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Fluctuations in the presence of fields: Phenomenological Gaussian approximation
and a class of thermodynamic inequalities

S. Dumitru* and A. Boer†
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The fluctuations of thermodynamic systems in the presence of the fields are considered. The approach is of
phenomenological nature and developed in a Gaussian approximation. The cases of a magnetizable continuum
in a magnetoquasistatic field, as well as the so called discrete systems are used to exemplify the study. In the
latter case one finds that the fluctuation estimators depend both on the intrinsic properties of the system and on
the characteristics of the environment. Following earlier ideas of one of the authors we present a class of
thermodynamic inequalities for the systems investigated in this paper. In the case of two variables these
inequalities are nonquantum analogs of the well known quantum Heisenberg ‘‘uncertainty’’ relations. In this
context, the fluctuation estimators support the idea that Boltzmann’s constantk has the signification of a
generic indicator of stochasticity for thermodynamic systems.

DOI: 10.1103/PhysRevE.64.021108 PACS number~s!: 05.20.2y, 05.40.2a, 05.70.2a, 41.20.Gz
te

es
n
p
w

t
ys
w

ar
riz
ir
b
o

og
t
o
n
pr

ra
se

n
ne
n

re
es
o

ne

ith

re

ity

y

t is

s
s
can

di-

of

ri-
I. INTRODUCTION

The literature from the last decades promoted some in
esting attempts@1–6# in order @4# ‘‘to formulate a compre-
hensive and unified theory of thermodynamics in the pr
ence of fields.’’ These attempts approached the descriptio
the thermodynamic systems only in terms of macrosco
quantities regarded as deterministic variables, unendo
with fluctuations.

On the other hand it is a well established fact that, due
their inner microscopic structure, the thermodynamic s
tems must be characterized by means of variables endo
with fluctuations. The mean values of the respective v
ables coincide with macroscopic quantities that characte
ordinary thermodynamics. The alluded fluctuations requ
description in terms of some additional concepts of proba
listic nature~e.g., dispersions, correlations, higher order m
ments!. Such a description can be done in a phenomenol
cal or in a statistical-mechanics manner. In this paper we
to develop a description of fluctuations specific for therm
dynamic systems in the presence of fields. Our descriptio
done in a phenomenological manner. We resort to usual
cedures of phenomenological theory@2,4,7,8# and use some
ideas inspired by our earlier works on fluctuations@9,10#.

We start a search for a first approximation of the gene
ized distribution of fluctuation probabilities. For this we u
the concept of adequate internal energy inspired by Ref.@4#.
A first application is focused on the second order mome
for the fluctuations in magnetizable continuum in a mag
toquasistatic field. Next we investigate briefly the questio
connected with fluctuations in discrete systems in the p
ence of a magnetic field. By using the results of this inv
tigation we introduce in the next section a class of therm
dynamic inequalities, in a manner similar to the o
developed in Ref.@9#.

*Email address: s.dumitru@unitbv.ro
†Email address: boera@unitbv.ro
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II. GENERAL THEORETICAL CONSIDERATIONS

The phenomenological theory of fluctuations deals w
real and continuous variables endowed with anad hocsto-
chasticity~without any reference to the microscopic structu
of the thermodynamic systems!. For small fluctuations in the
proximity of equilibrium states the corresponding probabil
density is given@2,7,8# by

w;expH dS8

k J , ~1!

wheredS85S8(x)2S8( x̄) denotes the deviation of entrop
from its mean due to the fluctuations,x signifies the set of
macroscopic variables characterizing the system, withx̄ be-
ing its equilibrium mean~or expectation!, and k is Boltz-
mann’s constant. The variationdS8, which refers to the en-
semble of thermodynamic system and its environmen
given by

dS852
dWmin

Teq
, ~2!

where Teq5equilibrium temperature anddWmin5minimal
work of fluctuations.

Note that in Eq.~1! as well as in all subsequent formula
for the probability densityw we are omitting the constant
that precede the exponential functions. These constants
readily be determined by imposing the normalization con
tion for w.

Let us focus our attention on systems in the presence
fields ~as they are viewed in Refs.@4–6#!. We introduce the
work dWmin through the relation

dÛ5(
r

ĵ r dYr1(
l

C l dZl1dWmin ~3!

with the following notations:dA is the variation~due to the
fluctuations! of the variableA; Û is the internal energy in the
presence of fields;ĵ r are the field dependent intensive va
©2001 The American Physical Society08-1
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S. DUMITRU AND A. BOER PHYSICAL REVIEW E64 021108
ables~e.g. ĵ15T is the temperature, while2 ĵ25 p̂ and ĵ3

5 ẑ denote the field dependent pressure and chemical po
tial!; Yr is the conventional extensive thermodynamic va
ables~e.g., entropyS, volumeV, number of particlesN); C l
andZl denote the additional parameters due to the prese
of fields ~e.g.,C5VH, Z5B for the case of magnetic field
of strengthH and inductionB).

