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Aging and self-organized criticality in driven dissipative systems
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We study the noisy dynamics of a close relative to the original sandpile model. Depending on the type of
noise and the time scale of observation, we find stationary fluctua@imgar to self-organized criticalijyor
an aging dynamics with punctuated equilibria, a decreasing rate of events and reset properties qualitatively
similar to those of glassy systems, evolution models, and vibrated granular media.
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[. INTRODUCTION the presence of two dynamical regimes, pseudostationary for
t<t, and nonstationary fot>t,,, together with the reset
The “pulse-duration memory effect” observédl] in slid-  capability as the central properties of aging dynamics. These
ing charge density wave systems was explained by Coppeproperties are shared by spin glasses and glasses, but not by,
smith and Littlewood[2] using a microscopic nonlinear  €.9., the Bak-Sneppgi9] evolution model, whose macro-
model of interacting degrees of freedom with a huge numbesgcopic variable(the average fitnegsremains constant in
of dynamically inequivalent attractors. Related work bytime. Nonetheless, this model has other interesting age de-
Tang, Wiesenfeld, Bak, Coppersmith, and Littlewof8] pendent properties, as discussed in [R24).
(henceforth TWBCLI, emphasized that the relatively rare
minimally stableattractors of this model are nonetheless
those preferably selected by the dynamics. The sandpile
model and the idea of self-organized critical{§OO0 then In spite of its out most simplicity, the TWBCL model with
evolved[4] from the analysis of the TWBCL model, with its added noise has interesting aging properties: The relevant
poised statdeing conceptually similar to a minimally stable macroscopic average, here called the degree of phase orga-
state. A sand pil€5] reacts to small disturbances by releasingnization ||x||, remains nearly constant on scalest,,, and
avalanches with a broad distribution of sizes, returning therthe noise induced fluctuations are avalancf&®C-like in
to its poised state described by the angle of repose. two dimensiong2D)]. For t>t,, a logarithmic decrease of
While SOC deals with thetationaryfluctuations of ex- ||x|| becomes apparent, revealing that the attractors visited
tended systems, a wide class of systems is manifestedly nobecome more stable as the system ages. The deday oén
stationary, since the relevantacroscopicvariables slowly be reset by a change of the elastic constant, whereby the
change in time at a@eceleratingrate. This implies a depen- system is rejuvenated. All this behavior can approximately
dence of the data on the initial time and hence onaeof  be accounted for by a mechanism previously dubfi
the system. Relevant examples are spin glaf8es], the  noise adaptationwhich is also present in the dynamics of
evolution of bacterial culturg®], evolution in rugged fitness populations evolving in the rugged landscape of the NK
landscape$10—12, macro-evolution13,14], granular sys- model[10].
tems[15,16), and Lennard-Jones glas$&3]. In spin glasses ConsiderM “balls” arranged in an arraylinear or squarge
and glasses, aging behavior is usually analyzed in terms eind coupled to their neighbors via springs with elastic con-
functions with two time arguments as, e.g., magnetic correstantK. The balls are subject to friction, to a force with a
lations and linear response. Since at “short” timest,,  sinusoidal spatial variation, and to a series of square pulses
these fulfill the fluctuation dissipation theorefliDT), one  of amplitudeE. In the limit of high damping, large field, and
can infer that the system performs equilibrium-like fluctua-weak elastic coupling, the key dynamical features are cap-
tions in this regim¢18]. Fort>t,, the FDT is broken and the tured by the simple update rufg] reproduced belovjwith
nonstationary nature of the dynamics becomes apparent. I1D notation:
timately linked to nonstationarity is the reset capability of
aging systems, i.e., the possibility of enhancing the rate of Z. (1) =y (1) +KA(y(t)); +E+Ni(t),
relaxation, thus “resetting” the system’s apparent age to a ) ) ) )
smaller value by tweaking parameters such as, e.g., tempera- .
ture and/or magnetic fielf5—8]. yj(t+1)=nint(z(t)). @
Below we use the TWBCL model, whose attractors are
explicitly known, for a case study of the aging of nonthermalHere,t is the time in units of field cycleg; is the coordinate
systems with multiple metastability. Being particularly inter- of the jth ball, A is the lattice Laplacian, nint] stands for
ested in the connection between the coarse grained dynamitise integer nearest tp andN; is the noise applied at sije
and the attractor structure, we find it convenient to consider For N=0, integer valuedE and free or periodic boundary
conditions, the attractor states of Eql) satisfy [3]
nint(Kc) =0, wherec= Ay is the curvature vector. The cor-
*Email address: paolo@planck.fys.ou.dk responding coordinates then fulfill

