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Fluctuations in the presence of fields: Phenomenological Gaussian approximation
and a class of thermodynamic inequalities
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The fluctuations of thermodynamic systems in the presence of the fields are considered. The approach is of
phenomenological nature and developed in a Gaussian approximation. The cases of a magnetizable continuum
in a magnetoquasistatic field, as well as the so called discrete systems are used to exemplify the study. In the
latter case one finds that the fluctuation estimators depend both on the intrinsic properties of the system and on
the characteristics of the environment. Following earlier ideas of one of the authors we present a class of
thermodynamic inequalities for the systems investigated in this paper. In the case of two variables these
inequalities are nonquantum analogs of the well known quantum Heisenberg “uncertainty” relations. In this
context, the fluctuation estimators support the idea that Boltzmann’s corsted the signification of a
generic indicator of stochasticity for thermodynamic systems.
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I. INTRODUCTION Il. GENERAL THEORETICAL CONSIDERATIONS

. . The phenomenological theory of fluctuations deals with
The literature from the last decades promoted some mterr-eal and continuous variables endowed withaghhocsto-
esting attempt$1-@] in order[4] “to formulate a compre- ., qicity(without any reference to the microscopic structure
hensive and unified theory of thermodynamics in the presg ihe thermodynamic systems=or small fluctuations in the

ence of fields.” These attempts approached the description Qfoximity of equilibrium states the corresponding probability
the thermodynamic systems only in terms of macroscopigensity is giver{2,7,8 by

guantities regarded as deterministic variables, unendowed

with fluctuations. oS
On the other hand it is a well established fact that, due to W~ EXD{ T]

their inner microscopic structure, the thermodynamic sys- .

tems must be characterized by means of variables endowethere §S’' =S’ (x) — S’ (x) denotes the deviation of entropy

with fluctuations. The mean values of the respective varifrom its mean due to the fluctuations signifies the set of

ables coincide with macroscopic quantities that characterizgacroscopic variables characterizing the system, wibhe-
ordinary thermodynamics. The alluded fluctuations requiréng its equilibrium mean(or expectation andk is Boltz-
description in terms of some additional concepts of probabimann’s constant. The variatiofS’, which refers to the en-
listic nature(e.g., dispersions, correlations, higher order mo-semble of thermodynamic system and its environment is
mentg. Such a description can be done in a phenomenologigiven by

cal or in a statistical-mechanics manner. In this paper we try

to develop a description of fluctuations specific for thermo- 5 = )
dynamic systems in the presence of fields. Our description is Teq '

done in a phenomenological manner. We resort to usual pro- _ .
cedures of phenomenological thed84,7,q and use some WNere Teq=equilibrium temperature an@Wp,=minimal
ideas inspired by our earlier works on fluctuati¢@slo]. work of fluctuations.

We start a search for a first approximation of the general- Note that in.I_Eq.(l) as well as in all sgpsequent formulas
ized distribution of fluctuation probabilities. For this we use 0" the probability densityv we are omitting the constants

the concept of adequate internal energy inspired by [R&f. that precede the exponential functions. These constants can

A first application is focused on the second order moment£€2dily bé determined by imposing the normalization condi-

for the fluctuations in magnetizable continuum in a magneon for w. _ _
Let us focus our attention on systems in the presence of

toquasistatic field. Next we investigate briefly the questions. . ) .

connected with fluctuations in discrete systems in the predi€!ds (@s they are viewed in Reff4—€]). We introduce the
ence of a magnetic field. By using the results of this invesWOrk Wiy through the relation

tigation we introduce in the next section a class of thermo-

dynamic inequalities, in a manner similar to the one S0=2 & oY, + >, W, 86Z,+ SWiyi, (3)
developed in Ref9]. r [

@

with the following notations$A is the variation(due to the
*Email address: s.dumitru@unitbv.ro fluctuations of the variableA; U is the internal energy in the
"Email address: boera@unitbv.ro presence of fields, are the field dependent intensive vari-
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ables(e.g. £, =T is the temperature, while-£&,=p and &, 1 (&(I)j) ((977,-) ©)
eq

= denote the field dependent pressure and chemical poten- Yab~ T 2 Xy IXp
tial); Y, is the conventional extensive thermodynamic vari-
ables(e.g., entropy§ volumeV, number of particleN); ¥,
andZ, denote the additional parameters due to the presen
of fields (e.g.,¥ =VH, Z=B for the case of magnetic fields @
of strengthH and inductionB).

