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Statistical mechanics of canonical-dissipative systems and applications to swarm dynamics
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We develop the theory of canonical-dissipative systems, based on the assumption that both the conservative
and the dissipative elements of the dynamics are determined by invariants of motion. In this case, known
solutions for conservative systems can be used for an extension of the dynamics, which also includes elements
such as the takeup/dissipation of energy. This way, a rather complex dynamics can be mapped to an analytically
tractable model, while still covering important features of nonequilibrium systems. In our paper, this approach
is used to derive a rather general swarm model that considers~a! the energetic conditions of swarming, i.e., for
active motion, and~b! interactions between the particles based on global couplings. We derive analytical
expressions for the nonequilibrium velocity distribution and the mean squared displacement of the swarm.
Further, we investigate the influence of different global couplings on the overall behavior of the swarm by
means of particle-based computer simulations and compare them with the analytical estimations.
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I. INTRODUCTION

The collective motion of biological entities, like schoo
of fish, flocks of birds, herds of hoof animals, or swarms
insects, has recently also attracted the interest of physic
Here, the question of how a long-range order between
moving entities can be established is of particular inter
Consequently, some of the more biologically centered qu
tions of swarming behavior, namely, questions about the
sons for swarming and the group size dependence, have
dropped so far in physical swarm models. The main fo
was rather on the emergence of coherent motion in
‘‘swarm’’ of locally or globally coupled particles.

For the coupling different assumptions have been p
posed~cf. also Sec. IV!, such as the coupling of the particle
individual orientations~i.e., directions of motion! to the
mean orientation of the swarm@1,2#, or the coupling of the
particle’s individual position to the mean position~center of
mass! of the swarm@3#. On the other hand, other local cou
plings have also been considered, such as the coupling o
particle’s individual velocity to a local average veloci
@2,4–6#. A different class of models further assumes a lo
coupling of the particles via a self-consistent field that h
been generated by them@7,8#. This models the case o
chemical communication between the particles widely fou
in biology. For example, the streaming behavior of myxob
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teria @9–11#, the directed motion of ants@12–14# and the
coherent movement of cells@15# have been described an
modeled by means of this kind of local coupling.

But long-range or short-range coupling of the particles
only one of the prerequisites that account for swarming. A
other one is theactive motionof the particles. Of course
particles can also move passively, driven by thermal no
by convection, currents or by external fields. This kind
driving force, however, does not allow the particle to chan
its direction of motion, velocity, etc.,itself. Recent models of
self-drivenparticles that are used to simulate swarming b
havior @5,16,17# usually just postulate that the entities mo
with a certain nonzero velocity, without considering theen-
ergetic implications of active motion. In order to do so, w
need to consider that the many-particle system is basicall
opensystem that is driven into nonequilibrium.

To this end, our approach to swarming is based on
theory ofcanonical-dissipative systems. This theory—which
is not so well known even among experts—results from
extension of the statistical physics of Hamiltonian systems
a special type of dissipative system, the so-called canoni
dissipative system@18–24#. The termdissipativemeans here
that the system is nonconservative and the termcanonical
means that the dissipative as well as the conservative par
the dynamics are both determined by a Hamilton functionH
~or a larger set of invariants of motion; see Sec. II for d
tails!.

This special assumption allows in many cases exact s
tions for the distribution functions of many-particle system
even in far-from-equilibrium situations. This was known a
ready to pioneers such as Poincare´, Andronov, and Bautin,
who gave exact solutions for a special class of nonlin
oscillators @25#. In recent work @26# the properties of
canonical-dissipative systems were used to find exact s
©2001 The American Physical Society10-1
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tions fordissipative systemsin Toda lattices that are pumpe
with free energy from external sources. The starting po
was the well-known Toda theory of soliton solutions in on
dimensional lattices with a special nonlinear potential~expo-
nential for compression and linear for expansion! of the
springs@27,28#, which was then extended to a nonconser
tive system@18,22,23#. In another work@29# an application
to systems of Fermi and Bose particles was given.

In this paper, we will apply the theory of canonica
dissipative systems to the dynamics of swarms. We start w
an outline of the general theory in Sec. II, describing first
deterministic and then the stochastic approach. As a first
towards the dynamics of swarms, in Sec. III we investig
the energetic conditionsof swarming, i.e., we discuss th
conditions for active motion and their impact on the dist
bution function and the mean squared displacement of
particles. In Sec. IV we introduceglobal interactionsbe-
tween the particles that may account for swarming, i.e.,
the maintenance ofcoherentmotion of the ensemble. Th
global interactions are chosen with respect to the gen
theory of canonical-dissipative systems. By means of co
puter simulations we show how different kinds of couplin
affect the overall behavior of the swarm. In Sec. V we co
clude with some ideas on how to generalize the appro
presented in this paper.

II. GENERAL THEORY OF CANONICAL-DISSIPATIVE
SYSTEMS

A. Dynamics of canonical-dissipative systems

Let us consider a mechanical many-particle system wif
degrees of freedomi 51, . . . ,f and with the Hamiltonian
H(q1¯qf ,p1¯pf). The corresponding equations of motio
are

dqi

dt
5

]H

]pi
,

dqi

dt
52

]H

]qi
. ~1!

Each solution of the system of equations~1!,

pi5pi~ t !, qi5qi~ t !, ~2!

defines a trajectory on the planeH5E5const. This trajec-
tory is determined by the initial conditions, and also the e
ergy E5H(t50) is fixed due to the initial conditions. W
now construct acanonical-dissipative systemwith the same
Hamiltonian, whereg(H) denotes thedissipation function:

dpi

dt
52

]H

]qi
2g~H !

]H

]pi
. ~3!

