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Energy and pressure of shearing fluids at different state points
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Nonequilibrium molecular dynamics simulations are reported at different strain rajeand thermody-
namic state points for a shearing atomic fluid interacting via a Lennard-Jones potential. Our simulations are
performed at the Lennard-Jones triple point, a point midway between the triple point and the critical point, and
a high point closer to the critical temperature. We find that, for the mid-point and high point, the energy and
hydrostatic pressures have strain-rate dependencig€,dh contrast to they®? dependencies predicted by
mode coupling theory. This analytical dependence is consistent with a Taylor series expansion of these quan-
tities as powers of the strain rate tensor. Only at the triple point does the pressure and energy display a

nonanalytical dependence &2
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In a recent papdrl] we reported on the analytical depen- the strain rate. If they are not, then no such expansion is
dence of the pressure and energy of shearing liquid argopossible[6,7]. For a fluid flowing in thex direction and
interacting via accurate two- and three-body potentials, ashearing in the direction, the strain rate tensor has only one
reviewed in detail elsewhef@]. The pressure was convinc- nonzero off-diagonal term,
ingly found to vary asy?. Our nonequilibrium molecular

dynamics (NEMD) simulations were performed at a state duy duy  du,

point of (p,T)=(1.034 gcm 3,135K), representative of the OX IX oX

liquid phase of argon approximately midway between the U du. du 0 00

critical point and the triple point. Further NEMD simulations vu=| — = Z| =% 0 0], 2)
on liquid xenon[3] demonstrated even more convincingly ay ady dy 00 0

the %2 dependence of both the pressure and energy. Indepen- duy du, AU,

dent work by Matin, Daivis, and Todgd!] suggested that the
nonanalytical variation of the energy and pressure as a func-
tion of strain rate may be a peculiarity of the triple point, and,pare y=au, 1dy.

that an analytical dependence may be observed at other state 4, consxider expanding the total internal energy of the

points. . . . _ fluid as a function ofVu, and truncating at second order:
NEMD simulations of atomic fluids have been over-

whelmingly performed at the triple point. This is because E=E(Vu)
simulations performed at higher liquid densities deliver su-

9z 9z 9z

perior statistical accuracy in all measurable quantities, but JE

also because they have revealed interesting nonanalytical :E(OHV“:W

functional forms for the phenomenological constitutive rela- vu=0

tions, agreeing with predictions based on long-time tail theo- 1 4] &°E

ries [5]. Most work performed at the triple point reports a + E(VU)(VU)(') W +to 9
nonanalytical dependence of the energy and pressure on Vu=0

strain rate, in conformity with the predictions of mode cou-

oling theory[6], i.e Here the notation ()[4 stands for a fourth order contraction

between the two fourth rank tensorsVvy)(Vu) and
[0?E/a(Vu)d(VU)lyu—o-
The two partial derivatives in Eq3), [JE/d(VU) Jyu=0
N .3 (1) and[ #%E/d(Vu)a(Vu)Jyu—o, are both evaluated at zero ap-
P(»)=p(0)+by™= plied thermodynamic force, i.e., at equilibrium. It is thus
reasonable to assume that just as an equilibrium fluid should

expanding the internal enerav and pressure tensor as a Ta Ibe isotropic in space, so too should be the phenomenological
P Y 9y P Yi@efficient tensors that are descriptive of their material prop-

ts;zrlets a_\boutt t?e thgrmt:_tljynammﬂ?nwtng force, ml th'ts Clfjlseerties. This allows for some simplification of their form. As
€ strain rate tensoy,u. Hereu IS the streaming velocily o yq fiot order partial derivative is a second rank isotropic
the fluid. Of course, such an expansion assumes at the OUtstgksor it can be conveniently expressed as

