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Convergence of Monte Carlo simulations to equilibrium
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We give two direct, elementary proofs that a Monte Carlo simulation converges to equilibrium provided that
appropriate conditions are satisfied. The first proof requires detailed balance while the second is quite general.
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Monte Carlo simulations are widely used in statistical In the simplest case, the desired distribution that the
physics. If the algorithm satisfies the detailed balance condiMonte Carlo method seeks to simulate is the Boltzmann dis-
tion, it is easy to show that the desired distribution ist&  tribution at some temperature. However, in dealing with
tionary distribution, i.e., if the system is, by some means, pufglassy systems, it is sometimes more efficient to simulate a
into the desired distribution, it will subsequently stay in this different distribution, as in the multicanonical enseml@g
distribution. It is harder, but nonetheless crucial, to also showhe 1k ensembld9], and parallel temperingL0]. The results
that, starting from a general distribution, the algorithm will hresented in this paper are valid whenever the desired distri-
convergeto the desired distribution. Although this can be p ion js a stationary distribution of the algorithm, and de-
proved without too much difficulty for a system with a finite a4 hajance—or, more generally, ergodicity—is satisfied.
number of statefl], this proof is unfamiliar to most physi- 115 includes the cases mentioned above.

Egtrsﬁ;:;z ?:E]nuvrg?gnetrllgethp?a%r;?tl)?:lbﬂ?ri)serngI gﬂg%‘mii T_he_ essentiz_:ll ingredients of the_Monte C_f;rlo method in
f;tatlstlcal physics are th@on-negative “transition rates,”

hysics texts on Monte Carlo methods either do not give ! > . .
grgof of convergencé4] or refer the readef5, 6] to rath?ar W,_m, defined to be the probability that, given the system is
. in statel at “time” t, then it will be in statem(#1) at time

abstract derivations in the mathematics literafufk or rely - . )
on the Frobenius-Perron theordy which is unfamiliar to ~ t+1. We define time to be incremented by one every Monte
most physicists. Carlo move(not sweep and assume initially that all moves

In this paper we present two proofs of convergence whictare equivalent, so they,_,,, do not depend on time. An ex-
are self-contained and use only elementary methods. We feémple would be flipping a single spin chosen at random. The
that it is useful to present these derivations here becauge important case of sequential updating will be discussed later.
is not widely known in the physics community that it is not ~ The probability that the system is in stdtet timet is
difficult to prove convergence, at least for systems with adefined to beP(t). The evolution of these probabilities is
finite number of states, an@) our proofs argto the best of governed by the “master equation,”
our knowledge different from and as simple as existing

roofs in the mathematical literature. Even the proof of Ref.

Fl], which is of comparable simplicity, is hard topunderstand Pit+1)- P'(t):n;, [Pm(t) Win—y = Py (1) Wi ]
physically; this is discussed more fully near the end of the (1)
paper.

The first proof relies on the Monte Carlo algorithm satis- The first term on the right-hand side describes transitions
fying the condition ofdetailed balanceAlthough this is true into statel from m (which therefore increase?, and so has
in essentially all Monte Carlo simulations, it is not strictly a plus sign while the second term describes transitions out
required for the algorithm to converge to the equilibrium of statel, which decreaseB(l). Note that only terms with
distribution. In the second half of this paper, we shall alsom#| contribute. We can also defing_,, to be the probabil-
present a more general proof which relaxes this conditionity that the system stays in statg ie., w,_,=1
and which is very different from the proof assuming detailed—> . ,w, ., or equivalently,
balance.

Throughout this paper, we shall assume that the system
being considered has a finite number of states. Most systems % wi_m=1. 2
in physics can be approximated as such by discretizing any
continuous variables sufficiently finely; for instance, in mo-
lecular simulations, it should be permissible to limit the
phase space for any particle to a sufficiently large region, and
then discretize it in small intervals. A rigorous proof of con- P|(t+1)=2 Pm(t) Wh 3)
vergence for systems with an infinite number of states is m
much more complicateflL1].