In order to elucidate this kind of canonical-dissipative d
namics, we will consider different examples for the dissip
tion function in the following. In general, we will only as
sume that g(H) is a nondecreasing function of th
Hamiltonian. The canonical-dissipative system, Eq.~3!
@18,22,23#, does not conserve the energy because of the
lowing relation:
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dH

dt
52g~H !(

i
S ]H

]pi
D 2

. ~4!

Whether the total energy increases or decreases consequ
depends on the form of the dissipation functiong(H). In the
simplest case, we may consider a constant friction:

g~H !5g0.0. ~5!

As long asg(H) is always positive, the energy always d
cays.

In a more interesting case the dissipative functiong(H)
has a root for a given energyE1 : g(E1)50. Let us further
assume that at least in certain neighborhoods ofE1 the func-
tion g(H) is increasing. With these assumptions the sta
with H,E1 are pumped with energy due to the negati
dissipation, while energy is extracted from the states w
H.E1 . That means that any given initial state withH(t
50),E1 will increase its energy until it reaches the sh
H(t)5E1 , while any given initial state withH(t50).E1
will decrease its energy until the shellH(t)5E1 is reached,
too. Therefore, the solution of Eq.~4! converges to the en
ergy surfaceH5E1 . On this surface the solution of Eq.~3!
agrees with one of the possible solutions of the origi
Hamiltonian Eq.~1! for H5E1 .

The simplest ansatz forg(H) with a root g(H)50 is a
linear dissipation function:

g~H !5C~H2E1!. ~6!

With respect to Eq.~4! and the discussion above, it is obv
ous for this case that the process comes to rest when the
H(t)5E1 is reached. The relaxation time is proportional
the constantC21.

We note that the linear dissipation function Eq.~6! has
found applications in Toda chains@26#. Here, the fact that on
the shellH5E1 the trajectory should obey the originalcon-
servativecanonical dynamics has been used to derive ex
solutions for canonical-dissipativeToda systems.

A rather generalnonlinearand nondecreasing dissipatio
function, which has been proposed in@29#, reads

g~H !5g02g1

~11A!

11A exp~bH !
. ~7!

Here g0.0 represents the normal positive friction andg1
.0 represents a kind of negative friction.A is a dimension-
less constant andb is a parameter denoting a reciprocal tem
perature. Forg1<g0 the friction is always positive, i.e., en
ergy is extracted. For the opposite case,g1.g0 , we have
negative friction and the system is pumped with energy
least in some parts of the phase space. This allows on
drive the system into situations far from equilibrium. Ther
fore, in the following we may assumeg1.g0.0.

In the limit b→0 andA→0 the dissipative function Eq
~7! reduces to the linear case, Eq.~6!, discussed above. O
the other hand, for small values ofb and finiteA we get
0-2
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STATISTICAL MECHANICS OF CANONICAL- . . . PHYSICAL REVIEW E 64 021110
g~H !5g02g1

~11A!

11A1AbH
, ~8!

which yields g(H)→(g02g1),0 for H→0, and g(H)
→g0 if H→`. This way, the existence of a rootg(E1)50 is
always guaranteed.

Before investigating a special case forg(H) in Sec. III,
let us introduce a generalization of the formalism. Instead
a driving functiong(H) that depends only on the Hami
tonian, we may include the dependence on a larger se
invariants of motion, I 0 ,I 1 ,I 2 ,...,I s , for example: ~a!
Hamiltonian function of the many-particle system,I 05H;
~b! total momentum of the many-particle system,I 15P; ~c!
total angular momentum of the many-particle system,I 2
5L. The dependence on these larger sets of invariants
be considered by defining adissipative potential
G(I 0 ,I 1 ,I 2 ,...). Thecanonical-dissipation equation of mo
tion, Eq. ~3!, is then generalized towards

dpi

dt
52

]H

]qi
2

]G~ I 0 ,I 1 ,I 2 ,...!

]pi
. ~9!

Using this generalized canonical-dissipative formalism,
an appropriate choice of the dissipative potentialG the sys-
tem may be driven to particular subspaces of the energy
face, e.g., the total momentum or the angular momen
may be prescribed. Different examples of this will be a
discussed in Sec. IV.

B. Stochastic theory of canonical-dissipative systems

We will now investigate an approach to the stationa
probabilities that is based on Langevin and Fokker-Pla
equations. The Langevin equations are obtained by addi
white noise termj i(t) to the deterministic Eq.~3!,

dpi

dt
52

]H

]qi
2g~H !

]H

]pi
1@2D~H !#1/2j i~ t !. ~10!

The essential assumption is that both the strength of
noise, expressed in terms ofD(H), and the dissipation, ex
pressed in terms of the friction functiong(H), depend only
on the HamiltonianH.

With respect to Eq.~10!, the corresponding Fokker
Planck equation for the probability distributio
r(q1¯qf ,p1¯pf) of the many-particle system reads

]r

]t
1( pi

]r

]qi
2(

]H

]pi

]r

]pi

5(
]

]pi
Fg~H !r1D~H !

]r

]pi
G . ~11!

An exact stationary solution of Eq.~11! reads

r0~q1¯qf ,p1¯pf !5Q21 expS E
0

H

dH8
g~H8!

D~H8! D .

~12!
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The derivative ofr0 vanishes ifg(H)50, which means that
the probability distribution is maximal at the surfaceH
5E1 .

For the special case of a linear dissipation function, E
~6!, we find the stationary solution:

r0~q1 ,¯qf ,p1¯pf !5Q21 expS cH~2E12H !

2D D . ~13!

In the limit of very strong pumping,H@E1 , this probability
distribution reduces to a kind of microcanonical ensem
corresponding to the energyE1 .