Note that generally the quantitiesC l are not intensive
conjugates ofZl .

In Eq. ~3! Û depends onYr andZl , so that its total dif-
ferential is given by

dÛ5(
r

ĵ r dYr1(
l

C l dZl . ~4!

For the sake of brevity we introduce the following com
pacted notation $Yr%ø$Zl%5de f$h i% and $ĵ r%ø$C l%

5
de f

$F i %. Hence, in accordance with Eq.~4!,

F i5S ]Û

]h i
D

eq

, ~5!

where the index eq denotes the equilibrium value of the
dexed quantity.

The second order approximation ofdÛ in terms of the
variationsdh i can be written as

dÛ5(
i

S ]Û

]h i
D

eq

dh i1
1

2 (
i , j

S ]2Û

]h i ]h j
D

eq

dh i dh j

5(
i

F i dh i1
1

2 (
i

S (
j

]F i

]h j
dh j D dh i

5(
i

F i dh i1
1

2 (
i

dF i dh i . ~6!

Using the relations~2!–~6! in conjunction with Eq.~1!,
one obtains

w;expH 2
1

2kT (
i

dF i dh iJ . ~7!

In this relation as well as in all the subsequent ones
symbolize the equilibrium temperature simply withT @in-
stead ofTeq used in Eq.~2!#.

For a given system, due to their physical nature, the v
ables from the sets$F i % and $h i% are generally interdepen
dent. However one can always select instead a restrictive
of physically independent variables$Xa%a51

n . This tran-
scribes Eq.~7! into the following multivariable Gaussian dis
tribution,

w;expH 2
1

2 (
a51

n

(
b51

n

aab dXa dXbJ , ~8!

where
02110
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aab5
1

kT (
j

S ]F j

]Xa
D

eq
S ]h j

]Xb
D

eq

~9!

can be identified as the field dependent elements of a ma
a.

Note that in the Gaussian distribution~8! the quantities
$Xa% are considered as continuous variables, in the ran
(2`,`).

The variables$Xa% used in Eq.~8! are characterized by
the correlations

Cab5dXa dXb5~a21!ab . ~10!

Here (a21)ab denote the elements of the inverse matrix ofa

given by Eq.~9!, while the over bar inF̄ signifies the expec-
tation value of the quantityF defined as

F̄5E F~$Xa%!w~$Xa%!)
b

dXb .

For any set of quantities$Qm% expressible in terms o
independent variables$Xa% @i.e., Qm5Qm(Xa)# the fluctua-
tions are characterized by the correlations

Cms5(
a

(
b

S ]Qm

]Xa
D

eq
S ]Qs

]Xb
D

eq

~a21!ab . ~11!

If m5s then the correlationCmm5Dm denote just the
dispersion of fluctuations for the quantityQm .

As in the case of fluctuations in the absence of fields@9#
the correlations~11! constitute a real, symmetric and non
negative definite matrix. Hence,

detF(
a

(
b

S ]Qm

]Xa
D

eq
S ]Qs

]Xb
D

eq

~a21!abG>0. ~12!

Application of the above description for fluctuations
the presence of fields requires the following steps.

~1! To establish the adequate expression~4! for the total
differential dÛ of the internal energy~to this end the results
from @4–6# are highly recommendable!.

~2! To evaluate the minimal workdWmin of fluctuations
by using Eq.~3!.

~3! To identify the set of the independent variables$Xa%.
~4! To account for the adequate equations of state

thermodynamic Maxwell relations~e.g., such as those give
by @2,5–8#!.

~5! To compute the correlationsCms through relation~10!
or ~11!.

~6! To formulate relevant field dependent thermodynam
inequalities by using Eq.~12!.

Evaluation of correlations and thermodynamic inequa
ties are discussed in the following sections.
8-2
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FLUCTUATIONS IN THE PRESENCE OF FIELDS: . . . PHYSICAL REVIEW E64 021108
III. EVALUATION OF SOME CORRELATIONS

A. Magnetizable continuum in the presence
of magnetoquasistatic field

We assume that all the magnetic energy is stored
formly within the boundaries of the system. The adequ
expression of the internal energy differential, as in@4#, has
the form

dÛ5T dS2 p̂ dV1 ẑ dN1VH•dB ~13!

In this relation, as well as in the subsequent ones,
implied symbols for physical variables signify the mean v
ues corresponding to an equilibrium state. The quantitiep̂

and ẑ are intensive parameters that are dependent on
field. These parameters have@4–6# various expressions, de
pending on the physical constraints of the system.

The minimal work of the fluctuations can be expressed

dWmin5dÛ2T dS1 p̂ dV2 ẑ dN2VH•dB ~14!

As independent variables we takeT, V, N, andB. Their
independence must be regarded in a thermodynamic se
because they can be interdependent from a statistical
proach.

