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Statistical mechanics of canonical-dissipative systems and applications to swarm dynamics
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We develop the theory of canonical-dissipative systems, based on the assumption that both the conservative
and the dissipative elements of the dynamics are determined by invariants of motion. In this case, known
solutions for conservative systems can be used for an extension of the dynamics, which also includes elements
such as the takeup/dissipation of energy. This way, a rather complex dynamics can be mapped to an analytically
tractable model, while still covering important features of nonequilibrium systems. In our paper, this approach
is used to derive a rather general swarm model that considettse energetic conditions of swarming, i.e., for
active motion, andb) interactions between the particles based on global couplings. We derive analytical
expressions for the nonequilibrium velocity distribution and the mean squared displacement of the swarm.
Further, we investigate the influence of different global couplings on the overall behavior of the swarm by
means of particle-based computer simulations and compare them with the analytical estimations.
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I. INTRODUCTION teria [9—11], the directed motion of antgl2—14 and the
coherent movement of celld5] have been described and
The collective motion of biological entities, like schools modeled by means of this kind of local coupling.
of fish, flocks of birds, herds of hoof animals, or swarms of But long-range or short-range coupling of the particles is
insects, has recently also attracted the interest of physicistenly one of the prerequisites that account for swarming. An-
Here, the question of how a long-range order between thether one is theactive motionof the particles. Of course,
moving entities can be established is of particular interestparticles can also move passively, driven by thermal noise,
Consequently, some of the more biologically centered quessy convection, currents or by external fields. This kind of
tions of swarming behavior, namely, questions about the readriving force, however, does not allow the particle to change
sons for swarming and the group size dependence, have bets direction of motion, velocity, etcitself. Recent models of
dropped so far in physical swarm models. The main focuself-drivenparticles that are used to simulate swarming be-
was rather on the emergence of coherent motion in &avior[5,16,17 usually just postulate that the entities move
“swarm” of locally or globally coupled particles. with a certain nonzero velocity, without considering #me
For the Coup"ng different assumptions have been proergeticimplications Of aCtiVe motion. In Ordel’ to dO SO, we
posed(cf. also Sec. IV, such as the coupling of the particles’ need to consider that the many-particle system is basically an
individual orientations(i.e., directions of motionto the  opensystem that is driven into nonequilibrium.
mean orientation of the swarfi,2], or the coupling of the ~ To this end, our approach to swarming is based on the
particle’s individual position to the mean positiécenter of ~ theory ofcanonical-dissipative systemibhis theory—which
mas$ of the swarm{3]. On the other hand, other local cou- is not so well known even among experts—results from an
plings have also been considered, such as the coupling of tifktension of the statistical physics of Hamiltonian systems to
particle’s individual velocity to a local average velocity @ Special type of dissipative system, the so-called canonical-
[2,4—6]. A different class of models further assumes a localdissipative systerfil8—24. The termdissipativemeans here
coupling of the particles via a self-consistent field that haghat the system is nonconservative and the teemonical
been generated by theii7,8]. This models the case of Means that the dissipative as well as the conservative parts of
chemical communication between the particles widely foundhe dynamics are both determined by a Hamilton function
in biology. For example, the streaming behavior of myxobac{©0r & larger set of invariants of motion; see Sec. Il for de-

tails).
This special assumption allows in many cases exact solu-
*Electronic address: schweitzer@gmd.de tions for the distribution functions of many-particle systems,
http://ais.gmd.déffrank/ even in far-from-equilibrium situations. This was known al-
TElectronic address: ebeling@physik.hu-berlin.de ready to pioneers such as Poingakadronov, and Bautin,
http://summa.physik.hu-berlin.de/tsd/ who gave exact solutions for a special class of nonlinear
*Electronic address: benno@theo2.physik.uni-stuttgart.de oscillators [25]. In recent work [26] the properties of
http://www.theo2.physik.uni-stuttgart.de/ canonical-dissipative systems were used to find exact solu-
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tions for dissipative systemia Toda lattices that are pumped dH
with free energy from external sources. The starting point EZ—Q(H)Z (
was the well-known Toda theory of soliton solutions in one- '
dimensional lattices with a special nonlinear potenaipo- .
nential for compression and linear for expangiai the Whether the total energy increases or decreases consequently
springs[27,28, which was then extended to a nonconserva-deépends on the form of the dissipation functg(). In the
tive system[18,22,23. In another work29] an application simplest case, we may consider a constant friction:
to systems of Fermi and Bose particles was given.

In this paper, we will apply the theory of canonical- g(H)=y0>0. )
dissipative systems to the dynamics of swarms. We start with
an outline of the general theory in Sec. II, describing first theAs long asg(H) is always positive, the energy always de-
deterministic and then the stochastic approach. As a first stegays.
towards the dynamics of swarms, in Sec. Il we investigate In a more interesting case the dissipative functigit)
the energetic conditionsof swarming, i.e., we discuss the has a root for a given enerdy; : g(E;)=0. Let us further
conditions for active motion and their impact on the distri- assume that at least in certain neighborhoodsathe func-
bution function and the mean squared displacement of théon g(H) is increasing. With these assumptions the states
particles. In Sec. IV we introducglobal interactionsbe-  with H<E; are pumped with energy due to the negative
tween the particles that may account for swarming, i.e., fodissipation, while energy is extracted from the states with
the maintenance ofoherentmotion of the ensemble. The H>E,. That means that any given initial state wikh(t
global interactions are chosen with respect to the generat0)<E,; will increase its energy until it reaches the shell
theory of canonical-dissipative systems. By means of comH(t)=E,, while any given initial state witiH(t=0)>E,
puter simulations we show how different kinds of couplingswill decrease its energy until the shéll(t)=E; is reached,
affect the overall behavior of the swarm. In Sec. V we con-too. Therefore, the solution of E¢4) converges to the en-