The existence of exact solutions for the probability dist
bution, Eq.~12!, allows one to derive several thermodynam
functions for the many-particle system, such as themean
energy,

U5Q21E dHJ~H !H expS E
0

H

dH8
g~H8!

D~H8! D , ~14!

where the JacobianJ(H) is defined by

dq1¯dqfdp1¯dpf5J~H !dH. ~15!

The entropy follows from the Gibbs formula, which yields
here

S51kB ln Q2kBE dHJ~H !

3FQ21 expS E
0

H g~H !

D~H ! D G E0

H

dH8
g~H8!

D~H8!
. ~16!

Further, the system has a Lyapunov functionalK, which is
provided by the Kullback entropy:

K@r,r0#5E dq1¯dqfdp1¯dqfr lnS r

r0D . ~17!

This gives explicitly

K@r,r0#5 ln Q2
S

kB
1K E

0

H g~H !

D~H !L . ~18!

This functional is always nonincreasing.
If we want to generalize the description by means of

dissipative potentialG(I 0 ,I 1 ,I 2 ,...) asused in Eq.~9!, the
situation is more difficult. But at least if the noise streng
D(H) is a constant (D5const), the corresponding Fokke
Planck equation

]r

]t
1( pi

]r

]qi
2(

]H

]pi

]r

]pi

5(
]

]pi
F]G~ I 0 ,I 1 ,I 2 ,...!

]pi
r1D

]r

]pi
G ~19!

is still solvable. Due to the invariant character of theI k , the
left-hand side of Eq.~19! disappears for all functions ofI k .
Therefore, we have to search only for a functio
0-3
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G(I 0 ,I 1 ,I 2 ,...), for which also the collision term disap
pears. This way we find the stationary solution of Eq.~19!:

r0~q1¯qf ,p1¯pf !5Q21 expS 2
G~ I 0 ,I 1 ,I 2 ...!

D D .

~20!

The derivative of r0 vanishes if G(I 0 ,I 1 ,I 2 ,...)5min,
which means that the probability is maximal on the attrac
of the dissipative motion.

III. ENERGETIC CONDITIONS OF SWARMING

In this section, we want to apply the general descript
outlined above to swarm dynamics. Basically, at a cert
level of abstraction a swarm can be viewed as a ma
particle system with some additional coupling that wou
account for the typical correlated motion of the entities.
addition, also some energetic conditions must be satisfie
order to keep the swarm moving. Thus,active motionof the
particles with a nonzero velocity is another basic ingredi
for swarming. Since the conditions for active motion a
dropped in many of the currently discussed swarm mod
@5,6,16#, we first want to investigate the energetic conditio
of swarming before turning to the second ingredient, c
pling of individual motion.

A. Conditions for active motion

If we omit interactions between the particles, the Ham
tonian of the many-particle system is of the simple form

H5(
i 51

N

Hi5(
i 51

N pi
2

2m
. ~21!

This allows one to reduce the description level from t
N-particle distribution function to the one-particle distrib
tion function,

r~q1¯qf ,p1¯pf !5)
i 51

N

r~r i ,pi !, ~22!

where the variabler i is now used for the space coordinate
the particlei, andpi stands for the momentum or, ifm51 is
used in the following, for thevelocityof the particle, respec
tively. The center of mass of the swarm is defined as

R5
1

N ( r i , ~23!

whereas the mean momentumP and the mean angular mo
mentumL are defined as

P5
1

N ( pi , ~24!

L5
1

N ( L i5
1

N ( r i3pi . ~25!
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With g(H)5g(pi
2) andD5const, the Langevin Eq.~10! for

each particlei reads, in the absence of an external potent

ṙ i5pi , ṗi52g~pi
2!pi1~2D !1/2ji~ t !, ~26!

where the strengthD of the stochastic force results from th
Einstein relation

D5g0kBT, ~27!

whereT is the temperature andkB is the Boltzmann constant
For the dissipation functiong(p2), we use again the gen

eral nonlinear ansatz of Eq.~7! in the limit of small values of
b and finiteA, Eq. ~8!. By means of the substitutions

~11A!5c, g1~11A!5d2s0 , bA52d2 , ~28!

and withH of Eq. ~21!, Eq. ~8! can be written in the form

g~p2!5g02
s0d2

c1d2p2 . ~29!

We note that all noninteracting systems withg5g(p2) are of
canonical-dissipative type.

Equation~29! agrees with the velocity-dependent nonli
ear friction function previously used in a model of activ
Brownian particles@30,31#. These are driven Brownian pa
ticles that move due to the influence of a stochastic force,
additionally are pumped with energy due to a veloci
dependent dissipation functiong(p2), Eq. ~29!, which is
plotted in Fig. 1.

The second term of the right-hand side~rhs! in Eq. ~29!,
which results from the pumping of energy, has been phy
cally substantiated in our earlier work@30,31#. We have as-
sumed that the Brownian particles are able to take up ene
from the environment at a constant rates0 , which can be
stored in an internal depote. The internal energy can b
converted to kinetic energy at a velocity-dependent r
d(p)5d2p2, which results in an additional acceleration
the Brownian particle in the direction of movement. Th
value of the internal energy depot may be further decrea

FIG. 1. Velocity-dependent dissipation functiong(p2), Eq. ~29!
vs p. The velocity ranges for ‘‘pumping’’@g(p2),0# and ‘‘dissipa-
tion’’ @g(p2).0# are indicated. Parameters:s0510.0, g0520.0,
c51.0, d2510.0.
0-4
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due to internal dissipation processes, described by the
stantc. Thus the resulting balance equation for the ene
depot reads

de

dt
5s02ce~ t !2d2p2e~ t !. ~30!