For the probability density~8! one obtains

w;expH 2
1

2kTF S ]S

]TD
V,N,B

~dT!22S ] p̂

]V
D

T,N,B

~dV!2

1S ]ẑ

]N
D

T,V,B

~dN!21VS ]H

]BD
T,V,N

~dB!2

12S ]ẑ

]V
D

T,N,B

dVdN12S ]~VH!

]V D
T,N,B

dV•dB

12VS ]H

]ND
T,V,B

dN•dBG J ~15!

For details see the Appendix.
The matrix of the correlation coefficients is

~a!5S a11 0 0 0

0 a22 a23 a24

0 a32 a33 a34

0 a42 a43 a44

D , ~16!

where

a115
1

kT S ]S

]TD
V,N,B

; a2252
1

kT
S ] p̂

]V
D

T,N,B

;

a335
1

kT
S ]ẑ

]N
D

T,V,B

; a445
V

kT S ]H

]BD
T,V.N

5
V

kTm
;

a125a2150; a135a3150; a145a4150;
02110
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a235a325
1

kT
S ]ẑ

]V
D

T,N,B

;

a245a425
1

kT S ]~VH!

]V D
T,N,B

5
H

kT F11
r

m S ]m

]r D
T
G ;

a345a435
V

kT S ]H

]ND
T,V,B

52
H

kTm S ]m

]r D
T

.

In the above relationsr is particles per unit volume (r
5N/V) andm denotes the magnetic permeability of the sy
tem.

Thus the dispersions and correlations are obtained as

~dT!25~a21!115
1

a11
, ~17!

~dV!25~a21!225

Ua33 a34

a34 a44
U

detubu
, ~18!

~dN!25~a21!335

Ua22 a24

a24 a44
U

detubu
, ~19!

~dB!25~a21!445

Ua22 a23

a23 a33
U

detubu
, ~20!

dT dV5dT dN5dT dB50, ~21!

dV dN5~a21!2352

Ua23 a34

a24 a44
U

detubu
, ~22!

dV dB5~a21!245

Ua23 a33

a24 a34
U

detubu
, ~23!

dN dB5~a21!3452

Ua22 a23

a24 a34
U

detubu
, ~24!

where

detubu5Ua22 a23 a24

a23 a33 a34

a24 a34 a44

U . ~25!

Let us focus on some particular cases.
8-3
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S. DUMITRU AND A. BOER PHYSICAL REVIEW E64 021108
1. VÄconst, NÄconst

In this case the matrixa is of the form

~a!5S a11 0

0 a22
D ~26!

with

a115
1

kT S ]S

]TD
V,N,B

; a225
V

kT S ]H

]BD
V,N,T

.

The entropy of the system in the presence of the magn
field is given by@1,3,5#

S5S01
1

2
VH2S ]m

]T D
r

, ~27!

whereS0 denotes the entropy in the absence of the field.
In this case the expressions for the dispersions and co

lations of various physical variables are

~dT!25~a21!11

5
kT

S ]S

]TD
V,N,B

5
kT2

CV1
1

2
TVH2F S ]2m

]T2 D
r

2
2

m S ]m

]T D
r

2G , ~28!

~dB!25~a21!225
kT

VS ]H

]BD
V,N,T

5
kTm

V
, ~29!

dT dB50, ~30!

dT dS5S ]S

]TD
V,N,B

~dT!25kT, ~31!

dT dH5S ]H

]T D
V,N,B

~dT!2

52
H

m S ]m

]T D
r

kT2

CV1
1

2
TVH2F S ]2m

]T2 D
r

2
2

m S ]m

]T D
r

2G ,

~32!

dB•dH5S ]H

]BD
V,N,T

~dB!25
kT

V
, ~33!

dSdB5S ]S

]BD
V,N,T

~dB!25kTHS ]m

]T D
r

. ~34!
02110
tic

e-

Here CV denotes the isochoric heat capacity:CV

5T(]S0 /]T)V,N . In the absence of the field(dT)2 as given
by Eq. ~28! reduces to the previously known expressi
@7–9#.

2. BÄconst

This case is associated with a constant magnetic ind
tion. The quantitiesT, V, and N are regarded as random
variables~i.e., endowed with fluctuations!.

In this case, according to Ref.@4#, one can write

dÛ5TdS2 p̂dV1 ẑdN, ~35!

where

p̂5pB,N5p2
1

2
H•B2

1

2
H2rS ]m

]r D
T

, ~36!

ẑ5zB,V5z2
1

2
H2S ]m

]r D
T

, ~37!

while p andz denote, respectively, the pressure and chem
potential in the absence of the field.

The matrix of the correlation coefficients has the form

~a!5S a11 0 0

0 a22 a23

0 a23 a33

D . ~38!