clude with some ideas on how to generalize the approacBrgy surfaceH=E,. On this surface the solution of E(B)

aH\?
—) : (4)

ap;

presented in this paper. agrees with one of the possible solutions of the original
Hamiltonian Eq.(1) for H=E;.
Il. GENERAL THEORY OF CANONICAL-DISSIPATIVE The simplest ansatz fay(H) with a rootg(H)=0 is a
SYSTEMS linear dissipation function:
A. Dynamics of canonical-dissipative systems g(H)=C(H—E,). 6)

Let us consider a mechanical many-particle system fvith
degrees of freedom=1,....f and with the Hamiltonian \jith respect to Eq(4) and the discussion above, it is obvi-
H(qs1 --a¢,p1 - -Pr). The corresponding equations of motion ous for this case that the process comes to rest when the shell
are H(t)=E; is reached. The relaxation time is proportional to

-1
dg oM dg JH the constanC ™ -.

= = (1) We note that the linear dissipation function E§) has
dt  op;” dt aq; found applications in Toda chaifig6]. Here, the fact that on
the shellH=E, the trajectory should obey the originabn-
Each solution of the system of equatiofis, servativecanonical dynamics has been used to derive exact
solutions for canonicadhissipativeToda systems.
pi=pi(t), gi=0q;(t), (2 A rather generahonlinearand nondecreasing dissipation

function, which has been proposed[28], reads
defines a trajectory on the plamé=E=const. This trajec-
tory is determined by the initial conditions, and also the en- (1+A)
ergy E=H(t=0) is fixed due to the initial conditions. We 9(H) =0~ 1T Aexp(BH) @
now construct a&anonical-dissipative systemith the same

Hamiltonian, whereg(H) denotes thalissipation function Here y,>0 represents the normal positive friction ang

>0 represents a kind of negative frictiot.is a dimension-
% _ ﬁ_ g(H) ﬁ (3) less constant and is a parameter denoting a reciprocal tem-
dt Jq; ap;’ perature. Fory,< vy, the friction is always positive, i.e., en-
ergy is extracted. For the opposite casg>vy,, we have
In order to elucidate this kind of canonical-dissipative dy-negative friction and the system is pumped with energy at
namics, we will consider different examples for the dissipa-east in some parts of the phase space. This allows one to
tion function in the following. In general, we will only as- drive the system into situations far from equilibrium. There-
sume thatg(H) is a nondecreasing function of the fore, in the following we may assumg > y,>0.

Hamiltonian. The canonical-dissipative system, E®) In the limit 3—0 andA— 0 the dissipative function Eq.
[18,22,23, does not conserve the energy because of the fol¢7) reduces to the linear case, H§), discussed above. On
lowing relation: the other hand, for small values gfand finite A we get
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(1+A) The derivative ofp® vanishes ifg(H) =0, which means that
g(H)= o~ YT FATABH’ (8)  the probability distribution is maximal at the surfa¢é
= El'
which yields g(H)— (yo— 1) <0 for H—0, and g(H) For the special case of a linear dissipation function, Eq.

— 1y, if H—. This way, the existence of a rog(E;) =0 is (6), we find the stationary solution:

always guaranteed.

Before investigating a special case fp{H) in Sec. Ill, p%(qy, --qs ,pl---pf)=Q1ex;{
let us introduce a generalization of the formalism. Instead of
a driving functiong(H) that depends only on the Hamil-
tonian, we may include the dependence on a larger set o
invariants of motion, ly,14,1,,...,ls, for example: (a)
Hamiltonian function of the many-particle systeig=H;
(b) total momentum of the many-particle systeins=P; (c)
total angular momentum of the many-particle systdm, functions for the many-particle system, such as thean
=L. The dependence on these larger sets of invariants m hergy '
be considered by defining adissipative potential

G(lg,l4,l5,...). Thecanonical-dissipation equation of mo- g( D)
tion, Eq.(3), is then generalized towards u=Q~ j dHJ(H)H exp(J dH’ i)

CH(2E,—H)

5D . (13

the limit of very strong pumping;i>E,, this probability
istribution reduces to a kind of microcanonical ensemble
corresponding to the enerdsy; .

The existence of exact solutions for the probability distri-
bution, Eq.(12), allows one to derive several thermodynamic

) (14)

dpi H G(lg,l1l5,...)

= (9) where the Jacobiad(H) is defined by
dt aq; ap;

da,---dgsdpy--dps=J(H)dH. (15
Using this generalized canonical-dissipative formalism, by
an appropriate choice of the dissipative potenBahe sys- | he entropyfollows from the Gibbs formula, which yields
tem may be driven to particular subspaces of the energy sufere
face, e.g., the total momentum or the angular momentum
may be prescribed. Different examples of this will be also S=+kgIn Q_kBJ dHJ(H)

discussed in Sec. IV.
_ g(H) f
1 ’
Q “ex p( D(H)) H'5EY D(H ) (16
We will now investigate an approach to the stationary

probabilities that is based on Langevin and Fokker-Planckurther, the system has a Lyapunov functiokalwhich is
equations. The Langevin equations are obtained by adding Rrovided by the Kullback entropy:
white noise tern¥;(t) to the deterministic Eq(3),

dp,  oH oH " K[p.p°]=fdql---dqfdpl---dquIn(p%). (17)
at a9 gy F[2DHITEE®D. (10

B. Stochastic theory of canonical-dissipative systems X

This gives explicitly

The essential assumption is that both the strength of the s H g(H)
noise, expressed in terms Df(H), and the dissipation, ex- K[p,po]=INQ— _+<f _>
pressed in terms of the friction functiar(H), depend only k o D(H)
on the HamiltoniarH.