Equation(2) implies that the master equation can be written

where the termm=1 is now included.
A necessary condition for the method to work is that the
*Present address: Physics Department, Indian Institute of Sciencélesired distributionP® is stationary i.e., if P(t)= Py for
Bangalore 560012, India. all | thenP,(t+1)=P{9. This means that the right-hand side
TCorresponding author. of Eq. (1) must vanish foP = P®9 The condition ofdetailed
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balance consists of the assumption thaachterm on the can be reached in a single move—have probabilities propor-
right-hand side of Eq(1) separately vanishes fd?=P®9  tional to the equilibrium probabilities. The most natural sce-
ie., nario is thatall states satisfy this with the same proportion-
ality constant(which must be unity, i.e., the system is in
PrW| _m=PrWp, . (4 equilibrium. HoweverAG also vanishes iP,,,/ P9 assumes
different values for states which have no common one-step
descendants. Hence, to achieve full equilibrium, the algo-
rithm must also be ergodic, i.e., starting from a given state,
after a sufficiently long time there is non-zero probability for
the system to be in any state. The condition of ergodicity is
2 sufficient to ensure that even XG is accidentally zero at
G=E i(Pl_ Pleq)zzz (i_ ) (5) some time step, it must decrease later, since any two states
T Py T\ P must have common descendants after several time steps. If in
additionw,_,;#0 for all I, which is usually true, the one-step
evaluated at timg where the last expression follows becausedescendants of a set of states must include the set itself, so
P and P¢% are normalized. that it is not possible to break up all the states of the system
At time t+1 we indicate(for compactness of notatipn into subsets with no common one-step descendants across
the probabilities byP| and the corresponding value Gfby  two subsets. Thus if this condition is satisfiéd> cannot be

In the first part of this paper, we shall assume that Bjis
satisfied.

We start with the following quantity, which is a measure
of the deviation from equilibrium,

G’. We will show thatG monotonically decreases, i.e., zero (without the system being in equilibriunat any time
step.
AG=G'-G=0, (6) We will distinguish between a process which is ergodic

) , _ and one which satisfies the lesser condition of being “irre-
where the equality only holds & andG’ both vanish, sothe qycible.” In the latter, the system will eventually sample all

system is in equilibrium. This shows that the system will giates starting from a given initial stafig], but, at a fixed
eventually approach arbitrarily close to the equilibrium dis-|5ter time the probability for some of the states is zero. A

tribution. _ familiar example which is irreducible but not ergodic is the
Using Egs.(3) and(5), AG can be written as Ising model at infinite temperature simulated using Metropo-
) lis updating, for which the probability to flip is unity in this
AG= E We W PmPn _E i @) limit. Clearly after an odd time, the number of flipped spins
Im,n m—Hn =l ped T pﬁq' must be odd and vice-versa. For such a non-ergodic system,

it is possible forP,,/P 3andP,,/P:to be different for states
In the first term on the right-hand side of E) we use the which have no common descendant at any fixed later time
detailed balance condition, Ed4), to replacew,_, by  (for the Ising model example given here, states which differ
W, mPFrYP:Y, and in the second term we can use B).to by an odd number of spin flips

insert a factor o \w,_,, (@and interchange the indicésnd Note that Eq.(10) does not give an estimate foow fast
m). This gives equilibrium is reached.
For random updating considered so far, the probability of
PP p2 making a transition is the same for every move, i.e., writing
AG= Wy oWy PO LS —2 (8
l%n I—mW|—nP| pecpea %:1 m IPﬁ? ®  Eq.(1) as
Applying the detailed balance relation again and incorporat- Pit+1)= TP (t 11
ing a factor ofS,w, ., the last term in the above equation (t+1) % imPrm(t), 1

can be written as

5 thenTI, the transition matriXrelated tow by I'j,=wW,_|), is
- w_w,_ P ﬂ 9 the same for each “timet. However, for sequential updat-
(S M= peal - ing, the transition matrix depends on which site is being
updated, so, for a complete sweep, we have
Taking the half the sum of this and the same expression with
m replaced byn, we finally get r=r@r@...roN, (12)

2
AG= — 1 S oww p;aq(ﬂ_ Pn (10 whereI'() is the transition matrix for updating spin Al-
2 Pl ped though thel'(") individually satisfy the detailed balance con-
dition, the transition matrix for the whole swedp, doesnot,
where terms wittm=1| andn=1 are included. [6] because the probability of the reverse transitions|
Equation(10) is the main result of this part of the paper. It say, for a whole sweep, is related to the probability of tran-
shows thatA G is definitely negative unless, for every stite sition|—m in the desired way only if the spins are updated
all states which can be reached frdnn a single move— in the reverse order. Despite overall lack of detailed balance,
equivalently, with detailed balance, all states from which convergence to the equilibrium distribution is still obtained

I,m,n
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for sequential updating becauSedecreases aachstep, as scendants it is clear that_(t) does not change at first. How-

long as each of the transition probabilitid¥)), satisfies the ever, G decreases because the positive and negat®R's

detailed balance condition. both get “smeared out” over several states. Thus different
More generally, detailed balance is not necessary, see Reheasures can depict the approach to equilibrium at different

[6] and references therein. In the rest of this paper, we give pates. Since any physical observalfeis given by (O)
derivation of the necessary and sufficient conditions for con—x 0, p, , the error(50)<=,|0,sP,|<Lmax[|O|], so that

vergence P _ o L is a conservative indicator of how observables approach

(i) the algorithm ha$®% as a stationary distribution, equilibrium.