Using Eq.~11! and some uncomplicated algebraic ope
tions one finds

~dT!25~a21!115
kT

S ]S

]TD
V,N,B

, ~39!

~dV!25~a21!22

5
a33

a22a332a23
2

52kT

S ]ẑ

]N
D

T,V,B

S ] p̂

]V
D

T,N,B
S ]ẑ

]N
D

T,V,B

1S ]ẑ

]V
D

T,N,B

2 , ~40!
8-4
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FLUCTUATIONS IN THE PRESENCE OF FIELDS: . . . PHYSICAL REVIEW E64 021108
~dN!25~a21!33

5
a22

a22a332a23
2

5kT

S ] p̂

]V
D

T,N,B

S ] p̂

]V
D

T,N,B
S ]ẑ

]N
D

T,V,B

1S ]ẑ

]V
D

T,N,B

2 , ~41!

dV dN5~a21!23

5
a23

a23
2 2a22a33

5kT

S ]ẑ

]V
D

T,N,B

S ]ẑ

]V
D

T,N,B

2

1S ] p̂

]V
D

T,N,B
S ]ẑ

]N
D

T,V,B

, ~42!

dT dV50;dT dN50. ~43!

Equations~39!–~42! imply the following relations.

S ]S

]TD
V,N,B

5
CV

T
1

1

2
VH2F S ]2m

]T2 D
r

2
2

m S ]m

]T D
r

2G , ~44!

S ]ẑ

]N
D

T,V,B

5S ]z

]ND
T,V

1
H2

mV S ]m

]r D
T

2

2
1

2

H2

V S ]2m

]r2 D
T

,

~45!

S ] p̂

]V
D

T,N,B

5S ]p

]VD
T,N

2
H2r2

mV S ]m

]r D
T

2

1
1

2

H2r2

V S ]2m

]r2 D
T

,

~46!

S ]ẑ

]V
D

T,N,B

5S ]z

]VD
T,N

2
H2r

mV S ]m

]r D
T

2

1
1

2

H2r

V S ]2m

]r2 D
T

.

~47!

3. HÄconst

In this case the current densities~the sources of the mag
netic field! are constant. We search the parameters of fl
tuations for the quantitiesT, V, andN.

The differential of the internal energy is given by Eq.~13!
where according to Ref.@4#

p̂5pH,N5p2
1

2
H•B1

1

2
H2rS ]m

]r D
T

, ~48!

ẑ5zH,V5z1
1

2
H2S ]m

]r D
T

. ~49!
02110
c-

In this case, as proved in@6#, the entropy is

S~H5const!5S02
1

2
VH2S ]m

]T D
r

. ~50!

Using this expression for the entropy one obtains,

~dT!25
kT

S ]S

]TD
V,N,H

5
kT2

CV2
1

2
TVH2S ]2m

]T2 D
r

, ~51!

~dV!252kT

S ]ẑ

]N
D

T,V,H

S ] p̂

]V
D

T,N,H
S ]ẑ

]N
D

T,V,H

1S ]ẑ

]V
D

T,N,H

2 , ~52!

~dN!25kT

S ] p̂

]V
D

T,N,H

S ] p̂

]V
D

T,N,H
S ]ẑ

]N
D

T,V,H

1S ]ẑ

]V
D

T,N,H

2 , ~53!

dV dN5kT

S ]ẑ

]V
D

T,N,H

S ]ẑ

]V
D

T,N,H

2

1S ] p̂

]V
D

T,N,H
S ]ẑ

]N
D

T,V,H

, ~54!

where

S ]ẑ

]N
D

T,V,H

5S ]z

]ND
T,V

1
1

2

H2

V S ]2m

]r2 D
T

, ~55!

S ] p̂

]V
D

T,N,H

5S ]p

]VD
T,N

2
1

2

H2r2

V S ]2m

]r2 D
T

, ~56!

S ]ẑ

]V
D

T,N,H

5S ]z

]VD
T,N

2
1

2

H2r

V S ]2m

]r2 D
T

. ~57!

Note that
~1! all the above relations refer to the case of linear m

netic materials, for whichm, being independent ofH, de-
pends only on the temperatureT and particle number densit
r;

~2! for practical purposes it is more useful to evaluate
fluctuation of the magnetizationM rather than that of the
magnetic induction. This can be done by introducing t
function

Û* 5Û2
1

2
Vm0H2, ~58!

and provided the change ofH due to the presence of th
magnetic system can be neglected. Rigorously, one must
8-5
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S. DUMITRU AND A. BOER PHYSICAL REVIEW E64 021108
stract fromÛ the quantity 1
2 Vm0H 2, whereH is the field

strength generated in free space by the sources , in abs
of the system~for similar considerations see Ref.@1#!. For
most linear systems the magnetic susceptibility has a
value. Therefore the deformation of the field due to the s
tem presence can be neglected. In such a case one obt

dÛ* 5TdS2 p̂dV1 ẑdN1VH•d~m0M !, ~59!

where

M5xmH, ~60!

p̂5p2
1

2
m0H•M2

1

2
H2rm0

]xm

]r
, ~61!