With respect to Eq.(10), the corresponding Fokker- This functional is always nonincreasing.
Planck equation for the probability distribution If we want to generalize the description by means of the

(18)

p(d Py~ Py) P Y situation is more difficult. But at least if the noise strength
ap oH ap D(H) is a constant D =const), the corresponding Fokker-
— p'r?q. ErrT Planck equation
oH &p
p - —
—E “|9(H) p+D(H>ﬂ %) 2 Piag = ap; ap,
dG(lg,lq4,l5,... J
An exact stationary solution of Eqll) reads = E (O—lZ)er D ox (19
Ip; Ip; Ip;
p°(Qy+Gr Py P =Q Lex f dH’ g(H ) is still solvable. Due to the invariant character of the the
LR H')) left-hand side of Eq(19) disappears for all functions df,.

(12 Therefore, we have to search only for a function
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G(lg,l4,15,...), for which also the collision term disap- 20.0
pears. This way we find the stationary solution of Etp): YT
0.0 1 2
B G(lg,l1,15...) o
p°(dy ++ds,py P =Q " exp( T Db | -20.0 digsipation
20 @ i
20 % -40.0 Umping
The derivative of py vanishes if G(lg,l4,l5,...)=min,
which means that the probability is maximal on the attractor -60.0
of the dissipative motion.
-80.0 Yo—(d,8,/©)
Ill. ENERGETIC CONDITIONS OF SWARMING 0.0 0.5 1.0 1.5 2.0

In this section, we want to apply the general description P
outlined above to swarm dynamics. Basically, at a certain FIG. 1. Velocity-dependent dissipation functigtp?), Eq. (29)
level of abstraction a swarm can be viewed as a manyvs p. The velocity ranges for “pumpinglg(p?)<0] and “dissipa-
particle system with some additional coupling that wouldtion” [g(p?>0] are indicated. Parameterss=10.0, y,=20.0,
account for the typical correlated motion of the entities. Inc=1.0,d,=10.0.
addition, also some energetic conditions must be satisfied in
order to keep the swarm moving. Thastive motionof the ~ With g(H)=g(pi2) andD = const, the Langevin Eq10) for
particles with a nonzero velocity is another basic ingredieneach particlé reads, in the absence of an external potential,
for swarming. Since the conditions for active motion are
dropped in many of the currently discussed swarm models fi=pi, Pi=—9(py)pi+(2D) (1), (26)
[5,6,16, we first want to investigate the energetic conditions
of Swarming before turning to the second ingredient, CouWhere the Strengtﬁ) of the stochastic force results from the

pling of individual motion. Einstein relation

D= vyokgT, 2
A. Conditions for active motion Yo''s @7
If we omit interactions between the particles, the Hamil-WhereT is the temperature arig; is the Boltzmann constant.

tonian of the many-particle system is of the simple form For the dissipation functiog(p?), we use again the gen-

eral nonlinear ansatz of E7) in the limit of small values of
N pi2 B and finiteA, Eq. (8). By means of the substitutions
H=2 Hi=2 5. (21)
i=1 1

(1+A):C, '}’1(1+A):d250, BAZZdz, (28)

This allows one to reduce the description level from thegng withH of Eq. (21), Eq. (8) can be written in the form
N-particle distribution function to the one-particle distribu-

tion function, Sod>

9(P?) =70~
N
p(Gy Q. Py -pf)=i1;[1 pri.Pi), @2 We note that all noninteracting systems witk g(p?) are of
canonical-dissipative type.

where the variable; is now used for the space coordinate of ~Equation(29) agrees with the velocity-dependent nonlin-
the particlei, andp; stands for the momentum or,iii=1 is  €ar friction function previously used in a model of active

used in the following, for theelocityof the particle, respec- Brownian particle430,31. These are driven Brownian par-
tively. The center of mass of the swarm is defined as ticles that move due to the influence of a stochastic force, but

additionally are pumped with energy due to a velocity-
1 dependent dissipation functiog(p?), Eq. (29), which is
R= NZ i, (23)  plotted in Fig. 1.

The second term of the right-hand si@as) in Eq. (29),
which results from the pumping of energy, has been physi-
cally substantiated in our earlier wofB0,31. We have as-
sumed that the Brownian particles are able to take up energy

1 from the environment at a constant ratg which can be
P=—2 pi, (24 stored in an internal depa The internal energy can be
N converted to kinetic energy at a velocity-dependent rate
d(p)=d,p?, which results in an additional acceleration of
L=iz L-=£E (X, (25) the Brownian particle in the direction of movement. The
N "N AR value of the internal energy depot may be further decreased

whereas the mean momentunand the mean angular mo-
mentumL are defined as
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due to internal dissipation processes, described by the con- Go(p?)
stantc. Thus the resulting balance equation for the energy ~ p°(P)=Co exr{ - ) (34)
depot reads
d,p?| so/2 y
de _ 2 _ 70 2
g =S~ ce(t) ~dzpZe(t). (30 Col 1 of-pP ) 9

