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Do strange kinetics imply unusual thermodynamics?
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We introduce a fractional Fokker-Planck equati@iPB for Lévy flights in the presence of an external
field. The equation is derived within the framework of the subordination of random processes which leads to
Lévy flights. It is shown that the coexistence of anomalous transport and a potential displays a regular
exponential relaxation toward the Boltzmann equilibrium distribution. The properties of theflight FFPE
derived here are compared with earlier findings for a subdiffusive FFPE. The latter is characterized by a
nonexponential Mittag-Leffler relaxation to the Boltzmann distribution. In both cases, which describe strange
kinetics, the Boltzmann equilibrium is reached, and modifications of the Boltzmann thermodynamics are not
required.
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Strange kinetic$1,2], which involves diffusional anoma- the Boltzmann constant. The differential operawtl’“,
lies, both sublinear and superlinear, and nonexponential reacting on functions of time, is defined throufft¥]
laxations, is quite wide-spread, and has been observed in a
broad range of systenj4,3—6. The ubiquity of strange ki- 1 9 [t Z(t")
netics rests upon generalization of the central limit theorem oD *Z(t)=5—— dt' ——— .
due to Lary [7], a generalization that puts heavy-tailed dis- Tla) at]o " (t—t)t7
tributions on the same level of importance as the well-known
Gaussian distribution. The FFPHEQ. (1)] has been derived using a Kramers-Moyal

Anomalous diffusion in the presence or absence of a@xpansion of the CTRW nonlocal equatidr8]. The solution
external field has been modeled in a number of ways, inc|udof this FFPE is characterized by a subdiffusive behavior and
ing fractional Brownian motior{8], generalized diffusion Py @ nonexponential Mittag-Leffler decay of the single
equationg9], continuous time random wallcTRW) models ~modes. The decoupled structure of Efj) guarantees that
[10]’ Langevin and genera“zed Langevin equa’[im and the Boltzmann distribution is attained at equilibrium
generalized thermostatickl2]. In particular, the CTRW [5,13,14. We note that the latter is also a property of the
model has been demonstrated to be a powerful approach li§gular Fokker-Planck equation correspondingrtel.
describing subdiffusive as well as superdiffusive processes Less clear has been the situation for FFPE's which corre-
and in interpreting experimental results. It is not straightfor-spond to Ley spatialflights Previously proposed equations
ward, however, to incorporate force fields and boundary conk2,11] seem not to lead to the Boltzmann distribution, a point
ditions into this formalism. whose impact has been overlooked. This might therefore

An alternative approach to processes which displayuggest that strange kinetics requires unusual thermodynam-
strange kinetics is based on fractional equations, which ars[12]. Here we derive a FFPE for kg flights in the pres-
suitable for handling external fields and for consideringeénce of an external force. Our starting point is a representa-
boundary value problems. In the case of subdiffusion it wadion of Levy flights in terms of a subordination of random
realized that the replacement of the local time derivative irProcesseg15,16. This representation corresponds to pro-
the diffusion equation by a fractional operator accounts foicesses in which space and time are decoupled, and it does not
memory effects responsib|e for anomalous beha[&ls:l account for Lgy walks [1,4,1(] That iS, in what follows we
In the presence of an external field a fractional Fokkerobtain a diverging mean-square displacement in the force-

Planck equatiofFFPB has been introduceld,13)], free case. The solution of the FFPE which we derive again
leads to a Boltzmann distribution in the equilibrium limit,

()

d 1w re-emphasizing that there is no need to modify conventional
at P(X,0)=KoDi “LepP(x,0), 1 thermodynamics in order to obtain strange kinetics. We show
some examples for solving this FFPE for boundary value
where Lep is the Fokker-Planck operator: problems.
As we proceed to show, the corresponding generalization
9 9 f(x) 5 of the Fokker-Planck equation for iz flights is
PR KT @ )
s . . L —P(x,t)=—Ka(— Lep)“P(Xx,1), 4
oDi~“is a fractional Riemann-Liouville operatorQx<1, el @(~ Lrp)PXD) @

andK is a generalizedsubdiffusion coefficient, having the
dimension[K]=[L?%/t*]. The forcef(x) is related to the where the operator< Lgp)® is the ath power of the opera-
external potentialJ(x) throughf(x)=—dU/dx, andkg is  tor — Lgp=— % dx2+ al ox[ f(x)/kgT], as will be derived
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below, and the corresponding generalizedipejdiffusion  The overall Markovian process is then governed by the inte-
coefficient has{K(a)]z[LZ“It] as dimension. gral Chapman-Kolmogorov equation