ẑ5z2
1

2
H2m0

]xm

]r
. ~62!

In the last three relationsm0 andxm denote magnetic perme
ability of free space and magnetic susceptibility, respectiv

If V andN are fixed, then one finds the following know
relation @2#,

~dM !25
kTm0xm

V
. ~63!

~3! In the case of a dielectric continuum the correspo
ing expressions of the fluctuations can be obtained by me
of the following substitutions:B→D; H→E; m→«, where
D is the electric displacement,E is the electric field strength
and« denotes permittivity. In this contextm0M must to be
replaced withP ~electric polarization! andxm with xe ~elec-
tric susceptibility!.

~4! It is easy to observe that the dispersions(dA)2 and
correlationsdA dB from the above established formulas a
pear as products of Boltzmann’s constantk with expressions
that contain exclusively mean values of the random v
ables. It should be noted that the respective values iden
themselves with the variables from ordinary~nonstochastic!
thermodynamics.

B. The case of discrete systems

Discrete systems are characterized by the fact that
field lines extend beyond their boundaries. Consequently
field energy is stored inside as well as outside the syst
These systems should be investigated regarding the effe
fluctuations~i.e., an evaluation of their stochastic charact
istics!. In the following we consider a particular case inve
tigated by Zimmels@5#. This case involves a sphere of radi
R placed in an external uniform magnetic field of streng
H0.

The generalized internal energy of the sphere can be
pressed as,

dU15TdS12 p̂dV11 ẑdN11cdB1 , ~64!

where the following relations were taken from@5#:
02110
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c5V1

B1

ms8
5V1H1Ams

ms8
, ~65!

ms5
m1

9 S m1

m2
22

m2

m1
11D , ~66!

1

ms8
5

1

9 S 1

m2
1

1

m1
22

m2

m1
2D . ~67!

In the above relations as well as in the following ones
indexes 1 and 2 refer to the system~sphere! and its surround-
ings, respectively.

Let us now discuss some particular situations.

1. V1Äconst, N1Äconst

In this situation the entropy of the sphere, as given in@5#,
is

S15S011
1

18
V1B1

2Fa ]m2

]T
2b

]m1

]T G , ~68!

whereS01 denotes the entropy in the absence of the field a

a5
1

m2
2

1
2

m1
2

; b5
4m2

m1
3

2
1

m1
2

. ~69!

Note that relations~65!–~69! refer to a state of equilib-
rium.

Selecting the quantitiesT and B1 as independent vari
ables, one obtains for their fluctuations:

~dT!25
kT

S ]S1

]T D
V1 ,N1 ,B1

5kT2H CV1
1

18
TV1B1

2Fa
]2m2

]T2
2b

]2m1

]T2

1
2

m1
3 S ]m1

]T D 2S 6m2

m1
21D

2
2

m2
3 S ]m2

]T D 2

2
8

m1
3

]m1

]T

]m2

]T G J 21

~70!

~dB1!25
kTms8

V1
5

kT

V1
H 1

9 S 1

m2
1

1

m1
22

m2

m1
2D J 21

. ~71!

These relations show that the fluctuations of the mac
scopic parameters depend on permeabilities of both the
crete system and its surroundings.
8-6
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2. B1Äconst

In this situation@5# we have

dU15TdS12 p̂dV11 ẑdN1 ~72!

with

p̂5pB1 ,N1
5p2

B1
2

2ms8
1

B1
2

18Far2

V1

V2

]m2

]r2
1br1

]m1

]r1
G
~73!

and

ẑ5zB1 ,V1
5z1

B1
2

18FV1

V2
a

]m2

]r2
1b

]m1

]r1
G . ~74!

It follows that one obtains for(dT)2 the same expressio
as in the previous situation, because the entropy is given
Eq. ~68!.

The dispersions ofV1 andN1 are,

~dV1!252kT

S ]ẑ

]N1
D

T,V1 ,B1

S ]ẑ

]N1
D

T,V1 ,B1

S ] p̂

]V1
D

T,N1 ,B1

1S ]ẑ

]V1
D

T,N1 ,B1

2 ,

~75!

~dN1!25kT

S ] p̂

]V1
D

T,N1 ,B1

S ] p̂

]V1
D

T,N1 ,B1

S ]ẑ

]N1
D

T,V1 ,B1

1S ]ẑ

]V1
D

T,N1 ,B1

2 .

~76!

These expressions are only in a formal analogy with
corresponding ones for magnetizable continuum, beca
they imply specific particularities through the following pa
tial derivatives.