Il. THE TWBCL MODEL
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FIG. 1. Aging in a 100& 1 model with K=0.05, randomly
perturbed by white noise with exponentially distributed magnitude FIG. 2. Broad, power-law-like distributions are observed for
of a. Each curve in the left panel belongs to a different valu@ of both avalanche sizegeft pane) and durations in a 39030 model
and is the average over ten independent trajectories, starting fromith K=0.05. The system is subject to noise pulses drawn from an
the same minimally stable state. After a short transient, the decay isxponential distribution with average=0.01 and the avalanches
logarithmic(with a superimposed oscillatiprin the right panel, the  are monitored through 100 perturbation/relaxation cycles starting at
logarithmic slopes are shown asA line of unit slope is included to  three different ages, . The age is here the total number of cycles
guide the eye. the system has undergone before sampling the statistick, s
creases the avalanches become smaller and shorter.
-1 1
2 =Koz 7L M @ I+ )= X () — € IN(L+ /2, 3

The attractor$22] thus lie within anattractor hypercubeof ~ Considering that In(*t/t,)~t/t, and thatc<1, we see that

side length 1K centered at the origin. Their number is |[x|| does not change appreciably as longt/ag<1. Hence,

O(1/KM), which is huge when, for exampl®l~200 and the dynamics appears stationary fert,,, as claimed.

K=0.05. We can reach the same conclusion by a second argument,
Noiseless relaxation of an initial state generally leads to avhich will help us to connect with the landscape structure of

phase organized sta{&], i.e., a state located at the cornersthe problem: By definition, consecutive macroscopic events

of the attractor hypercube. Such stateménimally stable always delimit the observation window during which the dy-

against external perturbations, as it barely fulfills Eg). namics appears as stationary. Second, as we will show later,

The averagéx|=M ~1=M|x;| is always defined and gauges, the residence timg characterizing the attractors that are first

for attractors, the degree @fetg stability ||x||, or, equiva-  Visited at timet,, fuffills (within an order of magnitude

lently, the depth d=1/2—||x||. Minimally stable attractors

haved~0. t~t,. (4)

Hence the dynamics appears stationary within the interval
<t,~t,,. Interestingly, Eq(4) constitutes the main assump-
We always start the noisy dynamics at a phase organizegbon of weakly broken ergodicity24], a widely used scenario
state selected under noiseless conditions, and denote the tifig complex system relaxation. The same equation also de-
elapsed under the influence of noise f)y, the age of the scribes a property of diffusion ohierarchical tree models
system. As we anticipated, the evolution has a fipseudd  [23,25,26, models that reproduce many features of glassy
stationary phase involving fluctuations among metastableelaxation.
states of the same depth. On longer time scales the averageFigure 2 illustrates the nature of the “short time” ava-
depth of the attractors visited increases logarithmicalljanche dynamics. The noise used to produce the data consists
through a series of jumps, also denotedcroscopic events of a series of “kicks” of either sign, simultaneously applied
or punctuationsCrucially, t,, demarks the boundary between to each “ball” and independently drawn from an exponential
short and long time dynamics. As shown by Fig. 1, our macdistribution with average.
roscopic averagdx|| decreases in a logarithmic fashion, Relaxation to a fixed point is allowed between consecu-
apart from a superimposed oscillation that is most clearlytive perturbations, and the avalanches consist of sets of con-
visible for small noise amplitudes. Letbe the logarithmic tiguous “balls” simultaneously in motion. Their sizes are
slope of||x||, which is shown in the second panel of Fig. 1 defined as the largest number of participating balls. Both size
and assume that the observation window extends tipme  and duration are exponentially distributed in 1D, and power-
t+t,,. Since In{+t,)=In(t,)+In(1+t/t,), it follows that law distributed in 2D, as expect¢d7]. The main message of

Noisy relaxation properties
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FIG. 3. Changing the elastic constant frok=0.03 to
K=0.05 and again t& =0.07 produces the “resets” seen at times
2x10% and 2x 10*. The data are averages over 20 different trajec-
tories of a linear array of 1000 “balls.” The noise magnitude is
exponentially distributed with average=0.015.
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FIG. 5. An array of 1000 “balls” with elastic constant
K=0.05 is perturbed by noise “kicks” of random sign and magni-
tude exponentially distributed with average-0.015. The noise is
uncorrelated in time and space. We considered 200 independent
trajectories, all starting from the same minimally stable state. An

Fig. 2 is simply that avalanches are larger and last longer ifievent” is defined as the achievement of a state of lojwel. A and

a young systemupper curve than in an aged ondower

B: average and variance of the number of events observed within

curve. This is a further indication of decelerating dynamics.timet,, . C: autocorrelation functiof, (k) of the log-waiting times
Pulsed noise can model systems where the typical ava«=In(t/t-1). D: distribution of theA,.
lanche duration and the length of the noiseless periods are

well separatedi28]. To bypass this restriction we now apply

Averaging suppresses all fast fluctuations together with

the noise “continuously,” i.e., at each time step. The coarsahe spatial information, andx|(t,) therefore consists of
grained time evolution in state space can then be followed b¥onstant plateaus, punctuated by rapid changes. These

monitoring||x||(t,,).
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mainly lead to deeper attractors and stand outhasoarse
grained dynamical events on long time scales.