Note that generally the quantitief, are not intensive (—,20)
conjugates o¥; . A . .

- ) , The variables{X,} used in Eq.(8) are characterized by

In Eq._(S) u depends orY, andZ,, so that its total dif- 14 correlations

ferential is given by

eq
gan be identified as the field dependent elements of a matrix

Note that in the Gaussian distributidB) the quantities
{X,} are considered as continuous variables, in the range

C : Cap= 60X, 0Xp=(a " 1),p. 10

dU:E grdYr—’_E \I,|dZ|. (4) ab a b (a )ab ( )
r |

Here (@~ 1),, denote the elements of the inverse matrixaof

given by Eq.(9), while the over bar irEsignifies the expec-
tation value of the quantiti defined as

For the sake of brevity we introduce the following com-
pacted notation {Y,}U{Z}=de{#} and {&}u{¥}
def

e
={®i}. Hence, in accordance with E@}),

at

where the index eq denotes the equilibrium value of the in- FOF @ny set of quantitie¢Qp} expressible in terms of
dexed quantity. independent variablesX,} [i.e., Qn=Qmn(X,)] the fluctua-

L A tions are characterized by the correlations
The second order approximation 6fJ in terms of the y
variationséz; can be written as

® e [ FxmaT] ax,.

€q

dQm Qs _
220 Cmszé 2 ( © ) ( © ) (a 1)ab- (11
eq

b\ X, Xy eq

. oU 1
50-3 (2] 50
Ei 97/ oq 7 ZIZJ dni d;
1 b If m=s then the correlatiorC,,,=D,, denote just the
:2 O, 5y + > 2 (E (9__'5,71.) o dispersion of fluctuations for' the _quanti@m. _
i [ j o As in the case of fluctuations in the absence of fi¢lls
the correlationg11) constitute a real, symmetric and non-

omi 577j
eq

=> D, S+ % > 5D, 57 . (6)  negative definite matrix. Hence,
i i
Using .the relationg2)—(6) in conjunction with Eq.(1), de E 2 (an) (aQS) (a Y 4p|=0. (12)
one obtains a B | 0Xa) 4\ b/,
WNQXP: — i 2 5P, 5,7i]_ 7) Application of the above description for fluctuations in
2kT 5 the presence of fields requires the following steps.

(1) To establish the adequate expressidnfor the total

ifferential d U of the internal energyto this end the results
from [4—6] are highly recommendable

(2) To evaluate the minimal worléW,,;, of fluctuations
y using Eq.(3).
(3) To identify the set of the independent variab{es,}.

In this relation as well as in all the subsequent ones we,
symbolize the equilibrium temperature simply with[in-
stead ofT¢q used in Eq(2)].

For a given system, due to their physical nature, the vari—b
ables from the sets®i} and{#;} are generally interdepen-
dent. However one can always select instead a restrictive set (4) To account for the adequate equations of state and

. . . . .
of physically independent variable]Xaja_1. This tran- yhormodynamic Maxwell relation.g., such as those given
scribes Eq(7) into the following multivariable Gaussian dis- by [2,5-8).

tribution, (5) To compute the correlatiors,,s through relation(10)
L or (112).
_ = (6) To formulate relevant field dependent thermodynamic
WmeR Ty azl =y 2 Xa OXp ® inequalities by using Eq12).