. . . 2
If we assume that the internal energy depot relaxes quickljVN€reCo results from the normalization conditioo(p®)

compared to the motion of the particle, we find the quasista’S the special form of the dissipation potential
tionary value G(lg,l1,15,...) considering onlyl;=H as the invariant of

motion, and furtheH as given by Eq(21). It reads explicitly

So
=, 31 2 5 d,p?
ctdp? ey G(lo)=eo<p2>=yo%—5°ln(1+ P

€o

) . (36)

which eventually leads to the second term of the rhs in Eq. . o _
(29). Compared to the Maxwellian velocity distribution of simple

Depending on the parameteys ,d,,s,C, the dissipation Brownian particles, a new_prefactor appears now in(B6)
function, Eq.(29), may have a zero, where the friction is just that results from the additional pumping of energy. For a
compensated by the energy supply. It reads in the consider&dibcritical pumping,sod,<cy,, where we do not find a

case real-valued root of the dissipation function, Eg9), only a
unimodal velocity distributiorresults, centered around the

, , S C maximumpy= 0. However, for supercritical pumpinggd,

po=vo=y—0— a4, (32 >cy,, if the root ofg(p?) is real, we find acraterlike ve-

locity distribution which indicates strong deviations from

We see that fop<pyg, i.e., in the range of small momentums the Maxwell distributior{ 35].

pumping due to negative friction occurs as an additional . Th|s.|s also shown n F'g.‘ 2.’ Wh'Ch presents computer
source of energy for the Brownian particle. Hence, slow par_S|mulat|ons of the velocity distribution of 10000 particles
. ! fter a sufficiently long timdonly the x dimension of the

ticles are accelerated while the motion of fast particles i ) . : -
damped P two-dimensional(2D) simulation is showh For the super-

For syd,< yoC, We find no real-valued root of Eq32). critical case, two distinct peaks of the velocity distribution

This is the case of subcritical pumping, where the particleare found atp,={—0.63:+0.63. The values of these

will move more or less like a simple Brownian particle. maxima agree with the deterministic result for the stationary

. . elocity, Eq.(32).
However, given the existence of a nonzero momenpym v . . o
i.e., for a supercritical pumping, the particle will be able to We note that non-Maxwellian velocity distributions for

move in a “high velocity” or active mode[32,33, which active motion have also been observed experimentally in

displays several nontrivial features of motion, as will bece"S’ such as granulocyt¢36,37.

shown by means of computer simulations in the next section.
C. Mean squared displacement and stationary values

B. Distribution function and dissipative potential As Fig. 2 shows, the momentum distribution is centered

Due to the pumping mechanism discussed above, the COﬁt_roundpzo both for subcritical and supercritical pumping.

servation of energy clearly does not hold for the particle, i.e.If w%_consm_ier ? nearly_sphencal_swr?rm of partlcle_s ml the
we now have a nonequilibrium, canonical-dissipative systenﬁwo' imensional space={x,y} as in the computer simula-

as discussed in Sec. II. This results in deviations from thé'©"S in this sectizon, it;llcenter of mass, ﬁa3), r?nd mean
known Maxwellian velocity distribution of an equilibrium momentum, Eq(24), will come 10 Test. T_us they are not
canonical system. affected by the pumping, but other quantities are, such as the

As pointed out in Sec. Il B, the probability density for the Mean squared displacement,
velocity p(p,t) obeys the Fokker-Planck Equatiofil),

which reads, for the special case of the dissipation function, ARz(t)=<
Eg. (29), and in the absence of an external potential,

1 2
N2 [n(t)—ri(on) > (37)

dp(p,t) 4 d,so dp(p,t) In the limit of pure Brownian motion, it is known that the
. a_p Yo~ szz pp(p,t)+D | mean squared displacement increases in time as
(33
AR?(t)=4Dt, (38

We mention that Fokker-Planck equations with nonlinear
friction functions are discussed in detail iB4]. where D,=kBT/y0:D/y§ is the spatial diffusion coeffi-

The stationary solution of Eq393) is given by Eq.(20), cient. Thus, Eq(38) will be the lower limit for subcritical
which reads explicitly in the considered case pumping of the particles. On the contrary, in the case of
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0.4

03t

02}

p(p,)

01}

-0.6 -0.3 0.0 0.3 0.6 t
P
X FIG. 3. Mean squared displacemeAR?(t), Eq. (37) of a
0.03 e swarm of 2000 particles as a function of tim@) Supercritical
pumping,d,=10.0,(b) subcritical pumpingd,=1.0.D=10"2, for

the other parameters and the initial conditions see Fig. 2. The addi-
tional curves give the theoretical results of E89) (c) (upper limif

0.02 and Eq.(38) (d) (lower limit).
L
%_ Egs.(38) and(39). We see that for long times the computer
001 | simulations for supercritical pumping agree very well with
) Eq. (39).
Another quantity affected by the sub/supercritical pump-
ing is the stationary velocitp3=v3, Eq.(32). In two dimen-
0

sions, these stationary velocities define a cylingérsp;
D =p3, in the four-d_irr_\e_nsiongl state spa{ne,y,px,py} that
x attracts all deterministic trajectories of the dynamic system

FIG. 2. Velocity distributionp(p,) for a swarm of 10000 par- Lol Figure 4 shows the results of computer simulations for
ticles att=1000(i.e., in the stationary regimeOnly p, of the 2D p(t) for the case O.f supercritical pumping. The convergence
simulation is shown. Top, subcritical pumpidg=1.0; bottom, su- toward the theoretical result, E¢32), can be clearly ob-
percritical pumping,d,=10.0. Other parameter®=10"3, s, Served.
=10.0, y,=20.0, ¢c=1.0. Initial conditions: r;(0)={0.0,0.Q,
p;i(0)={0.0,0.Q for all particles.