The CTRW's can be viewed as Markovian random walks
on a lattice(with lattice constang) given in terms of the
number of steps of the random walkerP(x,n) is a prob-
ability distribution function(PDF of the particles’ displace-
mentx aftern steps. The number of stepperformed during Let us concentrate on the long-time, largebehavior of the
the timet follows the probability distributiorS(n,t), which ~ system, and take the foré¢o be smooth. On such scales we
may include memory effectsl7]. The overall displacement consider thex Fourier transform of Eq(9), and obtain
during timet is then given by

P(x,t+At)=fW(x,t+At|x’,t)P(x’,t)dx’. (9)

p P(k,t+At)= fxdnexp[—(ikv+k2)a2n]S(n,At)P(k’,t).
P(x,t)znzo P(x,n)S(n,t). (5) 0 (10

In the force-free case the POY{x,n) typically corresponds For random processes leading to diffusive behavior, the first

to normal diffusion behavior. and thu€«n. On the other Moment of the distributiors(n,At) for small At exists, so
hand, the typical number of steps can grow sublinearly ofhat one can expand for smélkthe exponential into a power

superlinearly in time, so that the overall behavior can beS€ri€s, obtaining

anomalous.
Here we concentrate on the superdiffusive case, and as- P(k,t+At)= fxdn[l—(ikwk2)a2n]S(n,At)P(k,t)
sume that the random procefs(t)} is characterized by a 0
diverging mean density of events, so that the first moment of
the numbemn of steps does not exist. As a realization of such _ den[l— (ikov + k2)a2<n)m]P(k,t)
a process we can take that the numbers of jumps during 0

different time intervals of unit length are independent ran-
dom variables distributed according$¢n,1)cn~1"¢. Fort
large enough the distributio8(n,t) tends then to a stable
Lévy law L(n;a,B) [15]. Sincen is non-negative, this law is
the one-sided extreme distribution for whigh=—a (0
<a<1). If different time intervald are considered, the dis-
tribution S(n,t) scales as

=P(k,t)— (ikv+k?)a%(n),P(k,t) (11
(a Kramers-Moyal procedure For normal diffusive pro-

cesses one hds)=wAt, wherew is the jumping rate, so
that, in the continuum limit,

P(k,t), (12

i P(k,t)=—K 'k—f k?
1 N E (k,t)= I kBT+
S(n,'[)sz TarTal. (6)

oAt with K=a2w/2 being the diffusion coefficient. In therep-

Now imagine a random walker moving under the influenceresentauon this is the conventional Fokker-Planck equation

of a weak forcef (x). Such a force introduces an asymmetry(FPB [18]

into the walker’s motion, since the probabilities for forward 5
and backward jumpsy, andw_ are now weighed with the Px [ iL+ 9 P(x.t) (13
corresponding Boltzmann factorsy, /w_=exp(fa/kgT). at IX kgT ~ gx2 e

For smallf one can takev, =1/2+fa/2kgT andw_=1/2
—fa/2kgT. Note that the process described in such a way isn the case whei$(n,At) is a stable Ley law of index «,

a Markovian one, and can be characterized by a transitiop< <1, the first moment oh diverges, and the series ex-
probability pansion of the exponentia[Eq. (11)], is not pos-
sible. On the other hand, for<<1l the integral ¢(k)

= [, exp(—k7)(r,At)dr converges for eachk=¢+in,
Re&>0, and is a stretched-exponential functigtb]. For
extreme stable Ly distributions with G<a<1 (those
For At in the intermediate range, i.e., large enough to viewwhich vanishing identically for negative argumentse has
bothx andn as being continuous and to approxim&, n) ¢(k)=exp(—«%). Thus, performing the integration in Eq.
by the GaussianP(x,n)=(27n) Y%exd—(x—vn)?%2a?n]  (10), one obtains

with v ="fa/2kgT, yet small enough to have the typical dis-
placement small on the scale of changé ©f), one obtains

oo

W(x,t+At|x’,t)=2,0 P(x—x",n)S(n,At). (7)

o

f
P(k,t+At)=exp[—K(a)(ikﬁ+k2 At}P(k’,t).
] (x—x'—vn)? ® (14)
W(x,t+At|x’,t)=f expp ———
0 y2mn 2a’n _ _ :
Now expanding the exponential and repeating the steps lead-
X S(n,At)dn. (8) ing to Eqg.(11), we have
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IP(K,t) o
Tz—K(a)(lk—+k2

