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Convergence of Monte Carlo simulations to equilibrium
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We give two direct, elementary proofs that a Monte Carlo simulation converges to equilibrium provided that
appropriate conditions are satisfied. The first proof requires detailed balance while the second is quite general.
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Monte Carlo simulations are widely used in statistic
physics. If the algorithm satisfies the detailed balance co
tion, it is easy to show that the desired distribution is asta-
tionary distribution, i.e., if the system is, by some means,
into the desired distribution, it will subsequently stay in th
distribution. It is harder, but nonetheless crucial, to also sh
that, starting from a general distribution, the algorithm w
convergeto the desired distribution. Although this can b
proved without too much difficulty for a system with a fini
number of states@1#, this proof is unfamiliar to most physi
cists. The argument in the original paper of Metropoliset al.
@2# makes convergence plausible but is not a proof@3#. Most
physics texts on Monte Carlo methods either do not giv
proof of convergence@4# or refer the reader@5,6# to rather
abstract derivations in the mathematics literature@7#, or rely
on the Frobenius-Perron theorem@6# which is unfamiliar to
most physicists.

In this paper we present two proofs of convergence wh
are self-contained and use only elementary methods. We
that it is useful to present these derivations here because~i! it
is not widely known in the physics community that it is n
difficult to prove convergence, at least for systems with
finite number of states, and~ii ! our proofs are~to the best of
our knowledge! different from and as simple as existin
proofs in the mathematical literature. Even the proof of R
@1#, which is of comparable simplicity, is hard to understa
physically; this is discussed more fully near the end of
paper.

The first proof relies on the Monte Carlo algorithm sat
fying the condition ofdetailed balance. Although this is true
in essentially all Monte Carlo simulations, it is not strict
required for the algorithm to converge to the equilibriu
distribution. In the second half of this paper, we shall a
present a more general proof which relaxes this condit
and which is very different from the proof assuming detai
balance.

Throughout this paper, we shall assume that the sys
being considered has a finite number of states. Most syst
in physics can be approximated as such by discretizing
continuous variables sufficiently finely; for instance, in m
lecular simulations, it should be permissible to limit th
phase space for any particle to a sufficiently large region,
then discretize it in small intervals. A rigorous proof of co
vergence for systems with an infinite number of states
much more complicated@11#.
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In the simplest case, the desired distribution that
Monte Carlo method seeks to simulate is the Boltzmann
tribution at some temperature. However, in dealing w
glassy systems, it is sometimes more efficient to simula
different distribution, as in the multicanonical ensemble@8#,
the 1/k ensemble@9#, and parallel tempering@10#. The results
presented in this paper are valid whenever the desired di
bution is a stationary distribution of the algorithm, and d
tailed balance—or, more generally, ergodicity—is satisfi
This includes the cases mentioned above.

The essential ingredients of the Monte Carlo method
statistical physics are the~non-negative! ‘‘transition rates,’’
wl→m , defined to be the probability that, given the system
in statel at ‘‘time’’ t, then it will be in statem(Þ l ) at time
t11. We define time to be incremented by one every Mo
Carlo move~not sweep! and assume initially that all move
are equivalent, so thewl→m do not depend on time. An ex
ample would be flipping a single spin chosen at random. T
important case of sequential updating will be discussed la

The probability that the system is in statel at time t is
defined to bePl(t). The evolution of these probabilities i
governed by the ‘‘master equation,’’

Pl~ t11!2Pl~ t !5 (
mÞ l

@Pm~ t ! wm→ l 2Pl~ t ! wl→m #.

~1!

The first term on the right-hand side describes transiti
into statel from m ~which therefore increasesPl and so has
a plus sign! while the second term describes transitions o
of statel, which decreasesP( l ). Note that only terms with
mÞ l contribute. We can also definewl→ l to be the probabil-
ity that the system stays in statel, i.e., wl→ l51
2(mÞ lwl→m , or equivalently,

(
m

wl→m51. ~2!

Equation~2! implies that the master equation can be writt

Pl~ t11!5(
m

Pm~ t ! wm→ l , ~3!

where the termm5 l is now included.
A necessary condition for the method to work is that t

desired distribution,Peq, is stationary, i.e., if Pl(t)5Pl
eq for

all l thenPl(t11)5Pl
eq. This means that the right-hand sid

of Eq. ~1! must vanish forP5Peq. The condition ofdetailed

ce,
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balanceconsists of the assumption thateach term on the
right-hand side of Eq.~1! separately vanishes forP5Peq,
i.e.,

Pl
eqwl→m5Pm

eqwm→ l . ~4!

In the first part of this paper, we shall assume that Eq.~4! is
satisfied.

We start with the following quantity, which is a measu
of the deviation from equilibrium,

G5(
l

1

Pl
eq~Pl2Pl

eq!25(
l

S Pl
2

Pl
eq

21D ~5!

evaluated at timet, where the last expression follows becau
P andPeq are normalized.