06 -03 00 03 06

IV. GLOBALLY COUPLED SWARMS

supercritical pumping it has been shoy®5,3§ that the So far we have neglected any coupling within the many-
mean squared displacement will grow in time approximatelyparticle ensemble. This leads to the effect that the swarm
as eventually disperses in the course of time, whereas a “real”
5,4 swarm would maintain its coherent motion. A common way
1%
AR2(t) = —t, (39
D 2,0
wherevg is given by Eq.(32). Consequently, the diffusion
coefficientD, in Eq. (38) for the case of supercritical pump- 1.5
ing has to be replaced by aifectivespatial diffusion coef-
ficient, =
, . N 1.0
v Sg C
M S= o - (40)
2D 2D \vy, d 0.5
This result holds for noninteracting particles in the limit of

relatively weak noise intensity) and/or strong pumping and 0.0 : ‘ ‘ :

will therefore give an upper limit foAR?(t). We note the 0 10 20 i 30 40 50

high sensitivity with respect to noise expressed in the scaling

with (1/D). FIG. 4. Averaged squared velocip?(t) = 1/N3 p(t), Eq.(26),
Figure 3 shows the mean squared displacement of gf a swarm of 2000 particles as a function of tinBe=10"*, for

swarm of 2000 particles for the case of both subcritical andhe other parameters and the initial conditions; see Fig. 2. The dash-

supercritical pumping, together with the theoretical results ofiotted line gives the stationary velocity, EG§2).
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to introduce correlations between the moving particles in
physical swarm models is the coupling to a mean value. For
example, in[1,2] the coupling of the particles’ individual
orientations(i.e., direction of motioin to the mean orienta-
tion of the swarm is discussed. Other versions assume the
coupling of the particles’ velocities tolacal average veloc-

ity, which is calculated over a space interval around the par-
ticle [2,6].

AR%(t)

A. Coupling to the center of mass

In this paper, we are mainly interestedgiobal couplings
of the swarm, which fit it into the theory of canonical- 10
dissipative systems outlined in Sec. Il. As the simplest case, t
we may first discuss the global coupling of the swarmto the g5 5 Mean squared displacemeaR2(t), Eq. (37) of a
center of massEq. (23). That means the particle’s position gy arm of 2000 particles coupled to the center of mass. Initial con-
is related to the mean position of the sweRwia a potential  gjtions: r,(0)={0.0,0.9, @ p;(0)={1.0,1.9, (b) p,(0)
U(r;,R). For simplicity, we may assume a parabolic poten-=10.0,0.9, for all particles. Parametersa=1, D=10"%, d,
tial =10.0,5,=10.0, y,=20.0,c=1.0.

2 103

10

a
U(ri,R)=§(r—R)2. (41)

Z| -

N
R=P, P=-52 9(pP)p (44)
The harmonic potential generates a force directed to the ceny

. ; 3ecause of the nonlinearities in the dissipation function
ter of mass that can be used to control the dispersion of ths(pg) both motions(i) and (ii) cannot be simply separated
swarm. It reads, in the case considered, )

The termg(p?) vanishes only for two cases: the trivial one
N that is free motion without dissipation/pumping, or the case
S (1) 42 of supercritical pumping wherg?=p2, Eq. (32) for each
= particle. Then, the mean momentum becomes an invariant of
motion, P(t) =Py=const and the center of mass moves ac-
cording toR(t) =R(0)+ Py(t). This behavior may also criti-
cally depend on the initial conditions of the particleg,0),
and shall be investigated in more detail now.

In [3] an approximation for the mean veloci(t) of the
. a swarm in one dimension is discussed that shows the exis-
pi=—9(p))pi— Nzl (ri=r)+(2D)"% 1. (43 tence of two different asymptotic solutions depending on the

noise intensityD and the initial momenturp;(0) of the par-

. . L : : ticles. Below a critical noise intensity ., the initial condi-
Hence, in addition to the dissipation function there is now an[ion pi2(0)>p(2) leads to a swarm the center of which travels

attractive force between each two particleandj that de- . g ; . .
pends linearly on the distance between them. With respect t\glth a constant nontrivial mean velocity, while for the initial

the harmonic interaction potential E¢1), we call such a conditionp; (0)<'_30 the center of _the swarm IS at rest.
swarm aharmonicswarm[39]. We can confirm these findings by means of two-

Strictly speaking, the dynamical system of E4@) is not dimensional computer simulations presented in Figs. 5 and 6,
a canonical-dissipative one, but as showr3d] it may be which show t_he mean squared displacement, the average
reduced to this type by some approximations, which will alsg>duared velocity of the swarm, and the squared mean veloc-
be discussed below. We note that this kind of swarm modéfy Of the center of mass for the two different initial condi-
has been previously investigated i8] for the one- tUONS. ) ) _ _ _
dimensional case, but with a different dissipation function For (@ pi(0)>py we find a continuous increase of
g(p?), for which we use Eq29) again. Obviously, as shown AR(t) [Fig. 5@)], while the velocity of the center of mass
in Sec. 111 B, swarming will occur only for supercritical con- '€aches a constant valueP?(t)=[N"'%;p;(t)]°—p;,
ditions. known as the stationary velocity of the force-free case, EQ.
With the assumed coupling to the center of mRsghe  (32). The average squared velocity reaches a constant non-
motion of the swarm can be considered as a superposition @fivial value, too, which depends on the noise intensity and
two motions:(i) the motion of the center of mass itself, and the initial conditionsp?(0)>p3, i.e., on the energy initially
(ii) the motion of the particles relative to the center of masssupplied(cf. Fig. 6 top.
Taking into account that the noise acting on the different For (b) pi2(0)< pS we find that the mean squared dis-
particles is not correlated, the center of mass for the assumgalacement after a transient time reaches a constant value, i.e.,
coupling obeys a force-free motion, the center of mass comes to r¢Big. 5b)], which corre-