@ d
T P(kt). (19 S O(1) =K\ oDy ‘@ (1) (19)
B

dt

Comparing the terms—(ikf/kgT+k?)* and —(ikf/kgT ~ (An being real and negatiye Hence ®(t) are Mittag-
+k?) in Egs.(15) and(12), which represent the correspond- Leffler functions[12—14. On the other hand, the superdiffu-
ing transport operators, and Lgp= £, in Fourier space, we Sive FFPE(being of first order in timgleads to

see that they are connected by the relatiah, q

=—(—Lgp)“. The same relation holds, of course, when one — D ()= —K, (=N D (t 20
shifts to thex representation: at Pmlt) (@(~Xm) " P0), 20

IP(x,1) corresponding to a simple exponential relaxati®n,(t)
=—K(y(=Lep)*P(x,1); (16 =exp(—K»\y/t). Thus, in thg case of discrete spectrum
and of real, negative\, the Levy-flight FFPE retains the
) ) exponential nature of the relaxation to equilibrium, a behav-
see Ref[19]. Note that Eq(16) differs from the expressions o tynical for normal FPE's, so that only the corresponding

proposed in Ref|11], where either only the second part of \g|axation times change. For example, the relaxation behav-
the Fokker-Planck operatda A term) is changedand cor- jor of 4 particle in a harmonic potentidi(x) = — yx, follows
responds in our notation te (—9%/9x*)“], or where a sum  j\mediately from a standard solution of the FPEB]: The
of two terms s introduced, so that fractional space derivagigenfunctions can be expressed through those of the' Schro
tives of the ordersr and 2« appear. Note that, in generdl,  ginger equation, and the spectrum consists of a zero eigen-
cannot be Qecoupled into .addmve parts responsible SePFalue,\,=0, and of equidistant negative eigenvalugs=
rately for drift and for diffusion. o —(y/kgT)n. Since the spectrum of a Fokker-Planck operator
Some important properties of i diffusion in the pres- \yith 4 harmonic potential is discrete, the relaxation is multi-
ence of a force field stem from E(L6). Since—Lep andL,  exponential. The equilibrium state of such a systéhe

commute with each o.f their powers, the gigenfunctions Ofeigenfunction corresponding t,=0) shows a Boltzmann
these operators coincide. The corresponding eigenvalues gisgripution. The longest relaxation time is given by the first

ot

L, are those of- Lrp raised to the power od: eigenvalue) = — y/kgT, 50 thatr= (KsT/7)“/K (o)
FEp o Another interesting example corresponds to the motion in
N == (=N )" (17)  the absence of a field of a particle in an interval with absorb-

ing boundaries at= *1. The eigenfunctions of the Fokker-
Note that the eigenfunctions of (ikf/kgT+k?) and of Planck operator are now the trigonometric functions,
—(ikf/kgT+k?)® (describing a conventional FPE and a ¢,(X)=cog(m+1/2)mx/1], and the corresponding eigenval-
FFPE in an infinite homogeneous system, respectivedyy  ues are\ ,= —[(m+ 1/2)=/1]?. The eigenvalues of, are
be chosen to be the same. Exemplarily, é(is the eigen- = —K,[(m+ 1/2)7/11%¢, so that the overall relaxation
function of free motion in both cases; we denote its eigenagain follows a multiexponential pattern. The survival prob-
values by\[" and \["", respectively. Thus, ifCrp has a  ability for a particle initially situated at the middle of the
(nondegenerajeero eigenvalue, whose eigenfunction corre-interval, x=0, is equal to
sponds to a stationary state, the same holds{pr The
stationary states of the systems described by the FPE and - I T |
FFPE therefore coincide. For closed systems currents at P(t):mz:o J7|C° (M+1/2) x|t
infinity), the stationary state is that of thermodynamic equi-
librium, and is given by the Boltzmann distribution. This is a “4 (—1)"
general property of each subordination process, since a state = E - (2m—+1)e
stationary int is also stationary im. n=01m

The sql_unon of FFPE's l_mder the given initial ?”d boun(_j-At longer times this decay tends to a simple exponential with
ary conditions can be obtained by means of an elgenfunctm{he characteristic time= K 1(1/2m)2*. Note that thel de
) : )

expansion, as is generally the case for normal and subdiffu- : @) .
sive motion[5,13,14,18. If ¢ (x) are the eigenfunctions of pendence of this characteristic time differs from that encoun-