At time t11 we indicate~for compactness of notation!
the probabilities byPl8 and the corresponding value ofG by
G8. We will show thatG monotonically decreases, i.e.,

DG[G82G<0, ~6!

where the equality only holds ifG andG8 both vanish, so the
system is in equilibrium. This shows that the system w
eventually approach arbitrarily close to the equilibrium d
tribution.

Using Eqs.~3! and ~5!, DG can be written as

DG5 (
l ,m,n

Fwm→ lwn→ l

PmPn

Pl
eq G2(

l

Pl
2

Pl
eq

. ~7!

In the first term on the right-hand side of Eq.~7! we use the
detailed balance condition, Eq.~4!, to replacewm→ l by
wl→mPl

eq/Pm
eq, and in the second term we can use Eq.~2! to

insert a factor of(mwl→m ~and interchange the indicesl and
m). This gives

DG5 (
l ,m,n

Fwl→mwl→nPl
eq PmPn

Pm
eqPn

eqG2(
l ,m

wm→ l

Pm
2

Pm
eq

. ~8!

Applying the detailed balance relation again and incorpo
ing a factor of(nwl→n , the last term in the above equatio
can be written as

2 (
l ,m,n

wl→mwl→nPl
eqS Pm

Pm
eqD 2

. ~9!

Taking the half the sum of this and the same expression w
m replaced byn, we finally get

DG52
1

2 (
l ,m,n

wl→mwl→n Pl
eqS Pm

Pm
eq

2
Pn

Pn
eqD 2

, ~10!

where terms withm5 l andn5 l are included.
Equation~10! is the main result of this part of the paper.

shows thatDG is definitely negative unless, for every statel,
all states which can be reached froml in a single move—
equivalently, with detailed balance, all states from whicl
02110
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can be reached in a single move—have probabilities prop
tional to the equilibrium probabilities. The most natural sc
nario is thatall states satisfy this with the same proportio
ality constant~which must be unity!, i.e., the system is in
equilibrium. However,DG also vanishes ifPm /Pm

eq assumes
different values for states which have no common one-s
descendants. Hence, to achieve full equilibrium, the al
rithm must also be ergodic, i.e., starting from a given sta
after a sufficiently long time there is non-zero probability f
the system to be in any state. The condition of ergodicity
sufficient to ensure that even ifDG is accidentally zero at
some time step, it must decrease later, since any two s
must have common descendants after several time steps.
additionwl→ lÞ0 for all l, which is usually true, the one-ste
descendants of a set of states must include the set itsel
that it is not possible to break up all the states of the sys
into subsets with no common one-step descendants ac
two subsets. Thus if this condition is satisfied,DG cannot be
zero ~without the system being in equilibrium! at any time
step.

We will distinguish between a process which is ergod
and one which satisfies the lesser condition of being ‘‘ir
ducible.’’ In the latter, the system will eventually sample a
states starting from a given initial state@6#, but, at a fixed
later time, the probability for some of the states is zero.
familiar example which is irreducible but not ergodic is th
Ising model at infinite temperature simulated using Metrop
lis updating, for which the probability to flip is unity in this
limit. Clearly after an odd time, the number of flipped spi
must be odd and vice-versa. For such a non-ergodic sys
it is possible forPm /Pm

eq andPn /Pn
eq to be different for states

which have no common descendant at any fixed later t
~for the Ising model example given here, states which dif
by an odd number of spin flips!.

Note that Eq.~10! does not give an estimate forhow fast
equilibrium is reached.

For random updating considered so far, the probability
making a transition is the same for every move, i.e., writi
Eq. ~1! as

Pl~ t11!5(
m

G lmPm~ t !, ~11!

thenG, the transition matrix~related tow by G lm5wm→ l), is
the same for each ‘‘time’’t. However, for sequential updat
ing, the transition matrix depends on which site is bei
updated, so, for a complete sweep, we have

G5G (1)G (2)
•••G (N), ~12!

whereG ( i ) is the transition matrix for updating spini. Al-
though theG ( i ) individually satisfy the detailed balance con
dition, the transition matrix for the whole sweep,G, doesnot,
@6# because the probability of the reverse transition,m→ l
say, for a whole sweep, is related to the probability of tra
sition l→m in the desired way only if the spins are updat
in the reverse order. Despite overall lack of detailed balan
convergence to the equilibrium distribution is still obtain
4-2
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for sequential updating becauseG decreases ateachstep, as
long as each of the transition probabilities,G ( i ), satisfies the
detailed balance condition.

More generally, detailed balance is not necessary, see
@6# and references therein. In the rest of this paper, we giv
derivation of the necessary and sufficient conditions for c
vergence toPeq:

~i! the algorithm hasPeq as a stationary distribution,
~ii ! for any pair of states (i , j ), there exists someTi j and

some stateki j such that at theTi j ’th time step the probabili-
ties to have reachedk from i and j are both non-zero.

We shall see that~ii ! @with ~i!# implies ergodicity.
We first prove that conditions~i! and ~ii ! are sufficient.

Note that Eq.~1! is linear in the probabilitiesPl , so that if
we definedPl5Pl2Pl

eq, then@with condition ~i!# dPl also
satisfies Eq.~1!, with ( ldPl50.