If we assume that the internal energy depot relaxes quic
compared to the motion of the particle, we find the quasis
tionary value

e05
s0

c1d2p2 , ~31!

which eventually leads to the second term of the rhs in
~29!.

Depending on the parametersgO ,d2 ,s0 ,c, the dissipation
function, Eq.~29!, may have a zero, where the friction is ju
compensated by the energy supply. It reads in the consid
case

p0
25v0

25
s0

g0
2

c

d2
. ~32!

We see that forp,p0 , i.e., in the range of small momentum
pumping due to negative friction occurs as an additio
source of energy for the Brownian particle. Hence, slow p
ticles are accelerated while the motion of fast particles
damped.

For s0d2,g0c, we find no real-valued root of Eq.~32!.
This is the case of subcritical pumping, where the parti
will move more or less like a simple Brownian particl
However, given the existence of a nonzero momentump0 ,
i.e., for a supercritical pumping, the particle will be able
move in a ‘‘high velocity’’ or active mode @32,33#, which
displays several nontrivial features of motion, as will
shown by means of computer simulations in the next sect

B. Distribution function and dissipative potential

Due to the pumping mechanism discussed above, the
servation of energy clearly does not hold for the particle, i
we now have a nonequilibrium, canonical-dissipative syst
as discussed in Sec. II. This results in deviations from
known Maxwellian velocity distribution of an equilibrium
canonical system.

As pointed out in Sec. II B, the probability density for th
velocity r(p,t) obeys the Fokker-Planck Equation~11!,
which reads, for the special case of the dissipation funct
Eq. ~29!, and in the absence of an external potential,

]r~p,t !

]t
5

]

]p F S g02
d2s0

c1d2p2Dpr~p,t !1D
]r~p,t !

]p G .
~33!

We mention that Fokker-Planck equations with nonline
friction functions are discussed in detail in@34#.

The stationary solution of Eq.~33! is given by Eq.~20!,
which reads explicitly in the considered case
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r0~p!5C0 expS 2
G0~p2!

D D , ~34!

5C0S 11
d2p2

c D s0/2D

expS 2
g0

2D
p2D , ~35!

whereC0 results from the normalization condition.G0(p2)
is the special form of the dissipation potenti
G(I 0 ,I 1 ,I 2 ,...) considering onlyI 05H as the invariant of
motion, and furtherH as given by Eq.~21!. It reads explicitly

G~ I 0!5G0~p2!5g0

p2

2
2

s0

2
lnS 11

d2p2

c D . ~36!

Compared to the Maxwellian velocity distribution of simp
Brownian particles, a new prefactor appears now in Eq.~35!
that results from the additional pumping of energy. For
subcritical pumping,s0d2,cg0 , where we do not find a
real-valued root of the dissipation function, Eq.~29!, only a
unimodal velocity distributionresults, centered around th
maximump050. However, for supercritical pumping,s0d2
.cg0 , if the root of g(p2) is real, we find acraterlike ve-
locity distribution, which indicates strong deviations from
the Maxwell distribution@35#.

This is also shown in Fig. 2, which presents compu
simulations of the velocity distribution of 10 000 particle
after a sufficiently long time@only the x dimension of the
two-dimensional~2D! simulation is shown#. For the super-
critical case, two distinct peaks of the velocity distributio
are found at px5$20.63,10.63%. The values of these
maxima agree with the deterministic result for the station
velocity, Eq.~32!.

We note that non-Maxwellian velocity distributions fo
active motion have also been observed experimentally
cells, such as granulocytes@36,37#.

C. Mean squared displacement and stationary values

As Fig. 2 shows, the momentum distribution is center
aroundp50 both for subcritical and supercritical pumpin
If we consider a nearly spherical swarm of particles in t
two-dimensional spacer5$x,y% as in the computer simula
tions in this section, its center of mass, Eq.~23!, and mean
momentum, Eq.~24!, will come to rest. Thus they are no
affected by the pumping, but other quantities are, such as
mean squared displacement,

DR2~ t !5 K S 1

N ( @r i~ t !2r i~0!# D 2L . ~37!

In the limit of pure Brownian motion, it is known that th
mean squared displacement increases in time as

DR2~ t !54Drt, ~38!

where Dr5kBT/g05D/g0
2 is the spatial diffusion coeffi-

cient. Thus, Eq.~38! will be the lower limit for subcritical
pumping of the particles. On the contrary, in the case
0-5
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supercritical pumping it has been shown@35,38# that the
mean squared displacement will grow in time approximat
as

DR2~ t !5
2v0

4

D
t, ~39!

wherev0 is given by Eq.~32!. Consequently, the diffusion
coefficientDr in Eq. ~38! for the case of supercritical pump
ing has to be replaced by aneffectivespatial diffusion coef-
ficient,

Dr
eff5

v0
2

2D
5

1

2D S s0

g0
2

c

d2
D . ~40!

This result holds for noninteracting particles in the limit
relatively weak noise intensityD and/or strong pumping an
will therefore give an upper limit forDR2(t). We note the
high sensitivity with respect to noise expressed in the sca
with (1/D).

Figure 3 shows the mean squared displacement o
swarm of 2000 particles for the case of both subcritical a
supercritical pumping, together with the theoretical results

FIG. 2. Velocity distributionr(px) for a swarm of 10 000 par-
ticles att51000~i.e., in the stationary regime!. Only px of the 2D
simulation is shown. Top, subcritical pumpingd251.0; bottom, su-
percritical pumping,d2510.0. Other parameters:D51023, s0

510.0, g0520.0, c51.0. Initial conditions: r i(0)5$0.0,0.0%,
pi(0)5$0.0,0.0% for all particles.
02111
y
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Eqs.~38! and ~39!. We see that for long times the comput
simulations for supercritical pumping agree very well wi
Eq. ~39!.