Evaluation of correlations and thermodynamic inequali-
where ties are discussed in the following sections.
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I1l. EVALUATION OF SOME CORRELATIONS 1 692
A. Magnetizable continuum in the presence @23~ a32=k_'r(W ’
of magnetoquasistatic field TN.B
We assume that all the magnetic energy is stored uni- 1 [d(VH) H plop
formly within the boundaries of the system. The adequate  axs= XTI T\ Ty KT +— YRk
expression of the internal energy differential, a4, has T.NB APt
the form
\% (aH) H ((m)
U=TdS-pdV+ZdN+VH-dB 1 34~ X437V TGN T T KTa\ 9]
dU=TdS-pdV+{d d (13 KT\oN/ g KTuldp/,

In this relation, as well as in the subsequent ones, the

implied symbols for physical variables signify the mean vaI-: N/V) and  denotes the magnetic permeability of the Sys-
ues corresponding to an equilibrium state. The quantpies tem - g P y y

and { are intensive parameters that are dependent on the Thys the dispersions and correlations are obtained as
field. These parameters hal—6] various expressions, de-

In the above relationg is particles per unit volumep(

pending on the physical constraints of the system. 1
The minimal work of the fluctuations can be expressed as (5T)2=(a_1)11=a—, 7
1
MWin=80—T 8S+p V- SN—VH-SB (14
Q33 3y
As independent variables we take V, N, andB. Their a4 @
independence must be regarded in a thermodynamic sense, (5\/)2:({1)22:W, (18
because they can be interdependent from a statistical ap- B
proach.
For the probability density8) one obtains Qo Oy
~ T o _ Aoy Cyy
;{ 1 (as) (6T)? <8p> (5V)2 (6N)*=(a 1)33:W’ (19
wW~exp — == | = —| =
2kT| T/, N/t ue
192) 9H Qo2 o3
+| = (8N)?>+V —) (6B)? - @p3 Qa3
N/ 1ve 9B/ 1y (6B)?=(a 1)442W, (20
ot A(VH)
+2| =y TNBW5N+2 v TNB5V'5B ST 6V=6T 6N= 6T 6B=0, (22)
JH a @
+2V m) SN 5B ] (15) 2T
T o - Qo4 gy
T.V.B SV SN=(a 1)23=——delI o (22
For details see the Appendix.
The matrix of the correlation coefficients is
Qo3 (33
a1 0 O O _ - Ay A3y
o SV 6B=(a l)24=—O| : (23
Qpp Q3 el
(@)= , , (16)
Q3p (33 3y
Mz Q3
0 Qpp g3 g o o
“onNl oD -1y _ 24 34
where ON 6B=(a" ")z4= “delg (24)
N _1(195 N 1(55) _ where
1,7\ 7 ’ 227 T L7\ v ’
KT\ oT V.N.B KT\ oV TNB
Qpp (p3 Q4
1 (ag) _ v(aH) Vo delB|=| @z ass @z, (25)
337 1 7\ N Y e =Y TRT !
kT JN T.V.B kT JB TV kT/.L Qoq Q3q Qgy
ap=a=0; aijz=a31=0; a=as=0; Let us focus on some particular cases.
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1. V=const N=const Here C,, denotes the isochoric heat capacitZy
In this case the matrix is of the form =T(9Sy/dT)y - In the absence of the fieldT)? as given
by Eq. (28) reduces to the previously known expression
all 0 [7_9]
@)= (26)
0 a2
2. B=const

with This case is associated with a constant magnetic induc-

1({9S V [ oH tion. The quantitiesT, V, and N are regarded as random
a11=k—_|_((7—_|_) L= &—B) . variables(i.e., endowed with fluctuations
V,N,B V.N,T In this case, according to Rd#], one can write

The entropy of the system in the presence of the magnetic
field is given by[1,3,5