(ii) for any pair of statesi(j), there exists som#;; and We have proved the sufficiency of conditiofis and (ii );
some statd; such that at thd; 'th time step the probabili-  the necessity can be easily demonstrated. The necessity of
ties to have reachekdfrom i andj are both non-zero. is obvious. If(ii) is violated, starting with an initial condition

We shall see thatii) [with (i)] implies ergodicity. 8P;(0)=—&P;(0) and all othersP/’s equal to zero, the

We first prove that condition§) and (ii) are sufficient. positive and negative regions fa@P stay separate for all
Note that Eq«(1) is linear in the probabilitie®|, so that if  {me and cannot neutralize each other.

we definesP,=P,— P4, then[with condition (i)] 5P, also Condition (i) [with (i)] is equivalent to theseemingly
satisfies Eq(1), with 2;6P;=0. strongey condition of ergodicity. If the system were not er-
It_ _is ponvenient to use a measure of the deviation fron‘godiC, then starting witt?,(0)=&;, would lead to aP(t)
equilibrium that is different from Eq(5): with P;(t)=0 for somej, since all states would not be ac-
cessible from the stateat timet. ThereforeP(t) could not
L=§|: | 5Py (13)  have converged t®°®% Since we have seen th@j and (ii)

imply convergence, they must imply ergodicity.
Like G, the quantityL is positive unless the distribution has ~_ The proof of convergence in Refl] is comparable in
converged toP®l We denote byW, . .(t) the probability ~Simplicity to the proof given above. However, it applies the
that the system, starting out in stateeaches statm aftert transposd’ T of the transition matrix to the initial state of the

time steps. This is obtained by “iterating” the transition rates System(represented as a column vegtand shows that un-
{w}. Then der iteration the initial state evolves to a column vector

whose entries are all identical. Although it is possifléto

_ deduce the desired properties Bf from this, there is no
L(t)_% 2 Wim(t) 5P(0) smEJ Wi—m(D)8P(0)]. physical interpretation of evolution undé&t’, which does
(14) not even conserve probability. In contrast, the proof given
above shows how fluctuations from the desired distribution
are “mixed” by time evolution, with positive fluctuations
annihilating negative ones. It is also physically clear why
ergodicity is essential for this annihilation process to proceed

I-summation. If all states for which W,_,#0 have the 4" completion: Positive and negative fluctuations are then
same sign fo6P)(0), it is clear that thé-summation on both  5qqred of encountering each other under time evolution.

sides are equal. On the other hand, if some of these states ajhough we have considered the conditions for conver-
havesP(0)>0 and others havéP(0)<0, thel-summation  gence toP® in practice Monte Carlo simulations are not

on the left-hand side has both positive and negative t€rmg,ried out using such an ensemble average, but by simulat-
and must be less than the corre;pondmg sum on the rlghfﬁg a single system and taking a time average of many mea-
hand S'd%- Thus so Iong as there is at least one statbich  g;rements. If we restrict ourselves to the case when the tran-
receives contributions” from two stated () W.Ith o_pposne sition matrix T' is time-independent, this defines a
6P(0), i.e., 6Pi(0) and 6P;(0) have opposite signs and homogeneous Markov chafi2]. It can then be shown that
Wi_m#0 andW;_,#0, we see thatt (t) <L (0). Condition it the Markov chain is irreducible and h&#$9as a stationary

(i) ensures that foany (i, ) this is the case for="T;; . Thus istripution, the time averageP(t)), converges tdP®d. We

L(t) stays constant untt=min[T;], where the minimum is  jyqicate how to prove this result here: sincét)<L(0) in
taken over all {j) for which 6P; and 5P, have the opposite  general, none of the eigenvalues Bfcan have modulus
sign, and then decreases at that time step. The tica® be  greater than unitf13]. Irreducibility ensureg14] that the
reinitialized to zero at this point, and the whole arg“me”teigenvalue 1 has a unique eigenvec®. The time aver-

repeated again. Note that nothing in the argument requiregging removes contributions from oscillatory eigenvalues of
the transition ratewv,_,,, to be time independent, so long as T, of the forme'® (4#0). By comparison, the stronger con-

qonditions(i) and (ii) are alwgys satisfied. Also, as with the gition of ergodicity(ii) [with (i)] is enough to rule out oscil-
first approach above, no estimate has been obtaineolor 5141y eigenvalues, since no time averaging is needed for

fast L(t) approaches zero. convergence td®4 It is not clear how this proof that irre-

It may seem surprising thdt(t) need not decrease at gipjlity is sufficient would generalize to time-dependent
every time step, whereas EQ.0) shows thaiG must. If we  apsition rates, since the evolution Bfis then not directly
start out withsP positive and negative on two states that are,g|ated to the eigenvalues B{t).

well separated from each othén the sense that many time
steps are required before the two states have common de- We thank M. E. J. Newman for useful correspondence.

Using the resulz,\W,_, ,(t)=1, we see that (t)<L(0).
We now compare the two sides of the inequality in Ed),
by choosing a specific value ah and carrying out the
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