It is convenient to use a measure of the deviation fr
equilibrium that is different from Eq.~5!:

L5(
l

udPl u. ~13!

Like G, the quantityL is positive unless the distribution ha
converged toPeq. We denote byWl→m(t) the probability
that the system, starting out in statel, reaches statem after t
time steps. This is obtained by ‘‘iterating’’ the transition rat
$w%. Then

L~ t !5(
m

U(
l

Wl→m~ t !dPl~0!U<(
m,l

Wl→m~ t !udPl~0!u.

~14!

Using the result(mWl→m(t)51, we see thatL(t)<L(0).
We now compare the two sides of the inequality in Eq.~14!,
by choosing a specific value ofm and carrying out the
l-summation. If all statesl for which Wl→mÞ0 have the
same sign fordPl(0), it is clear that thel-summation on both
sides are equal. On the other hand, if some of these s
havedP(0).0 and others havedP(0),0, thel-summation
on the left-hand side has both positive and negative ter
and must be less than the corresponding sum on the r
hand side. Thus so long as there is at least one statem which
receives ‘‘contributions’’ from two states (i , j ) with opposite
dP(0), i.e., dPi(0) and dPj (0) have opposite signs an
Wi→mÞ0 andWj→mÞ0, we see thatL(t),L(0). Condition
~ii ! ensures that forany( i , j ) this is the case fort5Ti j . Thus
L(t) stays constant untilt5min@Tij#, where the minimum is
taken over all (i j ) for which dPi anddPj have the opposite
sign, and then decreases at that time step. The timet can be
reinitialized to zero at this point, and the whole argume
repeated again. Note that nothing in the argument requ
the transition rateswl→m to be time independent, so long a
conditions~i! and ~ii ! are always satisfied. Also, as with th
first approach above, no estimate has been obtained forhow
fast L(t) approaches zero.

It may seem surprising thatL(t) need not decrease a
every time step, whereas Eq.~10! shows thatG must. If we
start out withdP positive and negative on two states that a
well separated from each other~in the sense that many tim
steps are required before the two states have common
02110
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scendants!, it is clear thatL(t) does not change at first. How
ever, G decreases because the positive and negativedP’s
both get ‘‘smeared out’’ over several states. Thus differ
measures can depict the approach to equilibrium at diffe
rates. Since any physical observableO is given by ^O&
5( lOl Pl , the error̂ dO&<( l uOldPl u<Lmaxl@uOlu#, so that
L is a conservative indicator of how observables appro
equilibrium.

We have proved the sufficiency of conditions~i! and ~ii !;
the necessity can be easily demonstrated. The necessity~i!
is obvious. If~ii ! is violated, starting with an initial condition
dPi(0)52dPj (0) and all otherdPl ’s equal to zero, the
positive and negative regions fordP stay separate for al
time and cannot neutralize each other.

Condition ~ii ! @with ~i!# is equivalent to the~seemingly
stronger! condition of ergodicity. If the system were not e
godic, then starting withPl(0)5d i l would lead to aP(t)
with Pj (t)50 for somej, since all states would not be ac
cessible from the statei at time t. ThereforeP(t) could not
have converged toPeq. Since we have seen that~i! and ~ii !
imply convergence, they must imply ergodicity.

The proof of convergence in Ref.@1# is comparable in
simplicity to the proof given above. However, it applies t
transposeGT of the transition matrix to the initial state of th
system~represented as a column vector!, and shows that un-
der iteration the initial state evolves to a column vec
whose entries are all identical. Although it is possible@1# to
deduce the desired properties ofG from this, there is no
physical interpretation of evolution underGT, which does
not even conserve probability. In contrast, the proof giv
above shows how fluctuations from the desired distribut
are ‘‘mixed’’ by time evolution, with positive fluctuations
annihilating negative ones. It is also physically clear w
ergodicity is essential for this annihilation process to proce
to completion: Positive and negative fluctuations are th
assured of encountering each other under time evolution

Although we have considered the conditions for conv
gence toPeq, in practice Monte Carlo simulations are n
carried out using such an ensemble average, but by sim
ing a single system and taking a time average of many m
surements. If we restrict ourselves to the case when the t
sition matrix G is time-independent, this defines
homogeneous Markov chain@12#. It can then be shown tha
if the Markov chain is irreducible and hasPeq as a stationary
distribution, the time averagêP(t)& t converges toPeq. We
indicate how to prove this result here: sinceL(t)<L(0) in
general, none of the eigenvalues ofG can have modulus
greater than unity@13#. Irreducibility ensures@14# that the
eigenvalue 1 has a unique eigenvector,Peq. The time aver-
aging removes contributions from oscillatory eigenvalues
G, of the formeiu (uÞ0). By comparison, the stronger con
dition of ergodicity~ii ! @with ~i!# is enough to rule out oscil-
latory eigenvalues, since no time averaging is needed
convergence toPeq. It is not clear how this proof that irre
ducibility is sufficient would generalize to time-depende
transition rates, since the evolution ofP is then not directly
related to the eigenvalues ofG(t).

We thank M. E. J. Newman for useful correspondence
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