dU=TdS-pdV+ZdN, (35)
1 d
S=Sy+ EVH2<—'L_F) , 27
ot where
where S, denotes the entropy in the absence of the field.
In this case the expressions for the dispersions and corre- . 1 1 e
lations of various physical variables are P=PeN=P—5H- B—EHzp(g) : (36)
T
(6T)?=(a Yy
kT . 1 m
- §:§B,v:§__H2(—) ) (37
5 o
a V,N,B
kT? while p and{ denote, respectively, the pressure and chemical
= 1 P YEREE (28)  potential in the absence of the field.
Cy+ = TVH? T2 _'“) The matrix of the correlation coefficients has the form
2 aT?)  m\dT
p P
3B (1) kT _ kTu 0g a; 0 0
( ) _(Of )22_ ((?H) - Vv ’ ( ) (a): 0 ayy ans . (38)
5B V.NT 0 p3 (33
8T 6B=0, (30 ) . :
Using Eq.(11) and some uncomplicated algebraic opera-
9S tions one finds
6T 6S= ( —T> (8T)?=KT, (31
d V,N,B
— . kT
— (H) — (8T)=(a =g, (39)
SToH=|—|  (oT) ( S )
V,N,B a V,N,B
_ H{du kT2
CopldT 1 Pu\ 2 (op\?]’ vy
e+ ZTVH | 22 222 (V)*=(a ")z
Cy+ 2TVH = M<5T)
P p
33
(32 - 2
Q33— o3
JH — kT N
5B- 6H=(—B) (6B)*= v (33 9%
’ VT N/ v
=—kT7— S =2 (40
5858—( ‘98) (5B)Z—kTH(‘M) (34) (ap) ( i) I
B V,N, T JT p. N T,N,B N T,V,B N T,N,B
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(N)?=(a 133

A2

2
Qo033 Up3

N
—KT— e, (4D
N T,N,B N T,V,B N T,N,B
8V oN=(a 1)y
_ a3
ags_azzass
N
—kT—— AL LS . (42
N T,N,B N T,N,B N T,V,B
ST 8V=0;5T SN=0. (43)
Equations(39)—(42) imply the following relations.
aS Cy 1 92 2 (du)?
(—T) =?V+§VH2 e ——(—‘TL) . (49)
& V,N,B (9T P lu’ (9 p
(aZ) _(ag) +H2<0",M)2 1 H? [ %p
N TV N Tv pV\dp) . 2V 5p2 T,
(45
(aﬁ) _(ap) Hzpz(ap, 2+ 1 H2p? [ %u
v TNB Vv N uV \dp| 2V | gp? T’
(46)
(&Z’) _(&{) Hzp(&,u 2+ 1H?% [
oV TN.B oV TN mV o\ dp T 2V ap? .
(47)

3. H=const

PHYSICAL REVIEW &4 021108

In this case, as proved {16], the entropy is
H=const=So— 2 vHZ| X 50
S( —consD—So—E a_Tp' (50)

Using this expression for the entropy one obtains,

7 kT kT? 51
— Cy— =TVH? —
a V,N,H Vo2 aT? )
|
N
(0V)2=—KT— (52
EC
N T,N,H N T,V,H N T,N,H
- 1~
N
(ON)2=kT I (53
EC et
(7V T,N,H (7N T,V,H (9\/ T,N,H
(92)
N
SV ON=KT — SE , (54
ET
N T,N,H NV T,N,H N T,V,H
where
Y d 1 H?[
(a_g) ‘(% 3V 0
T,V,H TV aIp° )+
ap P 1 H%p? [ 42
(), (] 2T e
T,N,H TN aip°/ ;
al al 1 H% | &
(W) :(W) T2V e B
NH TN aip° ) ;
Note that

(1) all the above relations refer to the case of linear mag-
netic materials, for whichu, being independent ofl, de-

In this case the current densitiése sources of the mag- pends only on the temperatufeand particle number density
netic field are constant. We search the parameters of flucp;

tuations for the quantitie¥, V, andN.
The differential of the internal energy is given by Ef3)
where according to Ref4]

b=pun=p- 2H-B+ 2H2p| & 48
P=PuN=P~5H-B+5 PgT, (48)
1 i
r] it

{=luv §+2H(0.,p)T (49)

(2) for practical purposes it is more useful to evaluate the
fluctuation of the magnetizatioM rather than that of the
magnetic induction. This can be done by introducing the
function

0% =0 EVjuH?
Mo ’