Another quantity affected by the sub/supercritical pum
ing is the stationary velocityp0

25v0
2, Eq.~32!. In two dimen-

sions, these stationary velocities define a cylinder,px
21py

2

5p0
2, in the four-dimensional state space$x,y,px ,py% that

attracts all deterministic trajectories of the dynamic syst
@35#. Figure 4 shows the results of computer simulations
p2(t) for the case of supercritical pumping. The convergen
toward the theoretical result, Eq.~32!, can be clearly ob-
served.

IV. GLOBALLY COUPLED SWARMS

So far we have neglected any coupling within the man
particle ensemble. This leads to the effect that the swa
eventually disperses in the course of time, whereas a ‘‘re
swarm would maintain its coherent motion. A common w

FIG. 3. Mean squared displacementDR2(t), Eq. ~37! of a
swarm of 2000 particles as a function of time.~a! Supercritical
pumping,d2510.0,~b! subcritical pumping,d251.0.D51022, for
the other parameters and the initial conditions see Fig. 2. The a
tional curves give the theoretical results of Eq.~39! ~c! ~upper limit!
and Eq.~38! ~d! ~lower limit!.

FIG. 4. Averaged squared velocityp2(t)51/NSpi
2(t), Eq. ~26!,

of a swarm of 2000 particles as a function of time.D51024, for
the other parameters and the initial conditions; see Fig. 2. The d
dotted line gives the stationary velocity, Eq.~32!.
0-6



i
F
l
-

t

a

l-
s

th

n

ce
th

a

ct

ls
d

on
n
-

n
d
ss
en
m

ion
.
e
se

t of
c-

xis-
the

ls
l

o-
d 6,
rage
loc-
i-

f
s

Eq.
non-
nd

s-
, i.e.,

on-

STATISTICAL MECHANICS OF CANONICAL- . . . PHYSICAL REVIEW E 64 021110
to introduce correlations between the moving particles
physical swarm models is the coupling to a mean value.
example, in@1,2# the coupling of the particles’ individua
orientations~i.e., direction of motion! to the mean orienta
tion of the swarm is discussed. Other versions assume
coupling of the particles’ velocities to alocal average veloc-
ity, which is calculated over a space interval around the p
ticle @2,6#.

A. Coupling to the center of mass

In this paper, we are mainly interested inglobal couplings
of the swarm, which fit it into the theory of canonica
dissipative systems outlined in Sec. II. As the simplest ca
we may first discuss the global coupling of the swarm to
center of mass, Eq.~23!. That means the particle’s positionr i
is related to the mean position of the swarmR via a potential
U(r i ,R). For simplicity, we may assume a parabolic pote
tial

U~r i ,R!5
a

2
~r2R!2. ~41!

The harmonic potential generates a force directed to the
ter of mass that can be used to control the dispersion of
swarm. It reads, in the case considered,

“U~r !5a~r i2R!5
a

N (
j 51

N

~r i2r j !, ~42!

With Eq. ~42!, the corresponding Langevin Eq.~26! of the
many-particle system reads explicitly

ṗi52g~pi
2!pi2

a

N (
j 51

N

~r i2r j !1~2D !1/2ji~ t !. ~43!

Hence, in addition to the dissipation function there is now
attractive force between each two particlesi and j that de-
pends linearly on the distance between them. With respe
the harmonic interaction potential Eq.~41!, we call such a
swarm aharmonicswarm@39#.

Strictly speaking, the dynamical system of Eq.~43! is not
a canonical-dissipative one, but as shown in@31# it may be
reduced to this type by some approximations, which will a
be discussed below. We note that this kind of swarm mo
has been previously investigated in@3# for the one-
dimensional case, but with a different dissipation functi
g(p2), for which we use Eq.~29! again. Obviously, as show
in Sec. III B, swarming will occur only for supercritical con
ditions.

With the assumed coupling to the center of massR, the
motion of the swarm can be considered as a superpositio
two motions:~i! the motion of the center of mass itself, an
~ii ! the motion of the particles relative to the center of ma
Taking into account that the noise acting on the differ
particles is not correlated, the center of mass for the assu
coupling obeys a force-free motion,
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Ṙ5P, Ṗ52
1

N (
i 51

N

g~pi
2!pi ~44!

Because of the nonlinearities in the dissipation funct
g(p2) both motions~i! and ~ii ! cannot be simply separated
The termg(p2) vanishes only for two cases: the trivial on
that is free motion without dissipation/pumping, or the ca
of supercritical pumping wherepi

25p0
2, Eq. ~32! for each

particle. Then, the mean momentum becomes an invarian
motion, P(t)5P05const and the center of mass moves a
cording toR(t)5R(0)1P0(t). This behavior may also criti-
cally depend on the initial conditions of the particles,pi(0),
and shall be investigated in more detail now.

In @3# an approximation for the mean velocityP(t) of the
swarm in one dimension is discussed that shows the e
tence of two different asymptotic solutions depending on
noise intensityD and the initial momentumpi(0) of the par-
ticles. Below a critical noise intensityDc , the initial condi-
tion pi

2(0).p0
2 leads to a swarm the center of which trave

with a constant nontrivial mean velocity, while for the initia
conditionpi

2(0),p0
2 the center of the swarm is at rest.

We can confirm these findings by means of tw
dimensional computer simulations presented in Figs. 5 an
which show the mean squared displacement, the ave
squared velocity of the swarm, and the squared mean ve
ity of the center of mass for the two different initial cond
tions.