S ] p̂

]V1
D

T,N1 ,B1

5S ]p

]V1
D

T,N1

1
B1

2

18Far2

V2

]m2

]r2
1

br1

V1

]m1

]r1

1
]

]V1
S ar2

V1

V2

]m2

]r2
1br1

]m1

]r1
D G ~77!

S ]ẑ

]N1
D

T,V1 ,B1

5S ]z

]N1
D

T,V1

1
B1

2

18

]

]N1
S V1

V2
a

]m2

]r2
1b

]m1

]r1
D ,

~78!

S ]ẑ

]V1
D

T,N1 ,B1

5S ]z

]V1
D

T,N1

1
B1

2

18

]

]V1
S V1

V2
a

]m2

]r2
1b

]m1

]r1
D .

~79!
02110
by

e
se

3. H1Äconst

Using the quantities defined in@5# we get the following
expressions:

p̂5pH1 ,N1
5p2

1

2
H1

2ms1
H1

2

18 S b8r1

]m1

]r1
1a8r2

V1

V2

]m2

]r2
D ,

~80!

ẑ5zH1 ,V1
5z1

H1
2

18 S b8
]m1

]r1
1a8

V1

V2

]m2

]r2
D , ~81!

a85
m1

2

m2
2

12; b85
2m1

m2
11, ~82!

S1~H15const!5S011
1

18
V1H1

2S 2b8
]m1

]T
1a8

]m2

]T D .

~83!

Here the fluctuation of the temperature take the followi
form:

~dT!25
kT

S ]S

]TD
V1 ,N1 ,H1

5kT2H CV1
1

18
TV1H1

2Fa8
]2m2

]T2
2b8

]2m1

]T2

2
2

m2
S ]m1

]T D 2

2
2m1

2

m2
3 S ]m2

]T D 2

1
4m1

m2
2

]m1

]T

]m2

]T G J 21

.

~84!

Correspondingly we find for the fluctuation ofV1 andN1:

~dV1!252kT

S ]ẑ

]N1
D

T,V1 ,H1

S ]ẑ

]N1
D

T,V1 ,H1

S ] p̂

]V1
D

T,N1 ,H1

1S ]ẑ

]V1
D

T,N1 ,H1

2 ,

~85!

~dN1!25kT

S ] p̂

]V1
D

T,N1 ,H1

S ] p̂

]V1
D

T,N1 ,H1

S ]ẑ

]N1
D

T,V1 ,H1

1S ]ẑ

]V1
D

T,N1 ,H1

2 ,

~86!

where
8-7
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S ] p̂

]V1
D

T,N1 ,H1

5S ]p

]V1
D

T,N1

1
H1

2

18 Fa8r2

V2

]m2

]r2
1b8

r1

V1

]m1

]r1

1
]

]V1
S b8r1

]m1

]r1
1a8r2

V1

V2

]m2

]r2
D G ~87!

S ]ẑ

]N1
D

T,V1 ,H1

5S ]z

]N1
D

T,V1

1
H1

2

18

]

]N1
S b8

]m1

]r1
1a8

V1

V2

]m2

]r2
D ,

~88!

S ]ẑ

]V1
D

T,N1 ,H1

5S ]z

]V1
D

T,N1

1
H1

2

18

]

]V1
S b8

]m1

]r1
1a8

V1

V2

]m2

]r2
D .

~89!

It is interesting at this point to discuss the extreme cas
infinite permeability of the sphere,m2 /m1→0, where the
field energy is stored exclusively outside its boundaries
this case

a5
1

m2
2

; b50; H150;
02110
of

n

lim
m1→`

B153m2H0 ; ms859m2 . ~90!

If V1 andN1 are fixed then

~dT!25kT2H CV1
1

2
TV1H0

2F ]2m2

]T2
2

2

m2
S ]m2

]T D 2G J 21

,

~91!

~dB1!25
9kTm2

V1
. ~92!

If B15const andV1!V2 then p̂ and ẑ reduce to the fol-
lowing expressions

p̂5p2
m2H0

2

2
5p2

1

18

B1
2

m2
, ~93!

ẑ5z ~94!

given in Ref.@5#.
The fluctuations ofV1 and N1 are characterized by th

dispersions:
~dV1!252kT

S ]z

]N1
D

T,V1

S ]z

]N1
D

T,V1

F S ]p

]V1
D

T,N1

1
1

2
H0

2 r2

V2

]m2

]r2 G1S ]z

]V1
D

T,N1

2 , ~95!

~dN1!25kT

S ]p

]V1
D

T,N1

1
1

2
H0

2 r2

V2

]m2

]r2

S ]z

]N1
D

T,V1

F S ]p

]V1
D

T,N1

1
1

2
H0

2 r2

V2

]m2

]r2 G1S ]z

]V1
D

T,N1

2 . ~96!

In the same extreme case atH15const we obtain,

p̂5p2
1

2
m2H0

2 , ~97!

ẑ5z, ~98!