5 (58)

and provided the change &f due to the presence of the
magnetic system can be neglected. Rigorously, one must sub-
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stract fromU the quantity3VuoH?2, where’H is the field B, s
strength generated in free space by the sources , in absence $p=Vi— =ViH, " (65)
of the system(for similar considerations see Ré¢fl]). For s Ks
most linear systems the magnetic susceptibility has a low
value. Therefore the deformation of the field due to the sys- _ M1 M2
tem presence can be neglected. In such a case one obtains, Ms= g E_ZZJF 1], (66)
dU* =TdS-pdV+ ZdN+VH - d( M), (59)
1 1)1 N 1 2//,2 67
where wl 9\m2 w1 TpP

M= xynH, (60) . . .
In the above relations as well as in the following ones the
1 1 ax indexes 1 and 2 refer to the systéspherg and its surround-
o~ 2 m . .
p=p— E,uoH M- EH [t (61 ings, respectively.
p Let us now discuss some particular situations.

225—%H2“0?_pm' (62 1. V;=const, N;=const

In this situation the entropy of the sphere, as givefbih

In the last three relationg, and y,, denote magnetic perme- IS
ability of free space and magnetic susceptibility, respectively.

If V andN are fixed, then one finds the following known 1 o Omo Iy
relation[2], S1=Sort 1gVaBy @~ — 'Ba_T} : (68)
2 kT/'LOXm ) .
(6M)“= v (63 whereSy; denotes the entropy in the absence of the field and
(3) In the case of a dielectric continuum the correspond- 1 2 Ap, 1
ing expressions of the fluctuations can be obtained by means a=—+—, B=—7% - (69
of the following substitutionsB—D; H—E; u—¢, where M2 M M1 M
D is the electric displacemert, is the electric field strength
and e denotes permittivity. In this contexioM must to be Note that relation$65)—(69) refer to a state of equilib-
replaced withP (electric polarizationand y,, with x. (elec-  rium.
tric susceptibility. Selecting the quantitie¥ and B, as independent vari-
(4) It is easy to observe that the dispersiq@®\)? and  ables, one obtains for their fluctuations:
correlationssA 6B from the above established formulas ap-
pear as products of Boltzmann’s constimntith expressions 5 kT
that contain exclusively mean values of the random vari- (oT)*= 7S,
ables. It should be noted that the respective values identify ((9—1_
themselves with the variables from ordinanonstochastic V1.N;,By
thermodynamics. L 5 5
_ =kT2[CV+ R AL
B. The case of discrete systems 18 JT? JT?
Discrete systems are characterized by the fact that the 2 (ou\2(6
field lines extend beyond their boundaries. Consequently the n _(ﬂ) (ﬂ _ 1)
field energy is stored inside as well as outside the system. ,uf aT M1
These systems should be investigated regarding the effect of _
fluctuations(i.e., an evaluation of their stochastic character- 2 [duy\? 8 duy duy
istics). In the following we consider a particular case inves- N E oT | F oT JT (70)
tigated by Zimmel$5]. This case involves a sphere of radius 2 !
R placed in an external uniform magnetic field of strength .
Ho. —— kTwug KT[1[1 1 _uw,
The generalized internal energy of the sphere can be ex- (6B1)*= V. V.l9 —t+——2— - (7))
1 1 M2 K1 ug
pressed as,
dU,=TdS,—pdV,;+ {dN; + ¢dB;, (64) These relations show that the fluctuations of the macro-
scopic parameters depend on permeabilities of both the dis-
where the following relations were taken frdi: crete system and its surroundings.
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2. B;=const 3. Hi=const
In this situation[5] we have Using the quantities defined i5] we get the following
expressions:
dU,=TdS,—pdV,+ZdN; (72)
1 H? ] Vi d
. ~ 2 1, M1 , 1 0M2
with P=PH, N, =P 2H1Ms 18('8 pldpl Oépzv2 ﬁpz)'

(80)