For ~a! pi
2(0).p0

2 we find a continuous increase o
DR2(t) @Fig. 5~a!#, while the velocity of the center of mas
reaches a constant value:P2(t)5@N21S ipi(t)#2→p0

2,
known as the stationary velocity of the force-free case,
~32!. The average squared velocity reaches a constant
trivial value, too, which depends on the noise intensity a
the initial conditions,pi

2(0).p0
2, i.e., on the energy initially

supplied~cf. Fig. 6 top!.
For ~b! pi

2(0),p0
2 we find that the mean squared di

placement after a transient time reaches a constant value
the center of mass comes to rest@Fig. 5~b!#, which corre-

FIG. 5. Mean squared displacementDR2(t), Eq. ~37! of a
swarm of 2000 particles coupled to the center of mass. Initial c
ditions: r i(0)5$0.0,0.0%, ~a! pi(0)5$1.0,1.0%, ~b! pi(0)
5$0.0,0.0%, for all particles. Parameters:a51, D51028, d2

510.0,s0510.0,g0520.0,c51.0.
0-7
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sponds toP2(t)→0 in Fig. 6~bottom!. In this case, however
the average squared velocity of the swarm reaches the kn
stationary velocity,p2(t)51/NSpi

2(t)→p0
2. Consequently,

in this case the energy provided by the pumping goes into
motion relative to the center of masswhile the motion of the
center of mass is damped out~cf. also @39#!. Thus, in the
following we want to investigate the relative motion of th
particles in more detail.

Using relative coordinates,$xi ,yi%[r i2R, the dynamics
of each particle in the two-dimensional space is described
four coupled first-order differential equations:

ẋi5pxi2Px ,

ṗxi2 Ṗx52g~pi
2!pxi2axi1~2D !1/2j i~ t !,

ẏi5pyi2Py ,

ṗyi2 Ṗy52g~pi
2!pyi2ayi1~2D !1/2j i~ t !. ~45!

For P50, i.e., for the initial conditionspi
2,p0

2 and suffi-
ciently long times, this dynamics is equivalent to the moti
of free ~or uncoupled! particles in a parabolic potentia
U(x,y)5a(x21y2)/2 with the origin $0, 0%. Thus, within
this approximation the system becomes a canoni
dissipative system again, in the strict sense used in Sec

Figure 7 presents computer simulations of Eq.~45! for the
relative motion of the particle swarm in the parabolic pote
tial @43#. ~Note that in this case all particles started from t
same position slightlyoutsidethe origin of the parabolic po
tential. This has been chosen in order to make the evolu
of the different branches more visible.! As the snapshots o

FIG. 6. Squared velocity of the center of mass,P2(t)
5@N21S ipi(t)#2 ~solid lines! and averaged squared velocityp2(t)
5N21Spi

2(t) ~dashed lines! for the simulations shown in Fig. 5
~top! initial conditions~a!, ~bottom! initial conditions~b!.
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the spatial dispersion of the swarm show, we find after
initial stage the occurrence of two branches of the swarm
results from aspontaneous symmetry break~cf. Fig. 7 top!.
These two branches will, after a sufficiently long time, mo
on two limit cycles~as already indicated in Fig. 7 bottom!.
One of these limit cycles refers to the left-handed, the ot
one to the right-handed direction of motion in the 2D spa
This finding also agrees with the the theoretical investi
tions of the deterministic case@31# that showed the existenc
of a limit cycle with the amplitude

r 05up0ua21/2, ~46!

provided the relations0d2.g0c is fulfilled. In the small
noise limit the radius of the limit cycles shown in Fig.
agrees with the value ofr 0 . Further, Fig. 6 has shown tha
the average squared velocityp2(t) of the swarm indeed ap
proaches the theoretical value of Eq.~32!.

The existence of two opposite rotational directions of t
swarm can be also clearly seen from the distribution of
angular momentaLi of the particles. Figure 8 shows th
existence of a bimodal distribution forr(L). ~The observant
reader may notice that each of these peaks actually con
of two subpeaks resulting from the initial conditions, whic
are still not forgotten att599.! Each of the main peaks i
centered around the theoretical value

FIG. 7. Snapshots~relative coordinates! of a swarm of 10 000
particles moving according to Eq.~45! with P50, ~top! t515, ~bot-
tom! t599. Initial conditions: $xi ,yi%5$0.5,0.0%, $pxi ,pyi%
5$0.0,0.0% for all particles. Parameters:a51, D51025, s0

510.0; c51.0; g0520, d2510.
0-8
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uL u5L05r 0p0 , ~47!

wherer 0 is given by Eq.~46! andp0 is given by Eq.~32!.
The emergence of the two limit cycles means that

dispersion of the swarm is kept within certain spatial bou
aries. This occurs after a transient time used to establish
correlation between the individual particles. In the sa
manner as the motion of the particles becomes correlated
motion of the center of mass is slowed down until it com
to rest, as already shown in Fig. 6.

This, however, is not the case if the initial conditio
pi

2(0).p0
2 are chosen. Then, the energy provided by

pumping does not go completely into the relative motion
the particles and the establishment of the limit cycles as
cussed above. Instead, the center of mass keeps movin
shown in Fig. 5, while the swarm itself does not establish
internal order. Figure 9 displays a snapshot of the rela
positions of the particles in this case~note the different scale
of the axes compared to Fig. 7!.

B. Coupling via mean momentum and mean angular
momentum

In the following we want to discuss two other ways
global coupling of the swarm that fit into the general fram

FIG. 8. Angular momentum distributionr(L) for a swarm of
10 000 particles att599. The figure refers to the spatial snapshot
the swarm shown in Fig. 7~bottom!.

