off-diagonal te
related to the shear stress. Indeed, the constantsb2 andb3 are
equivalent, and equal in magnitude to the shear viscosith.
Only diagonal terms contribute to the hydrostatic pressu

Our simulations were conducted on a Lennard-Jones fl
of 500 atoms at three distinct state points: the Lennard-Jo
ir

s

.
id
es

triple point(T,r)5(0.722,0.8442!; a point midway between
the triple point and the critical point, (T,r)5(0.97,0.61!;
and a high point close to the critical temperature, (T,r)
5(1.1,0.643). All units quoted are reduced.

The Lennard-Jones 12-6 interatomic potential is given

f~r !54«@~s/r !122~s/r !6#. ~18!

The parameters« ands were set at 1, and a cutoff radius o
half the box length was chosen.

The NEMD simulations were performed by applying th
standardSLLOD equations of motion for planar shear flo
@7#. A Gaussian thermostat multiplier@7# was used to keep
the kinetic temperature of the fluid constant. The equati
of motion were integrated with a fourth order Gear predict
corrector scheme@10#, with a reduced integration time ste
of 0.001. A nonequilibrium simulation trajectory is typicall
run for 200 000 time steps. Averages are taken over 4
independent trajectories, each starting at a new configura
To equilibrate the system, each trajectory is first run witho
a shearing field. After the shearing field is switched on,
first 50 000 time steps of each trajectory are ignored, and
fluid is allowed to relax to a nonequilibrium steady sta
Thus every pressure and energy data point represents a
run length of (4 – 5)3200000583105– 13106 time steps.

In Figs. 1~a! and 1~b! we plot the pressure and energy
the fluid at the Lennard-Jones triple point as functions ofġ3/2

and ġ2. As expected, the energy and pressure appear to
linear in ġ3/2, though a close examination does sugges
slight systematic deviation from linearity. A plot of the pre
sure and energy as functions ofġ2 gives very poor fits to the
data. A comparison of the average absolute deviati
1-3
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~AAD ! @11# for both curves demonstrates a 2–3-fold im
provement in the quality of the agreement between the d
and theġ3/2 fit compared to theġ2 fit. The lower the value of
the AAD, the more faithfully the curve fits the simulatio
data.

In Figs. 2~a! and 2~b!, we plot the pressure and energy
the fluid at the midpoint as functions ofġ3/2 andġ2, respec-
tively. In this case both the pressure and energy show
tematic departures from linearity when plotted againstġ3/2.
However, when plotted againstġ2 the fits are excellent. A
comparison of the AAD’s for both fits now shows that theġ2

curves give an almost fourfold improvement over those
ġ3/2, reversing the behavior at the triple point. A similar r
sult is also seen for the high-point data in Figs. 3~a! and 3~b!.
We make no comparisons on the viscosity data, as the st

FIG. 2. Reduced pressure and energy as functions of~a! ġ3/2 and
~b! ġ2 at the midpoint AADs are 2.81% and 0.05% for the press
and energy, respectively, for~a!, and 0.76% and 0.02%, respe
tively, for ~b!.
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tics are not sufficiently good to check for accurate strain r
dependencies. This work is currently in progress.

Our simulation results show a clear departure from
expectedġ3/2 dependence of pressure and energy on st
rate away from the triple point. This result should be tr
irrespective of the type of intermolecular potential used@1#,
and is consistent with the suggestion made by Matin, Dai
and Todd@4# that theġ3/2 dependence may be a peculiarity
fluids close to the triple point. Our simulations away fro
the triple point suggest an analytical dependence of pres
and energy on the strain rate, the leading term beingġ2, as
demonstrated by a Taylor series expansion of both quanti
While our simulations confirm the leading term in these e
pansions, a deeper understanding of why such a discrep

e
FIG. 3. Reduced pressure and energy as functions of~a! ġ3/2 and

~b! ġ2 at the high point. AADs are 0.84% and 0.05% for the pre
sure and energy, respectively, for~a!, and 0.19% and 0.01%, respe
tively, for ~b!.
1-4



ai

fo
m

rs
ty
gh
ter,

ENERGY AND PRESSURE OF SHEARING FLUIDS AT . . . PHYSICAL REVIEW E 64 021201
exists between the triple point and other state points rem
elusive at this stage.
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