VuU(r)=a(r,—R)=

Z|

With Eq. (42), the corresponding Langevin E(R6) of the
many-particle system reads explicitly

N
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FIG. 6. Squared velocity of the center of masB2(t) 10 |
=[N"13;p;(t)]? (solid lineg and averaged squared velocji§(t)
:Nflipiz(t) (dashed linesfor the simulations shown in Fig. 5:
(top) initial conditions(a), (bottom initial conditions(b). 2.0 . . ,
-2.0 -1.0 0.0 1.0 2.0

sponds tdP2(t)—0 in Fig. 6(bottom. In this case, however, X

the average squared velocity of the swarm reaches the known giG, 7. Snapshotgrelative coordinatesof a swarm of 10 000
stationary velocity,p?(t) = 1/NS p?(t)—p3. Consequently, particles moving according to EG5) with P=0, (top) t=15, (bot-
in this case the energy provided by the pumping goes into theem) t=99. Initial conditions: {x;,y;}={0.5,0.Q, {pxi.pyi}
motionrelative to the center of masghile the motion of the  ={0.0,0.0 for all particles. Parametersa=1, D=10"5, s,
center of mass is damped o(df. also[39]). Thus, in the =10.0;c=1.0; y,=20,d,=10.

following we want to investigate the relative motion of the
particles in more detail. the spatial dispersion of the swarm show, we find after an

Using relative coordinate$x; ,y;}=r;—R, the dynamics initial stage the occurrence of two branches of the swarm that
of each particle in the two-dimensional space is described b§esults from aspontaneous symmetry breai. Fig. 7 top.

four coupled first-order differential equations: These two branches will, after a sufficiently long time, move
on two limit cycles(as already indicated in Fig. 7 bottgm

Xi = Pyi— Px, One of these limit cycles refers to the left-handed, the other

one to the right-handed direction of motion in the 2D space.

Pyi— Px=—0(p?)pyi—ax+ (2D) V2 (1), This finding also agrees with the the theoretical investiga-

tions of the deterministic cagé1] that showed the existence
of a limit cycle with the amplitude

ro=|pola *? (46)

Yi=Pyi— Py,

Pyi— Py=—0(P))pyi—ayi+(2D)"%(1). (45
provided the relationsyd,> yoc is fulfilled. In the small

For P=0, i.e., for the initial conditionspi2< pg and suffi-  noise limit the radius of the limit cycles shown in Fig. 7
ciently long times, this dynamics is equivalent to the motionagrees with the value af,. Further, Fig. 6 has shown that
of free (or uncoupledl particles in a parabolic potential the average squared velocipy(t) of the swarm indeed ap-
U(x,y)=a(x2+y?)/2 with the origin{0, 0. Thus, within  proaches the theoretical value of E§2).
this approximation the system becomes a canonical- The existence of two opposite rotational directions of the
dissipative system again, in the strict sense used in Sec. llswarm can be also clearly seen from the distribution of the

Figure 7 presents computer simulations of &%) for the  angular momentd.; of the particles. Figure 8 shows the
relative motion of the particle swarm in the parabolic poten-existence of a bimodal distribution f@i(L). (The observant
tial [43]. (Note that in this case all particles started from thereader may notice that each of these peaks actually consists
same position slightlyputsidethe origin of the parabolic po- of two subpeaks resulting from the initial conditions, which
tential. This has been chosen in order to make the evolutioare still not forgotten at=99.) Each of the main peaks is
of the different branches more visibléAs the snapshots of centered around the theoretical value
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FIG. 8. Angular momentum distributiop(L) for a swarm of

-0.3 0.3

-0.6

10 000 particles at=99. The figure refers to the spatial snapshot of —

the swarm shown in Fig. {bottom).

IL|=Lo=ropo, (47)

wherer is given by Eq.(46) andp, is given by Eq.(32).
The emergence of the two limit cycles means that th
dispersion of the swarm is kept within certain spatial bound

aries. This occurs after a transient time used to establish tt}ﬁ
correlation between the individual particles. In the same
manner as the motion of the particles becomes correlated, the
motion of the center of mass is slowed down until it comes

to rest, as already shown in Fig. 6.
This, however, is not the case if the initial conditions

p?(0)>p3 are chosen. Then, the energy provided by the
pumping does not go completely into the relative motion of
the particles and the establishment of the limit cycles as dis-

cussed above. Instead, the center of mass keeps moving

PHYSICAL REVIEW E 64 021110
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FIG. 10. Squared velocity of the center of madd?(t)
=[N"13;pi(1)]? (solid lineg and averaged squared velocji§(t)

N~13p?(t) (dashed linesfor the simulations shown in Fig. 11.

work of canonical-dissipative systems outlined in Sec. Il.
There, we have introduced a dissipative potential
G(lg,lq,l,,...) that depends on the different invariants of
motion|;. So far, we have only considerég=H, Eq. (21