FIG. 9. Snapshot~relative coordinates! of a swarm of 10 000
particles moving according to Eq.~45! at t599. Initial conditions:
$xi ,yi%5$0.5,0.0%, $pxi ,pyi%5$1.0,1.0% for all particles. Param-
eters see Fig. 7.
02111
e
-
he
e
he
s

e
f
s-
as

n
e

work of canonical-dissipative systems outlined in Sec.
There, we have introduced a dissipative poten
G(I 0 ,I1 ,I2 ,...) that depends on the different invariants
motion I i . So far, we have only consideredI 05H, Eq. ~21!
in the swarm model. If we additionally include the mea
momentumI15P, Eq. ~24! as the first invariant of motion
the dissipative potential may read

G~ I 0 ,I1!5(
i 51

N

G0~pi
2!1G1~P!, ~48!

G1~P!5
CP

2 S (
i 51

N

pi2NP1D 2

. ~49!

Here,G0(p2) is given by Eq.~36!. The stationary solution of
the probability distribution,r0(p) is again given by Eq.~20!.
In the absence of an external potentialU(r ), the Langevin
equation that corresponds to the dissipation potential of
~48! now reads

ṙ i5pi

ṗi52g~pi
2!pi2CPS ( pi2NP1D1~2D !1/2ji~ t !.

~50!

The termG1(P) is so chosen that it may drive the syste
towards the prescribed momentumP1 , where the relaxation
time is proportional toCP

21. If we have a vanishing dissipa
tion function, i.e.,g50 for pi

25p0
2, it follows from Eq.~50!

for the mean momentum

P~ t !5
1

N (
i 51

N

pi~ t !5P11@P~0!2P1#e2Cpt. ~51!

The existence of two termsG0 andG1 , however, could lead
to competing influences of the resulting forces, and a m
complex dynamics of the swarm results. As before, this m
also depend on the initial conditions, i.e.,P1

2>p0
2 or P1

2

<p0
2.

Figure 10 shows the squared velocity of the center
mass,P2(t) and the average squared velocity of the swa

f

FIG. 10. Squared velocity of the center of mass,P2(t)
5@N21S ipi(t)#2 ~solid lines! and averaged squared velocityp2(t)
5N21Spi

2(t) ~dashed lines! for the simulations shown in Fig. 11.
0-9
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FRANK SCHWEITZER, WERNER EBELING, AND BENNO TILCH PHYSICAL REVIEW E64 021110
p2(t) for P1
2<p0

2, We find an intermediate stage, where bo
velocities are equal, before the global coupling drives
mean momentumP towards the prescribed valueP1 , i.e.,
P2(t)→(P1x

2 1P1y
2 ). On the other hand,p2(t)→p0

2, as we
have found before for the force-free case and for the line
coupled case for similar initial conditions. The noticeab
decrease ofP2 after the initial time lag can be best unde
stood by looking at the spatial snapshots of the swarm p
vided in Fig. 11. Fort510, we find a rather compact swar
where all particles move into the same~prescribed! direction.
For t550, the correlations between the particles have
ready become effective, which means the swarm begin
establish a circular front, which, however, does not becom
full circle @44#. Eventually, we find again that the energ
provided by the pumping goes into the motion of the p
ticles relative to the center of mass, while the motion of
center of mass itself is driven by the prescribed moment

For the initial conditionP1
2>p0

2 the situation is different
again, as Fig. 12 shows. Apparently, both curves are the s
for a rather small noise intensity, i.e.,P2(t)5p2(t) are both
equal, but different fromp0

2, Eq. ~32!, and the prescribed
momentumP1

2. This can be only realized if all particle
move in parallel in the same direction. Thus, a snapsho
the swarm would much look like the top part of Fig. 11.

FIG. 11. Snapshots of a swarm of 2000 particles moving acc
ing to Eq. ~50!. ~top! t510, ~bottom! t550. Initial conditions:
$r xi ,r yi%5$0.0,0.0%, $pxi ,pyi%5$0.0,0.0% for all particles. Param-
eters: $P1x ,P1y%5$0.344,0.344%, Cp51023 D51028, s0510.0;
c51.0; g0520, d2510.
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Eventually, we may also use the second invariant of m
tion, I25L , Eq. ~25!, for a global coupling of the swarm. In
this case, the dissipative potential may be defined as follo

G~ I 0 ,I2!5(
i 51

N

G0~pi
2!1G2~L !, ~52!

G2~L !5
CL

2 S ( r i3pi2NL1D 2

, ~53!

whereG0(p2) is again given by Eq.~36!. The termG2(L )
shall drive the system to a prescribed angular momentumL1

with a relaxation time proportional toCL
21.

L1 can be used to break the symmetry of the swarm
wards a prescribed rotational direction. In Sec. IV A we o
served the spontaneous occurrence of left-hand and ri
hand rotations of a swarm of linearly coupled particle
Without an additional coupling, both rotational directions a
equally probable in the stationary limit. Considering both t
parabolic potentialU(r ,R), Eq. ~41!, and the dissipative po
tential, Eq.~52!, the corresponding Langevin equation m
now read

ṙ i5pi

ṗi52g~pi
2!pi2

a

N (
j 51

N

~r i2r j !1CLr i3S ( r i3pi2NL1D
1~2D !1/2ji~ t !. ~54!

The computer simulations shown in Fig. 13 clearly displa
unimodal distribution of the angular momentaLi of the par-
ticles, which can be compared to Fig. 8 without coupling
the angular momentum. Consequently, we find in the lo
time limit only one limit cycle corresponding to the move
ment of the swarm into the same rotational direction. T
radiusr 0 of the limit cycle is again given by Eq.~46!.