. . - o 71 2
the Fokker-Planck operator, then the solution of the FFPéered n nor'mal dlffu5|or], where—K. (1/2m)”. In the.case.
can be expressed as a=1/2, a simple analytical expression holds at all times;

P(t)=arcta+ex;< T K(m)t) }
P(X,1) =2 amém(X)Pp(t), (18) 2 | ’

see Eq. 5.2.4.8 of Ref20].
where ®(t) are the corresponding temporal decay forms. Using a representation of kg flights in terms of a sub-
Here the difference between sub- and superdiffusive FFPE'srdination of random processes, and following the Kramers-
becomes evident: in the subdiffusive cabg(t) are solu- Moyal procedure, we have derived a fractional Fokker-
tions of a fractional ordinary differential equation Planck equation for Ly flights. It was shown that when the

—K l(n+ l/2)77/|]2"‘t. (22)
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regular Fokker-Planck operator has a discrete spectasn corresponds in both cases to the Boltzmann distribution, em-
occurs under appropriate potentials or boundary conditionsphasizing that there is no need to modify conventional ther-
anomalous transport results in an exponential relaxation tomodynamics in order to obtain strange kinetics.

ward an equilibrium distribution. These properties of the

Lévy-flight FFPE are compared with earlier findings for sub- ~ The authors gratefully acknowledge the support of the
diffusive FFPE’s. The latter are characterized by a nonexpoGerman-Israeli foundation(GIF), of the DFG through
nential Mittag-Leffler relaxation. The equilibrium solution SFB428, and of the Fonds der Chemischen Industrie.

[1] M.F. Shlesinger, G.M. Zaslavsky, and J. Klafter, Nat(lren-
don) 363 31(1993. [12] C. Tsallis, S.V.F. Levy, A.M.C. Souza, and R. Maynard, Phys.

[2] G.M. Zaslavsky, in_évy Flights and Related Topics in Physics Rev. Lett.75, 3589(1995.
edited by M.F. Shlesinger, G.M. Zaslavsky, and U. Frisch[13] E. Barkai, R. Metzler, and J. Klafter, Phys. Rev.6&, 132
(Springer, Berlin, 1996 (2000.

[3] J.-P. Bouchaud and A. Georges, Phys. R&h, 127 (1990. [14] R. Metzler and J. Klafter, Phys. Rep39 1 (2000.

[4] J. Klafter, M.F. Shlesinger, and G. Zumofen, Phys. Today[15] W. Feller,An Introduction to Probability Theory and Its Appli-
49 (2), 33(1996. cations(Wiley, New York, 1971, Vols. | and II.

[5] R. Metzler, E. Barkai, and J. Klafter, Phys. Rev. L&®@, 356 [16] I.M. Sokolov, Phys. Rev. B3, 011104(2002).
3(1999. [17] A. Blumen, J. Klafter, and G. Zumofen, Fractals in Physics

[6] V.V. Uchaikin and V.M. Zolotarev,Chance and Stability, edited by L. Pietronero and E. Toss@tiorth-Holland, Amster-

58, 1690(1998.

Stable Distributions and Their Application®/SP, Utrecht, dam, 1986.
1999. [18] H. Risken, The Fokker-Planck EquatioriSpringer, Berlin,
[7]P. Levy, Theorie de I'Addition des Variables Adgoires 1984).

(Gauthier-Villars, Paris, 1937 [19] The fact that the generalized Fokker-Planck operatgris

[8] B.B. Mandelbrot,The Fractal Geometry of Naturd-reeman,
New York, 1983.

[9] H.G.E. Hentschel and I. Procaccia, Phys. Rev2% 1461
(1984).

[10] J. Klafter, A. Blumen, and M.F. Shlesinger, Phys. Re\33\

equal to—(—Lgp)*, and not simply tol gp is evident. For
example, the force-free caseCdp=d%/dx%) with a=1/2,
when recalling thavP/dt= L P, has to describe a symmetric
Cauchy distributionP=t/[ (x2+12)]. This is not a solution
of a Liouville equationdP/dt = dP/dx.

3081(1987).
[11] H.C. Fogedby, Phys. Rev. Left3, 2517(1994; Phys. Rev. E

[20] A.P. Prudnikov, Yu.A. Brychkov, and O.l. Marichetegrals
and SeriegNauka, Moscow, 1981

021107-4