~dV1!252kT

S ]z

]N1
D

T,V1

S ]z

]N1
D

T,V1

F S ]p

]V1
D

T,N1

2
1

2
H0

2 r2

V2

]m2

]r2 G1S ]z

]V1
D

T,N1

2 , ~99!
8-8



FLUCTUATIONS IN THE PRESENCE OF FIELDS: . . . PHYSICAL REVIEW E64 021108
~dN1!25kT

S ]p

]V1
D

T,N1

2
1

2
H0

2 r2

V2

]m2

]r2

S ]z

]N1
D

T,V1

F S ]p

]V1
D

T,N1

2
1

2
H0

2 r2

V2

]m2

]r2 G1S ]z

]V1
D

T,N1

2 . ~100!
m
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Note that the conditionm2 /m1→0 imposesH150.
We also make the following observations.
~1! The most important fact in the case of discrete syste

is that the fluctuations of the intrinsic parameters of the s
tems depend on the magnetic permeability of its surrou
ings.

~2! The evaluation of fluctuations of dielectric system
can be obtained by means of the substitutions:H→E, B
→D, m→«.

~3! The comments of Sec. III A 3 regarding dispersio
(dA)2 and correlationsdA dB apply also here.

IV. THERMODYNAMIC INEQUALITIES FOR SYSTEMS
IN THE PRESENCE OF FIELDS

It is known @9#, that the correlation coefficients constitu
the elements of a matrix, which satisfies the following
equalities:

detuCabu.0, ~101!

detuCab
21u.0, ~102!

whereCab
21 denote the inverse of the matrixCab .

Equations~101! and~102! can be used to define numero
thermodynamic inequalities. In order to exemplify this po
sibility, we have listed in Table I inequalities that refer to
magnetizable continuum situated in a magnetoquasis
field.

If one considers separately only two variables,X1 andX2,
then Eq.~101! gives

~dX1!2 ~dX2!2.~dX1 dX2!2. ~103!
02110
s
-
-

-

-

tic

This kind of relations, in our opinion@9–14#, resemble the
well known Heisenberg’s ‘‘uncertainty’’ relations from quan
tum mechanics.

Next we illustrate the relation~103! for some concrete
cases.

For a magnetizable continuum in a magnetoquasist
field, at fixedN andV, we find from Eq.~103! the following
inequalities:

~dT!2 ~dB!2.0, ~104!

~dT!2 ~dS!2.k2T2, ~105!

~dB!2 ~dH !2.
k2T2

V2
, ~106!

~dS!2 ~dB!2.k2T2H2S ]m

]T D
r

2

. ~107!

For a sphere placed in a homogeneous environment~the
corresponding permeabilities beingm1 and m2), at fixed N
andV, one obtains the relations

~dT!2 ~dB1!2.0, ~108!

~dT!2 ~dS1!2.k2T2, ~109!

~dB1!2 ~dH1!2.
k2T2

V1
2

m1
2

ms
2

, ~110!

~dS1!2 ~dB1!2.
1

81
k2T2B1

2ms8
2S a

]m2

]T
2b

]m1

]T D 2

.

~111!
TABLE I. Thermodynamical inequalities.

Independent variables Inequalities

S,V,N,B @](T,2 p̂,ẑ,VH)/](S,V,N,B)#.0
T,V,N,B @](S,2 p̂,ẑ,VH)/](T,V,N,B)#.0
T,V,N,H

detu(]S/]Xb)d1a2(] p̂/]Xa)d2b1(]ẑ/]Xa)d3b1@](VH)/]Xa)•(]B/]Xb)u.0
(X1 ,X2 ,X3 ,X4)

U,V,N,B detu]T/]Xa]S/]Xb2(] p̂/]Xa)d2b1(]ẑ/]Xa)d3b1@](VH)/]Xa#d4bu.0
(X1 ,X2 ,X3 ,X4)

1/T,V,N,B detu2T2(]S/]Xb)d1a2(] p̂/]Xa)d2b1(]ẑ/]Xa)d3b1@](VH)/]Xa#d4bu.0
(X1 ,X2 ,X3 ,X4)
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V. SUMMARY, CONCLUSIONS, AND FINAL REMARKS

In Sec. I we presented a phenomenological theoret
approach with a view to describe fluctuations of macrosco
parameters that characterize thermodynamic systems in
presence of fields. We started with the expression of the g
eralized differential of the internal energy, and assume
the fluctuations involved states that are in the neighborh
of thermodynamic equilibrium.

In Sec. II we considered electromagnetic fields as a s
cific case. We find that the estimators of fluctuations~i.e.,
dispersions and correlations! depend on the different field
constraints.

Discrete systems are characterized by fluctuations est
tors, which are functions of intrinsic quantities of both t
system and its surroundings.