&n the swarm model. If we additionally include the mean

momentuml =P, Eq. (24) as the first invariant of motion,

e dissipative potential may read

N

G(lo,m:; Go(p)) +G4(P), (48)
C N 2
Gl<P>=7P(§1 pi—Npl) . (49

BRre,Gy(p?) is given by Eq(36). The stationary solution of

shown in Fig. 5, while the swarm itself does not establish anpq probability distributionp®(p) is again given by Eq20).

internal order. Figure 9 displays a snhapshot of the relativ
positions of the particles in this cageote the different scales
of the axes compared to Fig).7

B. Coupling via mean momentum and mean angular
momentum

In the following we want to discuss two other ways of
global coupling of the swarm that fit into the general frame-

0.2
041 |
> 00}
-0.1
02,2 201 0.0 0.1 0.2
X

FIG. 9. Snapshofrelative coordinatgsof a swarm of 10 000
particles moving according to E¢45) at t=299. Initial conditions:
{xi,¥i}={0.5,0.Q, {pyi.pyi}=1{1.0,1.Q for all particles. Param-
eters see Fig. 7.

¥n the absence of an external potentif(r), the Langevin

equation that corresponds to the dissipation potential of Eq.
(48) now reads

fi=pi

pi= —g(p?)pi—cp(E pi—NPl) +(2D)Y24(1).
' (50)

The termG4(P) is so chosen that it may drive the system
towards the prescribed momentuPp, where the relaxation
time is proportional tcC;l. If we have a vanishing dissipa-
tion function, i.e.g=0 for p?=p3, it follows from Eq.(50)

for the mean momentum

N
P(t)= ;1 pi(t)=Py+[P(0)—P,Je . (51)

Z| -

The existence of two termS, andG,, however, could lead
to competing influences of the resulting forces, and a more
complex dynamics of the swarm results. As before, this may
also depend on the initial conditions, i.®i=p3 or P3
<p3.

Figure 10 shows the squared velocity of the center of
mass,P2(t) and the average squared velocity of the swarm
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rX
0.0 FIG. 12. Squared velocity of the center of madd?(t)
) " ' =[N"12;pi(t)]? (solid lineg and averaged squared velocji§(t)
e = N‘lﬁpiz(t) (dashed linesfor a swarm of 2000 particles moving
200 - 1 according to Eq(50). {P4,P;,}={1.0,1.Q, for the other param-
eters and initial conditions see Fig. 11.
10.0 |
N Eventually, we may also use the second invariant of mo-
0.0 | : tion, I,=L, Eq.(25), for a global coupling of the swarm. In
this case, the dissipative potential may be defined as follows:
-10.0 N
00 L G(lo,l2)=2, Go(P))+Ga(L), (52)
~200 -100 00 100 200 300 .
r, 2
G(L)—& > rixpi—NL (53
FIG. 11. Snapshots of a swarm of 2000 particles moving accord- 2A=)7 9 i Pi 1

ing to Eq. (50). (top) t=10, (bottom) t=50. Initial conditions:
{ri ryit={0.0,0.9, {pyi,pyi}=1{0.0,0.¢ for all particles. Param- whereGy(p?) is again given by Eq(36). The termG,(L)
eters:{Py,,P,}={0.344,0.34}4, C,=10"° D=10%, 5,=10.0;  shall drive the system to a prescribed angular momeritym
€=1.0; y=20, d,=10. with a relaxation time proportional 16, *.

L, can be used to break the symmetry of the swarm to-
p(t) for P?<p?, We find an intermediate stage, where bothwards a prescribed rotational direction. In Sec. IV A we ob-

velocities are equal, before the global coupling drives the€"ved the spontaneous occurrence of left-hand and right-

mean momentunP towards the prescribed value,, i.e., C\"/i_?hd rtotatlogz_t_of al swarlr_n OL Iltr;]eartlyt_cou:a(lje_d |f:_art|cles.
P2(t)H(P"fX+P§y). On the other handp(t)— pZ, as we ithout an additional coupling, both rotational directions are

have found before for the force-free case and for the Iinearl)ggl::tl)lgligrgg?ebnl(;a'lz E?eRs)tatézn?‘Pll)“g]r']ta ?hoenZ'g;rl';;%\?grot_he

coupled case for similar initial conditions. The noticeabletential Eq.(52), the corresponding Langevin equation ma
decrease oP? after the initial time lag can be best under- NOW réadq. ' P 9 9 q y

stood by looking at the spatial snapshots of the swarm pro-

vided in Fig. 11. Foit= 10, we find a rather compact swarm F=p

where all particles move into the sarfprescribegldirection.

For t=50, the correlations between the particles have al- a N

ready become effective, which means the swarm begins t®;=—g(p?)pi— NE (ri=r))+Cpr;X > rixpi—NL;

establish a circular front, which, however, does not become a =1

full circle [44]. Eventually, we find again that the energy 124

provided by the pumping goes into the motion of the par- +(2D)7& (). (64

ticles relative to the center of mass, while the motion of therpe computer simulations shown in Fig. 13 clearly display a

center of mass itself is driven by the prescribed momentumynimodal distribution of the angular momeritaof the par-
For the initial ConditionP2> pg the situation is different tic|eS, which can be Compared to F|g 8 without Coup”ng to

again, as Fig. 12 shows. Apparently, both curves are the samBe angular momentum. Consequently, we find in the long

for a rather small noise intensity, i.€27(t)=p*(t) are both  time limit only one limit cycle corresponding to the move-

equal, but different fromp3, Eq. (32), and the prescribed ment of the swarm into the same rotational direction. The

momentum Pi. This can be only realized if all particles radiusr of the limit cycle is again given by Eq46).

move in parallel in the same direction. Thus, a snapshot of We would like to add that also in this case the dynamics

the swarm would much look like the top part of Fig. 11.  depends on the initial condition,. For simplicity, we have
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0.15 T of the motion toward a preferred direction. The different con-
stantsa; may determine whether or not the respective influ-
ence of the conservative or dissipative potential is effective.
They further determine the time scale when the global cou-
pling becomes effective. The terg(p?), Eq. (29), on the
other hand, considers the energetic conditions for the active
motion of the swarm, i.e., it determines whether the particle
0.05 ¢ 1 of the swarm is able to “take off” at all.