P=pPs, N,=P 2u. 18 sz2 Ips P1 ap,

- HE[  aps Vi dus
73 = =(+—=|B—4a' ——=
( ) g ng,Vl §+ 18(18 07P1 ta V2 &pz)! (81)
and
2 Mi 21
F=lo, =it k| 1o 02y Ot (74) “oatE BT 82
TRV ST 18|V, Y p, dpa] K2 H2
It follows that one obtains fof5T)? the same expression I I
in th ' ituation, b the entropy is given by Si(H1=cons)=Sy+ ==ViHZ| —g'——+a'—2|.
as in the previous situation, because the entropy is given by =1{M 1T g Vit aT aT
The dispersions of/; andN; are,
- Here the fluctuation of the temperature take the following
( 9 ) form:
Ny
T.V,.B;
(6V1)?=—KT— = = ,
' 7 op a \? s KT
i, ol s T
Ny T.V,,B; N1 T.N;,B; N1 TN, B, (ﬁ)
(79 V1.Np.Hy
9P =kT2[CV+1—8TV1H§ sy
aV, aT aT
(ONDZ=KT )
! ap Y3 A 2 [gpr\? 203 dua\? Auq dpg dpy
N, N, v, T\ T T2\ ar) Tz T o ||
Ny e N Ty, By L N M2 M2
(76) (84)

These expressions are only in a formal analogy with the
corresponding ones for magnetizable continuum, because
they imply specific particularities through the following par-

Correspondingly we find for the fluctuation @f andN;:

tial derivatives. ( Pl )
) Ny
) (e Bilapadme Berim  (5v)Pe—kT— S
(9V1 TN. B (9V1 TN 18 V2 (?pz Vl &pl ag ap 0"5
T ’1 N, N, v,
1T v, Hy TNy H,y /TNy H,
N1\ P2V, ap, T PPYop,
L 24 B} 9 (Vi duy om P
N, LT R T- VAL VAL S Poe e vo L— N 7,
d 1 TV,.B; d 1 TV, d 1 2 ‘9P2 é’pl (5N1)2:|(T _ _ 11 s ,
79 (a_p) (a_é) (a_é)
. 5 Ny TN; Hy INy TV, Hy V1 TN Hy
(&_ﬁ) (SB[, ) (36
5V1 T,Nl,Bl ﬁVl T,Nl 18 &Vl V2 l?pz &pl ’
(79  where
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( ap ( z?p) L H2[a'p, (9,u2+ P1 I lim By=3uoHo; us=9us. (90)
_— = — —_— M1 ®
&Vl TleyHl (9V1 T,Nl 18 2 &pz Vl 0[)1
P R Vy dpy If V, andN, are fixed then
+—| B p—+a 8
07V1<'B PLap, p2V2 3.02” ®7 7 o [ ou2]] L
; (GT2=KkT? Ha_ 2 (k2
(‘9_5) :<‘?_§> (T=kT |CV+ 2TV1H° JT? Mz( 8T) } ’
N1/ 1y o \VONg/ L (99)
H o oy Vidpe KT
TN, | B, e (6B1)7=— 2. (92
18 dNy \ ™ dpy V, dpy )’ V,
(88)
. ) If B;=const andV,<V, thenp and{ reduce to the fol-
(‘?_5) :(‘9_5) M i( e Va @) lowing expressions
0')Vl T N]_ H]_ l?V]_ TN 18 (9V1 U')pl V2 apz ’
(89 . moHR 1 Bj
. . . ) . P=P~ 5 =P 18 (93
It is interesting at this point to discuss the extreme case of M2
infinite permeability of the spherey,/u;—0, where the
field energy is stored exclusively outside its boundaries. In I=¢ (94)
this case
1 given in Ref.[5].
a=—; B=0; H;=0; The fluctuations oV, and N, are characterized by the
M2 dispersions:
s
— ﬁ_Nl TV,
oV1)°=—KkT , 95
(V) <a£> (6p) 1 zpzau2+(az)2 99
= _ TH2SE A
07N1 T,Vl &Vl TNl 2 V2 &pz &Vl Tle
(ﬂ) 4 Lpgap2 2me
. &Vl TN 2 OV2 apz
ON,)*=KkT . 96
B 4 R Y e e WA 0
N, v N 2 OV, dp, | |V, TN,
In the same extreme casetdf=const we obtain,
p=p—3 MzHo, 97)
i=¢, (98)
i
(8V1)2=—KT i (99)
' (‘9_§> a_p) 1 P2 ke +(‘7_§>2 ,
N, v Nl 2 OV, dp, | |V, TN,
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(&p) Lyzpzone
T.N;