that both the energy and pressure are analytical functions o

E(¥)=E(0)+ay*?,

This result is in contrast to what one might expect from

JE
VO =ad,p (4)
*Corresponding author. Electronic address: btodd@swin.edu.au (Vu) Vu=0
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wherea is a constant. Thus, the second term in &f.can be 3.0 — 7 475
written as I
JE 1 .48
@=vy: - = - ]
E Vu'a(Vu) o Vuad,z=aVgug=0. (5 ]
1 -4.85
In the above derivation and subsequent derivations, we us
the Einstein notation for contraction of tensor indices. 1 .49
The second order partial derivative in E) is a fourth » ] i
rank isotropic tensor, which may be expanded as a lineal ]
combination of the three isotropic fourth rank polar tensors ] 49
[7-9I: 20 |
r -5
9°E 5
PvIT Y TaviT) =DBapys ]
AVWAVU) g o P | 5.05
:blaaﬁé,},&‘i' b26a7565+ b35a55%3. L
15-..1\‘.|“.!..‘r‘,\‘.‘\,..51
(6) 00 02 04 06 08 10 12 14
Thus the third term in Eq3) can be written as (@ 7
2 — -4.75
1 J°E ]
EQ =3 (Vu)(Vu)( ) e
2 aVua(Vu)lg,_o 1 .48
1
:E(Véuy)(vﬁuo)Baﬁ'yﬁ' (7) - -4.85
Substituting Eq(6) into Eg.(7), one finds 1 .49
1 E
E®)=3b,y2. ® °
- -4.95
Finally, substituting Eqs(5) and(8) into Eq. (3) gives
. . -4 -5
E(¥)=E(0)+3by¥* 9
In a similar manner, we may expand the pressure tensor a ] 5.0
a function of powers of the strain rate tensor, and truncate a ]
second order: 15 ] , 1
T 5.1
0.0 0.5 1.0 1.5
JP (b) s
P=P(Vu)= P(O)+VUZW)
(VW)lgu_o FIG. 1. Reduced pressure and energy as functiota) 6f*2 and
1 2P (b) #? at the Lennard-Jones triple point. AAD’s are 1.55% and
+ = (Vu)(Vu)(- )[4]— 4. 0.11% for the pressure and energy, respectivelydarand 3.78%
2 AVua(Vu)|g o and 0.30%, respectively, fdb).
oP 1 - S
=p01+Vu:W + E(Vu)(Vu) Defining the nonequilibrium part of the total pressure as
(VW0 II=P-pyl, we have
< _2P + 10
AVwa(Vu)|g o ' JP
- II=Vu: V)
Here the unit tensor is defined ds and the equilibrium Vu=0
hydrostatic pressure is designatedygs We further note that 1 A 9?P
now the second term involves a second order contraction of +5 (Vu(Vu)(- )t ]W +
a second rank tensorV{), with a fourth rank tensor, Vu=0
[dP/d(VUu)]y,=q. Similarly, the third term represents fourth =Y+ +.... (1)
order contraction of a fourth rank tensov )(Vu) with a
sixth rank tensor[ #?P/3(Vu)d(Vu)]y,—o. Both contrac-
tions result in second rank tensors, as required. The first order partial derivative is a fourth order isotropic
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tensor, expressible as a linear combination of the three is@ssary algebra, leads to the following simplification for the

tropic fourth rank polar tensors as before: first term:
0 b, O
P nV=4( by 0 0. 13
&(V—u) . EBLYB)/(?: b15a35y6+ b25€(75ﬁ§+ b35a55'y,31 Y 03 0 0 ( )
u=0
(12)

The second order partial derivative in Efl) is a sixth rank
isotropic tensor, so it may be expressed as a linear combina-
Substituting Eq(12) into Eqg.(11), and performing the nec- tion of the 15 independent isotropic sixth rank tensors:

J°P B
ATV gy sret
=€10,30y: 05T €28030y500; T €38030,;85: % €404,0350. 1+ €50,,05: 05+ €60,,0p:0:5
+€78,505,05; T €804508: 0y €98050505,F €1000s 0505+ €110 405,05, €1204:0,,0 5
+€1304:0,50: 5T €1400:03,B 5: T €1500:07: 95 - (14

Substituting Eq.(14) into Eq. (11), and performing some triple point(T,p)=(0.722,0.844% a point midway between

tedious but Straightforward manipulations, lead to the tr|p|e point and the critical p0|nt’T(p):(097,061,

and a high point close to the critical temperaturé&, o

e, teters 0 0 =(1.1,0.643). All units quoted are reduced.
H(z):%;),z 0 e,testes 0|, (15 The Lennard-Jones 12-6 interatomic potential is given as
0 0 e,
— 12__ 6
Substituting Eqs(13) and (15) into Eq. (11) gives $(r)=4e[(alr)*=(alr)"]. (18)
0 b, O

The parameters and o were set at 1, and a cutoff radius of
half the box length was chosen.