In Sec. III we presented thermodynamic inequaliti
which result from the fact that the correlations of the flu
tuations constitute the elements of a non-negatively defi
matrix. In their two-variable versions the respective inequ
ties can be identified as classical~nonquantum! analogs of
the well known Heisenberg’s ‘‘uncertainty’’ relations.

The last items from Secs. III A and III B reveal an inte
esting feature of Boltzmann’s constantk in the following
sense.

~a! The quantities(dA)2 anddA dB as fluctuation param
eters are estimators of the level of stochasticity.

~b! The formulas from these sections show the fact t
the respective quantities appear as products of Boltzma
constantk with nonstochastic expressions.

~c! It follows thatk can be regarded as a generic indica
of thermodynamic stochasticity.

Finally, we wish to add the following remarks. The me
tioned idea regardingk was first introduced in@10#. In this
work the similarity between Boltzmann’s constantk and the
Planck’s constant\ was revealed. In this context Planck
constant is a generic indicator of quantum stochasticity
cases of classical~nonquantum! thermodynamical system
and quantum microparticles,k and \ appear independentl
and separately. Consequently, the respective systems ca
regarded as endowed with a onefold stochasticity. In the c
of the quantum statistical systemsk and\ appear together in
the expressions of the fluctuation parameters. This me
that such systems are endowed with twofold stochasti
~for more details see Ref.@10#!.
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APPENDIX: PROOF OF THE RELATION „15…

We consider the second order approximation in terms
the fluctuationsdXa of the corresponding independent va
02110
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ables (Xa5T,V,N,B). Then for the quantitiesdÛ and dS
one obtains,

dÛ5S ]Û

]T
D

V,N,B

dT1S ]Û

]V
D

T,N,B

dV1S ]Û

]N
D

T,V,B

dN

1S ]Û

]B D
T,V,N

•dB1
1

2 S ]2Û

]T2 D
V,N,B

~dT!2

1
1

2 S ]2Û

]V2 D
T,N,B

~dV!21
1

2 S ]2Û

]N2D
T,V,B

~dN!2

1
1

2 S ]2Û

]B2 D
T,V,N

~dB!21
]2Û

]V ]T
dV dT1

]2Û

]N ]T
dN dT

1
]2Û

]B ]T
dB dT1

]2Û

]V ]N
dV dN1

]2Û

]V ]B
dV dB

1
]2Û

]N ]B
dN dB, ~A1!

dS5S ]S

]TD
V,N,B

dT1S ]S

]VD
T,N,B

dV1S ]S

]ND
T,V,B

dN

1S ]S

]BD
T,V,N

dB1
1

2 S ]2S

]T2D
V,N,B

~dT!2

1
1

2 S ]2S

]V2D
T,N,B

~dV!21
1

2 S ]2S

]N2D
T,V,B

~dN!2

1
1

2 S ]2S

]B2D
T,V,N

~dB!21
]2S

]V ]T
dV dT1

]2S

]N ]T
dN dT

1
]2S

]B ]T
dB dT1

]2S

]V ]N
dV dN1

]2S

]V ]B
dV dB

1
]2S

]N ]B
dN dB, ~A2!

where

S ]Û

]T
D

V,N,B

5TS ]S

]TD
V,N,B

, ~A3!

S ]Û

]V
D

T,N,B

5TS ]S

]VD
T,N,B

2 p̂, ~A4!

S ]Û

]N
D

T,V,B

5TS ]S

]ND
T,V,B

1 ẑ, ~A5!

S ]Û

]B
D

T,V,N

5TS ]S

]BD
T,V,N

1VH, ~A6!
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S ]2Û

]T2 D
V,N,B

5TS ]2S

]T2D
V,N,B

1S ]S

]TD
V,N,B

, ~A7!

S ]2Û

]V2 D
T,N,B

5TS ]2S

]V2D
T,N,B

2S ] p̂

]V
D

T,N,B

, ~A8!

S ]2Û

]N2D
T,V,B

5TS ]2S

]N2D
T,V,B

1S ]ẑ

]N
D

T,V,B

, ~A9!

S ]2Û

]B2 D
V,N,B

5TS ]2S

]B2D
V,N,B

1VS ]H

]B D
V,N,B

, ~A10!

]2Û

]V ]T
5T

]2S

]V ]T
;

]2Û

]N ]T
5T

]2S

]N ]T
;

]2Û

]B ]T
5T

]2S

]B ]T
,

~A11!
-

02110
]2Û

]V ]N
5T

]2S

]V ]N
1S ]ẑ

]V
D

T,N,B

, ~A12!

]2Û

]V ]B
5T

]2S

]V ]B
1S ]~VH!

]V D
T,N,B

, ~A13!

]2Û

]N ]B
5T

]2S

]N ]B
1VS ]H

]ND
T,V,B

. ~A14!

The above Eqs.~A1!–~A14! in conjunction with Eqs.~1!,
~2!, and~14! give directly the relation~15!.
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