(?_\/1 2 0V2 ﬁpz
SN)?=KT 100
o () T2 Iz 2l [T e
&Nl T,Vl 0"Vl T,Nl 2 OV2 &pz &Vl T,Nl
|
Note that the conditionu,/u;—0 imposesH;=0. This kind of relations, in our opiniof@—14], resemble the
We also make the following observations. well known Heisenberg’s “uncertainty” relations from quan-

(1) The most important fact in the case of discrete systemsum mechanics.
is that the fluctuations of the intrinsic parameters of the sys- Next we illustrate the relatioil03) for some concrete
tems depend on the magnetic permeability of its surroundeases.
ings. For a magnetizable continuum in a magnetoquasistatic
(2) The evaluation of fluctuations of dielectric systemsfield, at fixedN andV, we find from Eq.(103) the following
can be obtained by means of the substitutiods>E, B inequalities:

—D, u—e. I
(3) The comments of Sec. Ill A3 regarding dispersions (8T)? (8B)*>>0, (104
(8A)? and correlations’A 6B apply also here.
(6T)% (69)2>Kk?T?, (105
IV. THERMODYNAMIC INEQUALITIES FOR SYSTEMS K2T2
IN THE PRESENCE OF FIELDS W W> T (106)
2 1
It is known[9], that the correlation coefficients constitute
the elements of a matrix, which satisfies the following in- ou2
equalities: (85)2 (5B)2> k2T2H2(§> . (107)
P
de{Casl >0, (100 For a sphere placed in a homogeneous environriteet
corresponding permeabilities being, and u,), at fixed N
deilC;bl|>O, (102 andV, one obtains the relations

_1 . (6T)? (8B1)*>0, (108

whereC,, denote the inverse of the matri,y,.

Equationg101) and(102) can be used to define numerous (5TV2 (55,12~ K2T2
thermodynamic inequalities. In order to exemplify this pos- (8T)" (8S)">k7T7, (109
sibility, we have listed in Table | inequalities that refer to a
magnetizable continuum situated in a magnetoquasistatic & 27 o0 2 M1

If one considers separately only two variablgg,and X5,
then Eq.(101) gives

1 Ms
— 1 dpp  dug)?
2 2< " L2712p2,,12 e _p =
S (8S))° (6B1)™> g7 KT Bius (a 0T o7
(6X1)2 (8X5)2> (86X, 6X,)2. (103 (111)

TABLE |. Thermodynamical inequalities.

Independent variables Inequalities

S,V,N,B [4(T,—p,Z,VH)/(S,V,N,B)]>0

T.V.N,B [4(S,—p,Z,VH)/4(T,V,N,B)]>0

T,V,N,H . .

det(9S/9Xp) 81a— (P! 9Xy) Bap+ (9L 9X5) Sap+ [ A(VH)9Xy) - (9Bl 9Xp)| >0

(Xl 1X2 !X3 ,X4)

U,V,N,B del aT/ 90X, X, — (9Pl 9X5) Sap+ (L1 9X5) S3p+ [ A(VH) I IX ] S45| >0
(Xl 1X2 ,X3 ,X4)

1/T,V,N,B del —T2(9S/ 9X) 810 — (9P 9X5) Sap+ (L1 9X5) S3p+ [ A(VH) I IX 4] 845 >0

(Xl 1X2 ,X3 ,X4)

021108-9
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ables K,=T,V,N,B). Then for the quantitiesU and 8S

In Sec. | we presented a phenomenological theoreticafn€ obtains,

approach with a view to describe fluctuations of macroscopic
parameters that characterize thermodynamic systems in th
presence of fields. We started with the expression of the gen-
eralized differential of the internal energy, and assume that
the fluctuations involved states that are in the neighborhood
of thermodynamic equilibrium.

In Sec. Il we considered electromagnetic fields as a spe-
cific case. We find that the estimators of fluctuatidhs.,
dispersions and correlationslepend on the different field
constraints.