0 0 O The NEMD simulations were performed by applying the
standardsLLoD equations of motion for planar shear flow

=4 b; 0 0

Cat€rot €5 0 0 [7]. A Gaussian thermostat multipli¢7] was used to keep
+ 5'72 0 estesteg 0|, (16)  the kinetic temperature of the fluid constant. The equations
0 0 e, of motion were integrated with a fourth order Gear predictor-

corrector schemgl0], with a reduced integration time step
Thus the hydrostatic pressure is simply determined as  of 0.001. A nonequilibrium simulation trajectory is typically
run for 200000 time steps. Averages are taken over 4-5
p(y)=3Tr(P) independent trajectories, each starting at a new configuration.
1 To equilibrate the system, each trajectory is first run without
=Po+3Tr(ID a shearing field. After the shearing field is switched on, the
=po+ L[3e,+ 5+ e+ et e1c] YA (17)  first 50000 time steps of each trajectory are ignored, and the
fluid is allowed to relax to a nonequilibrium steady state.
Equations(9) and (17) show that if the energy and pres- Thus every pressure and energy data point represents a total
sure are analytical in powers of the strain rate, then theirun length of (4—5X200000=8x 10°—1x 1P time steps.
leading terms must b&?. While there are terms involving In Figs. A& and Xb) we plot the pressure and energy of
in the pressure tensor expansion, they are off-diagonal terntbe fluid at the Lennard-Jones triple point as functionyt
related to the shear stress. Indeed, the constgraadb; are  and ¥°. As expected, the energy and pressure appear to be
equivalent, and equal in magnitude to the shear viscogity linear in %2 though a close examination does suggest a
Only diagonal terms contribute to the hydrostatic pressure.slight systematic deviation from linearity. A plot of the pres-
Our simulations were conducted on a Lennard-Jones fluidure and energy as functions gt gives very poor fits to the
of 500 atoms at three distinct state points: the Lennard-Jonaefata. A comparison of the average absolute deviations
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FIG. 2. Reduced pressure and energy as functiota) 62 and
(b) ¥? at the midpoint AADs are 2.81% and 0.05% for the pressure(
and energy, respectively, fda), and 0.76% and 0.02%, respec-
tively, for (b).

FIG. 3. Reduced pressure and energy as functiota) 6> and
b) 42 at the high point. AADs are 0.84% and 0.05% for the pres-
sure and energy, respectively, fay, and 0.19% and 0.01%, respec-
tively, for (b).

(AAD) [11] for both curves demonstrates a 2—3-fold im-
provement in the quality of the agreement between the dat . . ; .
and they®? fit compared to thé/? fit. The lower the value of ependencies. This work is currently in progress.
the AAD, the more faithfully the curve fits the simulation ~ OU' Serlsl/.l2|atI0n results show a clear departure from the
data. expectedy~'< dependence of pressure and energy on strain
In Figs. 2a) and 2b), we plot the pressure and energy of _rate away from the triple point. This result shquld be true
the fluid at the midpoint as functions 6#2 and 32, respec-  irespective of the type of intermolecular potential ug&f
tively. In this case both the pressure and energy show sy&nd is consistent with the suggestion made by Matin, Daivis,
tematic departures from linearity when plotted agaiy®®. ~ and Todd4] that they*? dependence may be a peculiarity of
However, when plotted again$f the fits are excellent. A fluids close to the triple point. Our simulations away from
comparison of the AAD’s for both fits now shows that e the triple point suggest an analytical dependence of pressure
curves give an almost fourfold improvement over those forand energy on the strain rate, the leading term béihgas
%% reversing the behavior at the triple point. A similar re- demonstrated by a Taylor series expansion of both quantities.
sult is also seen for the high-point data in Fig&)&and 3b). While our simulations confirm the leading term in these ex-
We make no comparisons on the viscosity data, as the statipansions, a deeper understanding of why such a discrepancy

ics are not sufficiently good to check for accurate strain rate
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exists between the triple point and other state points remainsn the Fujitsu VPP300 and NEC SX-4/32 computers

elusive at this stage. were provided by the Australian National University

Supercomputer Center and the CSIRO High
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