Complementary information is obtained by averadirty
over independent noise histories. The resulting smooth func-
tion, (||x|)(t,) was studied for both 1D and 2D systems,
using pulsed as well as continuous noise. Sikbd|) is
rather insensitive to the dimension, we mainly studied it for
1D models, which are faster to simulate. The left panel of
Fig. 1 shows the time evolution df|x|)(t,) for different
values of the noise magnitude The negative logarithmic
slope of the plots has a linear relationship to the amplitude
that is shown in the right panel of the same figure.

The age reset is induced in our model by changing the
elastic constant, which is analogous to changing the mag-
netic field[29] in spin glass systems. Increasikgreduces
the size of the attractor hypercube and concomitantly reduces
the depth of the current state. As a consequéieg) (t,,) is
reset to an earlietand larger value, as shown in Fig. 3.
DecreasingK has the effect of swelling the attractor hyper-

FIG. 4. A 1000<1 model withK =0.05 is perturbed through a CuP€ whence|x|)) quickly drops.

few thousand updates by noise of bounded variafiera,a] and

To further clarify the connection between the reset effect

then allowed to fully relax, reaching tHel| values that are plotted @nd the attractor geometry, we consideunded nois¢21]
(as starsvs a for five independent noise sequences. In addition, thedrawn from a uniform distribution supported in the finite

line y=0.45-a is drawn as a guide to the eye. Sifod decreases

interval [ —a,a]. Equation(1) then implies that only states

almost proportionally toa, the least stableamong the attractors ~fulfilling max;{1/2— |Xj|}>a survive asexactfixed points of
surviving the noise are those dynamically selected with high probthe equations of motion. The corner states of an attractor

abilty.

hypercube of side length (12a)/K are still minimally
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stable, in the generalized sense that any infinitesimal Ill. SUMMARY AND CONCLUSION
creaseof the noise amplitude destroys their stability. Figure

4 delm?nstrateﬁ that a pe_'rturbat|on of m?gnltadperma— TWBCL model can be described in terms of avalanches hav-
nently leaves the system in an attractor of depib.45-a. g iy two spatial dimensions, SOC-like character. On

Hence the minimally s;_tab_le states are dynamically sele_cted|Onger time scales the applied noise pushes the system into

For exponentially distributed noise of average magnitudgyradually more stable attractors. As a consequence, the de-
a and on a time scalg,, the kicks normally fall within the gree of phase organizatidix| decreases logarithmically in
ranger,~alnt,. Hence we expect that the trajectories will time. This differs from the sand pile model and is reminis-
typically be located at the corners of a hypercube of sideent of the logarithmic relaxation of the angle of reppk§]
length Z||x|)~(1—-2alnt,). This is in reasonable agree- observed in actual sand piles subject to vibration. We have
ment with the behavior depicted in the right panel of Fig. 1argued that the aging of the TWBCL model is similar to that
and explains why even a modest shrinking of hypercube proef, e.g., spin glasses in two important respe@jsthe bound-
duces a sizable reset. Since the attractors typically discovary between quasistationary and nonstationary dynamics is
ered on a given time scale are the shallowest among thosgven byt,,, the time elapsed from the initial quench, and
available, we expect that @cord in the sequence of noise (i) the dynamics is resetable. The coarse grained aging dy-
kicks will likely suffice to produce a macroscopic event, anamics is characterized by a series of “macroscopic events”
feature previously dubbedbise adaptatiori21]. leading to gradually deeper attractors. The statistics of these

If macroscopic events are induced by noise records, theVents is approximately log Poisson, an indication that the
numberng(t,) during timet is alog-Poissonprocesq 21]. events them_f,elves are stro_ngly correlgted with records in the
As a consequence, if denotes the time of thieth event, the ~ History of noise. During noise adaptatigpl] the attractors
quantities A, ,=In(t,/t,_,) are statistically independent and first .V'S'tEd on a time scaIgN typically trap the trajectories
have the common distribution Prab$ x) =exp(—Ax), for for time t,,, as a.SSL.Jmed n Weakly broken erqumﬂgﬂf].

i The same statistics is also present in the dynamics of a popu-

some positiveN. Second, the average number of event

: Sation of “agents” evolving in NK fithess landscapes with
grows as{ne)(tw) =A Int,. From Fig. 5 we see that the ac- multiple optima[10]. If one views evolution as a search in a

tual statistics of macroscopic events resembles a log-Poissgfiass landscape with multiple optima, stress-induced hyper-
statistics in the shape ¢f) (plot A) and in the fact that the 1, tation[30] following a change of nutrient type or concen-
log-waiting times have very short correlatiof®ot C) and  ration appears as the biological counterpart of a reset. Thus,
an exponential distributiofplot D). _ _arange of complex nonstationary phenomena can be quali-
Crucially, Fig. 5 D shows that the event imgsapproxi-  atively understood by invoking marginal stability and noise

mately make up a geometrical series. Hence, in a system Qfyaniation as selection mechanisms for metastable attractors.
aget,,, most time is spent in the neighborhood of the last

attractor visited. Therefore, the residence time in a neighbor-
hood of the kth attractor discovered i$, =t —t,_;~ty
=t,, as anticipated in Eq4). P.S. has been supported by the Danish Research Council.

On short time scales the space resolved dynamics of the
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