We would like to add that also in this case the dynam
depends on the initial conditionL1 . For simplicity, we have

d-

FIG. 12. Squared velocity of the center of mass,P2(t)
5@N21S ipi(t)#2 ~solid lines! and averaged squared velocityp2(t)
5N21Spi

2(t) ~dashed lines! for a swarm of 2000 particles moving
according to Eq.~50!. $P1x ,P1y%5$1.0,1.0%, for the other param-
eters and initial conditions see Fig. 11.
0-10
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assumed hereuL1u5L05r 0p0 , Eq. ~47! which is also
reached by the mean angular momentumL in the course of
time ~cf. Fig. 13!. For initial conditionsuL1u!L0 , there is of
course no need for the rotation ofall particles in the same
direction. Hence we observe both left- and right-handed
tations of the particles with different shares, so that the m
angular momentum is stillL→L1 . This results in a broade
distribution of the angular momenta of the particles inste
of the clear unimodal distribution shown in Fig. 13. For in
tial conditionsuL1u@L0 , on the other hand, the stable rot
tion of the swarm breaks down after some time, since
driving force L→L1 tends to destabilize the attractorL
→L0 . This effect will be investigated in a forthcoming pa
per, together with some combined effects of the differ
global couplings.

V. DISCUSSION

Finally, we can also combine the different global co
plings discussed above by defining the dissipation poten
as

G~ I 0 ,I1 ,I2!5G~p2,P,L !

5G0~p2!1G1~P!1G2~L !. ~55!

G0(p2) is given by Eq.~36!, G1(P) by Eq. ~49! andG2(L )
by Eq. ~53!. Considering further an additional—external
interaction—potential, the corresponding Langevin equat
can be written in the more general form

ṙ i5pi ,

ṗi52g~pi
2!pi2

]

]r i
@a0U~r ,R!#2

]

]pi
@a1~P2P1!2

1a2~L2L1!2#1~2D !1/2ji~ t !. ~56!

The mean momentumP and mean angular momentumL are
given by Eqs.~24! and~25!, whereas the constant vectorsP1
andL1 are used to break the spatial or rotational symme

FIG. 13. Angular momentum distributionr(L) for a swarm of
2000 particles att599. For comparison with Fig. 8, the paramete
initial conditions and snapshot times are the same as in Fig
Additional coupling:CL50.05,$L1z%5$0.4%.
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of the motion toward a preferred direction. The different co
stantsa i may determine whether or not the respective infl
ence of the conservative or dissipative potential is effecti
They further determine the time scale when the global c
pling becomes effective. The termg(p2), Eq. ~29!, on the
other hand, considers the energetic conditions for the ac
motion of the swarm, i.e., it determines whether the parti
of the swarm is able to ‘‘take off’’ at all.

The combination of the different types of coupling ma
lead to a rather complex swarm dynamics, as already in
cated in the examples discussed in this paper. In particu
we note that the different terms may have competing in
ences on the swarm, which would then lead to a ‘‘frustrate
dynamics with many possible attractors.

In this paper, we have basically restricted the investi
tion of the swarm dynamics to global couplings that fit in
~or can be reduced within some approximations to! the gen-
eral outline of canonical-dissipative systems. Finally,
want to add some comments on that. On one hand, i
possible to extend this kind of approach to other invariants
motion, thereby, e.g., covering previous investigations
swarms coupled via the mean orientation of the partic
@1,2#. On the other hand, we want to emphasize t
canonical-dissipative systems are a theoretical class of m
els, whereboth conservative and dissipative elements of t
dynamics are determined by invariants of the mechan
motion. Thus, from this perspective, a more realistic swa
dynamics may be also based on less restrictive assumpt

The advantage of using canonical-dissipative systems
framework for swarm dynamics is given by the fact that
many cases the rather complex dynamics can be mappe
an analytically tractable model. With the Hamiltonian theo
of many-particle systems as a starting point, we are abl
extend known solutions for conservative systems to nonc
servative systems. This allows us to construct a canoni
dissipative system, the solutions of which converge to
solution of the conservative system with given energy. T
means that for given initial conditions, we can predict t
asymptotic solution of the canonical-dissipative dynamics
means of the solutions of the Hamiltonian equations on
respective energy surfaces.

In addition to these theoretical considerations that hav
value of their own, we want to note that the framework
canonical-dissipative systems still covers important featu
of real ~biological! systems, such as energy takeup and d
sipation. The general description outlined in this paper
lows us to gradually add more and more complexity to
swarm model, thereby bridging the gap between a kno
~physical! dynamics and a more complex~biological! dy-
namics@39,40#. Some hints for this shall be given at the en

On the level of the ‘‘individual’’ particles, the key dynam
ics of the model is given by a modified Langevin equati
that, in addition to stochastic influences, also considers o
forces on the particle, resulting, e.g., from external pot
tials, interactions, use of stored energy@31#, or influences of
a self-consistent field@7,8# that already exceed the frame
work of canonical-dissipative systems.

The consideration of anexternalpotential also allows one
to model thespatial environmentof the swarm, for instance

,
7.
0-11
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to considerobstacles@30#. Additionally, we can also conside
that the pumping of energy for the particles is restricted
certain spatial domains that modelfood sources. In this case
the dissipation functiong(H) also becomes a spatial func
tion. Such an extension has been already discussed in@30,41#
and can also be implemented in the swarm model discu
here. Finally, we note that the genuine particle-based
proach to collective phenomena used in this paper is
restricted to biological systems, but is also applicable
.
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describing and simulating complex interactive systems i
wide range of applications, even in economics and so
systems@42#.
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