Discrete systems are characterized by fluctuations estima-
tors, which are functions of intrinsic quantities of both the
system and its surroundings.

In Sec. Il we presented thermodynamic inequalities,
which result from the fact that the correlations of the fluc-
tuations constitute the elements of a non-negatively defined
matrix. In their two-variable versions the respective inequali-
ties can be identified as classiqalonquanturh analogs of
the well known Heisenberg’s “uncertainty” relations.

The last items from Secs. Ill A and 1l B reveal an inter-
esting feature of Boltzmann’s constaktin the following
sense.

(a) The quantitieg 5A)? and 5A 5B as fluctuation param-
eters are estimators of the level of stochasticity.

(b) The formulas from these sections show the fact that
the respective quantities appear as products of Boltzmann’'s
constantk with nonstochastic expressions.

(c) It follows thatk can be regarded as a generic indicator
of thermodynamic stochasticity.

Finally, we wish to add the following remarks. The men-
tioned idea regarding was first introduced if10]. In this
work the similarity between Boltzmann’s consténand the
Planck’s constanti was revealed. In this context Planck’s
constant is a generic indicator of quantum stochasticity. In
cases of classicalnonquantum thermodynamical systems
and quantum microparticle® and# appear independently
and separately. Consequently, the respective systems can be
regarded as endowed with a onefold stochasticity. In the case
of the quantum statistical systertkaindz appear together in
the expressions of the fluctuation parameters. This means
that such systems are endowed with twofold stochast|C|ty
(for more details see Ref10]).
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APPENDIX: PROOF OF THE RELATION (15

We consider the second order approximation in terms of
the fluctuations6X, of the corresponding independent vari-

021108-10

0S=

—(‘90) ST+ ‘90) SV + 50) SN
al V,N,B N T,N,B J T,V,B
+| = : | = (8T)2
ﬁB T,V,N 2 2 V,N,B
1[0 20
BN 20 | = 2
APY: ) 2( 2) (6N)
T,N,B T,V,B
170 8B)? 0 SV T+ —— U SN 8T
2\ g2 (OB)™+ Vot N oT
T,V,N
2] 92C 920
+—888T55 ST+ ——— EVEN 5V5N+(9V(986V6B
.
+-NIB SN 6B, (A1)
(as +(05) 5V+(as> SN
&T V,N,B (9V T,N,B &N TV,B
+ ‘98) 5B+1(&ZS) (8T)?
B TV.N 2\ o712 V.NB
+1(528) (5V)2+1 628) (6N)?
2\ 2 21 N2
(9V T,N,B (9N T,V,B
+1 S S5B)2+ S SV ST+ S SN 8T
2\ om2) (BT N T
T,V,N
S 5B ST 7S 8V SN 7S 5V 5B
TR aT TNV N VB
+ 7S SN B A2
N 9B ’ (A2)
( aO) _T( as) A3)
d V,N,B (9T VNB,
I
—_ — — _p,
(9\/ T,N,B (9V T,N,B
(30) —T( &S> + (A5)
07N T,V,B 07N T,V,B ,
( ’90) —T( 95 +VH (A6)
&B T,V,N &B T,V,N ,
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(920) 9%S . (aS) A7) P20 _ #S . (aZ 12
a2, e 9T N IT) g’ NN VN \ V] o
920 . 9%S (aﬁ) ”8)
2] “Uone T\l
N T.N,B N T.N,B N T.N,B on 5
70 %S (a(VH) AL3
9?0 S al NoB VB N s (AL3)
—2 =T —2 + (9_N y (Ag)
N/ ve N T.V,B T.V.B
azu) T 328) +v((9 (A10)
- =T| — — , 2 2
B2 B2 By s ou IS oH
V,N,B V.N,B N, N aB_TaN (?B+V N TVB. (A14)
320 . #s &0 . #s &0 . 7S
VIT oVIT' OINJIT  INJT' oBIT  dBIT’ The above EqA1)—(A14) in conjunction with Eqs(1),

(A11) (2), and(14) give directly the relatior(15).
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