The combination of the different types of coupling may
lead to a rather complex swarm dynamics, as already indi-
cated in the examples discussed in this paper. In particular,

0.10

p(L)

0.00 06 -03 00 03 06 we note that the different terms may have competing influ-
L ences on the swarm, which would then lead to a “frustrated”
dynamics with many possible attractors.
FIG. 13. Angular momentum distribution(L) for a swarm of In this paper, we have basically restricted the investiga-

2000 particles at=99. For comparison with Fig. 8, the parameters, tion of the swarm dynamics to global couplings that fit into
initial conditions and snapshot times are the same as in Fig. T(or can be reduced within some approximationsthe gen-
Additional coupling:C; =0.05,{L,,}={0.4. eral outline of canonical-dissipative systems. Finally, we
want to add some comments on that. On one hand, it is
assumed hergL|=Lo=ropy, EQ. (47) which is also possible to extend this kind of approach to other invariants of
reached by the mean angular momentunm the course of motion, thereby, e.g., covering previous investigations of
time (cf. Fig. 13. For initial conditiongL ;|<L,, there is of swarms coupled via the mean orientation of the particles
course no need for the rotation efl particles in the same [1,2]. On the other hand, we want to emphasize that
direction. Hence we observe both left- and right-handed rocanonical-dissipative systems are a theoretical class of mod-
tations of the particles with different shares, so that the meaals, whereboth conservative and dissipative elements of the
angular momentum is still —L,. This results in a broader dynamics are determined by invariants of the mechanical
distribution of the angular momenta of the particles insteadnotion. Thus, from this perspective, a more realistic swarm
of the clear unimodal distribution shown in Fig. 13. For ini- dynamics may be also based on less restrictive assumptions.
tial conditions|L,|>L,, on the other hand, the stable rota- The advantage of using canonical-dissipative systems as a
tion of the swarm breaks down after some time, since théramework for swarm dynamics is given by the fact that in
driving force L—L; tends to destabilize the attracttr  many cases the rather complex dynamics can be mapped to
—Lg. This effect will be investigated in a forthcoming pa- an analytically tractable model. With the Hamiltonian theory
per, together with some combined effects of the differentof many-particle systems as a starting point, we are able to
global couplings. extend known solutions for conservative systems to noncon-
servative systems. This allows us to construct a canonical-
V. DISCUSSION dissipative system, the solutions of which converge to the
solution of the conservative system with given energy. That
Finally, we can also combine the different global cou-means that for given initial conditions, we can predict the
plings discussed above by defining the dissipation potentiadsymptotic solution of the canonical-dissipative dynamics by

as means of the solutions of the Hamiltonian equations on the
) respective energy surfaces.
G(lo,l1,12)=G(p%,P.L) In addition to these theoretical considerations that have a
=Go(p2)+G1(P)+GZ(L). (55) value of their own, we want to note that the framework of

canonical-dissipative systems still covers important features
Go(p?) is given by Eq.(36), G,(P) by Eq.(49) andG,(L) of real (biological systems, such as energy takeup and dis-
by Eq. (53). Considering further an additional—external or Sipation. The general description outlined in this paper al-
interaction—potential, the corresponding Langevin equatiodows us to gradually add more and more complexity to the

can be written in the more general form swarm model, thereby bridging the gap between a known
(physica) dynamics and a more complgbiologica) dy-
ri=pi, namics[39,40. Some hints for this shall be given at the end.

On the level of the “individual” particles, the key dynam-

J 9 ics of the model is given by a modified Langevin equation
pi=—9(p))pi— o LU (rR)]— = —[ay (P~ P;)? that, in addition to stochastic influences, also considers other
' Pi forces on the particle, resulting, e.g., from external poten-
+ay(L—Lq)2]+(2D)Y2&(1). (56) tials, interactions, use of stored enef@y], or influences of

a self-consistent field7,8] that already exceed the frame-
The mean momentur® and mean angular momentumare  work of canonical-dissipative systems.
given by Eqs(24) and(25), whereas the constant vectdéts The consideration of aexternalpotential also allows one
andL, are used to break the spatial or rotational symmetryto model thespatial environmenof the swarm, for instance
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to considemobstacleg30]. Additionally, we can also consider describing and simulating complex interactive systems in a
that the pumping of energy for the particles is restricted towide range of applications, even in economics and social
certain spatial domains that modebd sourcesin this case  systemdq42].

the dissipation functiomg(H) also becomes a spatial func-

tion. Such an extension has been already discusd&djA1]

and can also be implemented in the swarm m.odel discussed ACKNOWLEDGMENTS

here. Finally, we note that the genuine particle-based ap-

proach to collective phenomena used in this paper is not The authors thank J. Dunkel and U. Erdmann for discus-
restricted to biological systems, but is also applicable forsions.
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